Sample records for deep seismic structure

  1. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    PubMed

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  2. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    NASA Astrophysics Data System (ADS)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  3. Joint the active source and passive source seismic to research the fine crustal structure of the Lushan area

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yu, C.

    2017-12-01

    On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.

  4. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NASA Astrophysics Data System (ADS)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  5. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  6. Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?

    NASA Astrophysics Data System (ADS)

    Cobden, L. J.

    2017-12-01

    Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.

  7. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  8. Deep seismic reflection evidence for ancient subduction and collision zones within the continental lithosphere of northwestern Europe

    NASA Astrophysics Data System (ADS)

    Balling, N.

    2000-12-01

    Deep seismic profiling experiments in the region of NW Europe (including BABEL in the Gulf of Bothnia and the Baltic Sea, Mobil Search in the Skagerrak and MONA LISA in the North Sea) have demonstrated the existence of seismic reflectors in the mantle lithosphere beneath the Baltic Shield, the Tornquist Zone and the North Sea basins. Different sets of reflectors are observed, notably dipping and sub-horizontal. Dipping, distinct reflectivity, which may be followed from Moho/Moho offsets into the deeper parts of the continental lithosphere, is of special interest because of its tectonic and geodynamic significance. Such reflectivity, observed in several places, dipping 15-35° and covering a depth range of 30-90 km, constrained by surface geological information and radiometric age data, is interpreted to represent fossil, ancient subduction and collison zones. Subduction slabs with remnant oceanic basaltic crust transformed into eclogite is assumed, in particular, to generate deep seismic reflectivity. Deep seismic evidence is presented for subduction, crustal accretion and collision processes with inferred ages from 1.9 to 1.1 Ga from the main structural provinces within the Baltic Shield including Svecofennian, Transscandinavian Igneous Belt, Gothian and Sveconorwegian. Along the southwestern border of Baltica (in the southeastern North Sea) south-dipping crustal and sub-crustal reflectivity is observed down to a depth of about 90 km, close to the lithosphere-asthenosphere boundary. These structures are interpreted to reveal a lithosphere-scale Caledonian (ca. 440 Ma) suture zone resulting from the closure of the Tornquist Sea/Thor Ocean and the amalgamation of Baltica and Eastern Avalonia. These results demonstrate that deep structures within the continental lithosphere, originating from early crust-forming plate tectonic processes, may survive for a very long time and form seismic marker reflectivity of great value in geotectonic interpretation and reconstructions. Furthermore, the depth of dipping reflectivity from ancient structures, such as subduction slabs, significantly contributes information about the thickness of the coherent lithosphere. The seismic observations and our interpretations support plate tectonic and structural models, suggesting crustal growth and amalgamation of tectonic units in the Baltic Shield and along its southwestern margin generally from the northeast (in present-day orientation) towards the southwest and west, likely to result in regional deep structural and tectonic age zonations.

  9. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    NASA Astrophysics Data System (ADS)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and location of seismic events.

  10. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    NASA Astrophysics Data System (ADS)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  11. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, Mark; Ridley, Victoria

    2010-05-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.

  12. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Richards, Mark A.

    2010-09-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.

  13. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Ridley, V. A.

    2010-12-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.

  14. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  15. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the TR, whereas intrusions into the lower crust and detachment faults are likely responsible for its smoother appearance. Deep magma intrusions can be responsible for metamorphic processes leading to an increased velocity of the lower crust of more than 7 km/s.

  16. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  17. Mantle wedge structure beneath the Yamato Basin, southern part of the Japan Sea, revealed by long-term seafloor seismic observations

    NASA Astrophysics Data System (ADS)

    Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.

    2016-12-01

    The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

  18. The Boundary of Tectonic Units of the South China Continent in the Meso-Neoproterozoic - Early Paleozoic: Insights from Integrated Geophysical Study

    NASA Astrophysics Data System (ADS)

    Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.

    2013-12-01

    The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion analysis on them. Seismic reflection profiles focus on fine lithosphere structure vertically along the profile, while gravity and magnetic methods are beneficial to reveal regional tectonic features laterally. The integrate study of seismic, gravity and magnetic data will play the advantages of various methods and constraint and confirm each other. Hence, we did the interpretation of gravity and magnetic data with constraints of the newly seismic reflection profile. Based on the above studies, we traced the boundaries of tectonic units in the SCC from Meso-Neoproterozoic to early Paleozoic, and formed a certain understanding of the tectonic evolution in the SCC before the late Paleozoic. Acknowledgment: We acknowledge the financial support of the SinoProbe-02-01 and SinoProbe-01-05 projects, and the Fundamental Research Funds for the Central Universities.

  19. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.

  20. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  1. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    NASA Astrophysics Data System (ADS)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  2. Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Faccenna, Claudio

    2018-05-01

    The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.

  3. Integrated geologic and geophysical studies of North American continental intraplate seismicity

    USGS Publications Warehouse

    Van Lanen, X.; Mooney, W.D.

    2007-01-01

    The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes shows that the frequency and moment magnitude of events are nearly uniform for the entire 0-35 km depths over which crustal earthquakes extend. This is in contradiction with the hypothesis that larger events have deeper focal depths. We conclude that the deep structure of the crust, in particular the existence of deeply penetrating faults, is the controlling parameter, rather than lateral variations in temperature, rheology, or high pore pressure. The distribution of stable continental region earthquakes in eastern North America is consistent with the existence of deeply penetrating crustal faults that have been reactivated in the present stress field. We infer that future earthquakes may occur anywhere along the geophysical lineations that we have identified. This implies that seismic hazard is more widespread in central and eastern North America than indicated by the limited known historical distribution of seismicity. ?? 2007 The Geological Society of America.

  4. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  5. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  6. Linking magma transport structures at Kīlauea volcano

    USGS Publications Warehouse

    Wech, Aaron G.; Thelen, Weston A.

    2015-01-01

    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  7. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Agency for Meteorology, Climatology and Geophysics of Indonesia; Nugraha, Andri Dian

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic networkmore » can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.« less

  8. Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    NASA Technical Reports Server (NTRS)

    Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.

    2011-01-01

    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.

  9. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  10. Behaviour of Steel Fibre Reinforced Rubberized Continuous Deep Beams

    NASA Astrophysics Data System (ADS)

    Sandeep, MS; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Transfer girders and pier caps, which are in fact deep beams, are critical structural elements present in high-rise buildings and bridges respectively. During an earthquake, failure of lifeline structures like bridges and critical structural members like transfer girders will result in severe catastrophes. Ductility is the key factor that influences the resistance of any structural member against seismic action. Structural members cast using materials having higher ductility will possess higher seismic resistance. Previous research shows that concrete having rubber particles (rubcrete) possess better ductility and low density in comparison to ordinary concrete. The main hindrance to the use of rubcrete is the reduction in compressive and tensile strength of concrete due to the presence of rubber. If these undesirable properties of rubcrete can be controlled, a new cementitious composite with better ductility, seismic performance and economy can be developed. A combination of rubber particles and steel fibre has the potential to reduce the undesirable effect of rubcrete. In this paper, the effect of rubber particles and steel fibre in the behaviour of two-span continuous deep beams is studied experimentally. Based on the results, optimum proportions of steel fibre and rubber particles for getting good ductile behaviour with less reduction in collapse load is found out.

  11. The Waqf as Suwwan crater, Eastern Desert of Jordan: aspects of the deep structure of an oblique impact from reflection seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Heinrichs, Till; Salameh, Elias; Khouri, Hani

    2014-01-01

    The deeply eroded Waqf as Suwwan ring structure was recently discovered to be a large impact, the first identified in the near east. Large-scale reflection seismic structure shows the impact situated high on the northeastern flank of the Jordan Uplift sloping into Wadi Sirhan Basin. If exhumation is linked to the Arabia-Eurasia collision, a likely time window for the impact event may be latest Eocene to Late Oligocene. Impact into a shallow sea seems an optional scenario. Old reflection seismic lines offer limited insight into the deep structure of the rim and part of the central uplift of the complex crater. An important structural clue is provided by a well-resolved seismic horizon of a yet tentative correlation with a Paleozoic black shale. The central gravity high is compatible with a mass surplus by the uplift of denser Paleozoic basement below the central uplift. The gravity model further indicates a ring of dense Paleozoic sediments rising from below into the ring syncline. Seismics show presumably radial synclines in the central uplift which are interpreted by centripetal constrictional flow during crater collapse. Beneath the final crater's outer boundary, a shallow-dip normal fault zone, subtle seismic structure in uncollapsed footwall segments reveal an asymmetry of strain. The asymmetry is attributed to the cratering flow by an oblique impact directed toward NE. The finding provides independent support to an earlier suggestion of impact obliquity based on vergency of folds exposed on the central uplift.

  12. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  13. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO

    2014-10-24

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  14. Ancestral Structure of the Neuquén Basin, Supported by an Innovative Deep Seismic Reprocessing

    NASA Astrophysics Data System (ADS)

    Comínguez, A. H.; Franzese, J. R.

    2007-05-01

    Seismic-tracings comprising both the eastern and western sectors of Sierra de los Chihuidos, showed the deep structure of the Neuquén basin, Argentina. Deep reprocessing of historical industrial seismic-lines supplied interpretive information down to about 30-33 km. Consequently, seismic data reprocessed with "self-truncating extended correlation" confirmed an objective way for acquiring deep-seismic information where standard Vibroseis records are available. In addition, the FMED algorithm was an appreciated nonlinear mathematical tool to improve seismic resolution. Original results accomplished with the above emphasized techniques, revealed a list of concepts summarized along the subsequent comments. An acoustic contrast at about 24 km depth must be the top of the lower Crust. An oblique reflector between 16 and 18 km depth must be assumed as the local image of the master shear that controlled the extension system during the Late Triassic-Early Jurassic period. A sub-master fault dipping about 8° W, surely have been controlling the evolution of `Las Cárceles' area. An important inversion event initiated during the Bathonian-Callovian, sensibly affected the western sector of `Las Cárceles' (that is the site contiguous to the Neuquén river). Significant deposition of synrift sediments (Precuyo Group) originated in contiguous scarp degradation was detected on the western side of `Los Chihuidos' arch, at about 7 km depth. A Pliensbachian-Toarcian bipolar inversion developed during the transition to the Cuyo Group was evidenced in the western area. In the same sector, a middle Jurassic postrift episode is characterized by a deltaic depositional system prograding to the west with accentuate high energy. A deep discontinuity was related with the ancestral origin of the Basin, its seismic tracing permitted to match field results with a scale tank experiment simulating orogenic collapse. Bulk extension of the ancestral thickened crust could be only justified if a relative free boundary is adjacent to the ancestral orogenic domain. In such case, the idea of rollback of the western subducting slab would emerge as the most credible hypothesis.

  15. Simultaneous acquisition of Sparker and airgun seismic data - a key to understanding the interaction of deep structures and the Quaternary in the Kattegat area

    NASA Astrophysics Data System (ADS)

    Nørmark, Egon; Jensen, Jørn B.; Bendixen, Carina; Clausen, Ole R.; Trinhammer, Per L.; Boldreel, Lars O.; Seidenkrantz, Marit S.; Fanget, Anne-Sophie

    2014-05-01

    The geological evolution of the Kattegat and Baltic Sea area during the last 130,000 years encompasses a complex series of glacial advances with highly oscillating ice margins interrupted by marine inundations and significant glacial lake deposition. One of the most significant lacustrine episodes is related to the build-up and drainage of the Baltic Glacial Lake during the last deglaciation. The link of these major depositional events to global climate as well as their impact on local and regional environment is, however, still poorly understood. The relation between the deep structures and Quaternary deposition is also not well resolved. In order to improve this understanding we aim at acquiring an understanding of the 3-dimensional evolution of the Quaternary sediments in the Kattegat and Baltic Sea areas using seismic studies. We relate these seismic data to the palaeoclimatic and sedimentological information obtained through the sedimentological and micropalaeontological analyses of both short sediment gravity cores and of samples from IODP Expedition 347 drilled in the fall of 2013. Different types of seismic data are needed for studying the relationship between the crustal structure, pre-Quaternary topography, and Quaternary deposition than seismic data needed for studying the detailed depositional dynamics within the Quaternary deposits. This is because when using airguns with a deep penetration needed for studying deep-laying structures the resulting seismic data has too poor resolution for studying the very shallow parts. In contrast the very high resolution sparker data has a poor penetration depth. Traditionally, these two different types of seismic data are for practical reasons not been collected simultaneously, or even on the same cruise. As a result, these two (complementary) dataset are difficult to compare, especially when they are acquired under different conditions (changes in positioning, noise levels, etc.). In this study, we have solved the problem by acquiring both seismic datasets simultaneously during the same leg. Both the sparker and airgun energy sources are towed behind the vessel, and the common streamer is placed in the middle behind the energy sources. In order to optimize the acquisition hydrophones are spaced with 3.125m for the uppermost 125m of the layout, where the main part of the reflections for the Sparker data is acquired, whereas the spacing is 6.25m at the remaining 400m of the streamer. The energy release of the different sources is timed in order to minimize the interference between the two systems. The resulting seismic sections are excellent examples of different data from the same area that is resolved at different depth intervals and vertical resolution. This allows us to directly compare the data and gives a hitherto unseen differentiation of seismic resolution in different parts of the succession. A preliminary geological analysis of the data shows that deposition in a number of the Quaternary mini-basins is controlled by the underlying structures, which can be related to the Sorgenfrei-Tornquist fault Zone. This infers that deep structures in some areas may still control the present bathymetry, even within smaller basins. The dating of the events and the relation to global climatic changes awaits the biostratigraphical analysis of the IODP boreholes.

  16. Initial investigation of reinforced concrete filled tubes for use in bridge foundations.

    DOT National Transportation Integrated Search

    2012-06-01

    The Washington State Department of Transportation (WSDOT) frequently employs deep pile or caisson bridge : foundations for its bridge structures. Deep pile and drilled shaft foundations are increasingly important for seismic : design in Washington st...

  17. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    USGS Publications Warehouse

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  18. The T-Reflection and the Deep Crustal Structure of the Vøring Margin, Offshore mid-Norway

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-11-01

    Seismic reflection data along volcanic passive margins frequently provide imaging of strong and laterally continuous reflections in the middle and lower crust. We have completed a detailed 2-D seismic interpretation of the deep crustal structure of the Vøring Margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection. Using a dense seismic grid, we have mapped the geometry of the T-Reflection in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The T-Reflection is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitudes, and contact relationships. The T-Reflection seems to be connected to deep sill networks and is locally identified at the continuation of basement high structures or terminates over fractures and faults. The T-Reflection presents a low magnetic signal. The spatial correlation between the filtered positive Bouguer gravity anomalies and the deep dome-shaped reflections indicates that the latter represent a high-impedance boundary contrast associated with a high-density and high-velocity body. In 50% of the outer Vøring Margin, the depth of the mapped T-Reflection is found to correspond to the depth of the top of the Lower Crustal Body (LCB), which is characterized by high P wave velocities (>7 km/s). We present a tectonic scenario, where a large part of the deep crustal structure is composed of preserved upper continental crustal blocks and middle to lower crustal lenses of inherited high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the T-Reflection, whereas intrusions into the ductile lower crust and detachment faults are likely responsible for its smoother character. Deep magma intrusions can be responsible for regional metamorphic processes leading to an increasing velocity of the lower crust to more than 7 km/s. The result is a heterogeneous LCB that likely represents a complex mixture of pre- to syn-breakup mafic and ultramafic rocks (cumulates and sills) and old metamorphic rocks such as granulites and eclogites. An increasing degree of melting toward the breakup axis is responsible for an increasing proportion of cumulates and sill intrusions in the lower crust.

  19. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  20. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  1. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    NASA Astrophysics Data System (ADS)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  2. Crustal investigations of the earthquake-prone Vrancea region in Romania - Part 2: Novel deep seismic reflection experiment in the southeastern Carpathian belt and its foreland basin - survey target, design, and first results

    NASA Astrophysics Data System (ADS)

    Mocanu, V. I.; Stephenson, R. A.; Diaconescu, C. C.; Knapp, J. H.; Matenco, L.; Dinu, C.; Harder, S.; Prodehl, C.; Hauser, F.; Raileanu, V.; Cloetingh, S. A.; Leever, K.

    2001-12-01

    Seismic studies of the outer Carpathian Orogen and its foreland (Focsani Basin) in the vicinity of the Vrancea Zone and Danube Delta (Romania) forms one component of a new multidisciplinary initiative of ISES (Netherlands Centre for Integrated Solid Earth Sciences) called DACIA PLAN ("Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics"). The study area, at the margin of the European craton, constitutes one of the most active seismic zones in Europe, yet has remained a geological and geodynamic enigma within the Alpine-Himalayan orogenic system. Intermediate depth (50-220 km) mantle earthquakes of significant magnitude occur in a geographically restricted area in the south-east Carpathians bend. The adjacent, foreland Focsani Basin appears to exhibit recent extensional deformation in what is otherwise understood to be a zone of convergence. The deep seismic reflection component of DACIA PLAN comprises a ~140-km near-vertical profile across the Vrancea Zone and Focsani Basin. Data acquisition took place in August-September 2001, as part of the integrated refraction/reflection seismic field programme "Vrancea-2001" co-ordinated at Karlsruhe University (cf. Abstract, Part 1), utilising 640 independently deployed recorders provided by UTEP and IRIS/PASSCAL ("Texans"). Station spacing was every 100-m with shots every 1-km. These data are to be integrated with industry seismic as well as planned new medium-high resolution seismic reflection profiling across key neotectonically active structures in the Focsani Basin. Particular goals of DACIA PLAN include: (1) the architecture of the Tertiary/Quaternary basins developed within and adjacent to this zone, including the foreland Focsani Basin; (2) the presence and geometry of structural detachment(s) in relation with foreland basin development, including constraints for balanced cross-sections and geodynamic modelling of basin origin and evolution; (3) the relationship between crustal structures related to basin evolution, especially neotectonic structures, with deep (mantle) structure and seismicity; and, (4) integratration with complementary studies in the Carpathian-Transylvanian region for evaluation and validation of competing geodynamic models for the present-day development and neotectonic character of the Vrancea Zone-Focsani Basin-Danube Delta-Black Sea corridor.

  3. Deep-focus earthquakes and recycling of water into the earth's mantle

    NASA Technical Reports Server (NTRS)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  4. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.

  5. Geophysical data reveal the crustal structure of the Alaska Range orogen within the aftershock zone of the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.

    2004-01-01

    Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.

  6. New Constraints on Upper Mantle Structure Underlying the Diamondiferous Central Slave Craton, Canada, from Teleseismic Body Wave Tomography

    NASA Astrophysics Data System (ADS)

    Esteve, C.; Schaeffer, A. J.; Audet, P.

    2017-12-01

    Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.

  7. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  8. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Yamada, Ryuhei; Kikuchi, Fuyuhiko; Kamata, Shunichi; Ishihara, Yoshiaki; Iwata, Takahiro; Hanada, Hideo; Sasaki, Sho

    2015-09-01

    The internal structure of the Moon is important for discussions on its origin and evolution. However, the deep structure of the Moon is still debated due to the absence of comprehensive seismic data. This study explores lunar interior models by complementing Apollo seismic travel time data with selenodetic data which have recently been improved by Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Laser Ranging (LLR). The observed data can be explained by models including a deep-seated zone with a low velocity (S wave velocity = 2.9 ± 0.5 km/s) and a low viscosity (˜3 × 1016 Pa s). The thickness of this zone above the core-mantle boundary is larger than 170 km, showing a negative correlation with the radius of the fluid outer core. The inferred density of the lowermost mantle suggests a high TiO2 content (>11 wt.%) which prefers a mantle overturn scenario.

  9. Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.

    2015-12-01

    Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.

  10. New insights on shallow and deep crustal geological structures of BABEL line 7 marine reflection seismic data revealed from reprocessing

    NASA Astrophysics Data System (ADS)

    Shahrokhi, H.; Malehmir, A.; Sopher, D.

    2012-04-01

    The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.

  11. Subsurface geology of the Lusi region: preliminary results from a comprehensive seismic-stratigraphic study.

    NASA Astrophysics Data System (ADS)

    Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano

    2016-04-01

    We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid circulation. Seismic stratigraphic study of the basin margin (closer to volcanic accumulations) will also allow reconstructing the relationships between present and past volcanic activity recorded in the deep subsurface with the genesis of piercement structures and development of vertical deformation zones

  12. Observation and Simulation of Microseisms Offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Donne, Sarah; Möllhoff, Martin

    2017-04-01

    Although more and more used in seismic imagery, ocean induced ambient seismic noise is still not so well understood, particularly how the signal propagates from ocean to land. Between January and September 2016, 10 broadband Ocean Bottom Seismometers (OBSs) stations, including acoustic sensors (hydrophone), were deployed across the shelf offshore Donegal and out into the Rockall Trough. The preliminary results show spatial and temporal variability in the ocean generated seismic noise which holds information about changes in the generation source process, including meteorological information, but also in the geological structure. In addition to the collected OBS data, numerical simulations of acoustic/seismic wave propagation are also considered in order to study the spatio-temporal variation of the broadband acoustic wavefield and its connection with the measured seismic wavefield in the region. Combination of observations and simulations appears significant to better understand what control the acoustic/seismic coupling at the sea floor as well as the effect of the water column and sediments thickness on signal propagation. Ocean generated seismic ambient noise recorded at the seafloor appears to behave differently in deep and shallow water and 3D simulations of acoustic/seismic wave propagation look particularly promising for reconciling deep ocean, shelf and land seismic observations.

  13. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru

    2011-04-01

    Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations using an assemblage of physical, chemical and biological sensors devised to detect precursory signals. Earthquake prediction systems can be built up based on the concept of a signal emission-transmission-reception system, in which volcanic conduits and/or deep fractures play the role of the most effective signal transmission paths through the lithosphere. Unique "precursory fingerprints" of individual seismic structures are expected to be pointed out as an outcome of target-oriented strategic prediction research. Intelligent pattern-recognition systems are to be included for evaluation of the signal assemblages recorded by complex sensor arrays. Such strategies are expected however to be limited to intermediate-depth and deep seismic structures. Due to its particular features and geotectonic setting, the Vrancea seismic structure in Romania appears to be an excellent experimental target for prediction research.

  14. Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Schulte-Pelkum, V.; Blackburn, T. J.; Bowring, S. A.; Dudas, F. O.

    2012-10-01

    Improved resolution of lower crustal structure, composition, and physical properties enhances our understanding and ability to model tectonic processes. The cratonic core of Montana and Wyoming, USA, contains some of the most enigmatic lower crust known in North America, with a high seismic velocity layer contributing to as much as half of the crustal column. Petrological and physical property data for xenoliths in Eocene volcanic rocks from central Montana provide new insight into the nature of the lower crust in this region. Inherent heterogeneity in xenoliths derived from depths below ˜30 km support a composite origin for the deep layer. Possible intralayer velocity steps may complicate the seismic definition of the crust/mantle boundary and interpretations of crustal thickness, particularly when metasomatized upper mantle is considered. Mafic mineral-dominant crustal xenoliths and published descriptions of mica-bearing peridotite and pyroxenite xenoliths suggest a strong lower crust overlying a potentially weaker upper mantle.

  15. 3D seismic attribute expressions of deep offshore Niger Delta

    NASA Astrophysics Data System (ADS)

    Anyiam, Uzonna Okenna

    Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.

  16. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.

  17. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    NASA Astrophysics Data System (ADS)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep events observed at a site closest to the epicenter to delay times of Ps phases in RFs that we associate with the crust-mantle transition. Both observations are essentially differences between travel times of S and P waves originating at the same place, and traversing the same velocity structure. Consequently, the uncertainty of the velocity structure beneath the KVG does not influence the comparison. For all events nominally located at 28-30 km beneath KVG the S-P time at the nearest site (CIR) significantly exceeds 4 seconds. Given that crust-mantle boundary Ps times at nearby sites are ~3 s, these earthquakes take place in the upper mantle. Both recent RFs and wide-angle reflection (Deep Seismic Sounding) studies in the late 1970s identified additional boundaries beneath KVG at depths in excess of 40 km. The nature of these boundaries is unclear, however their sharpness suggests chemical changes or the presence of fluids or melts. Chemistry of Klyuchevskoy lavas suggests sub-crustal origin with no clear magma chamber within the crust. Sub-crustal earthquakes we describe show that processes in the magma conduit at the base of the crust beneath KVG are vigorous enough to promote brittle failure in the surrounding mantle rock. The complex seismic structure of the uppermost mantle beneath KVG may reflect a history of magma injection that is accompanied by seismic energy release.

  18. Lateral evolution of the deep crustal structure of the Lesser Antilles Island arc from wide-angle seismic modelling.

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Laurencin, M.; Marcaillou, B.; Graindorge, D.; Evain, M.; Lebrun, J. F.

    2016-12-01

    One of the goals of the Antithesis cruises (2013 and 2016) was investigating the deep structure of the Lesser Antilles subduction zone in order to: 1) constrain the possible along-strike variations of deep margin structures and slab geometry, 2) assess the nature of the crust and 3) discuss the potential impact of these structures on seismic hazard. Four combined wide-angle and multichannel seismic profiles were acquired between Barbuda and the Virgin Islands using 66 ocean bottom seismometers, a 4.5 km digital streamer and a 7200 cu inch seismic source. Along every line, we performed forward modelling of the wide-angle seismic data, gravity models and synthetic data calculations. The 5-7-km-thick subducting Atlantic oceanic plate is modelled with a single layer along every profile. The sedimentary prism fill is globally thin with maximal 5 km thick and 20-30 km wide. The 18-km-thick Caribbean crust is subdivided in 2 or 3 layers interpreted, from top to bottom, as following. A 2 to 4 km thick upper layer with velocity ranging from 2.5 to 3.5 km/s possibly consists of consolidate sediments or a carbonate platform. The underlying 4 to 6 km thick layer, with velocity ranging from 4.7 to 6.15 km/s might correspond to volcanic products. The lower 15 km thick lower crustal layer shows velocity up to 7.4 km/s, typical of basal velocities in oceanic crust. The structure and velocity model is thus closely consistent with a possibly overthickened oceanic crust. Our southernmost model, offshore of Barbuda, reveal a general crust structure and slab geometry which appear very to those described South of Guadeloupe along a line proposed by Kopp et al. (2011). It suggests an overall homogeneity for these structural features within the central segment of the Lesser Antilles (Martinique - Antigua). When the overall structure of the Caribbean plate is stable, the deep structure of the frontal margin and slab geometry is evolving from south to north. The wideness and thickness of the prism decrease toward the north as a consequence of the presence of blocking ridges and less sediment inputs. Frontal bending of the slab is also decreasing toward the north leading to a less steep slab within the first 30 kilometers as a consequence of increasing obliquity of subduction in the northern Antilles. This phenomena may increase the wideness of a seismogenic zone?

  19. The shallow seismic structure of the Larderello geothermal field (Italy) as seen from Receiver Function analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto

    2017-04-01

    The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic materials at depth beneath the central part of the geothermal field. Our finding are discussed in relation to the distribution of local microseismicity recorded during the GAPSS experiment and to the geometry of the main seismic interfaces inferred from the analysis of active seismic data.

  20. Industry shows faith in deep Anadarko

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroblewski, E.F.

    1973-10-08

    The shallow shelf of the Anadarko Basin furnished much gas from the Pennsylvanian and Mississippian reservoirs during the 1950s and 1960s. The search for gas reserves on the shelf will continue to go on for many years, because of the relatively low drilling cost even though the reserves per well on the shelf tend to be limited to about 1 to 3 billion cu ft/well. The much greater reserves of up to 50 billion cu ft/well found in the deeper part of the Anadarko Basin have made the deep Anadarko Basin an enticing area to look for major gas reserves.more » A regional Hunton map of the deep Anadarko Basin is presented showing fields that are producing from the Hunton and Simpson at depths of more than 15,000 ft. The fields shown on this map represent about 5 trillion cu ft of gas reserve. A generalized section showing only the major features and gross stratigraphic intervals also is presented. A seismic interpretation of the N. Carter structure on which the Lone Star l Baden is drilled is shown, one the seismic Springer structure and the other the seismic Hunton structure. The latter shows the faulting that exists below the Springer level.« less

  1. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao

    2018-02-01

    The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.

  2. Seismic Attenuation Structure and Intraplate Deformation

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Kowalke, S.; Smale, J.

    2017-12-01

    It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.

  3. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to reveal.

  4. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    Knowledge of the structural features is fundamental in evaluating geothermal exchange potential and in modelling geothermal systems. In particular, faults and fractures play an important role for the circulation of fluids in the crust, and structural setting can influence groundwater flow, its regime, chemistry and electrical conductivity. In this context, data coming from accurate studies of groundwater physical properties in the Marche region (Central Italy), concerning electrical conductivity above all, revealed some anomalies in several localities that could be ascribed to a strong structural control. Data acquisition and interpretation of some SW-NE seismic reflection profiles crossing the Apennine chain to the Adriatic sea and kindly provided by ENI S.p.A, highlight important deep Plio-Quaternary structures connected with minor surface ones and to hydrogeological conditions. Seismic profiles interpretation allowed to reconstruct the structural setting and to identify the recent evolution of the Apennine Marche sector in more detail with respect to what is already known. In fact, some high angle structures affecting the whole sedimentary sequence and routing at high depth were labelled. These are NW-SE sub-parallel transpressive structures bounded by SW and NE-dipping high-angle reverse faults reaching > 10 km depth (positive flower structures), and probably involving the upper crust basement. Three main alignments were identified from W to the coast line. In some cases, flower nucleation gives rise to the lifting and counter-clockwise rotation of the Pre-Pliocene substratum blocks, with the upwelling and outcropping of Upper Miocene (Messinian) evaporite deposits along the axial zone of the transpressive structural highs. Noting the analyses of groundwater properties coming from wells placed in proximity of these structures or located along the analysed seismic profiles, anomalies in electrical conductivity are relevant. The activity of the deep rooting structures observed in the seismic profiles and the high degree of fracturing that accompanies these complex and recent fault systems can facilitate the exchange between deep and superficial fluids. In other cases, like in coastal structural high, it can have a role in preventing the sea water ingression. This significant consideration can be supported also by the direct relation of electrical conductivity with the amount of rainfall revealed from studied piezometers along the carbonate Marche ridge. It should be explained through a specific behaviour (typical of carbonate aquifers, known as the "piston-flow phase") which implies an increase of groundwater mineralization as a result of transmission of the hydraulic pressure from the saturated zone, through fractures as important way for fluids circulation. Ultimately, we suggest that the structural control could be an important factor in influencing both the surface and the groundwater flow behaviours, and then convective component of the heat transport in the studied area.

  5. Earthquakes - on the moon

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1981-01-01

    Information obtained with the Apollo lunar seismic stations is discussed. The four types of natural seismic sources that have been identified are described, viz., thermal moonquakes, deep moonquakes, meteoroid impacts, and shallow moonquakes. It is suggested that: (1) the thermal quakes represent the slow cracking and movement of surface rocks; (2) the deep quakes are induced by the tide-generating force of the earth's gravity; (3) the meteoroids responsible for most of the observed impacts are in the mass range from 1 to 100 kg and are clustered in groups near the earth's orbit; and (4) the shallow quakes are similar to intraplate earthquakes and indicate that the moon is as seismically active as the interior regions of the earth's tectonic plates. The structure of the lunar interior as inferred from seismic signals due to both the last three natural sources and 'artificial' impacts of used spacecraft is examined in detail.

  6. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  7. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.

  8. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  9. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Kong, Xiangchao; Li, Sanzhong; Wang, Yongming; Suo, Yanhui; Dai, Liming; Géli, Louis; Zhang, Yong; Guo, Lingli; Wang, Pengcheng

    2018-01-01

    Statistics about the occurrence frequency of earthquakes (1973-2015) at shallow, intermediate and great depths along the Izu-Bonin-Mariana (IBM) Arc is presented and a percent perturbation relative to P-wave mean value (LLNL-G3Dv3) is adopted to show the deep structure. The correlation coefficient between the subduction rate and the frequency of shallow seismic events along the IBM is 0.605, proving that the subduction rate is an important factor for shallow seismic events. The relationship between relief amplitudes of the seafloor and earthquake occurrences implies that some seamount chains riding on the Pacific seafloor may have an effect on intermediate-depth seismic events along the IBM. A probable hypothesis is proposed that the seamounts or surrounding seafloor with high degree of fracture may bring numerous hydrous minerals into the deep and may result in a different thermal structure compared to the seafloor where no seamounts are subducted. Fluids from the seamounts or surrounding seafloor are released to trigger earthquakes at intermediate-depth. Deep events in the northern and southern Mariana arc are likely affected by a horizontal propagating tear parallel to the trench.

  10. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    NASA Astrophysics Data System (ADS)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural heterogeneity on the arrival times and their effects will be discussed in map and along vertical cross-sections aligned with the seismic profiles. A first order result is that the previously unsampled seaward region remains aseismic through the whole period of observation. Another main result, at least in a model not yet accounting for deep structural heterogeneity, is that the seismicity is principally located deeper than the contact between the forearc crust and the subducting oceanic crust as derived from the refraction-reflection approaches in the general project, and in both plates. Data are being prepared for a joint inversion of earthquake locations, shot first arrival times and 3D heterogeneity.

  11. First images of the crustal structure across the central Algerian margin, off Tipaza (West Algiers) from deep penetrating seismic data: new information to constrain the opening of the Algerian basin

    NASA Astrophysics Data System (ADS)

    Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.

    2011-12-01

    The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.

  12. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    NASA Astrophysics Data System (ADS)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  13. The Tethys Rifting of the Valencia Trough Basin

    NASA Astrophysics Data System (ADS)

    Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.

    2017-04-01

    The western Mediterranean submarine realm is composed of several basin inferred to be formed by a common geodynamic process: upper plate extension during slab rollback of a retreating subduction zone. Although the time evolution of the geometry of the trenches is debated, all models assume that basins opened sequentially from NW (Gulf of Lions) towards the SE (Ligurian-Provençal and later Tyrrhenian basins) and SW (Valencia Trough and later Algerian-South Balearic and Alboran Basin) as trenches migrated. Basin opening history is key to reconstruct kinematics of slab retreat preferred in each model. However, the deep structure of basins is inadequately known due to the paucity of modern wide-angle and multichannel reflection seismic studies across entire systems, and absence of deep drilling in the deep-water regions of the basins, as a result, much of the opening evolution is inferred from indirect evidence. In the Valencia Trough Basin (VTB), drilling and vintage seismic data provide good knowledge of the shallow geology of the basin. However, crustal-scale information across the entire VTB has been limited to two studies (Figure 1): One in the late 80's (Valsis experiment) with three Expanded Spread Profiles that yielded local 1D velocity/depth models used to constrain 2D gravity modeling, and a few multichannel seismic profiles along the Iberian shelf and across segments of the basin. A second study in the early 90's (ESCI experiment) collected a low-resolution deep-penetration multichannel seismic reflection profile across the basin and a coincident wide-angle seismic line with numerous land stations in Iberia but a handful of widely-spaced Ocean Bottom Seismometers. In the absence of modern detailed crustal structure, the origin and evolution of the VTB is still debated. Industry multichannel seismic reflection profiles cover the SW segment of the VTB. This is a region where the basin sea floor is comparatively shallower and has numerous industry wells reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.

  14. Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Enciu, D. M.; Knapp, J. H.

    2007-12-01

    Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the foreland deformation, possibly accommodated on these two major fault systems. These results contradict both the "subduction-in-place" and "slab- break-off" hypotheses as feasible explanations for VSZ intermediate-depth seismicity, and lend additional support to a lithospheric delamination model to explain both the origin of the VSZ and the crustal architecture of the Southeast Carpathian foreland.

  15. Obtaining Unique, Comprehensive Deep Seismic Sounding Data Sets for CTBT Monitoring and Broad Seismological Studies

    DTIC Science & Technology

    2007-07-02

    TYPE Final Report 3. DATES COVERED (From - To) 26-Sep-01 to 26-Jun-07 4. TITLE AND SUBTITLE OBTAINING UNIQUE, COMPREHENSIVE DEEP SEISMIC ... seismic records from 12 major Deep Seismic Sounding (DSS) projects acquired in 1970-1980’s in the former Soviet Union. The data include 3-component...records from 22 Peaceful Nuclear Explosions (PNEs) and over 500 chemical explosions recorded by a grid of linear, reversed seismic profiles covering a

  16. Use of Multibeam-Bathymetry and Seismic-Reflection Data to Investigate the Origin of Seafloor Depressions Along the Southeastern Carbonate Florida Platform

    NASA Astrophysics Data System (ADS)

    Cunningham, K. J.; Kluesner, J.; Westcott, R. L.; Ebuna, D. R.; Walker, C.

    2016-12-01

    Numerous large, semicircular, deep submarine depressions on the seafloor of the Miami Terrace (a bathymetric bench that interrupts the Atlantic continental slope on the southeastern carbonate Florida Platform) have been described as submarine sinkholes resulting from freshwater discharge at the seafloor and dissolution of carbonate rock. Multibeam-bathymetry and marine, high-resolution, multichannel 2D and 3D seismic-reflection data acquired over two of these depressions at water depths of about 250 m ("Miami sinkhole") and 336 m ("Key Biscayne sinkhole") indicate the depressions are pockmarks. Seafloor pockmarks are concave, crater-like depressions that form through the outburst or venting of fluid (gas, liquid) at the sea floor and are important seabed features that provide information about fluid flow on continental margins. Both the "Miami sinkhole" and "Key Biscayne sinkhole" (about 25 and 48m deep, respectively) have a seismic-chimney structure beneath them that indicates an origin related to seafloor fluid expulsion, as supported by multi-attribute analysis of the "Key Biscayne sinkhole". Further, there is no widening of the depressions with depth, as in the Fort Worth Basin, where downward widening of seismic, sub-circular, karst-collapse structures is common. However, hypogenic karst dissolution is not ruled out as part of the evolution of the two depressions. Indeed, a hypogenic karst pipe plausibly extends downward from the bottom of "Key Biscayne sinkhole", providing a passageway for focused upward flow of fluids to the seafloor. In "Key Biscayne sinkhole", the proposed karst pipe occurs above the underlying seismic chimney that contains flat bright spots (a hydrocarbon indicator) in the seismic data plausibly showing fluids are currently trapped beneath the pockmark within a tightly folded popup structure. The Miami Terrace depressions have seismic-reflection features similar to modern pockmarks imaged on the Maldives carbonate platform. The seismic-reflection data also show that ancient satellite expulsions formed buried pockmarks, slumps, and paleo-collapse structures in the carbonate sediments near the "Key Biscayne sinkhole". Additional processing of the 3D seismic data will aid in elucidation of the origin of these seafloor depressions.

  17. Deep Structures of The Angola Margin

    NASA Astrophysics Data System (ADS)

    Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.

    1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7,4 km/s. The maximum thickness of this layer is located where the crust shows the strongest thinning at the foot of the continental slope ; and iii) a transitional domain, 160 km wide, with an average crustal thickness of 6 km. Moreover, no tilted blocks nor detachment faults are observed on the reflection seismic sections. The consequences of these observations on the models of crustal thinning classically used in the litterature are examined. Avedik, F., V. Renard, J-P. Allenou, B. Morvan, "Single bubble" air gun for deep exploration, Geophysics, 58, 366-382, 1993.

  18. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  19. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.

  20. Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus

    NASA Astrophysics Data System (ADS)

    Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.

    2012-04-01

    The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed for the upper mantle down to 700 km depth, is based on the data from the global ISC catalogue. We use travel times corresponding to rays which travel, at least partly, through the study volume. These data include rays from events in the study area recorded by worldwide stations, as well as teleseismic data recorded at regional stations. The computed seismic models reveal some deep traces of recent tectonic processes in the Caucasus: • For the 5, 15, 25 and 60-km-depth, there appears a clear coincidence between anomalous low velocities of P and S-waves with the fold-thrust mountainous belts of the Great and Lesser Caucasus, and also connection of high-velocity anomalies with the Trasncaucasian forelands. • Lowest-velocity anomalies are characteristic of the areas of Neogene-Quaternary volcanism of the Great and Lesser Caucasus. Areas with the lowest velocities of P- and S-waves coincide with the mountainous-folded belts, whereas the areas of high-velocity predominantly coincide with the platformal structures and forelands, as well as with basins of the Black and Caspian Seas. • Clear spatial correlation of the areas of lowest values of P- and S-velocities with the areas of Neogene-Quaternary volcanism occurs up to the depth of 150-200km that evidences location of magma sources within the crust - upper mantle - asthenosphere. • Tomographic data unambiguously confirm spatial unity of the main structures of the Caucasus and its basement, the location of the structures in situ in Late Cenozoic and connection of the volcanic constructions with their roots - magma chambers.

  1. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  2. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  3. Gas Reservoir Identification Basing on Deep Learning of Seismic-print Characteristics

    NASA Astrophysics Data System (ADS)

    Cao, J.; Wu, S.; He, X.

    2016-12-01

    Reservoir identification based on seismic data analysis is the core task in oil and gas geophysical exploration. The essence of reservoir identification is to identify the properties of rock pore fluid. We developed a novel gas reservoir identification method named seismic-print analysis by imitation of the vocal-print analysis techniques in speaker identification. The term "seismic-print" is referred to the characteristics of the seismic waveform which can identify determinedly the property of the geological objectives, for instance, a nature gas reservoir. Seismic-print can be characterized by one or a few parameters named as seismic-print parameters. It has been proven that gas reservoirs are of characteristics of negative 1-order cepstrum coefficient anomaly and Positive 2-order cepstrum coefficient anomaly, concurrently. The method is valid for sandstone gas reservoir, carbonate reservoir and shale gas reservoirs, and the accuracy rate may reach up to 90%. There are two main problems to deal with in the application of seismic-print analysis method. One is to identify the "ripple" of a reservoir on the seismogram, and another is to construct the mapping relationship between the seismic-print and the gas reservoirs. Deep learning developed in recent years is of the ability to reveal the complex non-linear relationship between the attribute and the data, and of ability to extract automatically the features of the objective from the data. Thus, deep learning could been used to deal with these two problems. There are lots of algorithms to carry out deep learning. The algorithms can be roughly divided into two categories: Belief Networks Network (DBNs) and Convolutional Neural Network (CNN). DBNs is a probabilistic generative model, which can establish a joint distribution of the observed data and tags. CNN is a feedforward neural network, which can be used to extract the 2D structure feature of the input data. Both DBNs and CNN can be used to deal with seismic data. We use an improved DBNs to identify carbonate rocks from log data, the accuracy rate can reach up to 83%. DBNs is used to deal with seismic waveform data, more information is obtained. The work was supported by NSFC under grant No. 41430323 and No. 41274128, and State Key Lab. of Oil and Gas Reservoir Geology and Exploration.

  4. Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania)

    NASA Astrophysics Data System (ADS)

    Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.

    2005-12-01

    The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.

  5. Rayleigh Wave Group Velocity Tomography from Microseisms in the Acambay Graben

    NASA Astrophysics Data System (ADS)

    Valderrama Membrillo, S.; Aguirre, J.; Zuñiga-Davila, R.; Iglesias, A.

    2017-12-01

    The Acambay graben is one of the most outstanding structures of the Trans-Mexican Volcanic Belt. The Acambay graben has a length of 80km and 15 to 18 km wide and reaches a maximum height of 400 m in its central part. We obtained the group velocity seismic tomography for the Acamaby graben for three different frequencies (f = 0.1, 0.2 and 0.3 Hz). The graben was divided into 6x6 km cells for the tomography and covered a total area of 1008 km2. Seismic noise data from 10 broadband seismic stations near the Acambay graben were used to extract the surface wave arrival-times between all station pairs. The Green's function was recovered in each stations pair by cross-correlation technique. This technique was applied to seismic recordings collected on the vertical component of 10 broadband stations for a continuous recording period of 5 months. Data processing consisted of removing instrumental response, mean, and trend. After that, we applied time domain normalization, a spectral whitening and applied band-pas filtering of 0.1 to 1 Hz. There are shallow studies of the Acambay graben. But little is known of the distribution of deep graben structures. This study estimated the surface wave velocity deep structure. The structures at the frequency 0.3 Hz indicate a lower depth than the remaining frequencies. The result for this frequency show consistencies with previous studies of gravimetry and resistivity, also defines the fault system of Temascalcingo.

  6. 2D Seismic Velocity Modelling in the Southeastern Romanian Carpathians and its Foreland (Vrancea Zone and Focsani Basin)

    NASA Astrophysics Data System (ADS)

    Stephenson, R.; Bocin, A.; Tryggvason, A.

    2003-12-01

    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining of new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea Zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube Dalta. A high resolution 2D velocity model of the upper crust along the seismic profile has been determined from a first-arrival tomographic inversion of the DACIA-PLAN data. The shallowing of Palaeozoic-Mesozoic basement, and related structural heterogeneity within it, beneath the eastern flank of the Focsani Basin is clearly seen. Velocity heterogeneity within the Carpathian nappe belt is also evident and is indicative of internal structural complexity, including the presence of salt bodies and basement involvement in thrusting, thus favouring some current geological models over others. The presence of basement involvement implies the compressional reactivation of pre-existing basement normal faults. Members of the DACIA-PLAN/TomoSeis Working Group (see poster) should be considered as co-authors of this presentation.

  7. Experience from the ECORS program in regions of complex geology

    NASA Astrophysics Data System (ADS)

    Damotte, B.

    1993-04-01

    The French ECORS program was launched in 1983 by a cooperation agreement between universities and petroleum companies. Crustal surveys have tried to find explanations for the formation of geological features, such as rifts, mountains ranges or subsidence in sedimentary basins. Several seismic surveys were carried out, some across areas with complex geological structures. The seismic techniques and equipment used were those developed by petroleum geophysicists, adapted to the depth aimed at (30-50 km) and to various physical constraints encountered in the field. In France, ECORS has recorded 850 km of deep seismic lines onshore across plains and mountains, on various kinds of geological formations. Different variations of the seismic method (reflection, refraction, long-offset seismic) were used, often simultaneously. Multiple coverage profiling constitutes the essential part of this data acquisition. Vibrators and dynamite shots were employed with a spread generally 15 km long, but sometimes 100 km long. Some typical seismic examples show that obtaining crustal reflections essentialy depends on two factors: (1) the type and structure of shallow formations, and (2) the sources used. Thus, when seismic energy is strongly absorbed across the first kilometers in shallow formations, or when these formations are highly structured, standard multiple-coverage profiling is not able to provide results beyond a few seconds. In this case, it is recommended to simultaneously carry out long-offset seismic in low multiple coverage. Other more methodological examples show: how the impact on the crust of a surface fault may be evaluated according to the seismic method implemented ( VIBROSEIS 96-fold coverage or single dynamite shot); that vibrators make it possible to implement wide-angle seismic surveying with an offset 80 km long; how to implement the seismic reflection method on complex formations in high mountains. All data were processed using industrial seismic software, which was not always appropriate for records at least 20 s long. Therefore, a specific procedure adapted to deep seismic surveys was developed for several processing steps. The long duration of the VIBROSEIS sweeps often makes it impossible to perform correlation and stack in the recording truck in the field. Such field records were first preprocessed, in order to be later correlated and stacked in the processing center. Because of the long duration of the recordings and the great length of the spread, several types of final sections were replayed, such as: (1) detailed surface sections (0-5 s), (2) entire sections (0-20 s) after data compression, (3) near-trace sections and far-trace sections, which often yield complementary information. Standard methods of reflection migration gave unsatisfactory results. Velocities in depth are inaccurate, the many diffractions do not all come from the vertical plane of the line, and the migration software is poorly adapted to deep crustal reflections. Therefore, migration is often performed graphically from arrivals picked in the time section. Some line-drawings of various onshore lines, especially those across the Alps and the Pyrenees, enable to judge the results obtained by ECORS.

  8. Crustal structure of mountain belts and basins: Industry and academic collaboration at Cornell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmendinger, R.; Barazangi, M.; Brown, L.

    1995-08-01

    Interdisciplinary investigations of the large-scale structure and evolution of key basins and orogenic belts around the world are the focal point of academic-industry interaction at Cornell. Ongoing and new initiatives with significant industry involvement include: Project INDEPTH (Interdisciplinary Deep Profiling of Tibet and the Himalayas), a multinational effort to delineate deep structure across the type example of active continent-continent collision. 300 km of deep reflection profiling was collected across the Himalaya: and southern Tibet Plateau in 1992 and 1994. CAP (Cornell Andes Project), a long-standing interdisciplinary effort to understand the structure and evolution of the Andes, with a focus onmore » Argentina, Chile and Bolivia. A deep reflection profile is tentatively planned for 1997. Intra-plate Orogeny in the Middle East and North Africa is the focus of multidisciplinary regional syntheses of existing seismic reflection and other databases in Syria (Palmyrides)and Morocco (Atlas), with an emphasis on reactivation and inversion tectonics. Project URSEIS (Urals Reflection Seismic Experiment and Integrated Studies) is a collaboration with EUROPROBE to collect 500 km of vibroseis and dynamite deep reflection profiling across the southern Urals in 1995. Project CRATON, an element in COCORP`s systematic exploration of the continental US, is a nascent multi-disciplinary effort to understand the buried craton of the central US and the basins built upon it. Global Basins Research Network (GBRN) is a diversified observational and computational effort to image and model the movement of pore fluids in detail and on a regional scale for a producing oil structure in the Gulf of Mexico.« less

  9. Exploitation utilizing 3D seismic in the Red Oak gas field of the Arkoma Basin, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutty, P.; Schlaefer, J.; Antonio, V.

    1995-09-01

    Red Oak field,located in the Arkoma basin of Eastern Oklahoma, produces 200 Mmcfd of gas under pressure depletion drive with 2.6 TCF of gas recoverable. Structurally, the field occupied a position along the northern flank of the southward collapsing shear-margin formed during the Ouachita Orogeny. The basin flank is characterized by rapid subsidence and deposition of over 20,000 feet (6000 m) of shallow to deep marine shale and stacked sandstone in Atokan time (mid-late Carboniferous). This sequence culminates with a shoaling upward cycle and is structurally deformed by earliest Desmoinesian thrusting (280-265 Mya). Interpretation from an 18 mi{sup {center_dot}2} (47km{supmore » 2}) 3-D seismic survey was integrated with available with available well control and litho-facies mapping defining detailed structural irregularities and providing new drillsites while reducing economic risk. Resolution of data from the 3D seismic survey varied greatly. The one failed aspect of the original 3D survey design was to precisely map Red Oak sandstone. However, the survey was robust enough to provide excellent shallow and deep data, leading to identification of additional reservoir targets and multiple drilling proposals.« less

  10. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  11. Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?

    USGS Publications Warehouse

    Wells, R.E.; Blakely, R.J.; Sugiyama, Y.; Scholl, D. W.; Dinterman, P.A.

    2003-01-01

    Published areas of high coseismic slip, or asperities, for 29 of the largest Circum-Pacific megathrust earthquakes are compared to forearc structure revealed by satellite free-air gravity, bathymetry, and seismic profiling. On average, 71% of an earthquake's seismic moment and 79% of its asperity area occur beneath the prominent gravity low outlining the deep-sea terrace; 57% of an earthquake's asperity area, on average, occurs beneath the forearc basins that lie within the deep-sea terrace. In SW Japan, slip in the 1923, 1944, 1946, and 1968 earthquakes was largely centered beneath five forearc basins whose landward edge overlies the 350??C isotherm on the plate boundary, the inferred downdip limit of the locked zone. Basin-centered coseismic slip also occurred along the Aleutian, Mexico, Peru, and Chile subduction zones but was ambiguous for the great 1964 Alaska earthquake. Beneath intrabasin structural highs, seismic slip tends to be lower, possibly due to higher temperatures and fluid pressures. Kilometers of late Cenozoic subsidence and crustal thinning above some of the source zones are indicated by seismic profiling and drilling and are thought to be caused by basal subduction erosion. The deep-sea terraces and basins may evolve not just by growth of the outer arc high but also by interseismic subsidence not recovered during earthquakes. Basin-centered asperities could indicate a link between subsidence, subduction erosion, and seismogenesis. Whatever the cause, forearc basins may be useful indicators of long-term seismic moment release. The source zone for Cascadia's 1700 A.D. earthquake contains five large, basin-centered gravity lows that may indicate potential asperities at depth. The gravity gradient marking the inferred downdip limit to large coseismic slip lies offshore, except in northwestern Washington, where the low extends landward beneath the coast. Transverse gravity highs between the basins suggest that the margin is seismically segmented and could produce a variety of large earthquakes. Published in 2003 by the American Geophysical Union.

  12. Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the low-angle Alto Tiberina normal fault (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio

    2017-01-01

    We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.

  13. Location, Reprocessing, and Analysis of Two Dimensional Seismic Reflection Data on the Jicarilla Apache Indian Reservation, New Mexico, Final Report, September 1, 1997-February 1, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis

    2000-06-08

    Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences. Therefore it is important to understand the mechanism that controls the location and intensity of the fractures. A possible mechanism may be deep seated basement faulting that has been active through time. Examining the basement fault patterns in this part of the basin and their relation to fracture production may provide a model for new plays on the Jicarilla Indian Reservation. There are still parts of the reservation where the subsurface has not been imaged geophysically with either conventional two-dimensional or three-dimensional reflection seismic techniques. These methods, especially 3-D seismic, would provide the best data for mapping deep basement faulting. The authors would recommend that 3-D seismic be acquired along the Basin margin located along the eastern edge of the reservation and the results be used to construct detailed fault maps which may help to locate areas with the potential to contain highly fractured zones in the subsurface.« less

  14. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  15. Analyzing structural variations along strike in a deep-water thrust belt

    NASA Astrophysics Data System (ADS)

    Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan

    2018-03-01

    We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.

  16. Northeastward growth of the Tibetan Plateau along the Tibet-Ordos transition zone-revealed from Liupanshan deep seismic reflection profile

    NASA Astrophysics Data System (ADS)

    Gao, R.; Wang, H.; Guo, X.; Li, W.; Li, H.; Hou, H.; Xiong, X.; Xu, X.; Liang, H.; Li, Q.

    2015-12-01

    Most previous studies of the Tibetan Plateau have focused on the processes of crustal thickening and subsequent lateral extrusion to account for the outward growth of the plateau. However, lithospheric structure across the tectonic boundaries of the Tibetan Plateau has not yet been fully imaged and, therefore, how geological structures evolved in association with the lateral expansion of the northeastern margin in particular remains unclear. Here, together with interpretation of regional geological and geophysical data, we employ a recently acquired 165 km-long deep seismic reflection image that crosses the Liupan shan (Fig. 1) northeastern flank of the Tibetan Plateau to show that crustal shortening, structural integrity, and topographic relief are strongly correlated. The resulting stratigraphic "architecture" suggests that crustal shortening is a primary driver for plateau uplift and expansion of northeastern Tibet and decoupled crustal deformation owing to differential structural integrity is accommodated during the subsequent northeastward growth of the plateau. Figure 1.Showing the seismic reflection line location and the topographic relief of the northeastern Tibetan Plateau and the western Ordos basin (KF: Kunlun Fault; LP Shan: Liupan Shan; HF: Haiyuan Fault; YTSF: Yangtongshan Fault; NSS-LSF: Niushou Shan-Luoshan Fault)XG Shan: Xiaoguan Shan; YJD: Yanjiadian Diorite; GS: Guanshan Shan; CCP: Caochuanpu; LS Complex: Longshan Complex)

  17. Seismicity, shear failure and modes of deformation in deep subduction zones

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  18. Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Potter, C.J.; Phillips, J.D.

    2006-01-01

    Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  19. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study

    USGS Publications Warehouse

    Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.

    2006-01-01

    A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.

  20. Strike-Slip Fault Deformation and Its Control in Hydrocarbon Trapping in Ketaling Area, Jambi Subbasin, Indonesia

    NASA Astrophysics Data System (ADS)

    Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi

    2018-03-01

    Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.

  1. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures

    NASA Astrophysics Data System (ADS)

    Demirci, İsmail; Dikmen, Ünal; Candansayar, M. Emin

    2018-02-01

    Joint inversion of data sets collected by using several geophysical exploration methods has gained importance and associated algorithms have been developed. To explore the deep subsurface structures, Magnetotelluric and local earthquake tomography algorithms are generally used individually. Due to the usage of natural resources in both methods, it is not possible to increase data quality and resolution of model parameters. For this reason, the solution of the deep structures with the individual usage of the methods cannot be fully attained. In this paper, we firstly focused on the effects of both Magnetotelluric and local earthquake data sets on the solution of deep structures and discussed the results on the basis of the resolving power of the methods. The presence of deep-focus seismic sources increase the resolution of deep structures. Moreover, conductivity distribution of relatively shallow structures can be solved with high resolution by using MT algorithm. Therefore, we developed a new joint inversion algorithm based on the cross gradient function in order to jointly invert Magnetotelluric and local earthquake data sets. In the study, we added a new regularization parameter into the second term of the parameter correction vector of Gallardo and Meju (2003). The new regularization parameter is enhancing the stability of the algorithm and controls the contribution of the cross gradient term in the solution. The results show that even in cases where resistivity and velocity boundaries are different, both methods influence each other positively. In addition, the region of common structural boundaries of the models are clearly mapped compared with original models. Furthermore, deep structures are identified satisfactorily even with using the minimum number of seismic sources. In this paper, in order to understand the future studies, we discussed joint inversion of Magnetotelluric and local earthquake data sets only in two-dimensional space. In the light of these results and by means of the acceleration on the three-dimensional modelling and inversion algorithms, it is thought that it may be easier to identify underground structures with high resolution.

  2. Deep structure of the Algerian continental margin in the region of the Great Kabylies - Insights from wide-angle seismic data modelling

    NASA Astrophysics Data System (ADS)

    Aidi, Chafik; Klingelhoefer, F.; Yelles-Chaouche, A.; Beslier, M.; Bracene, R.; Philippe, S.; Djellit, H.; Galve, A.; Bounif, A.; Schenini, L.; Sage, F.; Charvis, P.

    2013-12-01

    During the Algerian-French SPIRAL cruise (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) conducted onboard R/V Atalante (September-October 2009), one deep reflection and wide-angle seismic profile with total length of 140 km was acquired on the Algerian margin, offshore Greater Kabylia. 40 ocean bottom seismometers (OBS) were deployed on the profile, located perpendicular to the margin and it was additionally extended on land using 26 seismological stations. A 8350 in3 tuned air-gun array consisting of 10 Bolt air-guns was used to generate deep frequency shots to allow for a good penetration. A coincident multi-channel seismic profile was acquired using a 3040 in3 seismic source and a 4.5 km 360 channel digital seismic streamer. Underway geophysical measurements included gravimetric and magnetic data. The combined profile with a total length of about 260 km, crosses from north to south the Algero-Provençal basin, the central Algerian margin and onshore the crystalline basement of the Kabylides bloc up to the southward limit of the internal zones. We present results concerning the sedimentary and crustal structures in the study area using tomographic inversion, forward and gravimetric modelling. Modelling of the wide-angle and multi-channel seismic data reveals that the thickness of the sedimentary cover along the profile varies from several hundreds of metres onland in Tiziouzou basin (R. Bracéne 2001), to ~4 km at the foot of the margin and then decreasing northward to less than 3 km. The Messinian evaporitic units have been modelled by a high velocity layer, representing a velocity inversion with underlying pre-Messinian Miocene sedimentary layers. Progressive thinning of the continental crust towards the North is observed, with thicknesses decreasing from ~20 km at the foot of the margin to 4-5 km in the deep basin. Seismic velocities range between 6.2 and 6.6 km/s in the continental domain and 5.2 - 6.8 km/s in the deep basin. The uppermost crust of the deep margin is characterised by low velocities of only 4.5-5.0 km/s probably due to fracturing during the thinning of the crust. The transition between continental crust and crust of oceanic origin is located about 60 km from the coast. Its extension is very narrow (< 20 km) with a possibility of it being absent in this region. The crust underlying the basin at the foot of the continental slope is characterised by a thickness of only 3-5 km which is about 2 km thinner than normal oceanic crust. Seismic velocities however indicate that the crust is of oceanic origin and does not represent exhumed and partly serpentinised mantle material, although the presence of small amounts of mantle material in an otherwise igneous crust cannot be ruled out. Similar thin oceanic crust has been imaged in other Mediterranean Basins, such as the Liguro-Provençal basin (Gailler et al., 2009).

  3. Seismic Velocity Measurements at Expanded Seismic Network Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refractionmore » and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.« less

  4. Study of Conrad and Shaban deep brines, Red Sea, using bathymetric, parasound and seismic surveys

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed

    2017-06-01

    Red Sea was formed where African and Arabian plates are moving apart. Each year the plates drift about 2.5 cm farther apart, so that the Red Sea is slowly but steadily growing hence known as the next coming ocean simply an embryonic ocean. It is characterized by the presence of many deep fractures, located almost exactly along the middle of the Sea from northwest to southeast. Theses fractures have steep sides, rough bottom and brines coming up form on the bottom. Brine deposits are the result of subsurface magmatic activity. They are formed in graben structure as shown by the bathymetric, parasound and seismic studies in the investigated area.

  5. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  6. Technical Report - FINAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current buildingmore » standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities« less

  7. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  8. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  9. Seismic shaking in the North China Basin expected from ruptures of a possible seismic gap

    NASA Astrophysics Data System (ADS)

    Duan, Benchun; Liu, Dunyu; Yin, An

    2017-05-01

    A 160 km long seismic gap, which has not been ruptured over 8000 years, was identified recently in North China. In this study, we use a dynamic source model and a newly available high-resolution 3-D velocity structure to simulate long-period ground motion (up to 0.5 Hz) from possibly worst case rupture scenarios of the seismic gap. We find that the characteristics of the earthquake source and the local geologic structure play a critical role in controlling the amplitude and distribution of the simulated strong ground shaking. Rupture directivity and slip asperities can result in large-amplitude (i.e., >1 m/s) ground shaking near the fault, whereas long-duration shaking may occur within sedimentary basins. In particular, a deep and closed Quaternary basin between Beijing and Tianjin can lead to ground shaking of several tens of cm/s for more than 1 min. These results may provide a sound basis for seismic mitigation in one of the most populated regions in the world.

  10. The Moho structure beneath the Yarlung Zangbo Suture and its implications: Evidence from 2000 kg large dynamite shots

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, H.; Li, W.; Lu, Z.; Guo, X.; WANG, Y.

    2017-12-01

    The YZS (Yarlung Zangbo Suture) is the collisional front between the Indian and Eurasian plates. The depth and geometry of the Moho thus provide first-order information for the restoration of complex geodynamic systems. Over the past three decades, numerous seismic experiments have been conducted across the YZS, including deep seismic reflection profiles, deep seismic soundings and broadband observation studies. However, there is strong disagreement concerning the character of the Moho along the YZS in Tibet. Hirn proposed an offset of more than 15 km along the Moho below the YZS according to wide-angle observations acquired by a Sino-French cooperative experiment. Jiang argued that the Moho exhibits a 20-km offset after analyzing multiple broadband seismic profiles across the YZS. Gao did not find any significant changes in the Moho depth using deep seismic reflection profile data across the western YZS. The above mentioned summary of previous findings shows that similar geophysical observations have yielded contrasting models. Due to the shortage of high-resolution geophysical data, the above controversial problems cannot currently be resolved effectively without improving the accuracy of available geophysical observations and consequently obtaining reliable evidence. The rapid development of the technology of deep seismic reflection profiling has provided an opportunity to resolve the above controversies. two deep seismic reflection profiles across the YZS(88°E) were deployed in 2015(Fig .1 -YZS-B). Four large dynamite shots with 2000 kg charges were employed to improve the signal-to-noise ratio (S/N) along the two transects(Fig .1 and Fig.2). The primary purpose of this experiment is to study images of the Moho both adjacent to and beneath the YZS using four large dynamite shots along two profiles. These four large shots were processed to combine two single-fold profiles. Our two single-fold profiles across the YZS clearly show the existence of a well-imaged Moho. The reflections from the Moho are clear with a narrow band of reflections that are typically <0.3 s between 21-25 s. The depth of the Moho is approximately 63-75 km across the entire profile (assuming an average crustal velocity of 6 km/s). A gap in the Moho is observed approximately 20 km north of the YZS, the amplitude of which is less than 6 km.

  11. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  12. Near-surface structure of the Carpathian Foredeep marginal zone in the Roztocze Hills area

    NASA Astrophysics Data System (ADS)

    Majdański, M.; Grzyb, J.; Owoc, B.; Krogulec, T.; Wysocka, A.

    2018-03-01

    Shallow seismic survey was made along 1280 m profile in the marginal zone of the Carpathian Foredeep. Measurements performed with standalone wireless stations and especially designed accelerated weight drop system resulted in high fold (up to 60), long offset seismic data. The acquisition has been designed to gather both high-resolution reflection and wide-angle refraction data at long offsets. Seismic processing has been realised separately in two paths with focus on the shallow and deep structures. Data processing for the shallow part combines the travel time tomography and the wide angle reflection imaging. This difficult analysis shows that a careful manual front mute combined with correct statics leads to detailed recognition of structures between 30 and 200 m. For those depths, we recognised several SW dipping tectonic displacements and a main fault zone that probably is the main fault limiting the Roztocze Hills area, and at the same time constitutes the border of the Carpathian Forebulge. The deep interpretation clearly shows a NE dipping evaporate layer at a depth of about 500-700 m. We also show limitations of our survey that leads to unclear recognition of the first 30 m, concluding with the need of joint interpretation with other geophysical methods.

  13. Lithosphere Structure of the Rivera Plate - Jalisco Block Contact Zone: Septentrional Region of the Islas Marías (Mexico)

    NASA Astrophysics Data System (ADS)

    Madrigal-Ávalos, L. A.; Nunez, D.; Escalona-Alcazar, F. D. J.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Danobeitia, J.

    2017-12-01

    The western margin of Mexico is a tectonic complex region where large earthquakes occurred with very destructive consequences, including the generation of big tsunamis. This fact is mainly the result of the Rivera plate subduction beneath the North American plate and the Jalisco Block implying a high potential seismic risk. In the north, between the Tamayo Fracture Zone and the Mesoamerican Trench, the Islas Marías region is a complex tectonic limit within the interaction of the Rivera plate oceanic crust and the Jalisco Block continental crust. In order to know the shallow and deep structure of the Rivera plate - Jalisco Block contact zone and to be able to determine these potential seismic sources, the TSUJAL geophysical experiment was carried out from 2012 to 2016. As part of this project, we present the results of the processed and analyzed MCS and WAS data along the TS09 and RTSIM01 seismic transects, respectively, across the septentrional region of Islas Marías. These marine seismic lines are coincident with 110 km length for MCS and 240 km for WAS, and perpendicular to the coastline with SW-NE orientation. The seismic sources used in this work aboard RRS James Cook consisted of 12 guns with a total capacity for WAS data of 5800 in3 every 120 s and 3540 in3 every 50 m for MCS data. The MCS data were acquired with a 5.85 km length streamer with a 468 active channels, while the WAS data were recorded by a network of 4 OBS and 27 land seismic stations. After data processing and joint interpretation, it was possible to determine that shallow structure is mainly constituted by normal faults associated to graben structures forming sedimentary basins with non-deformed sediments in the basement. While the deep structure is characterized by depths from 9 to 12 km in the oceanic crust and 18 to 21 km in the continental crust. The deepest layers of the upper mantle were determined up to 35 km depth. In this study, it was possible to calculate a dip angle between 6° and 8°.

  14. 3D modeling of seismic waves propagation in the Israeli continental shelf: soft sediments, buried canyons and their effects.

    NASA Astrophysics Data System (ADS)

    Tsesarsky, M.; Volk, O.; Shani-Kadmiel, S.; Gvirtzman, Z.

    2016-12-01

    Sedimentary wedges underlay many coastal areas, specifically along passive continental margins. Although a large portion of the world`s population is concentrated along coastal areas, relatively few studies investigated the seismic hazard related to internal structure of these wedges. This is particularly important, when the passive margin is located in proximity to active plate boundaries. Sedimentry wedges have low angles compared to fault bounded basins, hence commonly treated using 1D methods. In various locations the sedimentary wedges are transected by deep buried canyons typically filled with sediments softer than their surrounding bedrock. Such structures are found is the Mediterranean coast of Israel. Here, a sedimentary wedge and buried canyons underlay some of the country's most densely populated regions. Seismic sources can be found both at sea and on land at epicentral distances ranging from 50 to 200 km. Although this region has a proven seismic record, it has, like many other parts of the world, limited instrumental coverage and long return periods. This makes assessment of ground motions in a future earthquake difficult and highlights the importance of non-instrumental methods. We employ numerical modeling (SW4 FD code) to study seismic ground motions and their amplification atop the sedimentary wedge and canyons. This goal is a part of a larger objective aiming at developing a systematic approach for distinction between individual contributions of basin structures to the highly complex overall basin response. We show that the sedimentary wedge and buried canyon both exhibit a unique response and modeling them as one-dimensional structures could significantly underestimate seismic hazard. The sedimentary wedge exhibit amplification ratios, relative to a horizontally layered model, up to a factor of 2. This is mainly due to the amplification of Rayleigh waves traveling into the wedge from its thin side. The buried canyon structure shows a simple, "easy to use" response with considerably high PGV values and amplification ratios of up to 3 along its axis. This response is due to a geometrical focusing effect caused by the convex shape of the canyon's floor. The canyon's response is significant even where the canyon is buried deep under the surface.

  15. Seismic anisotropy of the crystalline crust: What does it tell us?

    USGS Publications Warehouse

    Rabbel, Wolfgang; Mooney, Walter D.

    1996-01-01

    The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.

  16. Deformation patterns in the southwestern part of the Mediterranean Ridge (South Matapan Trench, Western Greece)

    NASA Astrophysics Data System (ADS)

    Andronikidis, Nikolaos; Kokinou, Eleni; Vafidis, Antonios; Kamberis, Evangelos; Manoutsoglou, Emmanouil

    2017-12-01

    Seismic reflection data and bathymetry analyses, together with geological information, are combined in the present work to identify seabed structural deformation and crustal structure in the Western Mediterranean Ridge (the backstop and the South Matapan Trench). As a first step, we apply bathymetric data and state of art methods of pattern recognition to automatically detect seabed lineaments, which are possibly related to the presence of tectonic structures (faults). The resulting pattern is tied to seismic reflection data, further assisting in the construction of a stratigraphic and structural model for this part of the Mediterranean Ridge. Structural elements and stratigraphic units in the final model are estimated based on: (a) the detected lineaments on the seabed, (b) the distribution of the interval velocities and the presence of velocity inversions, (c) the continuity and the amplitudes of the seismic reflections, the seismic structure of the units and (d) well and stratigraphic data as well as the main tectonic structures from the nearest onshore areas. Seabed morphology in the study area is probably related with the past and recent tectonics movements that result from African and European plates' convergence. Backthrusts and reverse faults, flower structures and deep normal faults are among the most important extensional/compressional structures interpreted in the study area.

  17. Integrating Reflection Seismic, Gravity and Magnetic Data to Reveal the Structure of Crystalline Basement: Implications for Understanding Rift Development

    NASA Astrophysics Data System (ADS)

    Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.

    2016-04-01

    Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.

  18. Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.

    2014-12-01

    Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.

  19. Bathymetry, Crustal Imaging and Tectonics in the South of Islas Marias (Nayarit, Mexico)

    NASA Astrophysics Data System (ADS)

    Carrillo de la Cruz, J. L.; Nunez, D.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Gonzalez-Fernandez, A.; Escalona, F.; Danobeitia, J.

    2016-12-01

    The seismic activity of the Mexican Pacific margin is principally due to the subduction process of the Rivera plate beneath the North America plate and Jalisco Block. In 2014, the TSUJAL geophysical experiment provided new data to archive a better knowledge about the crustal structure and their implications in seismic and tsunamigenic potential hazards. In this study, we present the processed and analyzed bathymetric, WAS and MCS data along the TS11 seismic transect (115 km length) across the southern of Islas Marías. The seismic sources used in this work correspond to the airgun shots provided by RRS James Cook every 120 s and 50 m to recover WAS and MCS data, respectively. These sources were registered by a network of 4 OBS and 30 land seismic stations and the MCS data were acquired with a 5.85 km length streamer with a 468 active channels. Meanwhile, the bathymetric data were obtained with 2 multibeam echo sounders, EM120 and EM710, obtaining a 75 - 80 m of grid resolution. After data processing and interpretation, we have obtained information about two basins (De la Cruz Basin and Tres Marias basin) delimitated with geological lineaments alongside the Sierra de Cleofas from bathymetry, being Tres Marias basin the deepest zone in the area. Moreover, the main canyon founded in this study (De la Cruz Canyon) has been classified as type 3, according to Harris & Whiteway (2011). From seismic data, we have determined the shallow and deep crustal structure of the northern part of Rivera plate subduction with a dip angle between 6° and 8°. In this region, the oceanic crust is 10 km deep, increasing up to 20 km, while the deepest layers of the upper mantle have been determined at 45-50 km.

  20. Summary and Review of the Tectonic Structure of Eurasia. Part 1

    DTIC Science & Technology

    1980-12-05

    DTIC TAB Just tIcjat DIstrju1j D it i AVi Dis a2 INTRODUCTION An extensive search of the available geologic and geo- physical literature dealing...with the crust and upper mantle properties of the U.S.S.R. and Eurasia has been conducted. During the past 25 years a vast amount of deep seismic...boundaries for these provinces were drawn after considering geologic evolution. Seismic activity, heat flow, Moho properties , crustal properties

  1. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    NASA Astrophysics Data System (ADS)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  2. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    NASA Astrophysics Data System (ADS)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can suffer from low signal-to-noise levels. I compensate for this difficulty by using high quality deployments and stacking these data at common conversion points to increase lateral resolution.

  3. The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-10-01

    Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.

  4. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  5. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah. [Faults, folds, joints, and collapse structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included themore » tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector.« less

  6. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  7. Stress on the seismogenic and deep creep plate interface during the earthquake cycle in subduction zones

    NASA Astrophysics Data System (ADS)

    Ruff, Larry J.

    2001-04-01

    The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the deep creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s') with the material property of interface viscosity (ζ ) as: σ = ζ s'. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ, the characteristic time of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time ( T recur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) ≫1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3) R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.

  8. Structure and dynamics of Earth's lower mantle.

    PubMed

    Garnero, Edward J; McNamara, Allen K

    2008-05-02

    Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.

  9. Deep structure of Llaima Volcano from seismic ambient noise tomography: Preliminary results

    NASA Astrophysics Data System (ADS)

    Franco, L.; Mikesell, T. D.; Rodd, R.; Lees, J. M.; Johnson, J. B.; Ronan, T.

    2015-12-01

    The ambient seismic noise tomography (ANT) method has become an important tool to image crustal structures and magmatic bodies at volcanoes. The frequency band of ambient noise provides complimentary data and added resolution to the deeper volcanic structures when compared to traditional tomography based on local earthquakes. The Llaima Volcano (38° 41.9' S and 71° 43.8' W) is a stratovolcano of basaltic-andesitic composition. Llaima is located in the South Volcanic Zone (ZVS) of the Andes and is listed as one of the most active volcanoes in South America, with a long documented historical record dating back to 1640. Llaima experienced violent eruptions in 1927 and 1957 (Naranjo and Moreno, 1991), and its last eruptive cycle (2008-2010) is considered the most important after the 1957 eruption. Lacking seismic constraints on the deep structure under Llaima, petrologic data have suggested the presence of magmatic bodies (dikes). These bodies likely play an important role in the eruptive dynamics of Llaima (Bouvet de Maisonneuve, C., et al 2012). Analysis of the 2008-2010 seismicity shows a southern zone (approx. 15 km from the Llaima summit) where there were many Very Long Period events occurring prior to the eruptions. This is in agreement with a deformation zone determined by InSAR analysis (Fournier et al, 2010 and Bathke, 2011), but no geologic model based on geophysical imaging has been created yet. Beginning in 2009, staff from the Chilean Geological Survey (SERNAGEOMIN) started to install a permanent seismic network consisting of nine stations. These nine stations have allowed Chilean seismologists to closely monitor the activity at Llaima, but prevented a high-resolution tomographic imaging study. During the summer of 2015, a temporary seismic network consisting of 26 stations was installed around Llaima. In the work presented here, we analyze continuous waveforms recorded between January and April 2015 from a total of 35 broadband stations (permanent and temporary). This network covers the total area of Llaima and provides the first study aimed at revealing the volcanic structure of Llaima. Moreover this is one of the first attempts to perform high resolution ANT at a Chilean volcano. We will present our tomography results and our first geologic interpretations of Llaima volcanic structure.

  10. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.

  11. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian. There are typical tectonic and deep origin mechanisms for the moderate-strong earthquakes nearby SP Tuantian, and precaution should be added on this area in case of the potential earthquake. Our fusion image also clearly revealed that there exist two remarkable positions on the Moho discontinuity through which the heat from the upper mantle was transmitted upward, and this is attributed to the widely distributed hot material within the crust and upper mantle. We acknowledge the financial support of the Ministry of Land and Resources of China (SinoProbe-02-02), and the National Nature Science Foundation of China (No. 41074033 and No. 40830315). Key Words: Seismic Signature, Magma, Tengchong Volcanic Area, Deep Seismic Sounding, Seismic Attribute Fusion Li, Chang, van der Hilst, D., Meltzer, A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274. doi:10.1016/j.epsl.2008.07.016. Lebedev, S., van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multi-mode surface and S waveforms. Geophys. J. Int. 173 (2), 505-518. Wang C.Y. and Huangfu G.. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87.

  12. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    USGS Publications Warehouse

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  13. Crustal structure of China from deep seismic sounding profiles

    USGS Publications Warehouse

    Li, S.; Mooney, W.D.

    1998-01-01

    More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau. ?? 1998 Elsevier Science B.V. All rights reserved.

  14. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints

    NASA Astrophysics Data System (ADS)

    Carbonell, Ramon; Levander, Alan; Kind, Rainer

    2013-12-01

    The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.

  15. Deployment of the Oklahoma borehole seismic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P.E.; Rock, D.W.

    1989-01-20

    This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less

  16. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    USGS Publications Warehouse

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  17. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    NASA Astrophysics Data System (ADS)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.

  18. Plate and Plume Flux: Constraints for paleomagnetic reference frames and interpretation of deep mantle seismic heterogeneity. (Invited)

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.

    2010-12-01

    Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.

  19. Geological and Seismic Data Mining For The Development of An Interpretation System Within The Alptransit Project

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Giese, R.; Löw, S.; Borm, G.

    Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.

  20. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.

    2004-01-01

    The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.

  1. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  2. Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.

    2016-02-01

    The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.

  3. Out-of-plane reflections - are they evidence for deep subducted lithosphere?

    NASA Astrophysics Data System (ADS)

    Schumacher, Lina; Thomas, Christine

    2015-04-01

    Subduction zones form dominant tectonic features on the Earth and have complex three-dimensional structures. Tomographic inversions for P- and S-wave seismic velocities in the Earth's mantle give impressive images of slabs descending into the deep Earth. However, direct observations of deep slabs are scarce but necessary to make statements concerning physical parameters, structural differences within the slab and its behavior with depth. The main objective of this study is to investigate the geometry, physical parameters and structural differences of subducted lithosphere by investigating seismic P-wave arrivals that reflect off the base of the slab using seismic array techniques. The great circle paths of the source-receiver combinations used do not intersect the slab and serve as reference. We focus on the North pacific region by using earthquakes from Japan, the Philippines and the Hindukush recorded at North American networks (e.g. USArray, Alaska and Canada). The data cover a period from 2000-2012 with a minimum magnitude of 5.6 Mw and depths below 100 km. We are looking for reflections from the slab region that would arrive at the stations with deviating backazimuths. Information on slowness, backazimuth and travel time of the observed out-of-plane arrivals is used to backtrace the wave to its scattering location and to map seismic heterogeneities associated with subduction zones. The reflection points give an idea for the 3D structures within the mantle. Assuming only single scattering in the backtracing algorithm, most out-of-plane signals have to travel as P*P and only a few as S*P phases, due to their timing. Taking into account the radiation pattern of each event in direction of the great circle path and towards the calculated reflection point, it is possible to compare the polarities of the out-of-plane signals with P and/or PP. Furthermore, we analyze the out-of-plane waveforms in the beam trace of the observed slowness and backazimuth by cross-correlating them with great circle path phases and applying a systematic frequency analysis. Since the backtracing results are used for the further analysis of the signals, it is important to know how robust the backtracing routine is. We therefore analyze synthetic seismograms for 3D models with and without slab like heterogeneities. The result helps us to understand the depth dependent thermal behavior of sinking lithosphere, its internal structure and the extent to which it is seismically visible.

  4. Receiver Function Imaging of Crustal and Lithospheric Structure Beneath the Jalisco Block and Western Michoacan, Mexico.

    NASA Astrophysics Data System (ADS)

    Reyes Alfaro, G.; Cruz-Atienza, V. M.; Perez-Campos, X.; Reyes Dávila, G. A.

    2014-12-01

    We used a receiver function technique for imaging western Mexico, a unique area with several active seismic and volcanic zones like the triple junction of Rivera, Cocos and North American plates and the Colima volcano complex (CVC), the most active in Mexico. Clear images of the distribution of the crust and the lithosphere-asthenosphere boundary are obtained using P-to-S receiver functions (RF) from around ~80 broadband stations recorded by the Mapping the Rivera Subduction Zone (MARS), the Colima Volcano Deep Seismic Experiment (CODEX) and a local network (RESCO) that allowed us to considerably increase the teleseismic database used in the project. For imaging, we constructed several 2-D profiles of depth transformed RFs to delineate the seismic discontinuities of the region. Low seismic velocities associated with the Michoacan-Guanajuato and the Mascota-Ayutla-Tapalpa volcanic fields are also observed. Most impressive, a large and well delineated magma body 100 km underneath CVC is recognized along a surely related depression of the moho discontinuity just above it. We bring more tools for a better understanding of the deep processes that ultimately control eruptive behavior in the region.

  5. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  6. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments

    NASA Astrophysics Data System (ADS)

    Środa, Piotr

    2017-04-01

    The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to tight (sub-vertical) folding and fracturing of intrinsically anisotropic metasediments forming the MB basement. Obtained anisotropy models are compared with data about stratal dips of the MB sequences and implications of assuming more realistic TTI model are discussed. Wide-angle recordings from off-line measurements along a reflection profile provided new information about seismic velocity and anisotropy, not available from standard near-vertical profiling, and contributed to more complete image of the upper crustal structure of Małopolska Block.

  7. Subsurface structure and kinematics of the Calaveras-Hayward fault stepover from three-dimensional Vp and seismicity, San Francisco Bay region, California

    USGS Publications Warehouse

    Manaker, David M.; Michael, Andrew J.; Burgmann, Roland

    2005-01-01

    We perform a joint inversion for hypocenters and the 3D P-wave velocity structure of the stepover region using 477 earthquakes. We find strong velocity contrasts across the Calaveras and Hayward faults, corroborated by geologic, gravity, and aeromagnetic data. Detailed examination of two seismic lineaments in conjunction with the velocity model and independent geologic and geophysical evidence suggests that they represent the southern extension of a northeasterly dipping Hayward fault that splays off the Calaveras fault, directly accounting for the deep slip transfer. The Mission fault appears to be accommodating deformation within the block between the Hayward and Calaveras faults. Thus, the Calaveras and Hayward faults need to be considered as a single system for developing rupture scenarios for seismic hazard assessments.

  8. A Type of Non-cable Self-Posioning Seismograph Served For SinoProbe Project In China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lin, J.; Chen, Z.; Zhang, L.; Huaizhu, Z.; Zheng, F.; Seismic Instrument Design Team

    2011-12-01

    A type of cableless self-positioning telemetry seismograph designed for deep exploration is introduced in this article. The seismograph adopts 24-bit ADC and the analog circuits are designed carefully to attain a low noise level of 300nV RMS. It also uses 24-bit DAC and FPGA circuits to perform self-test including noise level, trace crosstalk, CMRR, harmonic distortion, geophone resitor testing, pulse testing, gain calibration and etc. As the testing result shows, the analog acquisition performances are similar to the most popular seismograph 428XL system from Sercel. However, the seismograph has a different structure with 428XL. It gets rid of cables and stores seismic data in mass non-volatile memory, and meanwhile it employs GPS combined with Compass global navigation satellite system to implement synchronous data aquisiton and self-positioning. In addition, the seismograph has a built-in WiFi module and can communicate with a cental server in Ad-hoc mode or AP mode depending on the distance between the seismograph and the central server. The working status and seismic data quality can be monitored through the WiFi network and some seismic data can be transmitted back on demand. When the distance between adjacent seismographs exceed 500 metres, the Compass global navigation satellite system which supports global communication can be used to send necessary data. At last, dynamic power management is emplyed and the system working voltage and frequency will be changed as the system runs into different status, and also all circuit modules can be switched off when not needed. Because of all the benefits listed above, the seismograph can be used in a variety of ways as needed, such as seismic network, deep seismic reflection exploration, wide-angle seismic reflection and refraction exploration, ore zone seismic exploration and etc. To sum up, the cable-less self-positioning seismograph employs mass non-volatile storage technology, global navigation satellite sytem, WiFi modules and dynamic power management technology to attain a flexible data acquisition system suitable for most of the seismic deep exploration in SinoProbe launched in China.

  9. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    NASA Astrophysics Data System (ADS)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  10. Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2010-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the uppermost part of the subducting slab mantle shows spatial heterogeneities. In the thin oceanic crust zone, high velocity slab mantle is imaged from near the trough to coastline. On the other hands, there is low velocity zone in the slab mantle near the trough axis in the Kyusyu-Palau Ridge segment. This low velocity zone may be related to the location of the eastern end of subducted Kyusyu-Palau Ridge.

  11. Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma

    USGS Publications Warehouse

    Shah, Anjana K.; Keller, G. Randy

    2017-01-01

    Recent Oklahoma seismicity shows a regional correlation with increased wastewater injection activity, but local variations suggest that some areas are more likely to exhibit induced seismicity than others. We combine geophysical and drill hole data to map subsurface geologic features in the crystalline basement, where most earthquakes are occurring, and examine probable contributing factors. We find that most earthquakes are located where the crystalline basement is likely composed of fractured intrusive or metamorphic rock. Areas with extrusive rock or thick (>4 km) sedimentary cover exhibit little seismicity, even in high injection rate areas, similar to deep sedimentary basins in Michigan and western North Dakota. These differences in seismicity may be due to variations in permeability structure: within intrusive rocks, fluids can become narrowly focused in fractures and faults, causing an increase in local pore fluid pressure, whereas more distributed pore space in sedimentary and extrusive rocks may relax pore fluid pressure.

  12. 2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland

    NASA Astrophysics Data System (ADS)

    Bocin, Andrei; Stephenson, Randell; Tryggvason, Ari; Panea, Ionelia; Mocanu, Victor; Hauser, Franz; Matenco, Liviu

    2005-12-01

    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the architecture of the Tertiary/Quaternary basins developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly WNW-ESE direction, from near the southeast Transylvanian Basin, across the mountainous south-eastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion of the DACIA-PLAN first arrival data. The results show that the data fairly accurately resolve the transition from sediment to crystalline basement beneath the Focsani Basin, where industry seismic data are available for correlation, at depths up to about 10 km. Beneath the external Carpathians nappes, apparent basement (material with velocities above 5.8 km/s) lies at depths as shallow as 3-4 km, which is less than previously surmised on the basis of geological observations. The first arrival travel-time data suggest that there is significant lateral structural heterogeneity on the apparent basement surface in this area, suggesting that the high velocity material may be involved in Carpathian thrusting.

  13. High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri

    NASA Astrophysics Data System (ADS)

    Rosandich, B.; Harris, J. B.; Woolery, E. W.

    2017-12-01

    Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.

  14. One billion year-old Mid-continent Rift leaves virtually no clues in the mantle

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.

    2017-12-01

    We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.

  15. Evolution of seismically active İzmir-Balıkesir Transfer Zone: A reactivated and deep-seated structure since the Miocene

    NASA Astrophysics Data System (ADS)

    Uzel, Bora; Sözbilir, Hasan; Kaymakci, Nuretdin; Özkaymak, Caglar; Ozkaptan, Murat; Ay, Selin; Langereis, Cornelis G.

    2017-04-01

    Within the Aegean extensional system, the İzmir-Balikesir Transfer Zone (İBTZ) is a recently recognized structure that have played important role in the late Cenozoic evolution of western Anatolia by accommodating the differential deformation between the Cycladic (CCC) and the Menderes (MCC) metamorphic core complexes. There is wealth of information about the transform nature of the zone during the late Cretaceous. Some of the faults within the İBTZ have earliest record of their activity in the late Cretaceous related to closure of the Neotethys. In this contribution we will present; (i) the vertical axis rotational history of western Anatolia using paleomagnetic data from the Miocene volcano-sedimentary rocks, (ii) kinematics of the major faults based on fault slip analysis of, and (iii) focal mechanism solutions of the recent seismic activity to better understand the İBTZ since the Miocene. Paleomagnetic results reveal two discrete and opposite major rotational phases since the early Miocene. Kinematics of structures agrees with these results while three major deformational phases are identified along the İBTZ. The focal mechanism solutions of recent seismic events -such as 1992 Doǧanbey, 2003 Seferihisar and 2005 Sıǧacık earthquakes- occurred along the İBTZ corroborate that it is still an active structure and transfers west Anatolian extensional strain into the Aegean Sea. Combining mantle tomography, paleomagnetic, kinematic, and seismic activity along the zone suggests that the İBTZ is not only links two core complexes, the MCC and the CCC, but also corresponds to a deep-seated structure related to a tear along the subducted northern edge of the African slab. Hence, it is not only a surface expression of a tear in the subducting African slab, but also one of the main seismic sources of the region. This work is supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) research grant of ÇAYDAǧ-109Y044 and partly by the Dokuz Eylül University Scientific Research (BAP) Project: 2007.KB.FEN.039.

  16. How the 410-km Discontinuity Reflects Mantle Water Content: Constraints from High-Pressure Experiments on Wadsleyite Single-Crystal Elasticity

    NASA Astrophysics Data System (ADS)

    Buchen, J.; Marquardt, H.; Boffa Ballaran, T.; Kawazoe, T.; Speziale, S.; Kurnosov, A.

    2017-12-01

    The olivine-wadsleyite phase transition gives rise to a seismic discontinuity at 410 km depth. By incorporating hydroxyl groups in its crystal structure, wadsleyite can store large amounts of water in the shallow transition zone. The velocity contrast across the 410-km seismic discontinuity has been widely used to deduce mantle mineralogy including estimates of the water content at depth. To interpret seismic observations in terms of mantle mineralogy and deep water cycling, the elastic properties of wadsleyite need to be determined at relevant pressures and temperatures. We performed simultaneous sound wave velocity and density measurements on iron-bearing wadsleyite single crystals at high pressures and first experiments at combined high pressures and high temperatures. When compared with previous work on hydrous iron-bearing wadsleyite with identical Fe/(Mg+Fe) ratio of 0.11, our results show that hydration of iron-bearing wadsleyite reduces the sound wave velocities at low pressures. At high pressures, in contrast, P-wave and S-wave velocities of hydrous and anhydrous iron-bearing wadsleyite cross over and become seismically indistinguishable at conditions of the transition zone. As a consequence, hydrated regions in the shallow transition zone cannot be detected by seismic tomography. Motivated by our experimental results, we modeled velocity, density, and acoustic impedance contrasts across the 410-km seismic discontinuity and found velocity contrasts to vary only slightly with hydration. Instead, we show that the impedance contrast caused by the olivine-wadsleyite phase transition and hence the reflectivity of the 410-km seismic discontinuity are more sensitive to hydration. Our findings give important constraints on the interpretation of seismic observations aiming to trace Earth's deep water cycle.

  17. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  18. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  19. New Inquiry into Distribution and Mechanism of Deep Moonquakes with Recently Identified Seismic Events

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosio

    2005-01-01

    The objectives of the project were (1) to complete our preceding effort, supported by NASA grant NAGS-1 1619, of searching for deep moonquakes in the far hemisphere of the Moon among the seismic events detected by the Apollo seismic array; and (2) to re-examine the distribution and mechanism of deep moonquakes in the light of the newly identified deep moonquakes. The project was originally planned for completion in three years, of which only the first year, covered by this report, was funded. As a result, we were able to address only the first objective during the period, and the major part of the second objective was left for the future.

  20. Seismic risk mitigation in deep level South African mines by state of the art underground monitoring - Joint South African and Japanese study

    NASA Astrophysics Data System (ADS)

    Milev, A.; Durrheim, R.; Nakatani, M.; Yabe, Y.; Ogasawara, H.; Naoi, M.

    2012-04-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approximately 40m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m located at 3300m below the surface were analysed. A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase.Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as 'slow' or aseismic events. During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. The aftershock activities were also well recorded by the acoustic emission and the mine seismic networks. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to quantify post slip behavior of the source. An attempt to associate the different type of deformations with the various fracture regions and geological structures around the stopes was carried out. A model, was introduced in which the coseismic deformations are associated with the stress regime outside the stope fracture envelope and very often located on existing geological structures, while the aseismic deformations are associated with mobilization of fractures and stress relaxation within the fracture envelope. Further research to verify this model is strongly recommended. This involves long term underground monitoring using a wide variety of instruments such as tilt, closure and strain meters, a highly sensitive AE fracture monitoring system, as well as strong ground motion monitors. A large amount of numerical modeling is also required.

  1. Applying new seismic analysis techniques to the lunar seismic dataset: New information about the Moon and planetary seismology on the eve of InSight

    NASA Astrophysics Data System (ADS)

    Dimech, J. L.; Weber, R. C.; Knapmeyer-Endrun, B.; Arnold, R.; Savage, M. K.

    2016-12-01

    The field of planetary science is poised for a major advance with the upcoming InSight mission to Mars due to launch in May 2018. Seismic analysis techniques adapted for use on planetary data are therefore highly relevant to the field. The heart of this project is in the application of new seismic analysis techniques to the lunar seismic dataset to learn more about the Moon's crust and mantle structure, with particular emphasis on `deep' moonquakes which are situated half-way between the lunar surface and its core with no surface expression. Techniques proven to work on the Moon might also be beneficial for InSight and future planetary seismology missions which face similar technical challenges. The techniques include: (1) an event-detection and classification algorithm based on `Hidden Markov Models' to reclassify known moonquakes and look for new ones. Apollo 17 gravimeter and geophone data will also be included in this effort. (2) Measurements of anisotropy in the lunar mantle and crust using `shear-wave splitting'. Preliminary measurements on deep moonquakes using the MFAST program are encouraging, and continued evaluation may reveal new structural information on the Moon's mantle. (3) Probabilistic moonquake locations using NonLinLoc, a non-linear hypocenter location technique, using a modified version of the codes designed to work with the Moon's radius. Successful application may provide a new catalog of moonquake locations with rigorous uncertainty information, which would be a valuable input into: (4) new fault plane constraints from focal mechanisms using a novel approach to Bayes' theorem which factor in uncertainties in hypocenter coordinates and S-P amplitude ratios. Preliminary results, such as shear-wave splitting measurements, will be presented and discussed.

  2. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    PubMed

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  3. Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.

    NASA Astrophysics Data System (ADS)

    Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.

    2016-12-01

    In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map of the Arctic Ocean and adjacent Eurasian shelf, on which the structural prolongation of the shallow shelf into deep-water is obviously seen.

  4. Recent Russian Geophysical and Geological Investigations on Siberian Continental Margin

    NASA Astrophysics Data System (ADS)

    P. v., A.; K. v., D.; B. v., V.

    2007-12-01

    In July-August, 2005 new geophysical and geological data were acquired in the Mendeleev Rise (MR) region during "Arctic-2005" cruise aboard M/V "Akademik Fedorov". The study was concentrated in the southern part of MR in the area of its junction with East Siberian shelf. On-ice deep seismic sounding investigations (with offsets up to 250 km) and helicopter-supported seismic reflection soundings were performed along 600 km-long sub- longitudinal profile. Seismic survey was accompanied by on-ice gravity observations and geological sampling. Air-borne magnetic and air gravity measurements at scale 1:1,000,000 were also performed within a 100 km- wide corridor along the central seismic profile. Processing and analysis of new evidence included the compilation of deep seismic section, 2D seismic-gravity modeling of the Earth crust, 3D modeling of basement and Moho relief, and estimation of sediment and earth crust thickness. The results were integrated with earlier data and used for advanced structural and tectonic interpretations. The following main conclusions were obtained: Thickness of sediment cover along seismic line varies from 12 km in the south (in the North-Chukchi Trough) to 3-4 km in the northern MR. Crust thickness beneath MR is on the order of 30-35 km with a maximum value of 38 km in its southern part. The thinnest crust (28 km) is observed in the North-Chukchi Trough. Potential fields indicate existence of several blocks differing in gravity and magnetic anomalies. In the southern MR these blocks appear separated by grabens and display distinct continental characteristics accentuated by thickness of the crust, its seismic velocities and potential field pattern. At some of the shallowest (possibly eroded?) bathymetric highs the results of bottom sampling seem to point to the possibility of local derivation of coarse bottom debris. The proposed tectonic model implies structural continuity between MR and the adjacent East Siberian shelf. Brief information about the latest Russian geophysical and geological cruise "Arctic-2007" to the Lomonosov Ridge and its transition to the Siberian shelf will also be presented.

  5. Geophysical study of the Ota-VF Xira-Lisbon-Sesimbra fault zone and the lower Tagus Cenozoic basin

    NASA Astrophysics Data System (ADS)

    Carvalho, João; Rabeh, Taha; Bielik, Miroslav; Szalaiová, Eva; Torres, Luís; Silva, Marisa; Carrilho, Fernando; Matias, Luís; Miranda, Jorge Miguel

    2011-09-01

    This paper focuses on the interpretation of seismic reflection, gravimetric, topographic, deep seismic refraction and seismicity data to study the recently proposed Ota-Vila Franca de Xira-Lisbon-Sesimbra (OVLS) fault zone and the lower Tagus Cenozoic basin (LTCB). The studied structure is located in the lower Tagus valley (LTV), an area with over 2 million inhabitants that has experienced historical earthquakes which caused significant damage and economical losses (1344, 1531 and 1909 earthquakes) and whose tectonic sources are thought to be local but mostly remain unknown. This study, which is intended as a contribution to improve the seismic hazard of the area and the neotectonics of the region, shows that the above-proposed fault zone is probably a large crustal thrust fault that constitutes the western limit of the LTCB. Gravimetric, deep refraction and seismic reflection data suggest that the LTCB is a foreland basin, as suggested previously by some authors, and that the OVLS northern and central sectors act as the major thrusts. The southern sector fault has been dominated by strike-slip kinematics due to a different orientation to the stress field. Indeed, geological outcrop and seismic reflection data interpretation suggests that, based on fault geometry and type of deformation at depth, the structure is composed of three major segments. These data suggest that these segments have different kinematics in agreement with their orientation to the regional stress field. The OVLS apparently controls the distribution of the seismicity in the area. Geological and geophysical information previously gathered also points that the central segment is active into the Quaternary. The segment lengths vary between 20 and 45 km. Since faults usually rupture only by segments, maximum expectable earthquake magnitudes and other parameters have been calculated for the three sectors of the OVLS fault zone using empirical relationships between earthquake statistics and geological parameters available from the literature. Calculated slip rates are compatible with previous estimates for the area (0.33 mm yr-1). A more accurate estimation of the OVLS throw in the Quaternary sediments is therefore of vital importance for a more accurate evaluation of the seismic hazard of the area.

  6. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    NASA Astrophysics Data System (ADS)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  7. The MIRROR cruise (2011): Deep crustal structure of the Moroccan Atlantic Margin from wide-angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.

    2011-12-01

    The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.

  8. Reconciling deep seismic refraction and reflection data from the grenvillian-appalachian boundary in western New England

    USGS Publications Warehouse

    Hughes, S.; Luetgert, J.H.; Christensen, N.I.

    1993-01-01

    The Grenvillian-Appalachian boundary is characterized by pervasive mylonitic deformation and retrograde alteration of a suite of imbricated allochthonous and parautochthonous gneisses that were thrust upon the Grenvillian continental margin during the lower Paleozoic. Seismic reflection profiling across this structural boundary zone reveals prominent dipping reflectors interpreted as overthrust basement slices (parautochthons) of the Green Mountain Anticlinorium. In contrast, a seismic refraction study of the Grenvillian-Appalachian boundary reveals a sub-horizontally layered seismic velocity model that is difficult to reconcile with the pronounced sub-vertical structures observed in the Green mountains. A suite of rock samples was collected from the Green Mountain Anticlinorium and measured at high pressures in the laboratory to determine the seismic properties of these allochthonous and parautochthonous gneisses. The laboratory-measured seismic velocities agree favorably with the modelled velocity structure across the Grenvillian-Appalachian boundary suggesting that the rock samples are reliable indicators of the rock mass as whole. Samples of the parautochthonous Grenvillian basement exposed in the Green Mountains have lower velocities, by about 0.5 km/s, than lithologically equivalent units exposed in the eastern Adirondack Highlands. Velocity reduction in the Green Mountain parautochthons can be accounted for by retrograde metamorphic alteration (hydration) of the paragneisses. Seismic anisotropies, ranging from 2 to 12%, in the mylonitized Green Mountain paragneisses may also contribute to the observation of lower seismic velocities, where the direction of ray propagation is normal to the foliation. The velocity properties of the Green Mountain paragneisses are thus insufficiently different from the mantling Appalachian allochthons to permit their resolution by the Ontario-New York-New England seismic refraction profile. ?? 1993.

  9. Indo-Burmese subduction of the Bengal basin controlled by 90°E ridge collison imaged from deep seismic reflection data

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Maurin, T.

    2009-12-01

    As a result of the Indo Burmese active hyper-oblique subduction, part of the Bay of Bengal is presently subducting eastward below the Burmese microplate. We have conducted two deep penetration seismic reflection surveys in the north-eastern Bay of Bengal, providing the first high resolution seismic image of the Bengal basin fill and basement. On basis of these data, we are able to trace the 90°E ridge much more northward than previously thought, i.e. up to 20°N along the Indo-Burmese plate boundary. We found out that the surface deformation, the deep structure of the subduction zone and the geometry of the plate boundary could all be strongly influenced by the impact of a prominent asperity, the 90°E ridge. These effects are variable along the margin. Between 15°N and 18°N, the ridge asperity brushes the active burmese plate boundary that strikes N10°E. At this latitude, all the structures framing the Indo-Burmese wedge have a similar N10°E trend. Deformation at the plate boundary is mainly strike slip. This is confirmed by the absence of subducted slab at depth as indicated by both seismicity and tomography. The small component of shortening along this plate boundary is probably accommodated partly by the flexure of the ridge and partly within the deformed upper plate. North of 19°N, the ridge vanishes progressively. The absence of basement topography together with the large amount of sediments provided by the Brahmaputra delta facilitates the fast westward growth of the Indo-Burmese wedge. The seismicity fits a well developed subducted slab at depth,. In the narrow transition zone between 18°N and 19°N, the 90°E ridge northern tips collides with the Burmese microplate. This collision could explain the rise of a subsuface flat and ramp system offshore Ramree and Cheduba islands, and the strong uplift of the Indo-Burmese wedge in Mount Victoria area.

  10. Modeling the Crust and Upper Mantle in Northern Beata Ridge (CARIBE NORTE Project)

    NASA Astrophysics Data System (ADS)

    Núñez, Diana; Córdoba, Diego; Cotilla, Mario Octavio; Pazos, Antonio

    2016-05-01

    The complex tectonic region of NE Caribbean, where Hispaniola and Puerto Rico are located, is bordered by subduction zone with oblique convergence in the north and by incipient subduction zone associated to Muertos Trough in the south. Central Caribbean basin is characterized by the presence of a prominent topographic structure known as Beata Ridge, whose oceanic crustal thickness is unusual. The northern part of Beata Ridge is colliding with the central part of Hispaniola along a transverse NE alignment, which constitutes a morphostructural limit, thus producing the interruption of the Cibao Valley and the divergence of the rivers and basins in opposite directions. The direction of this alignment coincides with the discontinuity that could explain the extreme difference between west and east seismicity of the island. Different studies have provided information about Beata Ridge, mainly about the shallow structure from MCS data. In this work, CARIBE NORTE (2009) wide-angle seismic data are analyzed along a WNW-ESE trending line in the northern flank of Beata Ridge, providing a complete tectonic view about shallow, middle and deep structures. The results show clear tectonic differences between west and east separated by Beata Island. In the Haiti Basin area, sedimentary cover is strongly influenced by the bathymetry and its thickness decreases toward to the island. In this area, the Upper Mantle reaches 20 km deep increasing up to 24 km below the island where the sedimentary cover disappears. To the east, the three seamounts of Beata Ridge provoke the appearance of a structure completely different where sedimentary cover reaches thicknesses of 4 km between seamounts and Moho rises up to 13 km deep. This study has allowed to determine the Moho topography and to characterize seismically the first upper mantle layers along the northern Beata Ridge, which had not been possible with previous MCS data.

  11. Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (Northeastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Houatmia, Faten; Khomsi, Sami; Bédir, Mourad

    2015-11-01

    The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4 × 109 m3 of deep water reserves.

  12. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  13. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    NASA Astrophysics Data System (ADS)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to create a 3D lithological and structural model for the architecture of the whole complex. The information on the extent of the ore-bearing Kevitsa intrusion can be used for more effective exploration in the area. The base of the intrusion is particularly clear in the northern and eastern sectors. Toward the east, the base is mostly defined by disruption of the reflectors internal to the intrusion. The 2D seismic data, which extend beyond the 3D seismic study, reveal that the prominent reflectors at the base of the intrusion continue deeper toward the south-southwest. This has been interpreted as a previously unknown southern continuation of the intrusion. Furthermore, the data reveal strong reflectors at the base of the intrusion that have been penetrated by two deep drill holes in the area. These drill holes reveal contact-type mineralization at the onset of the reflectors. Thus, the seismic data can be directly used for exploration of the contact-type mineralization.

  14. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  15. Deep seismic sounding in northern Eurasia

    USGS Publications Warehouse

    Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.

    1992-01-01

    For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].

  16. Site Transfer Functions of Three-Component Ground Motion in Western Turkey

    NASA Astrophysics Data System (ADS)

    Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip

    2015-04-01

    Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along different propagation paths. The results also show that, even if the site is located on a horst, the presence of weathered zones near the surface could cause moderate frequency dependent site effects.

  17. Geodynamic models of the deep structure of the natural disaster regions of the Earth

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.

    2012-04-01

    Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.

  18. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    NASA Astrophysics Data System (ADS)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  19. Structural variation along the southwestern Nankai seismogenic zone related to various earthquake phenomena

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Kashiwase, K.; Fujimori, H.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2011-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture area of the Nankai megathrust event, it is important to know the geometry of the subducting Philippine Sea plate and deep subduction structure along the Nankai Trough. To obtain the deep subduction structure of the coseismic rupture area of the Nankai earthquake in 1946 off Shikoku area, the large-scale high-resolution wide-angle seismic study was conducted in 2009 and 2010. In this study, 201 and 200 ocean bottom seismographs were deployed off the Shikoku Island and the Kii channel respectively. A tuned airgun system (7800 cu. in.) shot every 200m along 13 profiles. Airgun shots were also recorded along an onshore seismic profile (prepared by ERI, univ. of Tokyo and NIED) prolonged from the offshore profile off the Kii Peninsula. Long-term observation was conducted for ~9 months by 21 OBSs off the Shikoku area and 20 OBSs off the Kii channel.This research is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Structural images of the overriding plate indicate the old accreted sediments (the Cretaceous-Tertiary accretionary prism) with the velocity greater than 6km/s extend seaward from off the Shikoku to the Hyuga-nada. Moreover, the young accreted sediments become relatively thinner eastward from off the cape Ashizuri to Muroto. These structural variations might be related to the different rupture pattern of the Nankai event. Structural image of the deep low frequency earthquakes and tremors is shown by using the airgun shots recorded at onshore Hi-net (NIED, Japan) data located along prolongation of the offshore seismic profiles.

  20. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821.

  1. Halocinèse précoce associée au rifting jurassique dans l'Atlas central de Tunisie (région de Majoura El Hfay)

    NASA Astrophysics Data System (ADS)

    Tanfous Amri, Dorra; Bédir, Mourad; Soussi, Mohamed; Azaiez, Hajer; Zitouni, Lahoussine; Hédi Inoubli, M.; Ben Boubaker, Kamel

    2005-05-01

    Seismic and sequence stratigraphy analyses, petroleum-well control and surface data studies of the Majoura-El Hfay region in the Central Atlas of Tunisia had led to identify and calibrate Jurassic seismic horizons. Seismic stratigraphic sections, seismic tectonics analyses, isochron and isopach mapping of Jurassic sequences show a differentiated structuring of platform and depocentre blocks limited by deep-seated NE-SW, north-south east-west and NW-SE faults intruded by Upper Triassic salt. The early salt migration seems to have started by the platform fracturing during the Lower Liassic rifting event. These movements are fossilized by thickness variations of Jurassic horizons, aggrading and retrograding onlap and toplap structures between subsiding rim-syncline gutters and high platform flanks intruded by salt pillows and domes. The salt migration is also attested by Middle and Upper Jurassic space depocentre migrations. Around the Majoura-El Hfay study blocks bounded by master faults, Triassic salt have pierced the Cretaceous and Tertiary sedimentary cover in a salt diapir extrusion and salt wall structures. To cite this article: D. Tanfous Amri et al., C. R. Geoscience 337 (2005).

  2. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  3. The MAFI Project: Mapping Active Faults in Italy by Using Microseismicity Data.

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Amato, A.; Augliera, P.; Bagh, S.; Cattaneo, M.; Chiaraluce, L.; de Gori, P.; di Bartolomeo, P.; Govoni, A.; Michelini, A.; Moretti, M.; Piccinini, D.; Romanelli, M.

    2004-12-01

    In past years, earthquake forecasting and seismic hazard in Italy have been approached by using geological and geophysical data yielding only a partial definition of seismic release for the main active structures. In this project, we collect seismological and geodetic data to yield deterministic constraints for seismic hazard studies in areas where large earthquakes are expected to occur in a near future, called lacunae. The basic idea is to massively deploy arrays of instruments in the lacunae areas to acquire seismic and geodetic data with the goals of defining location, geometry and kinematics of the active faults and possibly constraining their strain rate. We selected three target regions: two along the Apennines (Northern Umbria and Abruzzo) and one in the Southern Alps (Alpago-Cansiglio). These areas are characterized by different tectonics and different historical seismic release. We present results for the areas located along the Apennines: the Umbria 2000-2001 and the Abruzzo 2003-2004 experiments while for the Alpago-Cansiglio we are still collecting and processing data. Preliminary results for the Umbria lacuna shows that the collected microearthquakes allow us to clearly recognize the fault system geometry and the deep structure (P- and S-wave velocity and attenuation).

  4. Structural and Depositional Evolution of the Stevenson Basin, a Gulf of Alaska Forearc Basin: Insights from Legacy Seismic and Borehole Data

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Liberty, L. M.; Almeida, R. V.; Hubbard, J.

    2016-12-01

    We explore the structural and depositional evolution of the Stevenson Basin, Gulf of Alaska from a dense network of 2-D marine seismic profiles that span the Gulf of Alaska continental margin. The grid of 71 seismic profiles was acquired as part of a 1975 Mineral Management Services (MMS) exploration project to assess basin architecture along the Alaska continental shelf. We obtained unmigrated and stacked seismic profiles in TIFF format. We converted the data to SEGY format and migrated each profile. Within the Stevenson Basin, we identify key seismic horizons, including the regional Eocene-Miocene unconformity, that provide insights into its depositional and structural history. Using these observations combined with stacking velocities, sonic logs from wells, and refraction velocities from the Edge profile of Ye et al. (1997), we develop a local 3D velocity model that we use to depth-convert the seismic reflection profiles. By using ties to >2.5 km deep exploration wells, we note the Stevenson Basin is one of many Eocene and younger depocenters that span the forearc between Kodiak and Prince William Sound. Well logs and seismic data suggest basal strata consist of Eocene sediments than are unconformably overlain by Neogene and younger strata. Faults that breach the sea floor suggest active deformation within and at the bounds of this basin, including on new faults that do not follow any pre-existing structural trends. This assessment is consistent with slip models that place tsunamigenic faults that ruptured during the 1964 Great Alaska earthquake in the vicinity of the basin. The catalog of faults, their slip history and the depositional evolution of the Stevenson Basin, all suggest that the basin evolution may be controlled by heterogeneities along the incoming plate.

  5. Deep faulting and structural reactivation beneath the southern Illinois basin

    USGS Publications Warehouse

    McBride, J.H.; Leetaru, H.E.; Bauer, R.A.; Tingey, B.E.; Schmidt, S.E.A.

    2007-01-01

    The investigation of deep fault structure and seismogenesis within "stable" continental interiors has been hindered by the paucity of detailed subsurface information and by low levels of seismicity. Outstanding seismotectonic questions for these areas include whether pre-existing structures govern the release of seismic energy as earthquakes, can reactivation of such structures be recognized, and to what extent have Precambrian basement structures exerted long-lived controls on the development of overlying Phanerozoic features. The southern portion of the Illinois basin provides a premier area in which to study the relation between contemporary seismicity and pre-existing structures due to the frequency of seismic events, the concentration of available geophysical data, and the wealth of borehole information. We have integrated the study of this information in order to create a 2.5-dimensional picture of the earth for local seismogenic depths (0-15 km) for a study area of moderate 20th century earthquake activity. The area is located along the western flanks of two of the major structures within the Illinois basin, the Wabash Valley fault system (WVFS) and the La Salle anticlinal belt (LSA). The results of reprocessing seismic reflection profiles, combined with earthquake hypocenter parameters, suggest three distinct seismotectonic environments in the upper crust. First, we have delineated a fault pattern that appears to correspond to the steep nodal plane of a strike-slip mechanism event (1974.04.03; mb = 4.7). The fault pattern is interpreted to be a deeply buried rift zone or zone of intense normal faulting underpinning a major Paleozoic depocenter of the Illinois basin (Fairfield basin). Second, a similar event (1987.06.10; mb = 5.2) and its well-located aftershocks define a narrow zone of deformation that occurs along and parallel to the frontal thrust of the LSA. Third, the hypocenter of the largest event in the study area (1968.11.09; mb = 5.5) may be spatially associated with a prominent zone of dipping middle crustal reflections, just west of the WVFS, which have been interpreted as a deeply buried blind thrust. The proposed correlation of pre-existing structures with earthquakes having consistently oriented structural parameters supports the reactivation of old deformation zones by contemporary stresses as previously proposed by earlier workers. However, the degree to which deformation has propagated upward from Precambrian basement into the Paleozoic rocks varied significantly even over a small study area. The societal value of associating an earthquake with a specific pre-existing deformation zone in the seismogenic crust is to improve the assessment of seismic hazard or to assess the integrity of a stratigraphic formation, being considered as a target for natural gas storage or carbon sequestration. ?? 2007 Elsevier B.V. All rights reserved.

  6. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.

    2017-11-01

    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  7. Intraplate seismicity across the Cape Verde swell

    NASA Astrophysics Data System (ADS)

    Vales, Dina; Matias, Luís.; Haberland, Christian; Silveira, Graça.; Weber, Michael; Carrilho, Fernando; Dias, Nuno

    2010-05-01

    The Cape Verde Archipelago ((15-17°N, 23-26°W) is located within the African plate, about 500km west of Senegal, in the African coast. The islands are located astride the Cape Verde mid-plate topographic swell, one of the largest features of its type in the world's ocean basins. The origin of this Cape Verde swell is still in debate. Previous determinations of the elastic thickness (Te) reveal a normal Te and a modest heat flow anomaly which suggest that the swell cannot be fully explained by uplift due to thermal reheating of the lithosphere by an underlying ‘‘hot spot'' and that other, deep-seated, mantle processes must be involved. The CV-PLUME (An investigation on the geometry and deep signature of the Cape Verde mantle plume) project intends to shape the geometry and deep origin of the Cape Verde mantle plume, via a combined study of seismic, magnetic, gravimetric and geochemical observations. Through this study we intend to characterize the structure beneath the archipelago from the surface down to the deep mantle. The core of this 3-year project was a temporary deployment of 39 Very Broad Band seismometers, across all the inhabited islands, to recorder local and teleseismic earthquakes. These instruments were operational from November 2007 to September 2008. In this work we report on the preliminary results obtained from the CV-PLUME network on the characterization of the local and regional seismicity. To detect the small magnitude seismic events the continuous data stream was screened using spectrograms. This proved to be a very robust technique in the face of the high short-period noise recorded by many of the stations, particularly during day time. The 10 month observation time showed that the background seismic activity in the Archipelago and surrounding area is low, with only a very few events recorded by the complete network. However, two clusters of earthquakes were detected close to the Brava Island, one to the NW and a second one, more active, to the SW. This activity was concentrated mainly during January 2008. The Brava and nearby Fogo Islands are known for their recent volcanic activity (last eruption in Fogo was in April 1995) and earthquake swarms. Therefore, we infer that the recorded seismic activity may be also triggered by magma flow. This study was funded by project "CV-PLUME: An investigation on the geometry and deep signature of the Cape Verde mantle plume", reference - PTDC/CTE-GIN/64330/2006; and Germany - "COBO: Cape Verdes Origin from Broadband Observations, GFZ, Geophysical Deep Sounding Section. The operation was possible thanks to the cooperation between the GeoForschungsZentrum Potsdam (Germany's National Research Centre for Geosciences) with the Instituto Dom Luiz.

  8. A Deep-towed Digital Multichannel Seismic Streamer For Very High-resolution Studies Of Marine Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Inggas Working Group

    A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All deep-towed and laboratory components are synchronized by DGPS time based trigger signals. This deep-towed system will first be tested during the SO162 cruise of RV Sonne (21.2. - 12.3.02) off Peru and Ecuador along profile lines where conventional multi- channel seismic reflection data have already been collected during a fomer cruise.

  9. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.

    2015-01-01

    In addition to the preceding seismic-reflection analysis, interpretation of geophysical well log data from four effluent injection wells at the North District “Boulder Zone” Well Field delineated a narrow karst collapse structure beneath the injection facility that extends upward about 900 ft from the top of the Boulder Zone to about 125 ft above the top of the uppermost major permeable zone of the Lower Floridan aquifer. No karst collapse structures were identified in the seismic-reflection profiles acquired near the North District “Boulder Zone” Well Field. However, karst collapse structures at the level of the lowermost major permeable zone of the Lower Floridan aquifer at the South District “Boulder Zone” Well Field are present at three locations, as indicated by seismic-reflection data acquired in the C–1 Canal bordering the south side of the injection facility. Results from the North District “Boulder Zone” Well Field well data indicate that a plausible hydraulic connection between faults and stratiform permeability zones may contribute to the upward transport of effluent, terminating above the base of the deepest U.S. Environmental Protection Agency designated underground source of drinking water at the North District “Boulder Zone” Well Field.

  10. Deep Seismic Reflection Images of the Sumatra Seismic and Aseismic Gaps

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Hananto, N. D.; Chauhan, A.; Carton, H. D.; Midenet, S.; Djajadihardja, Y.

    2009-12-01

    The Sumatra subduction zone is seismically most active region on the Earth, and has been the site of three great earthquakes only in the last four years. The first of the series, the 2004 Boxing Day earthquake, broke 1300 km of the plate boundary and produced the devastating tsunami around the Indian Ocean. The second great earthquake occurred three months later in March 2005, about 150 km SE of the 2004 event. The Earth waited for three years, and then broke again in September 2007 at 1300 km SE of the 2004 event producing a twin earthquake of magnitudes of 8.5 and 7.9 at an interval of 12 hours, leaving a seismic gap of about 600 km between the second and third earthquake, the Sumatra Seismic Gap. Seismological and geodetic studies suggest that this gap is fully locked and may break any time. In order to study the seismic and tsunami risk in this locked region, a deep seismic reflection survey (Tsunami Investigation Deep Evaluation Seismic -TIDES) was carried out in May 2009 using the CGGVeritas vessel Geowave Champion towing a 15 long streamer, the longest ever used during a seismic survey, to image the nature of the subducting plate and associated features, including the seismogenic zone, from seafloor down to 50 km depth. A total of 1700 km of deep seismic reflection data were acquired. Three dip lines traverse the Sumatra subduction zone; one going through the Sumatra Seismic Gap, one crossing the region that broke during the 2007 great earthquake, and one going through the aseismic zone. These three dip profiles should provide insight about the locking mechanism and help us to understand why an earthquake occurs in one zone and not in aseismic zone. A strike-line was shot in the forearc basin connecting the locked zone with broken zone profiles, which should provide insight about barriers that might have stopped propagation of 2007 earthquake rupture further northward.

  11. Ring-Shaped Seismicity Structures in Southern California: Possible Preparation for Large Earthquake in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Some characteristics of seismicity in Southern California are studied. It is found that ring-shaped seismicity structures with threshold magnitudes M th of 4.1, 4.1, and 3.8 formed prior to three large ( M w > 7.0) earthquakes in 1992, 1999, and 2010, respectively. The sizes of these structures are several times smaller than for intracontinental strike-slip events with similar magnitudes. Two ring-shaped structures are identified in areas east of the city of Los Angeles, where relatively large earthquakes have not occurred for at least 150 years. The magnitudes of large events which can occur in the areas of these structures are estimated on the basis of the previously obtained correlation dependence of ring sizes on magnitudes of the strike-slip earthquakes. Large events with magnitudes of M w = 6.9 ± 0.2 and M w = 8.6 ± 0.2 can occur in the area to the east of the city of Los Angeles and in the rupture zone of the 1857 great Fort Tejon earthquake, respectively. We believe that ring-structure formation, similarly to the other regions, is connected with deep-seated fluid migration.

  12. Deep structure of Pyrenees range (SW Europe) imaged by joint inversion of gravity and teleseismic delay time

    NASA Astrophysics Data System (ADS)

    Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.

    2018-04-01

    We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the European lithosphere.

  13. Crustal Structure of the Yakutat Microplate: Constraints from STEEP Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; van Avendonk, H.; Gulick, S. P.; Worthington, L.; Pavlis, T.

    2008-12-01

    In Fall 2008 we will conduct a seismic program focusing on the Yakutat microplate. As part of this study we plan to acquire two wide-angle profiles: an onshore-offshore northwest-southeast oriented profile extending from the Bering glacier onto the continental shelf and across the Dangerous River Zone, and an offshore northeast-southwest oriented profile extending from the ocean basin across the Transition fault and into Yakutat Bay. The sound source will be the R/V Langseth's tuned 6600 cu. in., 36 air gun array. Ocean bottom seismometers will be positioned at ~15 km spacing, and Texan seismometers at 1-4 km spacing across the Bering Glacier. Coincident deep-penetrating seismic reflection data will be acquired on the marine portion of both profiles using a 8-km, 640-channel solid hydrophone streamer. Existing models for the Yakutat microplate disagree as to whether it is a continental fragment attached to normal oceanic crust or an oceanic plateau, and if the deep structure changes from west to east across the Dangerous River Zone. In the continental fragment model uplift is concentrated along crustal-scale thrust faulting at the ocean crust boundary (Dangerous River Zone?) resulting in focused and rapid erosion. In the oceanic plateau model more distributed, regional uplift is expected which will produce widespread exhumation with net erosion potentially coupled with glacial cycles. Thus distinguishing between these models, which we expect to accomplish with our planned seismic program, is vital for linking tectonics to erosion on both spatial and temporal scales.

  14. Deep structure of the Algerian margin offshore Great Kabylie: Preliminary results of an offshore-onshore seismic profile (SPIRAL campaign)

    NASA Astrophysics Data System (ADS)

    Chafik, Aidi; Abd el Karim, Yelles; Marie-Odile, Beslier; Frauke, Klingelhoefer; Philippe, Schnurle; Rabah, Bracene; Hamou, Djellit; Audrey, Galve; Laure, Schenini; Françoise, Sage; Abdallah, Bounif Mohand ou; Philippe, Charvis

    2013-04-01

    In October-November 2009 the Algerian-French SPIRAL research program (Sismique Profonde et Investigation Régionale du Nord de l'ALgérie) was conducted onboard the R/V Atalante in order to understand the deep structure and tectonic history of the Algerian Margin using multichannel and wide-angle seismic data. An extensive dataset was acquired along five regional transects off Algeria, from Arzew Bay to the west, to Annaba to the east. The profiles range from 80 to 180 km long and around 40 ocean-bottom seismometers were deployed on each profile. All profiles were extended on land up to 125 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. We present the preliminary results from modeling of deep and superficial structures in the central Algerian margin, more precisely in the region of the Great Kabylie where a N-S transect of combined wide-angle data using a set of 40 OBS (ocean bottom seismometer) and 24 on-land seismological stations and reflection seismic data was acquired. The profile with a total length of about 260 km (140 km offshore and approximately 124 km onshore), crosses from the north to south the Algeria-Provence Basin, the central Algerian Margin and onshore the geological unit of the Great Kabylie that represents the Kabylides block and the transitional zone between the internal zone (Kabylides) and the external zone in the central Algeria. The network (OBS and seismological stations), recorded 1031 low frequency air gun shots in order to ensure good penetration in the crust. Travel time tomography of first arrivals time of OBS data has yielded a preliminary model of P wave velocities along the profile. In the oceanic domain, a relatively thin crust of about 5 km thickness was imaged overlying a mantle characterized by seismic velocities of about 8 km/s, and covered by a thin sedimentary layer of about 2 km thickness. For the study of the sedimentary cover near the margin several MCS profiles were acquired in this region during the Spiral survey and previously by the Maradja cruise. This data sets allows to image reactivation of the Algerian Margin in this region.

  15. Coseismic and aseismic deformations of the rock mass around deep level mining in South Africa - Joint South African and Japanese study

    NASA Astrophysics Data System (ADS)

    Milev, A. M.; Yabe, Y.; Naoi, M. M.; Nakatani, M.; Durrheim, R. J.; Ogasawara, H.; Scholz, C. H.

    2010-12-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approx. 40 m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m were analysed. This was the first implementation of high frequency AE events at such a great depth (3300m below the surface). A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase indicated by a rapid change of the tilt during the seismic event. Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as ‘slow’ or aseismic events. During the monitoring period a seismic event with MW 1.9 (2.1) occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to quantify post slip behavior of the source. There was no evidence found for coseismic expansion of the source after the main slip. An attempt to associate the different type of deformations with the various fracture regions and geological structures around the stopes was carried out. A model, was introduced in which the coseismic deformations are associated with the stress regime outside the stope fracture envelope and very often located on existing geological structures, while the aseismic deformations are associated with mobilization of fractures and stress relaxation within the fracture envelope.

  16. Using Receiver Functions to Image the Montana Crust and Upper Mantle

    NASA Astrophysics Data System (ADS)

    Sirianni, R. T.; Russo, R. M.

    2008-12-01

    We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.

  17. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  18. Application of Subspace Detection to the 6 November 2011 M5.6 Prague, Oklahoma Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Benz, H.; Johnson, C. E.; Aster, R. C.; McNamara, D. E.

    2015-12-01

    Subspace detection is a powerful tool for the identification of small seismic events. Subspace detectors improve upon single-event matched filtering techniques by using multiple orthogonal waveform templates whose linear combinations characterize a range of observed signals from previously identified earthquakes. Subspace detectors running on multiple stations can significantly increasing the number of locatable events, lowering the catalog's magnitude of completeness and thus providing extraordinary detail on the kinematics of the aftershock process. The 6 November 2011 M5.6 earthquake near Prague, Oklahoma is the largest earthquake instrumentally recorded in Oklahoma history and the largest earthquake resultant from deep wastewater injection. A M4.8 foreshock on 5 November 2011 and the M5.6 mainshock triggered tens of thousands of detectable aftershocks along a 20 km splay of the Wilzetta Fault Zone known as the Meeker-Prague fault. In response to this unprecedented earthquake, 21 temporary seismic stations were deployed surrounding the seismic activity. We utilized a catalog of 767 previously located aftershocks to construct subspace detectors for the 21 temporary and 10 closest permanent seismic stations. Subspace detection identified more than 500,000 new arrival-time observations, which associated into more than 20,000 locatable earthquakes. The associated earthquakes were relocated using the Bayesloc multiple-event locator, resulting in ~7,000 earthquakes with hypocentral uncertainties of less than 500 m. The relocated seismicity provides unique insight into the spatio-temporal evolution of the aftershock sequence along the Wilzetta Fault Zone and its associated structures. We find that the crystalline basement and overlying sedimentary Arbuckle formation accommodate the majority of aftershocks. While we observe aftershocks along the entire 20 km length of the Meeker-Prague fault, the vast majority of earthquakes were confined to a 9 km wide by 9 km deep surface striking N54°E and dipping 83° to the northwest near the junction of the splay with the main Wilzetta fault structure. Relocated seismicity shows off-fault stress-related interaction to distances of 10 km or more from the mainshock, including clustered seismicity to the northwest and southeast of the mainshock.

  19. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    NASA Astrophysics Data System (ADS)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  20. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight sequence stratigraphic cycles that compose the Eocene to Miocene Oldsmar, Avon Park, and Arcadia Formations. The mapping of these seismic-reflection and well data has produced a refined Cenozoic sequence stratigraphic, seismic stratigraphic, and hydrogeologic framework of southeastern Florida. The upward transition from the Oldsmar Formation to the Avon Park Formation and the Arcadia Formation embodies the evolution from (1) a tropical to subtropical, shallow-marine, carbonate platform, represented by the Oldsmar and Avon Park Formations, to (2) a broad, temperate, mixed carbonate-siliciclastic shallow marine shelf, represented by the lower part of the Arcadia Formation, and to (3) a temperate, distally steepened carbonate ramp represented by the upper part of the Arcadia Formation.In the study area, the depositional sequences and seismic sequences have a direct correlation with hydrogeologic units. The approximate upper boundary of four principal permeable units of the Floridan aquifer system (Upper Floridan aquifer, Avon Park permeable zone, uppermost major permeable zone of the Lower Floridan aquifer, and Boulder Zone) have sequence stratigraphic and seismic-reflection signatures that were identified on cross sections, mapped, or both, and therefore the sequence stratigraphy and seismic stratigraphy were used to guide the development of a refined spatial representation of these hydrogeologic units. In all cases, the permeability of the four permeable units is related to stratiform megaporosity generated by ancient dissolution of carbonate rock associated with subaerial exposure and unconformities at the upper surfaces of carbonate depositional cycles of several hierarchical scales ranging from high-frequency cycles to depositional sequences. Additionally, interparticle porosity also contributes substantially to the stratiform permeability in much of the Upper Floridan aquifer. Information from seismic stratigraphy allowed 3D geomodeling of hydrogeologic units—an approach never before applied to this area. Notably, the 3D geomodeling provided 3D visualizations and geocellular models of the depositional sequences, hydrostratigraphy, and structural features. The geocellular data could be used to update the hydrogeologic structure inherent to groundwater flow simulations that are designed to address the sustainability of the water resources of the Floridan aquifer system.Two kinds of pathways that could enable upward cross-formational flow of injected treated wastewater from the Boulder Zone have been identified in the 80 miles of high-resolution seismic data collected for this study: a near-vertical reverse fault and karst collapse structures. The single reverse fault, inferred to be of tectonic origin, is in extreme northeastern Broward County and has an offset of about 19 feet at the level of the Arcadia Formation. Most of the 17 karst collapse structures identified manifest as columniform, vertically stacked sagging seismic reflections that span early Eocene to Miocene age rocks equivalent to much of the Floridan aquifer system and the lower part of the overlying intermediate confining unit. In some cases, the seismic-sag structures extend upward into strata of Pliocene age. The seismic-sag structures are interpreted to have a semicircular shape in plan view on the basis of comparison to (1) other seismic-sag structures in southeastern Florida mapped with two 2D seismic cross lines or 3D data, (2) comparison to these structures located in other carbonate provinces, and (3) plausible extensional ring faults detected with multi-attribute analysis. The seismic-sag structures in the study area have heights as great as 2,500 vertical feet, though importantly, one spans about 7,800 feet. Both multi-attribute analysis and visual detection of offset of seismic reflections within the seismic-sag structures indicate faults and fractures are associated with many of the structures. Multi-attribute analysis highlighting chimney fluid pathways also indicates that the seismic-sag structures have a high probability for potential vertical cross-formational fluid flow along the faulted and fractured structures. A collapse of the seismic-sag structures within a deep burial setting evokes an origin related to hypogenic karst processes by ascending flow of subsurface fluids. In addition, paleo-epigenic karst related to major regional subaerial unconformities within the Florida Platform generated collapse structures (paleo-sinkholes) that are much smaller in scale than the cross-formational seismic-sag structures.

  1. Data integration and conceptual modelling of the Larderello geothermal area, Italy

    NASA Astrophysics Data System (ADS)

    Manzella, Adele; Gola, Gianluca; Bertini, Giovanni; Bonini, Marco; Botteghi, Serena; Brogi, Andrea; De Franco, Roberto; Dini, Andrea; Donato, Assunta; Gianelli, Giovanni; Liotta, Domenico; Montanari, Domenico; Montegrossi, Giordano; Petracchini, Lorenzo; Ruggieri, Giovanni; Santilano, Alessandro; Scrocca, Davide; Trumpy, Eugenio

    2017-04-01

    The Larderello geothermal field, located in southern Tuscany (Italy), is one of the most important long-living hydrothermal system in the world. The inner zone of the Northern Apennines is characterized by high heat flow, well constrained by several hundred measurements deriving from both shallow boreholes and deep exploration wells. It is widely accepted that the interplay among extensional tectonics, thinning of the previously overthickened crust and lithosphere, and magmatism related to crustal melting and hybridism, controlled the NW-SE trending geothermal anomaly occurring in southern Tuscany. At Larderello, the geothermal exploitation started at the beginning of the last century from the shallow evaporite-carbonate reservoir (about 700 - 1000 m b.g.l. on average) hosting a super-heated steam with temperature ranging from 150°C to 260°C. A deep exploration program was carried out in the early 1980s. Deep boreholes found a super-heated steam-dominated system hosted in the metamorphic basement (about 2500 - 4000 m b.g.l), characterized by temperatures ranging from 300°C to 350°C. In the SW part of the Larderello area (Lago locality), a temperature exceeding 400°C was measured down to 3000 m b.s.l. The 2D and 3D seismic exploration activities provided evidences of a seismic marker, locally showing bright spot features, defining the top of a deeper reflective crustal interval, named as "K-horizon". The K-horizon has not yet been drilled, but some boreholes approached it. This seismic reflector exhibits interesting positive correlation with the maximum peak of the hypocentre distribution of low-magnitude earthquakes and, at the same time, its shape coincides with the thermal anomaly distribution, in plain view. The review and updating of the velocity and resistivity models suggest the existence of over-pressurized fluids, likely of magmatic and/or thermo-metamorphic origin, which originate the seismic velocity anomalies. The upward migration and storage of the fluids can be controlled by: i) structural conduits crossing a multi-layered crust affected by magmatic intrusions; ii) mechanisms controlling the fluid migration in different rheological settings; and iii) self-sealing processes of magmatic hypersaline fluids arising from the brittle/ductile transition. Our study is addressed to the better understanding of the structure of the deepest part of the Larderello geothermal field, by integrating structural, geological, geochemical and geophysical data. Based on downward temperature extrapolation, fluid inclusions and geothermometers analyses, the possible occurrence of super-hot fluids, in supercritical conditions, nearby the K-horizon is envisaged. The final goal is to achieve a comprehensive understanding of the geological structure and the physical conditions (pressure and temperature) of the deep reservoir including also the zone corresponding to the K-horizon, to characterize the supercritical geothermal system as well as the deep crustal processes that work in synergy leading to the regional anomaly.

  2. Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Charvis, Philippe; Collot, Jean-Yves

    2006-12-01

    Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate’s separation from the Nazca Plate along the Sandra Rift.

  3. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  4. Insights into the Lurking Structures and Related Intraplate Earthquakes in the Region of Bay of Bengal Using Gravity and Full Gravity Gradient Tensor

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.; Rao, P. R.

    2017-12-01

    Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.

  5. A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Ackermann, H. D.; Godson, R. H.; Watkins, J. S.

    1975-01-01

    A seismic refraction technique for interpreting the subsurface shape and velocity distribution of an anomalous surface feature such as an impact crater is described. The method requires the existence of a relatively deep refracting horizon and combines data obtained from both standard shallow refraction spreads and distant offset shots by using the deep refractor as a source of initial arrivals. Results obtained from applying the technique to Meteor crater generally agree with the known structure of the crater deduced by other investigators and provide new data on an extensive fractured zone surrounding the crater. The breccia lens is computed to extend roughly 190 m below the crater floor, about 30 m less than the value deduced from early drilling data. Rocks around the crater are fractured as distant as 900 m from the rim crest and to a depth of at least 800 m beneath the crater floor.

  6. Early evolution of salt structures in north Louisiana salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt andmore » intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.« less

  7. Retroarc extension in the last 6 Ma in the South-Central Andes (36°S-40°S) evaluated through a 3-D gravity modelling

    NASA Astrophysics Data System (ADS)

    Folguera, A.; Alasonati Tašárová, Z.; Götze, H.-J.; Rojas Vera, E.; Giménez, M.; Ramos, V. A.

    2012-12-01

    The Andean retroarc between 35° and 40°S is the locus of debate regarding its Pliocene to Quaternary tectonic setting. Retroarc volcanic eruptions since 6 Ma to the Present are, based on some hypotheses, associated with widespread extension. In these works, geological data point to the existence of normal faults affecting previous (Late Cretaceous to Miocene) contractional structures. In order to evaluate such interpretations we have collected data from various geological and geophysical studies and scales. Based on these data, an existing large-scale 3-D gravity model could be improved and used to investigate the lithospheric structure of this region. Moreover, using the gravity model, an attenuated crust could be localized and quantified throughout the retroarc area. Deep seismic data available from this region are limited to the forearc - arc area, while in general the retroarc zone lacks deep seismic constraints. The only deep seismic profile extending to the retroarc is a receiver function profile at 39°S, showing crustal attenuation. This observation correlates with the extensional activity recognized at the surface. When analysing the gravity field, positive residual anomalies are observed. They correlate with crustal attenuation at the areas of extension. Also, computed elastic thickness in the retroarc shows good correlation between the areas of crustal stretching and low flexural rigidity, explained by thermal processes. The present extensional deformation reflected in positive residual gravity anomalies points to the influence of reactivated Triassic rifting inherited from early phases of Pangea break-up. Finally, the present local uplift and consequent fluvial incision at the retroarc zone are explained by crustal stretching and not by crustal shortening, the common mechanism in Andean orogenesis.

  8. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.

  9. Contrasts in Lower Crustal Structure and Evolution Between the Northern and Southern Rocky Mountains From Xenoliths and Seismic Data

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J. C.

    2016-12-01

    We compare and contrast crustal structure and composition along a transect from the Southern to Northern Rocky Mountains, with a focus on the lower crust. Evolution of the crust can include processes of emplacement, differentiation, and thermal changes that may generate lower crust with high seismic wavespeeds. The high seismic velocities can be due to mafic composition, the presence of garnet, or both. We seek to find seismic signatures preserved from such processes and compare xenolith samples and present-day seismic appearance between regions with varying tectonic histories. We review recent seismic results from the EarthScope Transportable Array from receiver functions and surface waves, compilations of active source studies, and xenolith studies to compare lower crustal structure along transects through the Northern and Southern Rocky Mountains traversing Montana, Wyoming, Colorado, Utah, and New Mexico. Xenoliths from an unusually thick lower crustal layer with high seismic velocities in Montana record magmatic emplacement processes dating back to the Archean. The lower crustal layer possesses internal velocity contrasts that lead to conflicting interpretations of Moho depth depending on the method used, with xenoliths and a refraction study placing the Moho at 55 km depth, while studies using surface waves and receiver functions identify the largest contrast at 40-45 km depth as the Moho. An additional confounding factor is the presence of metasomatized uppermost mantle with low seismic velocities, which may further diminish the seismic signature of the petrological Moho. To the south, the high-velocity layer diminishes, and seismic velocities in the deep crust under southern Wyoming, Colorado, and New Mexico are lower. In the literature, north-south gradients in lower crustal velocity in this area and observed differences in garnet content have variously been ascribed to thermal dehydration of Archean-age hydrous crust or Laramide-age hydration of previously garnet-rich crust.

  10. Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Takahashi, Tsutomu; Kaiho, Yuka; Obana, Koichiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2017-03-01

    We conduct seismic tomography to model subsurface seismicity between 2010 and 2012 and structural heterogeneity off the Kii Peninsula, southwestern Japan, and to investigate their relationships with segmentation of the Nankai and Tonankai seismogenic zones of the Nankai Trough. In order to constrain both the shallow and deep structure of the offshore seismogenic segments, we use both active- and passive-source data recorded by both ocean-bottom seismometers and land seismic stations. The relocated microearthquakes indicate a lack of seismic activity in the Tonankai seismogenic segment off Kumano, whereas there was active intraslab seismicity in the Kii Channel area of the Nankai seismogenic segment. Based on comparisons among the distribution of seismicity, age, and spreading rate of the subducting Philippine Sea plate, and the slip-deficit distribution, we conclude that seismicity in the subducting slab under the Kii Channel region nucleated from structures in the Philippine Sea slab that pre-date subduction and that fluids released by dehydration are related to decreased interplate coupling of these intraslab earthquakes. Our velocity model clearly shows the areal extent of two key structures reported in previous 2-D active-source surveys: a high-velocity zone beneath Cape Shionomisaki and a subducted seamount off Cape Muroto, both of which are roughly circular and of 15-20 km radius. The epicenters of the 1944 Tonankai and 1946 Nankai earthquakes are near the edge of the high-velocity body beneath Cape Shionomisaki, suggesting that this anomalous structure is related to the nucleation of these two earthquakes. We identify several other high- and low-velocity zones immediately above the plate boundary in the Tonankai and Nankai seismogenic segments. In comparison with the slip-deficit model, some of the low-velocity zones appear to correspond to an area of strong coupling. Our observations suggest that, unlike the Japan Trench subduction zone, in our study area there is not a simple correspondence between areas of large coseismic slip or strong interplate coupling and areas of high velocity in the overriding plate.

  11. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey

    NASA Astrophysics Data System (ADS)

    Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre

    2018-03-01

    In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  12. Marine forearc tectonics in the unbroken segment of the Northern Chile seismic gap

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Behrmann, J.; Ranero, C. R.; Klaucke, I.; Kopp, H.; Lange, D.; Barckhausen, U.; Reichert, C. J.; Diaz-Naveas, J.

    2016-12-01

    While clearly occurring within the well-defined Northern Chile seismic gap, the 2014 Mw. 8.1 Iquique Earthquake only ruptured part of this gap, leaving large and possibly highly coupled areas untouched. These non-ruptured areas now may pose an elevated seismic hazard due to the transfer of stresses resulting from the 2014 rupture. Here we use recently collected multibeam bathymetric data, covering 90% of the North Chilean marine forearc, in combination with unpublished seismic reflection images to derive a tectonic map of the marine forearc in the unbroken segment of the seismic gap. In the entire study area we find evidence for widespread normal faulting. Seaward dipping normal faults locally extend close to the deformation front at the deep-sea trench under 8 km of water. Similar normal faults on the lower slope are neither observed further north (2014 Iquique earthquake area) nor further south (2007 Tocopilla earthquake area). On the upper continental slope, some of the normal faults dip towards the continent, defining N-S trending ridges that can be traced over tens of kilometers. The spatial variations in normal faulting do not correlate with obvious changes in the structural and tectonic setting of the subduction zone (e.g. plate convergence rate and direction, trench sediment thickness, subducting plate roughness). Thus, the permanent deformation recorded in the spatial distribution of faults may hold crucial information about the long-term seismic behavior of the Northern Chile seismic gap over multiple earthquake cycles. Although the structural interpretations cannot directly be translated into seismic hazard, the tectonic map serves to better understand deformation in the marine forearc in relation to the seismic cycle, historic seismicity, and the spatial distribution of plate-coupling.

  13. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  14. Active Structures in the Georgia Basin, NW Washington State, USA, and SW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Polivka, P.; Riedel, M.; Pratt, T. L.

    2013-12-01

    The Georgia basin is a local depression in the Cascadia forearc straddling the USA-Canadian border that hosts Canada's largest west coast population. The basin contains late Pleistocene and Holocene sediments overlying a thick sequence of Eocene and Cretaceous sedimentary rocks and is currently experiencing N-S shortening. Tectonic structures capable of accommodating this N-S shortening are recognized in Oregon and Washington; however, none have been identified in southwest Canada despite multiple independent geodetic studies indicating that shortening continues further north. This conflict of observed shortening over a region without recognized active structures suggests that seismic hazard may be underestimated in Canada. We combine multiple seismic reflection surveys and multibeam bathymetry with published geophysical data and on-shore mapping to identify active structures and assess seismic hazard. Reflection datasets span the USA-CA border and include those from the deep 1998 Seismic Hazards Investigations of Puget Sound (SHIPS), high resolution 2002 SHIPS, localized sparker, and deep industry lines. These data are augmented by digitized paper records of past reflection surveys. The 1998 SHIPS and industry lines show strong reflections of folded and faulted Cretaceous and Eocene sedimentary bedrock to 5 km depth. Shallow sediment deformation is imaged on the 2002 SHIPS and sparker lines. Combining these profiles, bathymetry, and surficial bedrock mapping in a 3-D interpretation program facilitated the correlation of features across multiple 2-D seismic lines, allowing us to interpret four new regional stratigraphic and tectonic characteristics. (1) The 1997 ML4.6 Gabriola Island earthquake was a north-side up thrust event occurring 30 km west of Vancouver at ~3.5 km depth. The event was previously correlated with a zone of low coherence on the SHIPS 1998 line. We reprocessed the line and imaged distinct reflector terminations. A generally E-W strike is interpreted from regional bedrock fault trends and shallow sediment deformation imaged on the 2002 SHIPS lines. (2) Kelsey et al. (2012, JGR) identified three subparallel NW-striking faults in NW Washington. We use the industry lines to constrain the subsurface geometries of these faults to >4 km depth. (3) Interpreting on-shore mapping, bathymetric bedrock ridges, and intersecting deep seismic profiles, we conclude that the E-K boundary is an angular unconformity across and along the length of the basin. (4) We correlate kinks in bathymetric bedrock ridges with bedrock folds on the intersecting SHIPS 1998 profile to re-interpret previously identified NE-trending 'secondary faults' as blind and broken-through fault-propagation folds. These faults are orthogonal to the subduction margin and collectively deemed the Vancouver Fold and Thrust Belt. The Gabriola Island earthquake indicates that the fault system is active, and likely accommodates at least part of the strain measured on GPS networks but not accounted for in previous tectonic models.

  15. Investigating the ocean generated acoustic/seismic wavefields in NE Atlantic

    NASA Astrophysics Data System (ADS)

    Le Pape, F.; Bean, C. J.; Craig, D.; Jousset, P.; Donne, S. E.; Möllhoff, M.

    2017-12-01

    In this study, we look at the comparison of 3D simulations of acoustic and seismic waves propagation with OBS data recorded across the shelf offshore Ireland and out into the Rockall Trough. Real and synthetic observations are combined to characterize both acoustic and seismic wavefields in the marine environment and particularly study secondary microseisms propagation from deep to shallow water to the land. Whereas the recorded OBS data show a strong change in the energy of "noise events" in the primary microseism band from the shelf to the land, the secondary microseism band is associated with stronger signal in the deep water compared to the shelf area. Furthermore, the data also highlight seasonal variations in the seismic and acoustic wavefields likely related to changes in noise source locations. The 3D simulations of acoustic and seismic waves propagation in the Rockall Trough look promising to reconcile deep ocean, shelf and land seismic observations as well as the effect of the water column and sediments thickness on "seismic ambient noise" generation and propagation. For instance, the simulations reveal interesting results on the acoustic/seismic coupling and its implication on the secondary microseisms source origin. This project is part of the Irish Centre for Research in Applied Geoscience (ICRAG), funded under the SFI Research Centres Programme and is co-funded under the European Regional Development Fund.

  16. Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.

    2007-05-01

    Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations from previous seismic lines that suggest that the peninsula is a tectonic block not completely transferred to the Pacific plate. In agreement with the seismic facies and the correlations with the available stratigraphic columns of Deep Sea Drilling Program 471 and 474, we generally identify at least three seismostratigraphic units over the acoustic basement. The lower unit reflectors dip towards the palaeo-trench. We identified a Bottom Simulating Reflector (BSR) probably associated to the presence of gas hydrates, which extends at least 200 km along three seismic lines.

  17. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  18. Imaging a Hydrate-Related Cold Vent Offshore Vancouver Island From Deep-Towed Multichannel Seismic Data

    DTIC Science & Technology

    2009-02-20

    vent). 2500 2600 2700 Distance (m) 2800 2900 3000 1.791 Figure 11. Southeast-northwest seismic section, showing hydrate cap details from DTI 6. The...line DT16 Line DTI 6 continues as a long transit line extending to the north- west. The 1999 COAMS (Canadian Ocean Acoustic Measurement System) grid...inline IN26 is coincident with DTI 6 (Figure 1). A com- bination of the surface-towed seismic data and the deep-towed DTAGS data is needed to provide

  19. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Hutchinson, D. R.

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian-American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100m deep, and the base of the cores is only 670ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past 2-3Ma.

  20. Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada

    NASA Astrophysics Data System (ADS)

    Malehmir, R.; Schmitt, D. R.; Chan, J.

    2014-12-01

    Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic

  1. Seismic interferometry of the Bighorn Mountains: Using virtual source gathers to increase fold in sparse-source, dense-receiver data

    NASA Astrophysics Data System (ADS)

    Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.

    2016-12-01

    The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.

  2. USArray Imaging of North American Continental Crust

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei

    The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.

  3. The role of thermal effect on mantle seismic anomalies from observations of GIA

    NASA Astrophysics Data System (ADS)

    Wu, P.; Wang, H. S.; Steffen, H.

    2012-04-01

    Recent advance in seismic tomography reveals the structure inside the mantle. An outstanding issue is the role of thermal versus non-thermal (e.g. compositional, partial melting) contribution to seismic velocity anomalies. Here we use observations of Glacial Isostatic Adjustment (GIA), e.g. global relative sea level data, GRACE observations (with recent hydrology contributions removed) and GPS crustal uplift rates in combination with 3D GIA models to address this issue. Both ICE-4G and ICE-5G models are tested, but ICE-4G gives much better overall fit to these observations. Also, several 1-D background viscosity profiles, with different viscosity contrast at 670 km depth have also been tested and the one that gives consistent results is model RF3 which has a moderate viscosity increase across 670 km. Lateral mantle viscosity variation is inferred from Ekstrom & Dziewonski's S20A seismic tomography model using a scaling law that includes both the effect of anharmonicity and anelasticity. Thermal contribution to seismic tomography appears as the beta factor in the scaling law. The values of beta in the upper mantle, shallow part of the lower mantle and the deep part of the lower mantle are allowed to be different and the solution space of the beta values is searched to find the best combination that gives the best fit to the GIA observations simultaneously. The result of our best model (RF3 with lateral heterogeneity) shows that thermal effect increases from about 65% in the upper mantle to 80% in the shallow part of the lower mantle and to about 100% in the deep lower mantle above the D" layer. This is consistent with temperature excess in the lower mantle from high core heating. However, the uncertainty increases from < 1% in the upper mantle to 20% in the shallow lower mantle and is not very well constrained in the deep lower mantle.

  4. Asymmetric Grenada Basin and its Relation with Aves Ridge and Lesser Antilles Arc : Preliminary Results from Cruise GARANTI

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Lebrun, J. F.

    2017-12-01

    The Grenada Basin is a crescent-shape basin in a back-arc position relative to the Lesser Antilles arc. About 140 km wide, 3000 m deep and with a flat topography in its southern part, the basin shallows, narrows and becomes rougher northward. Its structural and genetic relations with the N-S-trending, ca.1000 m deep, Aves Ridge to the west, previously interpreted as the ante-Eocene remnant arc and the Lesser Antilles modern volcanic arc are debated. The GARANTI deep-seismic survey across the Grenada Basin (May-June 2017 French R/V L'Atalante), acquired two transverse (E-W) and one longitudinal (N-S), ca. 300 km long, wide-angle seismic lines shot using a 6473 in3 seismic source array, and recorded by 40 ocean bottom seismometers together with ca. 3500 km of 720-traces seismic reflection lines. This data set revealed a clear asymmetry along both N-S and E-W directions. To the North and to the West, the crust beneath the basin is rather thick and non-oceanic, whereas it is probably oceanic to the southeast. We pay special attention to structural relations between the basin itself and the Aves Ridge in one hand and the Antilles Arc in the other hand. The basin is filled by up to 7km of flat-lying sediments, thickening eastward and showing no apparent deformation. The Lesser Antilles arc margin is abrupt and does not appear to be the conjugate of the Aves Ridge margin. Fourteen dredges were collected, half of them were taken along the east flank of the Aves Ridge facing the deep Grenada basin. Evidences of past Cenozoic emersion of the Aves Ridge were found from drowned reef seamounts lying down to 1100 m bsl. Further analyses should better portrait the tectonic evolution of the Lesser Antilles back-arc area. GARANTI Scientific Team : A. Agranier, D. Arcay, F. Audemard, M.-A. Bassetti, M.-O. Beslier, M. Boucard, J.-J. Cornée, M. Fabre, A. Gay, D. Graindorge, A. Heuret, F. Klingelhoefer, M. Laigle, J.-L. Léticée, D. Malengros, B. Marcaillou, B. Mercier de Lépinay, P. Moréna, P. Münch, E. Oliot, D. Oregioni, C. Padron, M. Philippon, F. Quillévéré, G. Ratzov, L. Schenini, B. Yates, F. Zami

  5. Structure of the Espanola Basin, Rio Grande Rift, New Mexico, from SAGE seismic and gravity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.F.; Baldridge, W.S.; Braile, L.W.

    1995-04-01

    Seismic and gravity data, acquired by the SAGE program over the past twelve years, are used to define the geometry of the Espanola basin and the extent of pre-Tertiary sedimentary rocks. The Paleozoic and Mesozoic units have been thinned and removed during Laramide uplift in an area now obscured by the younger rift basin. The Espanola basin is generally a shallow, asymmetric transitional structure between deeper, better developed basins to the northeast and southwest. The gravity data indicate the presence of three narrow, but deep, structural lows arrayed along the Embudo/Pajarito fault system. These sub-basins seem to be younger thanmore » the faults on the basin margins. This apparent focussing of deformation in the later history of the basin may be a response to changes in regional stress or more local accommodation of the rift extension. Future work is planned to develop seismic data over one of these sub-basins, the Velarde graben, and to better define the gravity map in order to facilitate three-dimensional modeling.« less

  6. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    NASA Astrophysics Data System (ADS)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  7. High-Resolution 3D P-Wave Velocity Model in the Trans-European Suture Zone in Poland

    NASA Astrophysics Data System (ADS)

    Polkowski, M.; Grad, M.; Ostaficzuk, S.

    2014-12-01

    Poland is located on conjunction of major European tectonic units - the Precambrian East European Craton and the Paleozoic Platform of Central and Western Europe. This conjunction is known as Trans-European Suture Zone (TESZ). Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and other methods: vertical seismic profiling, magnetic, gravity, magnetotelluric, thermal. Compilation of these studies allows creation of detailed, high-resolution 3D P-wave velocity model for entire Earth's crust in the area of Poland. Model provides detailed six layer sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated / crystalline crust and uppermost mantle. Continental suturing is a fundamental part of the plate tectonic cycle, and knowing its detailed structure allows understanding plate tectonic cycle. We present a set of crustal cross sections through the TESZ, illustrating differentiation in the structure between Precambrian and Wariscan Europe. National Science Centre Poland provided financial support for this work by NCN grant DEC- 2011/02/A/ST10/00284.

  8. South-Central Tibetan Seismicity from HiCLIMB Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Carpenter, S.; Nabelek, J.; Braunmiller, J.

    2010-12-01

    The HiCLIMB broadband passive seismic experiment (2002-2005) operated 233 sites along a 800-km long north-south array extending from the Himalayan foreland into the Central Tibetan Plateau and a flanking 350x350 km lateral array in southern Tibet and eastern Nepal. We use data from the experiment’s second phase (June 2004 to August 2005), when stations operated in Tibet, to locate earthquakes in south-central Tibet, a region with no permanent seismic network where little is known about its seismicity. We used the Antelope software for automatic detection and arrival time picking, event-arrival association and event location. Requiring a low detection and event association threshold initially resulted in ~110,000 declared events. The large database size rendered manual inspection unfeasible and we developed automated post-processing modules to weed out spurious detections and erroneous phase and event associations, which stemmed, e.g., from multiple coincident earthquakes within the array or misplaced seismicity from the great 2004 Sumatra earthquake. The resulting database contains ~32,000 events within 5° distance from the closest station. We consider ~7,600 events defined by more than 30 P and S arrivals well located and discuss them here. Seismicity in the subset correlates well with mapped faults and structures seen on satellite imagery attesting to high location quality. This is confirmed by non-systematic, kilometer-scale differences between automatic and manual locations for selected events. Seismicity in south-central Tibet is intense north of the Yarlung-Tsangpo Suture. Almost 90% of events occurred in the Lhasa Terrane mainly along north-south trending rifts. Vigorous activity (>4,800 events) accompanied two M>6 earthquakes in the Payang Basin (84°E), ~100 km west of the linear array. The Tangra-Yum Co (86.5°E) and Pumqu-Xianza (88°E) rifts were very active (~1,000 events) without dominant main shocks indicating swarm like-behavior possibly related to shallow magmatic or geothermal activity. Seismicity in the Qiangtang Terrane accounts for less than 10% of activity; seismicity is distributed and, except for the Yibuk-Caka Rift (87°E), difficult to associate with known structures. Lower seismicity may be apparent and simply reflect a larger distance to the array. Fewer than 5% of events occurred south of the Yarlong Tsangpo Suture in the Tethyan Himalaya, the only region where in addition to shallow seismicity a significant number of deep (mantle) events was located. Hypocenter depth, particularly for shallow events, is usually not well constrained due to array geometry and large distances to closest sites. The nature of deep events inside the array, though, is resolved.

  9. Ring-Shaped Seismicity Structures in the Areas of Sarez and Nurek Water Reservoirs (Tajikistan): Lithosphere Adaptation to Additional Loading

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Seismicity characteristics in the areas of Sarez Lake and the Nurek water reservoir are studied. Ring-shaped seismicity structures in two depth ranges (0-33 and 34-70 km) formed prior to the Pamir earthquake of December 7, 2015 ( M w = 7.2). Seismicity rings cross each other near the Usoi Dam, which formed after the strong earthquake in 1911 and led to the formation of Sarez Lake, and near the epicenter of the Pamir earthquake. In addition, three out of the four strongest events ( M ≥ 6.0) recorded in the Pamir region at depths of more than 70 km since 1950 have occurred near Sarez Lake. An aggregate of the data allows us to conclude that the Pamir earthquake, despite its very large energy, refers to events related to induced seismicity. Ring-shaped seismicity structures in two depth ranges also formed in the Nurek water reservoir area. It is supposed that the formation of ring-shaped structures is related to the self-organization processes of a geological system, which result in the ascent of deep-seated fluids. In this respect, the lithosphere is gradually adapting to the additional load related to the filling of the water reservoir. The difference between Nurek Dam (and many other hydroelectric power stations as well) and Usoi Dam is the permanent vibration in the former case due to water falling from a height of more than 200 m. Such an effect can lead to gradual stress dissipation, resulting in the occurrence of much weaker events when compared to the Pamir earthquake of December 7, 2015, in the areas of artificial water reservoirs.

  10. The Crustal Structure of the North-South Earthquake Belt in China Revealed from Deep Seismic Soundings and Gravity Data

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua

    2018-01-01

    The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.

  11. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  12. Crustal structure of Central Sicily

    NASA Astrophysics Data System (ADS)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  13. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  14. Expression of Lithospheric Shear Zones in Rock Elasticity Tensors and in Anisotropic Receiver Functions and Inferences on the Roots of Faults and Lower Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.

    2016-12-01

    We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes parallel to exhumed and highly localized structures such as the Idaho Springs-Ralston and Black Canyon shear zones. In either case, denser seismic studies should elucidate the width of the deep seismic expression of the shear zones.

  15. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  16. From rifting to spreading - seismic structure of the rifted western Mariana extinct arc and the ParceVela back-arc basin

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Kodaira, Shuichi; Fujie, Gou; Takahashi, Narumi

    2017-04-01

    The proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc was created when subduction of the Pacific plate began during the Eocene. Today, the Kyushu-Palau Ridge (KPR) at the centre of the Philippine Sea and the western Mariana Ridge (WMR) are considered to be a remnant of the proto IBM Island arc. The KPR and WMR were separated when back-arc spreading began at 30 to 29 Ma in the Shikoku Basin and ParceVela Basin (PVB). Volcanic activity along the arcs diminished at 27 Ma and there is little evidence of volcanic activity between 23-17 Ma. Arc volcanism was reactivated at 15 Ma, when the opening of the Shikoku Basin and PVB ceased. At about 5 Ma the Mariana Basin opened, rifting the WMR from the Mariana arc. Here, we report results from the seismic refraction and wide-angle profile MR101c shot in summer of 2003 by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) aboard the RV KAIYO during the cruise KY03-06, extending from the PVB across the WMR and terminating just to the east of the WMR. Along MR101c 46 OBS recorded shots from an airgun array of 12,000 cubic inches (197 litres); 44 OBS provided excellent P-wave data, including arrivals sampling the crust (Pg), the crust/mantle boundary (PmP), the uppermost mantle (Pn) and a deep reflection (PnP) under the WMR. To yield the seismic velocity structure, we used a joint reflection and refraction tomography, revealing the crustal and mantle P-wave velocity structure, the seismic Moho, and a deep-seated reflector. Distinct features are a 14 km thick crust forming the WMR, a high-velocity lower crust in both transition zones to the ParceVela Basin and Mariana Basin, and a reflector at 24 km depth, which shallows to 18 km in the transition zone to the Mariana Basin, perhaps reflecting rifting-related thinning of the entire lithosphere. The deep-reflector, however, did not occur under the PVB. Upper mantle velocity below the WMR is <7.5 km/s. High velocities of the lower crust of the WMR flanking the adjacent basins mimic the structure found in the Lau Basin - Tonga Arc system, perhaps indicating entrainment of hydrous melts from the adjacent arc governing early seafloor spreading when the spreading centre was at close distant to the volcanic arc. Upper mantle below the PVB shows typical mantle properties, supporting a P-wave velocity of >8 km/s. However, with respect to oceanic crust sampled in the Pacific Basin, PVB crust is with 5 km thinner and seismic velocities in the lower crust are with 6.7 km/s much lower.

  17. Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center

    NASA Astrophysics Data System (ADS)

    Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke

    2017-06-01

    We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.

  18. Characterizing the Inner Accretionary Prism of the Nankai Trough with 3D Seismic and Logging While Drilling at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.

  19. Bathymetry, Chirp and Deep Crustal Structure of the Santos Basin SÃO Paulo Ridge Complex (sbspr)

    NASA Astrophysics Data System (ADS)

    Aslanian, D.; Klingelhoefer, F.; Moulin, M.; Schnurle, P.; Rabineau, M.; Afilhado, A.; Roest, W. R.; Feld, A.; Evain, M.; Rochat, A.; Rousic, D.; Rigoti, C. A.; Capechi, E.; Bochenek, G.; Viana, A. R.; Magnavita, L. P.; Szatmari, P.; Neto, M.; Soares, J. P.; Fuck, R. A.; Paula Ribas, M.; De Lima, M.; Corela, C.; Duarte, J.; Matias, L. M.; OBS Team of Sanba Cruise

    2011-12-01

    The SanBa (Santos Basin- Seismic Research experiment) research experiment is a joint project of the Department of Marine Geosciences (IFREMER: Institut Français de Recherche pour l'Exploitation de la MER, France), the Laboratory of "Oceanic Domain" (Institut Universitaire et Européen de la Mer, France), the Faculdade de Ciências da Universidade de Lisboa (Lattex and CGUL, Portugal), the Universidade de Brasilia (Brazil) and PETROBRAS. Its aim is to test hypotheses that have been proposed such as the existence of failed rift and a micro-block (Moulin et al., GSL submitted) or the presence of exhumed mantle on its south-eastern part (Zalan et al., AAPG 2009). Six wide-angle seismic data were acquired together with coincident deep frequency reflection seismic data during the SanBa cruise in Dec 2010 - Jan. 2011 (total > 850 Nm). Chirp and Bathymetry were also acquired during the cruise. The preliminary results suggest a very thin crust (< 5km) in the center and in the south-eastern part of the SBSPR. Both refraction and reflection data present a clear signal of the Moho in the distalmost part of the study area, which seems to preclude the exhumed mantle hypothesis."

  20. Seismic tomography as a tool for measuring stress in mines

    USGS Publications Warehouse

    Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.

    1999-01-01

    Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are working in a safer environment.

  1. Seismic velocity structure of the incoming Pacific Plate subducting into the central part of the Japan Trench revealed by traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.

    2016-12-01

    Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.

  2. A new approach for solving seismic tomography problems and assessing the uncertainty through the use of graph theory and direct methods

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Davis, T. A.

    2016-12-01

    Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.

  3. Wave propagation modelling of induced earthquakes at the Groningen gas production site

    NASA Astrophysics Data System (ADS)

    Paap, Bob; Kraaijpoel, Dirk; Bakker, Marcel; Gharti, Hom Nath

    2018-06-01

    Gas extraction from the Groningen natural gas field, situated in the Netherlands, frequently induces earthquakes in the reservoir that cause damage to buildings and pose a safety hazard and a nuisance to the local population. Due to the dependence of the national heating infrastructure on Groningen gas, the short-term mitigation measures are mostly limited to a combination of spatiotemporal redistribution of gas production and strengthening measures for buildings. All options become more effective with a better understanding of both source processes and seismic wave propagation. Detailed wave propagation simulations improve both the inference of source processes from observed ground motions and the forecast of ground motions as input for hazard studies and seismic network design. The velocity structure at the Groningen site is relatively complex, including both deep high-velocity and shallow low-velocity deposits showing significant thickness variations over relatively small spatial extents. We performed a detailed three-dimensional wave propagation modelling study for an induced earthquake in the Groningen natural gas field using the spectral-element method. We considered an earthquake that nucleated along a normal fault with local magnitude of {{{M}}_{{L}}} = 3. We created a dense mesh with element size varying from 12 to 96 m, and used a source frequency of 7 Hz, such that frequencies generated during the simulation were accurately sampled up to 10 Hz. The velocity/density model is constructed using a three-dimensional geological model of the area, including both deep high-velocity salt deposits overlying the source region and shallow low-velocity sediments present in a deep but narrow tunnel valley. The results show that the three-dimensional density/velocity model in the Groningen area clearly play a large role in the wave propagation and resulting surface ground motions. The 3d structure results in significant lateral variations in site response. The high-velocity salt deposits have a dispersive effect on the radiated wavefield, reducing the seismic energy reaching the surface near the epicentre. In turn, the presence of low-velocity tunnel valley deposits can locally cause a significant increase in peak ground acceleration. Here we study induced seismicity on a local scale and use SPECFEM3D to conduct full waveform simulations and show how local velocity variations can affect seismic records.

  4. Seismicity and velocity structures along the south-Alpine thrust front of the Venetian Alps (NE-Italy)

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Govoni, A.; De Gori, P.; Chiarabba, C.

    2011-12-01

    In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a "silent" area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.

  5. Seismic Reflection Transect across the Central Iberian Zone (Iberian Massif): The ALCUDIA project

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Simancas, F.; Martinez-Poyatos, D.; Ayarza, P.; Gonzalez, P.; Tejero, R.; Martín-Parra, L.; Matas, J.; Gonzalez-Lodeiro, F.; Pérez-Estaún, A.; García-Lobon, J.; Mansilla, L.; Palomeras, I.

    2007-12-01

    The lithosphere of the Central Iberian Zone (CIZ) differs from that of the southwestern Iberian Massif. They are limited by a suture zone. The seismic reflection profile IBERSEIS suggested that the activity of a Carboniferous mantle plume resulted in abundant intrusions of mafic magmas in the mid-to-lower crust which resulted in a singular crustal evolution. The current knowledge of the area based mostly in surface geological mapping suggests that basic magmatism continues further towards the north, indicating that the mantle plume may have affected a bigger area up to the Tajo depression. Furthermore, the existence of the Almadén mine, one of the largest mercury mine in the world within the CIZ, favour that the crust in this area is the result of anomalous lithospheric processes. Accordingly, the ALCUDIA project has been lauched aiming to study the structure and nature of the lithosphere of the CIZ. It includes the acquisition of a deep high resolution seismic reflection transect, detailed geological mapping, kinematic, petrologic and geochemical studies, and other geophysical studies (potential field methods). This new profile extends the previous IBERSEIS Transect towards the northeast, completing almost 600 km of deep seismic profiles, crossing the southern half of the Iberian Variscides. The transect crosses some important structures, such as the Toledo fault, Santa Elena Fault, Alcudia anticline, Almadén syncline, and some major magnetic anomalies. The preliminary results reveal that the crust is 30 km thick in average, with a horizontal Moho, a highly reflective mid-to-lower crust with a few mantle reflectors and well defined features in the upper crust with the indication of detachments zones that might link to the mid- crustal reflective zone.

  6. Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India

    USGS Publications Warehouse

    Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.

    2006-01-01

    Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.

  7. The lithosphere architecture and geodynamic of the Middle and Lower Yangtze metallogenic belt in eastern China: constraints from integrated geophysical data

    NASA Astrophysics Data System (ADS)

    Lü, Qingtian; Shi, Danian; Jiang, Guoming; Dong, Shuwen

    2014-05-01

    The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe has conducted an integrated deep exploration across middle and lower reaches of Yangtze Metallogenic Belt (YMB) in Eastern China, these included broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, geodynamic, deformation and heat and mass transportation that lead to the formation of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism; (6) The lower crust below Luzong Volcanics shows obvious reflective anisotropy both at the crust-mantle transition and the brittle-ductile transition in the crust. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of this Mesozoic metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418

  8. Long Term Seismic Observation in Mariana by OBSs : Double Seismic Zone and Upper Mantle Structure

    NASA Astrophysics Data System (ADS)

    Shiobara, H.; Sugioka, H.; Mochizuki, K.; Oki, S.; Kanazawa, T.; Fukao, Y.; Suyehiro, K.

    2005-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) had been performed from June 2003 until April 2004, which is a part of the MARGINS program funded by the NSF. Prior to this observation, a pilot long-term seismic array observation was conducted in the same area by using 10 LTOBSs from Oct. 2001 until Feb. 2003. At that time, 8 LTOBSs were recovered but one had no data. Recently, 2 LTOBSs, had troubles in the releasing, were recovered by the manned submersible (Shinkai 6500, Jamstec) for the research of the malfunction in July 2005. By using all 9 LTOBS's data, those are about 11 months long, hypocenter determination was performed and more than 3000 local events were found. Even with the 1D velocity structure based on the iasp91 model, double seismic zones and a systematic shift of epicenters between the PDE and this study were observed. To investigate the detail of hypocenter distribution and the 3D velocity structure, the DD inversion (tomoDD: Zhang and Thurber, 2003) was applied for this data set with the 1D structure initial model except for the crust, which has been surveyed by using a dense airgun-OBS system (Takahashi et al., 2003). The result of relocated hypocenters shows clear double seismic zones until about 200 km depth, a high activity area around the fore-arc serpentine sea-mount, the Big Blue, and a lined focuses along the current ridge axis in the back-arc basin, and the result of the tomography shows a image of subducting slab and a low-Vs region below the same sea-mount mentioned. The wedge mantle structure was not clearly resolved due to the inadequate source-receiver coverage, which will be done in the recent experiment.

  9. Terrane accumulation and collapse in central Europe: seismic and rheological constraints

    NASA Astrophysics Data System (ADS)

    Meissner, R.

    1999-05-01

    An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.

  10. Numerical investigation of the triggering mechanisms of the Piz Dora sackung system (Val Mustair, Switzerland)

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Crosta, Giovanni B.; Zanchi, Andrea

    2015-04-01

    Deep-Seated Gravitational Slope Deformations (DSGSD) are widespread phenomena in alpine environments, where they affect entire high-relief valley flanks involving huge rock volumes. Slope scale inherited structures related to ductile and brittle tectonic deformation can control the onset and development of DSGSD and the localization of strain in deep gravitational shear zones. Slope unloading, rock mass damage and hydrological perturbations related to deglaciation are considered important triggers of these phenomena in formerly glaciated areas. Furthermore, earthquake shaking and the long-term effects of seismicity in active tectonic areas might provide an additional triggering component. Nevertheless, the role played by these different processes and their interplay is not obvious, especially in geological context less typically favourable to DSGSD and in low-magnitude seismicity settings as the axial European Alps. We analysed the Piz Dora sackung system (Val Mustair, Switzerland), which affects conglomerates, meta-conglomerates and phyllites of the Austroalpine S-Charl nappe, involved in a slope-scale, WNW trending closed anticline fold. The area is actively uplifting, seismically active (maximum Mw>5) and experienced extensive glaciation during the LGM. The slope is affected by sharp gravitational morphostructures associated to the deep-seated sliding of 1.85 km3 of rock along a basal shear zone up to 300 m deep (Agliardi et al., 2014; Barbarano et al., 2015). We investigated the controlling role of inherited tectonic features and the relative influence of different candidate triggering processes (post-glacial debuttressing, related changes in slope hydrology, seismicity) through a series of 2D Distinct Element (DEM) numerical models set up using the code UDEC (ItascaTM). Based on field structural and geomechanical data, we discretized the slope into an ensemble of discontinuum domains, accounting for the slope-scale folded structure and characterised by unique combinations of rock mass properties and persistent brittle structural patterns related to folding or regional stress fields. We analysed the processes leading to DSGSD onset and evolution by testing combinations of: a) rock mass constitutive models; b) in situ stress fields; c) hydro-mechanical coupling; d) dynamic loadings. DEM results, validated using field evidence and discussed against the results of continuum-based Finite-Element models (Agliardi et al., 2014; Barbarano et al., 2015), suggest that DSGSD failure mechanisms are constrained by fold-related brittle structures, and stress and hydrologic conditioning of deglaciation were key triggers modulated by active tectonic processes. References: - Agliardi F., Barbarano M., Crosta G.B., Riva F. & Zanchi A. (2014). Inherited and active tectonic controls on the Piz Dora sackung system (Val Mustair). In 3rd Slope Tectonic Conference proceedings, NGU Report 2014.030. - Barbarano M., Agliardi F., Crosta G. B., & Zanchi A. (2015). Inherited and Active Tectonic Controls on the Piz Dora DSGSD (Val Müstair, Switzerland). In Engineering Geology for Society and Territory-Volume 2 (pp. 605-608). Springer International Publishing.

  11. Comparison of Earthquake Damage Patterns and Shallow-Depth Vs Structure Across the Napa Valley, Inferred From Multichannel Analysis of Surface Waves (MASW) and Multichannel Analysis of Love Waves (MALW) Modeling of Basin-Wide Seismic Profiles

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.

    2017-12-01

    We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.

  12. Stratigraphy of two conjugate margins (Gulf of Lion and West Sardinia): modeling of vertical movements and sediment budgets

    NASA Astrophysics Data System (ADS)

    Leroux, Estelle; Gorini, Christian; Aslanian, Daniel; Rabineau, Marina; Blanpied, Christian; Rubino, Jean-Loup; Robin, Cécile; Granjeon, Didier; Taillepierre, Rachel

    2016-04-01

    The post-rift (~20-0 Ma) vertical movements of the Provence Basin (West Mediterranean) are quantified on its both conjugate (the Gulf of Lion and the West Sardinia) margins. This work is based on the stratigraphic study of sedimentary markers using a large 3D grid of seismic data, correlations with existing drillings and refraction data. The post-rift subsidence is measured by the direct use of sedimentary geometries analysed in 3D [Gorini et al., 2015; Rabineau et al., 2014] and validated by numerical stratigraphic modelling. Three domains were found: on the platform (1) and slope (2), the subsidence takes the form of a seaward tilting with different amplitudes, whereas the deep basin (3) subsides purely vertically [Leroux et al., 2015a]. These domains correspond to the deeper crustal domains respectively highlighted by wide angle seismic data. The continental crust (1) and the thinned continental crust (2) are tilted, whereas the intermediate crust, identified as lower continental exhumed crust [Moulin et al., 2015, Afhilado et al., 2015] (3) sagged. The post-break-up subsidence re-uses the initial hinge lines of the rifting phase. This striking correlation between surface geologic processes and deep earth dynamic processes emphasizes that the sedimentary record and sedimentary markers is a window into deep geodynamic processes and dynamic topography. Pliocene-Pleistocene seismic markers enabled high resolution quantification of sediment budgets over the past 6 Myr [Leroux et al., in press]. Sediment budget history is here completed on the Miocene interval. Thus, the controlling factors (climate, tectonics and eustasy) are discussed. Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F., Nouzé, H., Rabineau, M., Leroux, E. & Beslier, M.-O. (2015). Deep crustal structure across a young 1 passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin. Bull. Soc. géol. France, 186, ILP Spec. issue, 4-5, 331-351. Gorini, C., Montadert, L., Rabineau, M., (2015) New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean, Marine and Petroleum Geology (2015), doi: 10.1016/j.marpetgeo.2015.01.009. Leroux, E., Aslanian, D., Rabineau, M., Moulin, M., Granjeon, D., Gorini C. & Droz, L. (2015a). Sedimentary markers in the Provençal basin (Western Mediterranean): a window into deep geodynamic processes. Terra Nova, 27(2), 122-129. Leroux, E., Rabineau, M., Aslanian, D., Gorini, C., Molliex, S., Bache, F., Robin, C., Droz, L., Moulin, M., Poort, J., Rubino, J.-L. & Suc, J.P. (2016, in press). High resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonic. Basin Research, xx, xx-xx (ID: 4759575-1545130). Moulin, M., Klingelhoefer, F., Afiladho, A., Aslanian, D., Schnürle, P., Nouze, H., Beslier, M.-O. & Feld, A. (2015). Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - I. Gulf of Lion's margin, Bull. Soc. géol. France., 186, ILP Spec. issue, 4-5,309-330. Rabineau, M., Leroux, E., Aslanian, D., Bache, F., Gorini, C., Moulin, M., Molliex, S., Droz, L., Reis, T. D., Rubino, J.-L., Guillocheau, F. & Olivet, J.-L. (2014). Quantifying subsidence and isostatic readjustment using sedimentary markers (example in the Gulf of Lion). Earth and Planetary Science Letters, 388, 1-14.

  13. Seismic velocity and attenuation structures at the top 400 km of the inner core

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient and Q structure, obtained from modeling the PKiKP-PKIKP observations, explain the PKPbc-PKIKP observations well.

  14. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly reflects basic frame work of the regional crust structure. The earth's crust basically present three layer structure, nearly horizontally distributes, undulation of Moho is obvious, which is consistent with the results of seismic sounding and seismic array detection; in the local area, there are lower density layer zonal distribution in the earth's crust what accelerates the lateral movement in up and middle crust; when the substance of the Tibetan plateau spreads around, the integrity in up and middle crust is well, and it is basically a coupling movement together; in the lower crust, the thickness of the Tibetan plateau is outward gradually thinning, there is decoupling phenomenon in crust-mantle; The results of the gravity and the crustal density structure show that the research area can be divided into several part such as Qinghai-Tibet Plateau, Sichuan-Yunnan block, Ordos block and Alxa block, the transitional zones of the Qinghai-Tibet Plateau and Sichuan basin, and Alxa and Ordos are complex, and Moho slope is bigger, where is the part of strong tectonic activity and strong earthquakes occur easily. The research is of great significance for study the crustal deep structure, geodynamic evolution process and environment of earthquake gestation of the NSSB region.

  15. Topography Estimation of the Core Mantle Boundary with ScS Reverberations and Diffraction Waves

    NASA Astrophysics Data System (ADS)

    Hein, B. E.; Nakata, N.

    2017-12-01

    In this study, we use the propagation of global seismic waves to study the Core Mantle Boundary (CMB). We focus on the use of S-wave reflections at the CMB (ScS reverberations) and outer-core diffracted waves. It is difficult imaging the CMB with the ScS wave because the complexity of the structure in the near surface ( 50 km); the complex structure degrades the signal-to-noise ratio of of the ScS. To avoid estimating the structure in the crust, we rely on the concept of seismic interferometry to extract wave propagation through mantle, but not through the crust. Our approach is compute the deconvolution between the ScS (and its reverberation) and direct S waves generated by intermediate to deep earthquakes (>50 km depth). Through this deconvolution, we have the ability to filter out the direct S wave and retrieve the wave field propagating from only the hypocenter to the outer core, but not between the hypocenter to the receiver. After the deconvolution, we can isolate the CMB reflected waves from the complicated wave phenomena because of the near-surface structure. Utilizing intermediate and deep earthquakes is key since we can suppress the near-surface effect from the surface to the hypocenter of the earthquakes. The variation of such waves (e.g., travel-time perturbation and/or wavefield decorrelation) at different receivers and earthquakes provides the information of the topography of the CMB. In order to get a more detailed image of the topography of the CMB we use diffracted seismic waves such as Pdiff , Sdiff, and P'P'. By using two intermediate to deep earthquakes on a great circle path with a station we can extract the wave propagation between the two earthquakes to simplify the waveform, similar to how it is preformed using the ScS wave. We generate more illumination of the CMB by using diffracted waves rather than only using ScS reverberations. The accurate topography of CMB obtained by these deconvolution analyses may provide new insight of the dynamics of the Earth such as heat flow at the CMB and through the mantle.

  16. Earthquake Hazard for Aswan High Dam Area

    NASA Astrophysics Data System (ADS)

    Ismail, Awad

    2016-04-01

    Earthquake activity and seismic hazard analysis are important components of the seismic aspects for very essential structures such as major dams. The Aswan High Dam (AHD) created the second man-made reservoir in the world (Lake Nasser) and is constructed near urban areas pose a high-risk potential for downstream life and property. The Dam area is one of the seismically active regions in Egypt and is occupied with several cross faults, which are dominant in the east-west and north-south. Epicenters were found to cluster around active faults in the northern part of Lake and AHD location. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. The Aswan seismicity separates into shallow and deep seismic zones, between 0 and 14 and 14 and 30 km, respectively. These two seismic zones behave differently over time, as indicated by the seismicity rate, lateral extent, b-value, and spatial clustering. It is characterized by earthquake swarm sequences showing activation of the clustering-events over time and space. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area. The peak ground acceleration is estimated in the dam site based on strong ground motion simulation. This seismic hazard analyses have indicated that AHD is stable with the present seismicity. The earthquake epicenters have recently took place approximately 5 km west of the AHD structure. This suggests that AHD dam must be analyzed with high priority and redesigned to increase the safety of the embankments and their appurtenant structures, if necessary. Key word Aswan High Dam, Earthquake hazard reduction

  17. Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.

    2015-12-01

    Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.

  18. Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions

    USGS Publications Warehouse

    Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.

    2009-01-01

    In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.

  19. Cordilleran front range structural features in northwest Montana interpreted from vintage seismic reflection data

    NASA Astrophysics Data System (ADS)

    Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.

    2016-04-01

    Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.

  20. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.

    2014-01-01

    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  1. Deep Stucture of the Northwestern Atlantic Moroccan Margin Studied by OBS and Deep Multichannel Seismic Reflection.

    NASA Astrophysics Data System (ADS)

    MALOD, J. A.; Réhault, J.; Sahabi, M.; Géli, L.; Matias, L.; Diaz, J.; Zitellini, N.

    2001-12-01

    The Northwestern Atlantic Moroccan margin, a conjugate of the New Scotland margin, is one of the oldest passive margin of the world. Continental break up occurred at early Liassic time and the deep margin is characterized by a large salt basin. A good knowledge of this basin is of major interest to improve the initial reconstruction between Africa, North America and Iberia (Eurasia). It is also a good opportunity to study a mature passive margin and model its structure and evolution.Moreover, there is a need to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. These topics have been adressed during the SISMAR cruise carried out from April 9th to May 4th 2001.During this cruise, 3667 km of multichannel seismic reflection (360 channels, 4500 m long streamer, 4800 ci array of air guns) were recorded together with refraction records by means of 48 OBH/OBS drops. Simultaneously, some of the marine profiles have been extended onshore with 16 portable seismic land stations. We present the initial results of this study. Off El Jadida, the Moho and structures within the thinned continental crust are well imaged on both the reflection and refraction records. In the northern area, off Casablanca, we follow the deepening of the moroccan margin beneath the up to 9 sec (twtt) allochtonous series forming a prism at the front the Rif-Betic chain. Sismar cruise has been also the opportunity to record long seismic profiles making the junction between the Portuguese margin and the Moroccan one, and crossing the Iberian-African plate boundary. This allows to observe the continuity of the sedimentary sequence after the end of the large inter-plate motion in Early Cretaceous. In addition to the authors, SISMAR Group includes: AMRHAR Mostafa, BERMUDEZ VASQUEZ Antoni, CAMURRI Francesca, CONTRUCCI Isabelle, CORELA Carlos, DIAZ Jordi, DORVAL Philippe, EL ARCHI Abdelkrim, EL ATTARI Ahmed, GONZALEZ Raquel, HARMEGNIES Francois, JAFFAL Mohamed, KLINGELÖFER Fraucke, LANDURÉ Jean Yves, LEGALL Bernard, MAILLARD-LENOIR Agnès, MARTIN Christophe, MEHDI Khalid, MERCIER Eric, MOULIN Maryline, OUAJHAIN Brahim, PERROT Julie, ROLET Joël, RUELLAN Etienne, TEIXIRA Fernando, TERRINHA Pedro, ZOURARAH Bendehhou.

  2. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  3. Neotectonic activity and parameters of seismotectonic deformations of seismic belts in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina

    2017-10-01

    The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.

  4. Using seismic reflection data to reveal high-resolution structure and pathway of the upper Western Boundary Undercurrent core at Eirik Drift

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele

    2015-12-01

    The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.

  5. Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Zhan, Z.

    2017-12-01

    It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.

  6. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  7. Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983-84.

    PubMed

    De Siena, Luca; Chiodini, Giovanni; Vilardo, Giuseppe; Del Pezzo, Edoardo; Castellano, Mario; Colombelli, Simona; Tisato, Nicola; Ventura, Guido

    2017-08-14

    Despite their importance for eruption forecasting the causes of seismic rupture processes during caldera unrest are still poorly reconstructed from seismic images. Seismic source locations and waveform attenuation analyses of earthquakes in the Campi Flegrei area (Southern Italy) during the 1983-1984 unrest have revealed a 4-4.5 km deep NW-SE striking aseismic zone of high attenuation offshore Pozzuoli. The lateral features and the principal axis of the attenuation anomaly correspond to the main source of ground uplift during the unrest. Seismic swarms correlate in space and time with fluid injections from a deep hot source, inferred to represent geochemical and temperature variations at Solfatara. These swarms struck a high-attenuation 3-4 km deep reservoir of supercritical fluids under Pozzuoli and migrated towards a shallower aseismic deformation source under Solfatara. The reservoir became aseismic for two months just after the main seismic swarm (April 1, 1984) due to a SE-to-NW directed input from the high-attenuation domain, possibly a dyke emplacement. The unrest ended after fluids migrated from Pozzuoli to the location of the last caldera eruption (Mt. Nuovo, 1538 AD). The results show that the high attenuation domain controls the largest monitored seismic, deformation, and geochemical unrest at the caldera.

  8. Seismic signature of active intrusions in mountain chains.

    PubMed

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO 2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.

  9. Seismic signature of active intrusions in mountain chains

    PubMed Central

    Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido

    2018-01-01

    Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains. PMID:29326978

  10. New insight on the Great Sumatra Fault, offshore NW Sumatra, from recent marine data

    NASA Astrophysics Data System (ADS)

    Ghosal, D.; Singh, S. C.; Chauhan, A.; Hananto, N. D.

    2009-12-01

    The Sumatra subduction system is a classic example of an oblique subduction where the slip is portioned into pure thrust along the Sumatra-Andaman megathrust and strike-slip along the Great Sumatra Fault (GSF). Only in the last five years there have been three great pure thrust earthquakes along the Sumatran subduction zone. However, the 1900 km long GSF has been rather silent and is likely to produce a large earthquake in the near future, and hence it is important study the GSF in order to mitigate seismic risks. Over the last 20 years, GSF has been studied on land, but we have no information about its offshore extension NW of Sumatra. The problem is further complicated by its vicinity with the volcanic arc, which switches back and forth centering the GSF. Here we present analyses of recently acquired high-resolution bathymetry and shallow and deep reflection seismic data. We find that GSF bifurcates into two branches north of Banda Aceh, both producing 15-20 km wide deep adjacent basins. Southern basin is 1-2 km deep and has a flower structure with a push-up ridge, suggesting the presence of an active strike-slip fault. The presence of strike-slip earthquakes beneath this basin further suggests that GSF passes through this basin. The northern basin is up to 4 km deep, bounded by normal faults. The absence of recent sediments on the basin floor suggests that the basin is very young. The presence of a chain of volcanoes in the centre of the basin suggests that the volcanic arc passes through this basin. The fact that the basin is 4 km deep in the presence of volcanoes, which tend to fill in a basin and hence make them shallower, suggests that this might be the site of an onset of back-arc spreading centre. We shall examine all the new observations in the light of plate motion, local deformation and possible seismic risk.

  11. Detailed seismic velocity structure of the ultra-slow spread crust at the Mid-Cayman Spreading Center from travel-time tomography and synthetic seismograms

    NASA Astrophysics Data System (ADS)

    Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.

    2017-12-01

    The Mid-Cayman Spreading Center (MCSC), an ultraslow-spreading center in the Caribbean Sea, has formed highly variable oceanic crust. Seafloor dredges have recovered extrusive basalts in the axial deeps as well as gabbro on bathymetric highs and exhumed mantle peridotite along the only 110 km MCSC. Wide-angle refraction data were collected with active-source ocean bottom seismometers in April, 2015, along lines parallel and across the MCSC. Travel-time tomography produces relatively smooth 2-D tomographic models of compressional wave velocity. These velocity models reveal large along- and across-axis variations in seismic velocity, indicating possible changes in crustal thickness, composition, faulting, and magmatism. It is difficult, however, to differentiate between competing interpretations of seismic velocity using these tomographic models alone. For example, in some areas the seismic velocities may be explained by either thin igneous crust or exhumed, serpentinized mantle. Distinguishing between these two interpretations is important as we explore the relationships between magmatism, faulting, and hydrothermal venting at ultraslow-spreading centers. We therefore improved our constraints on the shallow seismic velocity structure of the MCSC by modeling the amplitude of seismic refractions in the wide-angle data set. Synthetic seismograms were calculated with a finite-difference method for a range of models with different vertical velocity gradients. Small-scale features in the velocity models, such as steep velocity gradients and Moho boundaries, were explored systematically to best fit the real data. With this approach, we have improved our understanding of the compressional velocity structure of the MCSC along with the geological interpretations that are consistent with three seismic refraction profiles. Line P01 shows a variation in the thinness of lower seismic velocities along the axis, indicating two segment centers, while across-axis lines P02 and P03 show variations in igneous crustal thickness and exhumed mantle in some areas.

  12. Short and long term evolution of deep giant submarine dunes in continental shelf environment: the example of the 'Banc du Four' (Western Brittany, France)

    NASA Astrophysics Data System (ADS)

    Franzetti, M.; Le Roy, P.; Garlan, T.; Delacourt, C.; Thibaud, R.; Cancouet, R.; Graindorge, D.; Prunier, C.; Sukhovich, A.; Deschamps, A.

    2013-12-01

    The deep sandwave dynamics is still in debate. Understanding the migration processes and the resulting evolution of their 3D internal architecture are scientifically challenging. To address these questions we realized two swath bathymetry surveys complemented with seismic reflection across the large sandwaves field named 'Banc du Four'. It is located offshore the Western Brittany and is composed of more 500 dunes. Some of the dunes' wavelengths and heights exceed 1000m and 30m respectively placing them among the largest dunes ever described. Equilibrium laws obtained from our morphological analysis are not completely in agreement with those described in previous studies of similar structures in shallow waters. Relatively high migration velocities on deep continental shelves (from 3 to 20m.yr-1) attest of their still present dynamical equilibrium. Internal-external morphological and kinematical analyses show the existence of two different dynamic regimes. Interpretation of the seismic reflection data allowed reconstructing long-term evolution of the sandbank and the establishment of progressive connections between stepped submarine channels and tidal dynamics during the last sea-level rise.

  13. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  14. Seismic shaking scenarios in realistic 3D crustal model of Northern Italy

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Morelli, A.; Basini, P.; Berbellini, A.

    2013-12-01

    Simulation of seismic wave propagation in realistic crustal structures is a fundamental tool to evaluate earthquake-generated ground shaking and assess seismic hazard. Current-generation numerical codes, and modern HPC infrastructures, allow for realistic simulations in complex 3D geologic structures. We apply such methodology to the Po Plain in Northern Italy -- a region with relatively rare earthquakes but having large property and industrial exposure, as it became clear during the two M~6 events of May 20-29, 2012. Historical seismicity is well known in this region, with maximum magnitudes estimates reaching M~7, and wave field amplitudes may be significantly amplified by the presence of the very thick sedimentary basin. Our goal is to produce estimates of expected ground shaking in Northern Italy through detailed deterministic simulations of ground motion due to expected earthquakes. We defined a three-dimensional model of the earth's crust using geo-statistical tools to merge the abundant information existing in the form of borehole data and seismic reflection profiles that had been shot in the '70s and the '80s for hydrocarbon exploration. Such information, that has been used by geologists to infer the deep structural setup, had never been merged to build a 3D model to be used for seismological simulations. We implement the model in SPECFEM3D_Cartesian and a hexahedral mesh with elements of ~2km, that allows us to simulate waves with minimum period of ~2 seconds. The model has then been optimized through comparison between simulated and recorded seismograms for the ~20 moderate-magnitude events (Mw > 4.5) that have been instrumentally recorded in the last 15 years. Realistic simulations in the frequency band of most common engineering relevance -- say, ~1 Hz -- at such a large scale would require an extremely detailed structural model, currently not available, and prohibitive computational resources. However, an interest is growing in longer period ground motion -- that impacts on the seismic response of taller structures (Cauzzi and Faccioli, 2008) -- and it is not unusual to consider the wave field up to 20s. In such period range, our Po Plain structural model has shown to be able to reproduce well basin resonance and amplification effects at stations boarding the sedimentary plain. We then simulate seismic shaking scenarios for possible sources tied to devastating historical earthquakes that are known to have occurred in the region --- such as the M~6 event that hit Modena in 1501; and the Verona, M~6.7 in 1117, quake that caused well-documented strong effects in an unusually wide area with radius of hundreds of kilometers. We explore different source geometries and rupture histories for each earthquake. We mainly focus our attention on the synthesis of the prominent surface waves that are highly amplified in deep sedimentary basin structures (e.g., Smerzini et al, 2011; Koketsu and Miyage, 2008). Such simulations hold high relevance because of the large local property exposure, due to extensive industrial and touristic infrastructure. We show that deterministic ground motion calculation can indeed provide information to be actively used to mitigate the effects of desctructive earthquakes on critical infrastructures.

  15. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.; Michael, John A.

    2009-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =~300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazard zones were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  16. Maps showing seismic landslide hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.

    2014-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazards were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  17. Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures

    NASA Astrophysics Data System (ADS)

    Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.

    2017-12-01

    Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.

  18. New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction

    NASA Astrophysics Data System (ADS)

    Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.

    2017-12-01

    The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).

  19. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  20. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    NASA Astrophysics Data System (ADS)

    Mullick, N.; Buske, S.; Hrubcova, P.; Ruzek, B.; Shapiro, S.; Wigger, P.; Fischer, T.

    2015-04-01

    The western Eger rift at the Czech-German border in central Europe is an important geodynamically active area within the European Cenzoic rift system (ECRS) in the forelands of the Alps. Along with two other active areas of the ECRS, the French Massif Central and the east and west Eifel volcanic fields, it is characterized by numerous CO2-rich fluid emission points and frequent micro-seismicity. Existence of a plume(s) is indicated in the upper mantle which may be responsible for these observations. Here we reprocess a pre-existing deep seismic reflection profile '9HR' and interpret the subsurface structures as mapped by seismic reflectivity with previous findings, mainly from seismological and geochemical studies, to investigate the geodynamic activity in the subsurface. We find prominent hints of pathways which may allow magmatic fluids originating in the upper mantle to rise through the crust and cause the observed fluid emanations and earthquake activity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillot, L.R.; Anderton, P.W.; Haselton, T.M.

    The Espoir oil field, located approximately 13 km offshore Ivory Coast, was discovered in 1980 by a joint venture comprised of Phillips Petroleum Company, AGIP, SEDCO Energy, and PETROCI. Following the discovery, a three-dimensional seismic survey was recorded by GSI in 1981-1982 to provide detailed seismic coverage of Espoir field and adjacent features. The seismic program consisted of 7700 line-km of data acquired in a single survey area that is located on the edge of the continental shelf and extends into deep water. In comparison with previous two-dimensional seismic surveys, the three-dimensional data provided several improvements in interpretation and mappingmore » including: (1) sharper definition of structural features, (2) reliable correlations of horizons and fault traces between closely spaced tracks, (3) detailed time contour maps from time-slice sections, and (4) improved velocity model for depth conversion. The improved mapping helped us identify additional well locations; the results of these wells compared favorably with the interpretation made prior to drilling.« less

  2. On the Complicated 410 km Discontinuity beneath Eastern China with the Seismic Triplications

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Li, G.; Sui, Y.

    2013-12-01

    The seismic triplications from the seismograms of mid-deep earthquakes at the Ryuku subduction zone recorded by the Chinese Digital Seismic Network (CDSN) between the epicentral distance between 10°-23° are used to study the upper mantle structure beneath Eastern China. Comparing the observed seismograms with the synthetic ones from different models based on IASP91 earth model and using the ray-tracing method, we found that the 410 km discontinuity is a gradient zone with the thickness of 20 km and there is low velocity layer atop the discontinuity which becomes thin from north to south beneath Eastern China. The complicated 410 km discontinuity with an atop low velocity layer may be caused by the dehydration of the Philippine sea subducting materials which are observed by the seismic tomopgraphy (Qu, et al., 2007; Li and van der Hilst, 2010). The low velocity gradient zone between the depths of 80-200 km is also been observed and may be related to the lithospheric-asthenosphere boundary.

  3. Site-specific seismic ground motion analyses for transportation infrastructure in the New Madrid seismic zone.

    DOT National Transportation Integrated Search

    2012-11-01

    Generic, code-based design procedures cannot account for the anticipated short-period attenuation and long-period amplification of earthquake ground motions in the deep, soft sediments of the Mississippi Embayment within the New Madrid Seismic Zone (...

  4. Multiple seismic reflectors in Earth’s lowermost mantle

    PubMed Central

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-01-01

    The modern view of Earth’s lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core–mantle boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266

  5. Structure of crust and upper mantle beneath NW Himalayas, Pamir and Hindukush by multi-scale double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain

    2018-08-01

    The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.

  6. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China), and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, C.; Simoes, M.; Barrier, L.; Laborde, A.; van der Woerd, J.; Li, H.; Tapponnier, P.; Coudroy, T.; Murray, A. S.

    2017-12-01

    The Western Kunlun mountain range (Xinjiang, north-west China) is a slowly deforming intra-continental orogen where deformation rates are too low to be quantified from geodetic techniques. This region has recorded little historical seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold along the topographic mountain front in the epicentral area. Using field observations and a seismic profile, we derive a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr over the last 400 kyr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is then proposed by combining all structural, morphological and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of major M ≥ 8-8.5 earthquakes in the case that the whole decollement is presently seismically locked and fully ruptures in one single seismic event.

  7. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  8. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging

    USGS Publications Warehouse

    Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.

    2007-01-01

    A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.

  9. Distributional prediction of Pleistocene forearc minibasin turbidites in the NE Nankai Trough area (off central Japan)

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.

    2011-12-01

    Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.

  10. Deep structure of Medicine Lake volcano, California

    USGS Publications Warehouse

    Ritter, J.R.R.; Evans, J.R.

    1997-01-01

    Medicine Lake volcano (MLV) in northeastern California is the largest-volume volcano in the Cascade Range. The upper-crustal structure of this Quaternary shield volcano is well known from previous geological and geophysical investigations. In 1981, the U.S. Geological Survey conducted a teleseismic tomography experiment on MLV to explore its deeper structure. The images we present, calculated using a modern form of the ACH-inversion method, reveal that there is presently no hint of a large (> 100 km3), hot magma reservoir in the crust. The compressional-wave velocity perturbations show that directly beneath MLV's caldera there is a zone of increased seismic velocity. The perturbation amplitude is +10% in the upper crust, +5% in the lower crust, and +3% in the lithospheric mantle. This positive seismic velocity anomaly presumably is caused by mostly subsolidus gabbroic intrusive rocks in the crust. Heat and melt removal are suggested as the cause in the upper mantle beneath MLV, inferred from petro-physical modeling. The increased seismic velocity appears to be nearly continuous to 120 km depth and is a hint that the original melts come at least partly from the lower lithospheric mantle. Our second major finding is that the upper mantle southeast of MLV is characterized by relatively slow seismic velocities (-1%) compared to the northwest side. This anomaly is interpreted to result from the elevated temperatures under the northwest Basin and Range Province.

  11. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    USGS Publications Warehouse

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100 m deep, and the base of the cores is only ∼670 ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400 ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past ∼2–3 Ma.

  12. CCS in the Southern Pyrenees?

    NASA Astrophysics Data System (ADS)

    Pueyo, E. L.; Klimowitz, J.; García-Lobón, J. L.; Calvín, P.; Casas, A. M.; Oliva, B.; Algeco2 Team

    2012-04-01

    The project "Identification and preliminary characterization of geological structures for geological storage of CO2" (ALGECO2) led by the IGME between 2009 and 2010 has made the first rigorous selection of potential CO2 reservoirs in Spain; more than one hundred structures were identified and subjected to preliminary evaluation. This assortment comprises more than thirty structures within the Pyrenees and the Ebro Basin (PE) domain. The discussion, based on the oil-exploration experience and regional geological knowledge (with the compilation of over 500 cross sections) has finally chosen 8 structures in the Pyrenees. Seismic data, oil industry wells and surface mapping have allowed building three-dimensional preliminary models of these structures. These potential reservoirs display storage capacities from a few Mt to hundreds Mt CO2. Besides, some Pyrenean structures are among the most favorable and reliable in the national ranking according to the panel of more than 150 experts of the ALGECO2 project. Two Pyrenean structural traps are notable for their large potential capacity; they have been coded as PE-GE-13 and PE-GE-14. The first one is a large and wide basement antiform located in the Northern Jaca-Pamplona Basin. There is an extensive seismic coverage in the area and a dozen of deep wells (2 of them 4,000 m deep). The reservoir consists of Buntsandstein sands (>80 m in thickness), being the Röt and Keuper facies the seal. The top of the reservoir is 1,720 m deep and the structure has a map-view surface > 500 km2. Preliminary 3D models allow estimating storage capacity > 300 Mt. On the other hand, the PE-GE-14 structure (partially overlapped in map-view with PE-GE-13) is a cover anticline related to an underneath thrust (but structurally higher than PE-GE-13). In this case, the reservoir-seal pair is formed by upper Paleocene platform limestones and the Eocene flysch and talus marls respectively. The structure has an area > 100 km2. The top of the reservoir is 1,300 m in depth and its thickness ≈ 80 m. It has an estimated storage capacity > 100 Mt of CO2. The exhaustive analysis of several hundreds of available seismic sections (surveys PP, DP, JAT, PJ, BB, P & SA) and the subsequent construction of balanced cross sections would allow improving the geometric definition of these two structures. The derived accurate 3D models would quantify the effectiveness of both traps. In order to support these underground reconstructions, an inexpensive geophysical survey (potential fields) would better constraint the basement-cover interface (where the reservoir is located). In conclusion, these structures represent two suggestive potential reservoirs; besides, an advanced evaluation of them requires modest investments.

  13. Improving our understanding of the evolution of mountain belts via the Collisional Orogeny in the Scandinavian Caledonides (COSC) project: Results from seismic investigations and plans for the 2.5 km deep COSC-2 borehole

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.

    2017-12-01

    Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.

  14. The complex emplacement dynamics and tsunami genesis of the 1888 Ritter Island sector collapse from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Urlaub, M.; Karstens, J.; Berndt, C.; Watt, S. F.; Micallef, A.; Klaucke, I.; Klaeschen, D.; Brune, S.; Kühn, M.

    2017-12-01

    On March 13 1888, a large sector of the subaerial and submarine edifice of Ritter Island (Papua New Guinea) collapsed and slid into the Bismarck Sea, triggering a tsunami with run-up heights of more than 25 m on the neighboring islands. The tsunami traveled for more than 600 km and caused destruction in several settlements. German colonists described in detail the timing of the arriving waves. During research cruise SO252 onboard RV Sonne, we collected a comprehensive set of multibeam and sediment echosounder data, seafloor video footage, rock samples, 2D seismic profiles, and a 60 km2 high-resolution Pcable 3D seismic cube. This dataset, combined with the historic eyewitness accounts, allows detailed reconstruction of the large-scale volcanic sector collapse and the associated tsunami genesis. The 3D seismic cube reveals a change of emplacement dynamics during the collapse of the volcanic edifice. The initial failure occurred along a deep slide plane extending from the volcanic cone up to 300 m deep into the seafloor sediments adjacent to the volcanic edifice. Movement of large, intact sediment blocks and shortening characterize this deep-rooted mass-movement. In contrast to the well-preserved mobilization structures in the deep part of the volcanic edifice related to the initial phase of mass movement, there are hardly any deposits of the upper part of the volcanic cone comprising of well-stratified volcaniclastic layers. The 2 km3 cone was mobilized in the final stage of the sector collapse and its highly energetic slide mass eroded deeply into the previously emplaced slide deposits. The fast moving mass was channelized between two volcanic ridges, transported into the basin west of Sakar Island, and then deposited more than 30 km away from its source. We interpret the separation into two phases as the result of decoupling of the sliding mass of the cone from the deeper volcanic edifice. This process may be explained by gravitational acceleration of the sliding mass or a phreatomagmatic explosion due to the contact of the magmatic conduit with seawater.

  15. Seismic structure of southern margin of the 2011 Tohoku-Oki Earthquake aftershocks area: slab-slab contact zone beneath northeastern Kanto, central Japan

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Mizohata, S.; Hirata, N.

    2011-12-01

    The 2011 Tohoku-Oki Earthquake (Mw9.0) occurred on the Japan Trench off the eastern shore of northern Honshu, Japan. The southward expansion of the afterslip area has reached the Kanto region, central Japan (Ozawa et al., 2011). The Philippine Sea Plate (PHS) subducts beneath the Kanto region. The bottom of the PHS is in contact with the upper surface of the Pacific Plate (PAC) beneath northeastern Kanto. Detailed structure of the PHS-PAC contact zone is important to constrain the southward rupture process of the Tohoku-Oki Earthquake and provide new insight into the process of future earthquake occurrence beneath the Kanto region. Active and passive seismic experiments were conducted to obtain a structural image beneath northeastern Kanto in 2010 (Sato et al., 2010). The geometry of upper surface of the PHS has been revealed by seismic reflection profiling (Sato et al., 2010). Passive seismic data set is useful to obtain a deep structural image. Two passive seismic array observations were conducted to obtain a detailed structure image of the PHS-PAC contact zone beneath northeastern Kanto. One was carried out along a 50-km-long seismic line trending NE-SW (KT-line) and the other was carried out along a 65-km-long seismic line trending NW-SE (TM-line). Sixty-five 3-component portable seismographs were deployed on KT-line with 500 to 700 m interval and waveforms were continuously recorded during a four-month period from June, 2010. Forty-five 3-component portable seismographs were deployed on TM-line with about 1-2 km spacing and waveforms were continuously recorded during the seven-month period from June, 2010. Arrival times of earthquakes were used in a joint inversion for earthquake locations and velocity structure, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The relocated hypocenter distribution shows that the seismicity along the upper surface of the PAC is located at depths of 45-75 km beneath northeastern Kanto. The seismicity associated with the northwestward subducting PHS can be traced to a depth of 60 km. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered earthquakes are located in and around the high Vp/Vs zone. High Vp/Vs ratio and low Vp zone with low seismicity is observed in the slab-slab contact zone beneath northeastern Kanto. The heterogeneity of the slab-slab contact zone beneath northeastern Kanto may affect the southward expansion of the afterslip of the Tohoku-Oki Earthquake. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.

  16. Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.

    2016-12-01

    Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.

  17. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    NASA Astrophysics Data System (ADS)

    Nichols, M. L.; Malone, S. D.; Moran, S. C.; Thelen, W. A.; Vidale, J. E.

    2011-03-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust.

  18. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    USGS Publications Warehouse

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  19. Signal restoration through deconvolution applied to deep mantle seismic probes

    NASA Astrophysics Data System (ADS)

    Stefan, W.; Garnero, E.; Renaut, R. A.

    2006-12-01

    We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.

  20. Development of Vertical Cable Seismic System

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by Institute of Industrial Science, the University of Tokyo. It generates high frequency acoustic waves around 1kHz. The acquired VCS data clearly shows the reflections and currently being processed for imaging the subsurface structure.

  1. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  2. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    NASA Astrophysics Data System (ADS)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology and data from boreholes and seismic surveys, combined with empirically determined pressure and temperature derivatives. The product is now almost ready for publication and an early version is presented here.

  3. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than the regional velocity model (HG50; Klein, 1989) in the shallow lithosphere above 16 km depth. This is likely a result of thick deposits of volcaniclastic sediments and fractured pillow basalts that blanket the southern submarine flank of Mauna Loa, upon which Lo';ihi is currently superimposing (Morgan et al., 2003). A broad, low-velocity anomaly was observed from 20-40 km deep beneath the area of Pahala, and is indicative of the central plume conduit that supplies magma to the active volcanoes. A localized high-velocity body is observed 4-6 km deep beneath Lo';ihi's summit, extending 10 km to the North and South. Oriented approximately parallel to Lo';ihi's active rift zones, this high-velocity body is suggestive of intrusion in the upper crust, similar to Kilauea's high-velocity rift zones.

  4. Seismic expression of the Chesapeake Bay impact crater: Structural and morphologic refinements based on new seismic data

    USGS Publications Warehouse

    Poag, C. Wylie; Hutchinson, Deborah R.; Colman, Steve M.; Lee, Myung W.; Dressler, B.O.; Sharpton, V.L.

    1999-01-01

    This work refines previous interpretations of the structure and morphology of the Chesapeake Bay impact crater on the basis of more than 1,200 km of multichannel and single-channel seismic reflection profiles collected in the bay and on the adjacent continental shelf. The outer rim, formed in sedimentary rocks, is irregularly circular, with an average diameter of ~85 km. A 20–25-km-wide annular trough separates the outer rim from an ovate, crystalline peak ring of ~200 m of maximum relief. The inner basin is 35–40 km in diameter, and at least 1.26 km deep. A crystalline(?) central peak, approximately 1 km high, is faintly imaged on three profiles, and also is indicated by a small positive Bouguer gravity anomaly. These features classify the crater as a complex peak-ring/central peak crater. Chesapeake Bay Crater is most comparable to the Ries and Popigai Craters on Earth; to protobasins on Mars, Mercury, and the Moon; and to type D craters on Venus.

  5. Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Reese, N. M.; Kelley, S. A.

    1985-01-01

    Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley.

  6. Deformation of phase D and Earth's deep water cycle

    NASA Astrophysics Data System (ADS)

    Walker, A.; Skelton, R.; Nowacki, A.

    2016-12-01

    The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.

  7. Constraining Crustal Anisotropy by Receiver Functions at the Deep Continental Drilling Site KTB in Southern Germany

    NASA Astrophysics Data System (ADS)

    Bianchi, Irene; Qorbani, Ehsan; Bokelmann, Götz

    2016-04-01

    As one of the rare observational tools for studying deformation and stress within the Earth, seismic anisotropy has been one of the focuses of geophysical studies over the last decade. In order to unravel the anisotropic properties of the crust, the teleseismic receiver functions (RF) methodology has started to be widely applied recently. Such effects of anisotropy on RF were illustrated in theoretical studies, showing the strong backazimuthal dependence of RF on the 3D characteristics of the media sampled by the waves. The use of teleseismic RF has the advantage of not being affected by a heterogeneous depth distribution of local earthquakes, since teleseismic rays sample the entire crust beneath the stations. The application of this technique however, needs to be critically assessed using a suitable field test. To test the technique, we need a crustal block where the underground structure is reasonably well-known, e.g., where there is extensive knowledge from local seismic experiments and drilling. A field experiment has thus been carried out around the KTB (Kontinental Tiefbohrung) site in the Oberpfalz area in Southeastern Germany, in order to compare with previous results from deep drilling, and high-frequency seismic experiments around the drill site. The investigated region has been studied extensively by local geophysical experiments, and geological studies. The deep borehole was placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. The drilling activity lasted from 1987 to 1994, and descended down to a depth of 9101 meters, sampling an alternating sequence of paragneiss and amphibolite, with metamorphism of upper amphibolite facies conditions, and ductile deformation produced a strong foliation of the rocks. The application of the RFs reveals strong seismic anisotropy in the upper crust related to the so-called Erbendorf body. The SKS shear-wave splitting method has been applied as well, revealing coherent results for the whole region with exception of the southernmost station, for which the seismic waves show larger delays. We use the RF observations to test the effect of crustal anisotropy on the SKS records, which sample entire crust and upper mantle.

  8. Breakup magmatism on the Vøring Margin, mid-Norway: New insight from interpretation of high-quality 2D and 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.

    2017-12-01

    The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).

  9. Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc

    NASA Astrophysics Data System (ADS)

    Laigle, M.; Hirn, A.; Sapin, M.; Bécel, A.; Charvis, P.; Flueh, E.; Diaz, J.; Lebrun, J.-F.; Gesret, A.; Raffaele, R.; Galvé, A.; Evain, M.; Ruiz, M.; Kopp, H.; Bayrakci, G.; Weinzierl, W.; Hello, Y.; Lépine, J.-C.; Viodé, J.-P.; Sachpazi, M.; Gallart, J.; Kissling, E.; Nicolich, R.

    2013-09-01

    The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore-onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes appears with kinks which increase the dip to 10-20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: "supraslab" earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and "deep flat-thrust" earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.

  10. Compilation of Reprints Number 63.

    DTIC Science & Technology

    1986-03-01

    Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG

  11. Seismicity and deep structure of the Indo-Burman plate margin

    NASA Astrophysics Data System (ADS)

    Vaněk, J.; Hanuš, V.; Sitaram, M. V. D.

    Two differently inclined segments of the Wadati-Benioff zone beneath the Chin Hills and Naga Hills segments of the Indo-Burman Ranges were verified on the basis of the geometrical analysis of distribution of 566 earthquakes. The Wadati-Benioff zone and young calc-alkaline volcanism point to the existence of a Mio-Pliocene subduction with the trench at the western boundary of the Oligocene Indo-Burman orogenic belt. A system of ten seismically active fracture zones was delineated in the adjacent Indian and Burman plates, the tectonic pattern of which represents the eastern manifestation of the continental collision of the Indian and Eurasian plates. The position of historical disastrous earthquakes confirms the reality of this pattern.

  12. Imaging the Moon's Core with Seismology

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe

    2011-01-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.

  13. Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.

    2009-12-01

    Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.

  14. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio-Atlantic ridge.

  15. Mapping Shear-wave Velocity Structures of the "African Anomaly" Along a Northwest to Southeast Arc From New Zealand to the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Frodsham, A. E.; Wen, L.

    2006-12-01

    A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.

  16. Exploring the Llaima Volcano Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Bishop, J. W.; Biryol, C.; Lees, J. M.

    2016-12-01

    The Llaima volcano in Chile is one of the most active volcanos in the Southern Andes, erupting at least 50 times since 1640. To understand the eruption dynamics behind these frequent paroxysms, it is important to identify the depth and extent of the magma chamber beneath the volcano. Furthermore, it is also important to identify structural controls on the magma storage regions and volcanic plumbing system, such as fault and fracture zones. To probe these questions, a dense, 26 station broadband seismic array was deployed around the Llaima volcano for 3 months (January to March, 2015). Additionally, broadband seismic data from 7 stations in the nearby Observatorio Volcanológico de Los Andes del Sur (OVDAS) seismic network was also obtained for this period. Teleseismic receiver functions were calculated from this combined data using an iterative deconvolution technique. Receiver function stacks (both H-K and CCP) yield seismic images of the deep structure beneath the volcano. Initial results depict two low velocity layers at approximately 4km and 12km. Furthermore, Moho calculations are 5-8 km deeper than expected from regional models, but a shallow ( 40 km) region is detected beneath the volcano peak. A large high Vp/Vs ratio anomaly (Vp/Vs > 0.185) is discernable to the east of the main peak of the volcano.

  17. Seismic reflection and structuring characterization of deep aquifer system in the Dakhla syncline (Cap Bon, North-Eastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad

    2018-04-01

    The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the recognition of tectonic structures and their development may reveal some new insights for hydrogeological aspects.

  18. Implications of ground water chemistry and flow patterns for earthquake studies.

    PubMed

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  19. Implications of ground water chemistry and flow patterns for earthquake studies

    USGS Publications Warehouse

    Guangcai, W.; Zuochen, Z.; Min, W.; Cravotta, C.A.; Chenglong, L.

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for ??18O, ??D, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57??C to 160??C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas. Copyright ?? 2005 National Ground Water Association.

  20. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.

  1. A delayed seismicity burst revealed by template matching approach during stimulation of GRT1, Rittershoffen, Alsace, France

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Boubacar, Mohamed; Schmittbuhl, Jean

    2016-04-01

    The ECOGI joint-venture is developing a deep geothermal project at Rittershoffen, 6 km east of Soultz-sous-Forêts, in Northern Alsace. For this purpose, at the end of 2012, a first well (GRT1) was drilled to 2580 m depth through Triassic-sediments and into the crystalline basement. In order to enhance the reservoir permeability, a hydraulic stimulation was performed in the GRT1 well in June 2013. The hydraulic stimulation in GRT1 lasted 2 days (27 and 28 June 2013) and was recorded by a dedicated seismic network. The seismic activity related to the GRT1 hydraulic stimulation was processed in real-time and gave rise to a first seismicity catalogue composed of a total of 212 events, from the 27 of June to the 4th of July 2013. The catalogue reveals that the seismicity stopped shortly after injection, but started again after 4 completely quiet days on July 2nd, in the form of an intense seismic swarm that lasted less than one day. In order to understand how this second crisis developed several days after the injection stopped we apply a dedicated set of tools to recover and locate the most precisely as possible the earthquakes that occurred during this sequence. We are able to detect and locate precisely 1393 events. We show that these events that occurred during the injection define a planar structure where we observe migration of the seismicity. Based on our precise relocations we can also identify that the events of the second crisis occurred on a different structure probably activated by slow aseismic movements.

  2. Preliminary Results from the North Anatolian Fault Passive Seismic Experiment: Seismicity and Anisotropy

    NASA Astrophysics Data System (ADS)

    Biryol, C. B.; Ozacar, A.; Beck, S. L.; Zandt, G.

    2006-12-01

    The North Anatolian Fault (NAF) is one of the world's largest continental strike-slip faults. Despite much geological work at the surface, the deep structure of the NAF is relatively unknown. The North Anatolian Fault Passive Seismic Experiment is mainly focused on the lithospheric structure of this newly coalescing continental transform plate boundary. In the summer of 2005, we deployed 5 broadband seismic stations near the fault to gain more insight on the background seismicity, and in June 2006 we deployed 34 additional broadband stations along multiple transects crossing the main strand of the NAF and its splays. In the region, local seismicity is not limited to a narrow band near the NAF but distributed widely suggesting widespread continental deformation especially in the southern block. We relocated two of the largest events (M>4) that occurred close to our stations. Both events are 40-50km south of the NAF in the upper crust (6-9 km) along a normal fault with a strike-slip component that previously ruptured during the June 6, 2000 Orta-Cankiri earthquake (M=6.0). Preliminary analysis of SKS splitting for 4 stations deployed in 2005 indicates seismic anisotropy with delay times exceeding 1 sec. The fast polarization directions for these stations are primarily in NE-SW orientation, which remains uniform across the NAF. This direction is at a high angle to the surface trace of the fault and crustal velocity field, suggesting decoupling of lithosphere and mantle flow. Our SKS splitting observations are also similar to that observed from GSN station ANTO in central Turkey and stations across the Anatolian Plateau in eastern Turkey indicating relatively uniform mantle anisotropy throughout the region.

  3. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  4. A generic model for the shallow velocity structure of volcanoes

    NASA Astrophysics Data System (ADS)

    Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra

    2018-05-01

    The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.

  5. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California.

    NASA Astrophysics Data System (ADS)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.

    2017-04-01

    The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern end, and is an active rift. The second structural domain is a large, NE-SW-trending anticlinorium 60 km wide to the southeast of the rift zone, towards the Tiburon basin. One possibility is that it represents a positive flower structure and thus indicates a transpressional domain. However, individual structures within the broader zone are normal faults and negative flower structures, suggesting transtensional deformation, and the overall structure may be a roll-over antiform formed on a deep detachment structure. Finally, a strike-slip-dominated zone occurs along the northward continuation of the Ballenas Transform Fault. This is accompanied by the formation of submarine volcanic knolls. These patterns can be compared with seismic stratigraphy facies and structural patterns in mature transform margins and potentially give insight into their early history.

  6. Along-strike variations in seismic structure of the locked-sliding transition on the plate boundary beneath the southern part of Kii Peninsula, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Saiga, A.; Umeyama, E.; Tsumura, N.; Sakai, S.; Hirata, N.

    2013-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. A narrow zone of nonvolcanic tremor has been found in the SW Japan fore-arc, along strike of the arc (Obara, 2002). The epicentral distribution of tremor corresponds to the locked-sliding transition estimated from thermal and deformation models (Hyndman et al., 1995). The spatial distribution of the tremor is not homogeneous in a narrow belt but is spatially clustered. Obara [2002] suggested fluids as a source for tremor because of the long duration and the mobility of the tremor activity. The behavior of fluids at the plate interface is a key factor in understanding fault slip processes. Seismic reflection characteristics and seismic velocity variations can provide important information on the fluid-related heterogeneity of structure around plate interface. However, little is known about the deeper part of the plate boundary, especially the transition zone on the subducting plate. To reveal the seismic structure of the transition zone, we conducted passive and active seismic experiments in the southern part of Kii Peninsula, SW Japan. Sixty 3-component portable seismographs were installed on a 60-km-long line (SM-line) nearly perpendicular to the direction of the subduction of the PHS with approximately 1 km spacing. To improve accuracy of hypocenter locations, we additionally deployed six 3-component seismic stations around the survey line. Waveforms were continuously recorded during a five-month period from December, 2009. In October of 2010, a deep seismic profiling was also conducted. 290 seismometers were deployed on the SM-line with about 200 m spacing, on which five explosives shots were fired as controlled seismic sources. Arrival times of local earthquakes and explosive shots were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). To obtain the detailed structure image of the transition zone on the subducting plate, the explosive shot data recorded on the SM-line were processed using the seismic reflection technique. Seismic reflection image shows the lateral variation of the reflectivity along the top of the PHS. A clear reflection band is present where the clustered tremors occurred. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered tremors are located in and around the high Vp/Vs zone. These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the subducted oceanic lithosphere.

  7. Characterization of the structure of the Salar de Atacama Basin through gravimetric profiles and interval velocity analysis.

    NASA Astrophysics Data System (ADS)

    Becerra, J.; Bascunan, S. A.; Maksymowicz, A.; Martínez, F.; Arriagada, C.

    2017-12-01

    The structure of the basins found in the Preandean Depression in the northern Central Andes has remained elusive, partly due to a poor understanding of the structural styles and stratigraphy beneath their surface. An independent approach to the multiple interpretations of seismic lines available is the analysis of 2D gravity profiles. An E-W profile was performed across the basin, closely matching the surficial trace of previous seismic lines. The profile shows three gravimetric lows, the most relevant being one beneath the Llano de la Paciencia- Cordillera de la Sal, comprised of deformed evaporitic and terrigenous deposits of Oligocene-Early Miocene age. The structure which bounds this gravity low has a steeper dip on its eastern side, bounding the eastern side of the Cordillera de la Sal, which is at odds with previous studies that interpreted its western contact with Cretaceous outcrops as the possible basin boundary. The 3-D analyses of seismic interval velocity data around the gravimetric survey reveal a major vertical contrast in the eastern portion of the profile, interpreted as the bottom of the evaporite successions, followed to the west by a complex, narrow and deep zone of low velocities. Westward, the Cretaceous rocks record higher velocities than its post-Paleocene counterparts, and an almost uniform increase in velocity with depth. The major gravity anomaly is closely related to the Cordillera de la Sal, which consists of an array of folds and reverse faults involving Oligocene to recent deposits. We propose that the faults which generated Oligocene extension are not at the western border of the basin, but around the Cordillera de la Sal, which is the result of Miocene inversion of the same system. Strike-slip deformation was also probably a major contributor in basin formation, as shown by the narrow yet deep shape of the depocenter.

  8. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  9. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep 'fiord-lake' basin

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.

    1991-09-01

    This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation from fan-deltas. The extreme thickness of sequences I and II in Okanagan Lake reflects the focussing of large volumes of meltwater and sediment into the basin during deglaciation; pre-existing sediments that pre-date the last glacial cycle appear to have been completely eroded. Glaciological conditions during sedimentation may have been similar to marine-based outlet glaciers calving in deep water in fiord basins. In contrast to marine settings where ice bergs are free to disperse, large volumes of dead ice were trapped within the basin; structural evidence for sedimentation around dead ice blocks has been previously used to argue that the Cordilleran Ice Sheet downwasted in situ. We emphasize in contrast, the trapping of dead ice left behind by rapidly calving lake-based outlet glaciers.

  10. Passive (Micro-) Seismic Event Detection by Identifying Embedded "Event" Anomalies Within Statistically Describable Background Noise

    NASA Astrophysics Data System (ADS)

    Baziw, Erick; Verbeek, Gerald

    2012-12-01

    Among engineers there is considerable interest in the real-time identification of "events" within time series data with a low signal to noise ratio. This is especially true for acoustic emission analysis, which is utilized to assess the integrity and safety of many structures and is also applied in the field of passive seismic monitoring (PSM). Here an array of seismic receivers are used to acquire acoustic signals to monitor locations where seismic activity is expected: underground excavations, deep open pits and quarries, reservoirs into which fluids are injected or from which fluids are produced, permeable subsurface formations, or sites of large underground explosions. The most important element of PSM is event detection: the monitoring of seismic acoustic emissions is a continuous, real-time process which typically runs 24 h a day, 7 days a week, and therefore a PSM system with poor event detection can easily acquire terabytes of useless data as it does not identify crucial acoustic events. This paper outlines a new algorithm developed for this application, the so-called SEED™ (Signal Enhancement and Event Detection) algorithm. The SEED™ algorithm uses real-time Bayesian recursive estimation digital filtering techniques for PSM signal enhancement and event detection.

  11. Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2014-01-01

    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  12. Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin

    NASA Astrophysics Data System (ADS)

    Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib

    2017-11-01

    Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.

  13. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the other model, a northwestern dipping normal faults system was interpreted, and the normal faults were the paths for guiding the geothermal energy from the depth. Although both models were possible for obtaining a promising geothermal energy in the study area, a clear conceptual structure model is needed for future development of the geothermal energy in this area. Our interpretation favorites the fault dominant structure model; however, since the bedrock was slate or argillite still needed to be identified, more data from core borings and other geophysical, geologic data are needed. In this paper, we will illustrate a 3 dimensional suburface structure model by using the seismic images and integrate with results obtained from other studies to show the possibility of the proposed fault dominant structure model.

  14. The BOrborema Deep Electromagnetic and Seismic (BODES) Experiment

    NASA Astrophysics Data System (ADS)

    Julià, J.; Garcia, X.; Medeiros, W. E.; Farias do Nascimento, A.

    2015-12-01

    The Borborema Province of NE Brazil is a large Precambrian domain of the Brazilian shield located in the Northeasternmost corner of South America. It is bounded by the Parnaíba basin to the West and by the São Francisco craton to the South. Its structuration in the Precambrian has been related to compressional processes during the Brasiliano-Pan African orogeny (600-550 Ma). In the Mesozoic, extensional stresses eventually leading to continental breakup, left a number of aborted rift basins within the Province. After continental breakup, the evolution of the Province was marked by episodes of uplift, which might have been coeval with episodes of Cenozoic volcanism. The most prominent expression of those uplift processes is the Borborema Plateau, an elliptically shaped topographic feature in the eastern half of the Province with maximum elevations of ~1200 m. The origin of uplift in the Plateau has been the focus of a number of multi-institutional and multi-disciplinary studies in the past few years, which have imaged the deep structure of the eastern Province with unprecedented detail. The origin of uplift in the western Province, which includes a superb example of basin inversion demonstrated by the ~1000 km elevations of the Chapada do Araripe, however, has been seldom investigated. With the goal of investigating the deep structure of the western Province, a temporary network of 10 collocated seismic and magnetotelluric stations was deployed in the region. The collocated stations were arranged in an approximately NS direction, with an interspation spacing of ~70 km and spanning a total length of ~600 km. The seismic stations consisted of broadband sensors (RefTek 151B-120 "Observer") sampling at 100 Hz and were deployed in January 2015; the MT stations consisted of long-period magnetotelluric (LEMI) systems, sampling at 1 Hz and 4 Hz, and were deployed in April 2015 for a period of ~2 weeks. Preliminary results based on teleseismic P-wave receiver functions suggest that the crust thickens towards the South, from 33 km in the Ceará domain to 44 km in the São Francisco craton. Preliminary analyis of MT data suggests a heterogeneous lithosphere, with marked changes in electrical properties around the Chapada do Araripe and a marked resistive structure towards the South, where the profile enters the São Francisco craton.

  15. Electrical conductivity structure of the mantle derived from inversion of geomagnetic observatory data: implications for lateral variations in temperature, composition and water content.

    NASA Astrophysics Data System (ADS)

    Munch, Federico; Grayver, Alexander; Khan, Amir; Kuvshinov, Alexey

    2017-04-01

    As most of Earth's interior remains geochemically unsampled, geophysical techniques based on seismology, geodesy, gravimetry, and electromagnetic studies play prominent roles because of their ability to sense structure at depth. Although seismic tomography maps show a variety of structures, separating thermal and compositional contributions from seismic velocities alone still remains a challenging task. Alternatively, as electrical conductivity is sensitive to temperature, chemical composition, oxygen fugacity, water content, and the presence of melt, it can serve for determining chemistry, mineralogy, and physical structure of the deep mantle. In this work we estimate and invert local C-responses (period range 3-100 days) for a number of worldwide geomagnetic observatories to map lateral variations of electrical conductivity in Earth's mantle (400-1600 km depth). The obtained conductivity profiles are interpreted in terms of basalt fraction in a basalt-harzburgite mixture, temperature structure, and water content variations. Interpretation is based on a self-consistent thermodynamic calculation of mineral phase equilibria, electrical conductivity databases, and probabilistic inverse methods.

  16. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less

  17. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Lognonné, Philippe; Nishikawa, Yasuhiro; Tanaka, Satoshi

    2017-07-01

    While deep moonquakes are seismic events commonly observed on the Moon, their source mechanism is still unexplained. The two main issues are poorly constrained source parameters and incompatibilities between the thermal profiles suggested by many studies and the apparent need for brittle properties at these depths. In this study, we reinvestigated the deep moonquake data to reestimate its source parameters and uncover the characteristics of deep moonquake faults that differ from those on Earth. We first improve the estimation of source parameters through spectral analysis using "new" broadband seismic records made by combining those of the Apollo long- and short-period seismometers. We use the broader frequency band of the combined spectra to estimate corner frequencies and DC values of spectra, which are important parameters to constrain the source parameters. We further use the spectral features to estimate seismic moments and stress drops for more than 100 deep moonquake events from three different source regions. This study revealed that deep moonquake faults are extremely smooth compared to terrestrial faults. Second, we reevaluate the brittle-ductile transition temperature that is consistent with the obtained source parameters. We show that the source parameters imply that the tidal stress is the main source of the stress glut causing deep moonquakes and the large strain rate from tides makes the brittle-ductile transition temperature higher. Higher transition temperatures open a new possibility to construct a thermal model that is consistent with deep moonquake occurrence and pressure condition and thereby improve our understandings of the deep moonquake source mechanism.

  18. Seismotectonic zoning of Azerbaijan territory

    NASA Astrophysics Data System (ADS)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.

  19. Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.

    2009-12-01

    We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel dataset in the framework of the multidisciplinary research project GEOTHERM (www.geotherm.ethz.ch) Left) Seismic network in Basel, Switzerland. An epicenter map of the fluid injection-induced seismicity recorded by the seismic network, indicating high event densities in hot colors, is shown in the inset. Right) Fluid injection-induced seismicity recorded by the seismic network.

  20. Origin and nature of crystal reflections: Results from integrated seismic measurements at the KTB superdeep drilling site

    NASA Astrophysics Data System (ADS)

    Harjes, H.-P.; Bram, K.; Dürbaum, H.-J.; Gebrande, H.; Hirschmann, G.; Janik, M.; KlöCkner, M.; Lüschen, E.; Rabbel, W.; Simon, M.; Thomas, R.; Tormann, J.; Wenzel, F.

    1997-08-01

    For almost 10 years the KTB superdeep drilling project has offered an excellent field laboratory for adapting seismic techniques to crystalline environments and for testing new ideas for interpreting seismic reflections in terms of lithological or textural properties of metamorphic rock units. The seismic investigations culminated in a three-dimensional (3-D) reflection survey on a 19×19 km area with the drill site at its center. Interpretation of these data resulted in a detailed, structural model of the German Continental Deep Drilling Program (KTB) location with dominant, steep faults in the upper crust. The 3-D reflection survey was part of a suite of seismic experiments, ranging from wide-angle reflection and refraction profiles to standard vertical seismic profiles (VSP) and more sophisticated surface-to-borehole observations. It was predicted that the drill bit would meet the most prominent, steeply dipping, crustal reflector at a depth of about 6500-7000 m, and indeed, the borehole penetrated a major fault zone in the depth interval between 6850 and 7300 m. This reflector offered the rare opportunity to relate logging results, reflective properties, and geology to observed and modeled data. Post-Variscan thrusting caused cataclastic deformation, with partial, strong alterations within a steeply dipping reverse fault zone. This process generated impedance contrasts within the fault zone on a lateral scale large enough to cause seismic reflections. This was confirmed by borehole measurements along the whole 9.1 km deep KTB profile. The strongest, reflected signals originated from fluid-filled fractures and cataclastic fracture zones rather than from lithological boundaries (i.e., first-order discontinuities between different rock types) or from texture- and/or foliation-induced anisotropy. During the interpretation of seismic data at KTB several lessons were learned: Conventional processing of two-dimensional (2-D) reflection data from a presite survey showed predominantly subhorizontal layering in the upper crust with reflectivity striking in the Variscan direction. Drilling, however, revealed that all rock units are steeply dipping. This confirms that surface common depth point (CDP) seismics strongly enhances subhorizontal reflectivity and may thus produce a very misleading crustal image. Although this was shown for synthetic examples earlier, the KTB provides the experimental proof of how crucial this insight can be.

  1. Seismic identification and origin of shallow gas in the Baiyun Sag Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Qin, Q.

    2016-12-01

    The analytics of three dimensional high resolution seismic data and multi-beam data gotten from Baiyun Sag(BYS), the northern South China Sea(SCS) reveals varieties of shallow gas indicators. Such indicators include gas chimneys, enhanced reflections, bright spots, pipes and acoustic blanking. Among them, the enhanced reflections suggest that the free gas has been presented. And, there are also some very high amplitude reflections and they have occurred in both deep and shallow sedimentary sections. Gas chimneys are dominant and pipes (line zones of big faults) also have been observed in much of the surveyed area if observing at 31 lines. Gas chimneys and pipes in the study area can be associated with some known faults that would act as migration pathways from deep fluids. There are some columnar zones of acoustic blanking in the survey area. This suggests that the observed structures in Baiyun sag sediments allow the emission of gases which might be for a large share of source rocks or deep gas reservoir, and there are abundant shallow gas in the Baiyun Sag. As we all know, the obvious characteristics of shallow gas are high pressure and highly dangerous. So our results are very essential to explore resources (hydrocarbon and gas hydrate) in such a petroliferous basin.

  2. Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish

    2018-05-01

    The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart from some recently discovered similar subsurface Gondwana occurrences in intracratonic parts, would indicate that Dharwar Craton was rifting even during Gondwana period, thereby challenging the long held view of cratonic stability.

  3. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.

  4. The shallow sedimentary and structural deformation in the southern Longmen Shan: constraints on the seismotectonics of the 2013 Lushan Mw6.7 Earthquake

    NASA Astrophysics Data System (ADS)

    Lu, R.; Xu, X.; He, D.; Suppe, J.

    2017-12-01

    On April 20, 2013, an unexpected Mw 6.7 earthquake occurred in Lushan County at the southern Longmen Shan, the eastern margin of the Tibetan Plateau. After this Lushan earthquake, whether the seismogenic fault is a high-angle or low-angle fault? The structural characteristics, attribution, and the seismotectonic model of this earthquake have many debates and problems. In this study, a high-resolution seismic reflection profile was combined with near-surface geological data, earthquake relocation and geodetic measurements, and a recent deep artificial seismic reflection profile to identify the active fault and seismotectonics of this earthquake. Three-dimensional imaging of the aftershocks was used to identify two planar faults that together form a y-shape (f1 and f2). Seismic interpretations suggest that the seismogenic fault f1 is a typical basement blind fault that did not penetrate into the overlying Mesozoic and Cenozoic units, and it is not a Shuangshi-Dachuan fault (F4) or the frontal Dayi buried fault (F6). Geodetic measurements suggest that the coseismic deformation is consistent with the geometry and kinematics of shear fault-bend folding (FBF). The history of tectonic evolution since the Paleozoic in Longmen Shan area also referred. There are three major detachments control the structural deformation of the upper crust in the Longmen Shan and Western Sichuan Basin, resulting in multiple superimposed deformation events. Deep seismic data indicate the syndepositional nature of fault f1 a preexisting normal fault older than the Triassic, which underwent positive inversion tectonics during the Late Cenozoic. A thrust fault f3 converges with f1 at a depth of approximately12 km with an accumulated slip 3.6 km. This 2013 Lushan earthquake triggered by blind faults is a hidden earthquake. Since the Late Cenozoic, with the strong and on-going compression of the Qinghai-Tibet Plateau to the Sichuan Basin, the early-period normal faults were activated after inversion and triggered Lushan earthquakes. Blind and reactivated faults increase the potential risk and uncertainty related to earthquakes in the eastern margin of the Tibetan Plateau.

  5. Two Generations of Detachment System in an Aborted Hyper-extended Rift Basin: A Case in the Baiyun Sag, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Mei, L.; Liu, J.; Chen, L.; Zheng, J.

    2016-12-01

    Three episodes of rifting started from the latest Cretaceous and contributed to final breakup of the South China Sea in Early Oligocene. The Baiyun Sag developed in the continental slope of northern South China Sea was supposed to be only affected by the second and third rifting events and defined as a hyper-extended rift basin with extremely thinned crust through a deep seismic reflection profile by former researchers. In this paper, 19 supplementary deep seismic images were used to investigate the deep crustal structure. The results suggest that only 4-km-thick continental crust is preserved in the middle of the Baiyun Sag, whereas about 26-km-thick in the adjacent relatively unextended regions, such as Panyu Low Uplift in the north and Shunhe Uplift in the southwest. Furthermore, recently gathered 2D/3D offshore seismic data almost cover the whole research region, allowing us to recognize a Cenozoic detachment system which consists of six major detachment faults. In contrast to the performance of the distal domains in the Iberia and Mid-Norway rifted margins, all of these detachment faults dipped toward the continent and thinned the crust effectively, indicating that the extension of the Baiyun Sag was independent of the future lithospheric breakup zone. Consequently, we define the Baiyun Sag as an aborted hyper-extended rift basin formed during Paleocene to Early Oligocene. The inherited basement structures will clearly influence the evolution process of new born rift basin. Under the top basement, a pre-Cenozoic detachment system is also well described in our research area and act as a series of surface with strong amplitude in seismic imaging. We argue that the Cenozoic detachment system was built on the basis of the pre-rift detachment system which is speculated to have formed in the Late Cretaceous. Extensional style of a conveyor belt is recognized in this sediment-rich, aborted hyper-extended supra-detachment basin, showing that the breakaway blocks or extensional allochthons move gradually away from the footwall upon the major detachment surface. This study provides valuable insights into the processes that are related to the evolution of extremely crustal thinning under the constraint of pre-existing fabrics.

  6. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Daniel

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production. A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Legmore » II in 2009 and recently confirmed with coring in 2017. A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.« less

  7. Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.

    1993-12-01

    This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less

  8. The dynamics of interacting salt structures and associated fluid flow in the western Norwegian-Danish Basin

    NASA Astrophysics Data System (ADS)

    Olsen, Mikkel S.; Clausen, Ole R.; Andresen, Katrine J.; Korstgård, John A.

    2015-04-01

    Minor secondary structures observed along the flanks of major salt structures in the Norwegian-Danish Basin appear to be generated mainly during the early stages of halokinesis. Seismic anomalies in the cover sediments at the flanks of the major salt structures and in relation to one of the secondary structures show several circular patterns. The circular patterns are generally interpreted as faults related to collapsing salt, indicating a subtle and dynamic cannibalization relationship between the secondary structure and the main diapir. High-amplitude reflections interpreted as either entrapped gas along the circular faults or diagenetic changes induced by the fluids originating from the salt-sediment interface generally enhances the seismic appearance of the circular faults, but potentially also disturb the seismic imaging of the faults. Other secondary salt structures, with a similar geometry, do not show sign of collapse, apparently due to a greater distance from the main salt structures and therefore not within the reach of being cannibalized by these. The observations furthermore suggest a trend showing a more advanced development of the main salt structures when the secondary structures are cannibalized. The lateral distribution of the main salt structures thus appears to be controlled not only by the initial thickness of the Zechstein salt, and possible underlying structures, but also by subtle variations in the location and evolution of secondary structures. The secondary structures have a major impact on the drainage of the deep Mesozoic succession as indicated by the fluid flow pattern also observed in the study, which emphasizes that a detailed mapping of salt structures including secondary structures at the flanks is of major importance during evaluation of petroleum systems in areas dominated by halokinesis.

  9. Seismic evidence for Messinian salt deformation and fluid circulation on the South Balearic margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela

    2014-05-01

    The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU and the Lower Unit (LU) appear to amalgamate as a consequence of complete salt withdrawal around diapirs. The seismic analysis is focussed on determining whether the boundary between low and high degree of deformation in the abyssal plain is determined by the limit of the salt distribution. In this case the northern limit of the Messinian pure salt basin would not coincide with the present day continental slope, thus requiring either a strong control of Messinian tectonic structures an salt deposition and/or a contamination of salt with clastics.

  10. Geophysical evidence for a transform margin in Northwestern Algeria: possible vestige of a Subduction-Transform Edge Propagator

    NASA Astrophysics Data System (ADS)

    Badji, R.; Charvis, P.; Bracene, R.; Galve, A.; Badsi, M.; Ribodetti, A.; Benaissa, Z.; Klingelhoefer, F.; Medaouri, M.; Beslier, M.

    2013-12-01

    This work is part of the Algerian-French SPIRAL program (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) which provides unprecedented images of the deep structure of the western Algerian Margin based on several wide-angle and multichannel seismic data shot across the Algerian Margin. One of the different hypotheses for the opening of the western Mediterranean Sea, we are testing is that the western part of the Algerian margin was possibly part of the southern edge of the Alboran continental block during its westward migration related to the rollback of the Betic-Rif-Alboran subduction zone. A tomographic inversion of the first arrival traveltimes along a 100-km long wide-angle seismic profile shot over 40 Ocean Bottom Seismometers, across the Margin offshore Mostaganem (Northwestern Algerian Margin) was conducted. The final model reveals striking feature in the deep structure of the margin from north to south: 1- the oceanic crust is as thin as 4-km, with velocities ranging from 5.0 to 7.1 km/s, covered by a 3.3 km thick sedimentary pile (seismic velocities from 1.5 to 5.0 km/s) characterized by an intense diapiric activity of the Messinian salt layer. 2- a sharp transition zone, less than 10 km wide, with seismic velocities intermediate between oceanic seismic velocities (observed northward) and continental seismic velocities (observed southward). This zone coincides with narrow and elongated pull apart basins imaged by multichannel seismic data. No evidence of volcanism nor of exhumed serpentinized upper mantle as described along many extensional continental margins are observed along this segment of the margin. 3- a thinned continental crust coincident with a rapid variation of the Moho depth imaged from 12 to ~20 km with a dip up to 50%. The seafloor bathymetry is showing a steep continental slope (>20%). Either normal or inverse faults are observed along MCS lines shot in the dip direction but they do not present large vertical displacement and could be related primarily to strike slip motion. These results support the hypothesis, that the margin offshore Mostaganem is not an extensional margin but rather a transform margin. There is little evidence of tectonic inversion as described eastward along the Kabylian Margin. Possibly strike slip motion affected the thinned continental crust and the transition zone suggesting that this margin is a vestige of the Subduction-Transform Edge Propagator (STEP) related to the westward migration of the Alboran block.

  11. High-resolution seismic reflection/refraction images near the outer margin of the Chesapeake Bay impact crater, York-James Peninsula, southeastern Virginia

    USGS Publications Warehouse

    Catchings, R.D.; Saulter, D.E.; Powars, D.S.; Goldman, M.R.; Dingler, J.A.; Gohn, G.S.; Schindler, J.S.; Johnson, G.H.

    2001-01-01

    Powars and Bruce (1999) showed that the Chesapeake Bay region of southeastern Virginia was the site of an asteroid or comet impact during the late Eocene, approximately 35 million years ago (Fig. 1). Initial borehole and marine seismic-reflection data revealed a 90-km-diameter impact structure, referred to as the Chesapeake Bay Impact Crater (CBIC), that lies buried beneath the southern Chesapeake Bay and surrounding Virginia Coastal Plain (Powars and Bruce, Figs. 1b). Stratigraphic correlations among a series of boreholes suggest that the impact disrupted basement rock and the overlying Cretaceous through middle Eocene deltaic and marine sediments. The CBIC truncates important regional sedimentary aquifer systems and possibly caused differential flushing of connate seawater. Therefore, the CBIC affects the present-day ground-water quantity and quality in the rapidly growing Hampton Roads region of southeastern Virginia. Impact-generated faults in the basement rock may be the sources of small-to-moderate earthquakes that have been occurred around the perimeter of the impact structure over the past few hundred years (Johnson et al., 1998). Powars and Bruce (1999) suggest that 150 m to 490 m of relatively undisturbed, post-impact Coastal-Plain sediments overlie the impact-disrupted sediments and basement rocks west of Chesapeake Bay. Their interpretation of marine seismic data, released from Texaco and Exxon, revealed a central 38-km-wide, 1.6-km-deep disrupted zone in the basement rocks (inner basin), which is surrounded by a 21- to 31-km-wide, 1- km-deep annular trough. Steep rim escarpments surround these features, which they mapped regionally as the outer and inner margins (rims) of the CBIC (Fig. 1b). The outer margin is a slumped terrace zone that has a 120- to 305-m-high gullied escarpment and varies in width from 0.8 to 3.2 km. However, the geographic bounds of the CBIC, its effects on the regional aquifer systems, and the distribution of impact generated faults and fractures in basement are not well determined. To better determine some of the unknowns associated with the CBIC, we conducted a 350-m-long, high-resolution seismic reflection and refraction survey, referred to here as the CBIC-1 seismic survey, on the York-James Peninsula in June 1999. In particular, we attempted to: better define the outer margin of the CBIC, understand lateral variations in the stratigraphic sequence, help assess potential hazards associated with regional seismicity, and determine acquisition parameters needed for shallow-depth seismic imaging in the Chesapeake Bay area.

  12. Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    NASA Astrophysics Data System (ADS)

    Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.

    2016-12-01

    The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here, we will present the preliminary results of the newly acquired high-quality, high-resolution and deep-penetration data and we will provide a comparison of the two datasets collected with different acquisition parameters.

  13. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra

  14. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.

  15. Development of compact long-term broadband ocean bottom seismometer for seafloor observation of slow earthquakes

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Shiobara, H.

    2017-12-01

    It is important to understand coupling between plates in a subduction zone for studies of earthquake generation. Recently low frequency tremor and very low frequency earthquake (VLFE) were discovered in plate boundary near a trench. These events (slow earthquakes) in shallow plate boundary should be related to slow slip on a plate boundary. For observation of slow earthquakes, Broad Band Ocean Bottom Seismometer (BBOBS) is useful, however a number of BBOBSs are limited due to cost. On the other hand, a number of Long-term OBSs (LT-OBSs) with recording period of one year are available. However, the LT-OBS has seismometer with a natural period of 1 second. Therefore frequency band of observation is slightly narrow for slow earthquakes. Therefore we developed a compact long-term broad-band OBS by replacement of the seismic sensor of the LT-OBSs to broadband seismometer.We adopted seismic sensor with natural period of 20 seconds (Trillium Compact Broadband Seismometer, Nanometrics). Because tilt of OBS on seafloor can not be controlled due to free-fall, leveling system for seismic sensor is necessary. The broadband seismic senor has cylinder shape with diameter of 90 mm and height of 100 mm, and the developed levelling system can mount the seismic sensor with no modification of shape. The levelling system has diameter of 160 mm and height of 110 mm, which is the same size as existing levelling system of the LT-OBS. The levelling system has two horizontal axes and each axis is driven by motor. Leveling can be performed up to 20 degrees by using micro-processor (Arduino). Resolution of levelling is less than one degree. The system immediately starts leveling by the power-on of controller. After levelling, the the seismic senor is powered and the controller records angles of levelling to SD RAM. Then the controller is shut down to consume no power. Compact long-term broadband ocean bottom seismometer is useful for observation of slow earthquakes on seafloor. In addition, seafloor observations of teleseismic events and deep earthquakes to estimate seismic structure of deep regions and observations of submarine volcanoes are expected.

  16. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.

  17. The 3-D aftershock distribution of three recent M5~5.5 earthquakes in the Anza region,California

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wdowinski, S.; Lin, G.

    2011-12-01

    The San Jacinto fault zone (SJFZ) exhibits the highest level of seismicity compared to other regions in southern California. On average, it produces four earthquakes per day, most of them at depth of 10-17 km. Over the past decade, an increasing seismic activity occurred in the Anza region, which included three M5~5.5 events and their aftershock sequences. These events occurred in 2001, 2005, and 2010. In this research we map the 3-D distribution of these three events to evaluate their rupture geometry and better understand the unusual deep seismic pattern along the SJFZ, which was termed "deep creep" (Wdowinski, 2009). We relocated 97,562 events from 1981 to 2011 in Anza region by applying the Source-Specific Station Term (SSST) method (Lin et al., 2006) and used an accurate 1-D velocity model derived from 3-D model of Lin et al (2007) and used In order to separate the aftershock sequence from background seismicity, we characterized each of the three aftershock sequences using Omori's law. Preliminary results show that all three sequences had a similar geometry of deep elongated aftershock distribution. Most aftershocks occurred at depth of 10-17 km and extended over a 70 km long segments of the SJFZ, centered at the mainshock hypocenters. A comparative study of other M5~5.5 mainshocks and their aftershock sequences in southern California reveals very different geometrical pattern, suggesting that the three Anza M5~5.5 events are unique and can be indicative of "deep creep" deformation processes. Reference 1.Lin, G.and Shearer,P.M.,2006, The COMPLOC earthquake location package,Seism. Res. Lett.77, pp.440-444. 2.Lin, G. and Shearer, P.M., Hauksson, E., and Thurber C.H.,2007, A three-dimensional crustal seismic velocity model for southern California from a composite event method,J. Geophys.Res.112, B12306, doi: 10.1029/ 2007JB004977. 3.Wdowinski, S. ,2009, Deep creep as a cause for the excess seismicity along the San Jacinto fault, Nat. Geosci.,doi:10.1038/NGEO684.

  18. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China) and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew

    2017-12-01

    The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.

  19. Geographical coincidence of high heat flow, high seismicity, and upwelling, with hydrocarbon deposits, phosphorites, evaporites, and uranium ores.

    PubMed

    Libby, L M; Libby, W F

    1974-10-01

    Oil deposits occur in deep sediments, and appear to be organic matter that has been transformed through the action of geothermal heat and pressure. Deep sediments, rich in biological remains, are created by ocean upwelling, caused in part by high geothermal heat flow through the sea bottom. Such regions correlate with enhanced seismic activity. We look for correlations of seismicity, high heat flux, petroleum, uranium, phosphates, and salts, deposited from abundant plant life. These may be useful in discovering more petroleum and coal. We estimate that the known world reserves of petroleum and coal are about 10(-4) of the total of buried biogenic carbon.

  20. Geographical Coincidence of High Heat Flow, High Seismicity, and Upwelling, with Hydrocarbon Deposits, Phosphorites, Evaporites, and Uranium Ores

    PubMed Central

    Libby, L. M.; Libby, W. F.

    1974-01-01

    Oil deposits occur in deep sediments, and appear to be organic matter that has been transformed through the action of geothermal heat and pressure. Deep sediments, rich in biological remains, are created by ocean upwelling, caused in part by high geothermal heat flow through the sea bottom. Such regions correlate with enhanced seismic activity. We look for correlations of seismicity, high heat flux, petroleum, uranium, phosphates, and salts, deposited from abundant plant life. These may be useful in discovering more petroleum and coal. We estimate that the known world reserves of petroleum and coal are about 10-4 of the total of buried biogenic carbon. Images PMID:16592185

  1. Seismic Sources for the Territory of Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.

    2011-12-01

    The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes

  2. Mantle structure: The message from scattered seismic waves (Invited)

    NASA Astrophysics Data System (ADS)

    Helffrich, G. R.; Kaneshima, S.

    2009-12-01

    When Francis Birch named the Transition Zone, the deep mantle became a dull place. It was homogeneous material simply becoming denser as pressure increased with depth. No more respect was accorded to it by geochemists than by geophysicists. For geochemists, the deep mantle was simply a dark box in which chemical components were held until needed for delicate flavoring of various sorts of rock cocktails. It deserves more respect. Though it may be dregs, the part of the mantle in contact with the core is rich in seismologically annoying structural detail. This might be written off as an observational quirk due to a mendacious Earth or investigative incompetence, except that more of the lower mantle is grudgingly revealing structure as well. The structural details are fine-scale, at characteristic sizes of around one to one hundred kilometers. The details are emerging from studies of scattered seismic waves. These are unscheduled arrivals in the timetable following an earthquake. They don't arise in a uniform or even a layered Earth. Rather, they originate from the wave field's interactions with sub-wavelength roughness in Earth structure. A lot of data is needed to be sure those arrivals are real and repeatable, but networks of hundreds of seismometers such as the ones in existence in Asia, Europe and North America can provide or have provided the necessary redundancy for confident detection. The results of studies of S-to-P and P-to-P scattering to date show that some lower mantle heterogeneity is associated with present subduction. Some is also found at sites of past subduction, but it is difficult to generalize to all heterogeneity. Scattering strength varies with depth: the shallowest lower mantle is rougher than the deeper parts. The peak scattering strength is around 1600 km deep in the mantle, followed by a slow decline. The roughness clusters, too, with individual groups separated by around 100 km. Individual clusters appear to have particular fabrics that influence their scattering characteristics. Because the km- to 100 km-length scales are present in oceanic plates in their layer thicknesses and plate thickness, these features strongly suggest that the scattered waves emanate from solid material injected into the lower mantle by subduction. They also suggest that the deep mantle is not strongly layered in viscosity or density because scattering strength depth profiles do not change abruptly. A real puzzle is the material identity of the heterogeneity. Seismic wavespeeds must change by more than 5% within a kilometer. Clearly, this is no thermal signal, but compositional differences that extreme in mantle mineralogies require extreme variations in silica or a very broad pressure-dependent phase transition to change properties that significantly. Only about 2% of the lower mantle volume has been explored to date. Much of the mantle away from subduction zones will never be visible. Different methods will be needed to see all of the mantle's structure details, even using scattering.

  3. A deep towed explosive source for seismic experiments on the ocean floor

    NASA Astrophysics Data System (ADS)

    Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.

    1986-12-01

    A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.

  4. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    NASA Astrophysics Data System (ADS)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  5. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    PubMed

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  6. Basin analysis of North Sea viking graben: new techniques in an old basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliffe, J.E.; Cao, S.; Lerche, I.

    1987-05-01

    Rapid sedimentation rates from the Upper Cretaceous to Tertiary in the North Sea require that burial history modeling account for overpressuring. Use of a quantitative fluid flow/compaction model, along with the inversion of thermal indicators to obtain independent estimates of paleoheat flu, can greatly enhance their knowledge of a basin's evolution and hydrocarbon potential. First they assess the modeling sensitivity to the quality of data and variation of other input parameters. Then application to 16 wells with vitrinite data in the Viking graben north of 59/sup 0/ latitude and to pseudo-wells derived from deep seismic profiling of BIRPA greatly enhancesmore » the study of regional variations. A Tissot generation model is run on all the wells for each potential source rock. The resulting amounts of oil and gas generated are contoured to produce a regional oil and gas provenance map for each source rock. The model results are compared and tested against the known producing fields. Finally, by restoration of the two-dimensional seismic reflection profiles, the temporal variations of basement subsidence and paleoheat flow are related to the tectonic zoning of the region and to the extensional history. The combined structural, thermal, and depositional information available due to technological progress in both modeling and deep seismic profiling allows a better understanding of previously proposed models of extension.« less

  7. Sedimentation in the Kane fracture zone, western North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroslow, G.E.

    1991-03-01

    The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less

  8. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean

    PubMed Central

    Murakami, Motohiko; Bass, Jay D.

    2011-01-01

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10–30% seismic velocity reduction observed in thin layers less than 20–40 km thick, just above the Earth’s core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO3 glass at pressures close to those of the CMB. The result suggests that MgSiO3 melt is likely to become denser than crystalline MgSiO3 above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time. PMID:21969547

  9. Nonlinear Programming shallow tomography improves deep structure imaging

    NASA Astrophysics Data System (ADS)

    Li, J.; Morozov, I.

    2004-05-01

    In areas with strong variations in topography or near-surface lithology, conventional seismic data processing methods do not produce clear images, neither shallow nor deep. The conventional reflection data processing methods do not resolve stacking velocities at very shallow depth; however, refraction tomography can be used to obtain the near-surface velocities. We use Nonlinear Programming (NP) via known velocity and depth in points from shallow boreholes and outcrop as well as derivation of slowness as constraint conditions to gain accurate shallow velocities. We apply this method to a 2D reflection survey shot across the Flame Mountain, a typical mountain with high gas reserve volume in Western China, by PetroChina and BGP in 1990s. The area has a highly rugged topography with strong variations of lithology near the surface. Over its hillside, the quality of reflection data is very good, but on the mountain ridge, reflection quality is poorer. Because of strong noise, only the first breaks are clear in the records, with velocities varying by more than 3 times in the near offsets. Because this region contains a steep cliff and an overthrust fold, it is very difficult to find a standard refraction horizon, therefore, GLI refractive statics conventional field and residual statics do not result in a good image. Our processing approach includes: 1) The Herglotz-Wiechert method to derive a starting velocity model which is better than horizontal velocity model; 2) using shallow boreholes and geological data, construct smoothness constraints on the velocity field as well as; 3) perform tomographic velocity inversion by NP algorithm; 4) by using the resulting accurate shallow velocities, derive the statics to correct the seismic data for the complex near-surface velocity variations. The result indicates that shallow refraction tomography can greatly improve deep seismic images in complex surface conditions.

  10. 3D Crustal Structure of the North-Ligurian Margin: First Results of the GROSMarin Experiment

    NASA Astrophysics Data System (ADS)

    Dessa, J.-X.; Lelièvre, M.; Simon, S.; Deschamps, A.; Béthoux, N.; Solarino, S.; Beslier, M.-O.; Sage, F.; Bellier, O.; Courboulex, F.; Klingelhoefer, F.; Eva, E.; Ferretti, G.; Scafidi, D.; Pavan, M.; Eva, C.; Lefeldt, M.; Flueh, E.

    2010-05-01

    The North-Ligurian rifted margin is singular in that it lies immediately next to the Alpine orogenic arc. It is furthermore seismically active and can experience destructive earthquakes such as in 1887 in the region of Imperia—an event that resulted in a tsunami and more than 600 casualties in spite of a coastal area that was much less densely populated than today. Out of such rare large events, the area undergoes a limited and diffuse seismic activity that can remain undetected and is generally poorly located. This results in a poor knowledge of active structures, especially at sea. Such knowledge is however required towards a quantification of the seismic hazard along the French Riviera and the Ligurian region. To this end, the GROSMarin project was undertaken with a dual objective: (1) to characterize the North-Ligurian margin from a structural standpoint—mode and degree of crustal stretching prior to oceanic accretion, segmentation along strike, subsequent evolution in an orogenic context— and (2) to identify zones of active crustal deformation at sea that are likely to generate earthquakes. The programme is a collaborative work between GeoAzur and Dip.Te.Ris (University of Genova), with some support from INGV, IFM-GEOMAR and IFREMER. It took place from April to October 2008 and consisted in the deployment of 21 ocean-bottom seismometers (OBS) on a grid spanning 50 km along strike and 25 km across, located between Nice, France, and Imperia, Italy, and ranging from mid-slope to the deep basin. This array was extended on land by the permanent stations of the French and Italian regional networks, temporarily densified by 13 portable stations. These instruments recorded the shots of a marine seismic source towed from R/V l'Atalante and were left for more than 5 months for passive surveying. The active part of the programme aims at characterizing the main structures of the margin through crustal 3D tomography; the objective of the passive part is to decrease the detection threshold of marine microseismicity and to reach a precise location of events in order to map active faults. Some of the sea and land instruments were fitted with broadband sensors to allow for teleseismic imaging of deep lithospheric discontinuities. We present the preliminary results of this experiment—in particular a first 3D tomographic model obtained from ~31.500 travel times derived from our recording of active seismic shots by the OBS's. Passive data analysis is being under progress and first relocations have been obtained. These results give an insight into the variability of the crustal structure, both along and across strike.

  11. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  12. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.

  13. Tectonic History and Deep Structure of the Demerara Plateau from Combined Wide-Angle and Reflection Seismic Data and Plate Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.

    2017-12-01

    Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.

  14. Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint

    NASA Astrophysics Data System (ADS)

    DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.

    2017-12-01

    The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.

  15. Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS), western Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.

    1999-01-01

    This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide-angle seismic data collected using the Refteks and ocean-bottom seismometers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but SHIPS appears to have successfully obtained useful data from almost all the stations deployed to record the airgun shots. Several interesting arrivals were observed: including refractions from the sedimentary basin fill in several basins, refractions from basement rocks forming the upper crust, Pg, refractions from the upper mantle, Pn, as well as reflections from within the crust and from the top of the upper mantle, PmP. We separately archived more than 30 local earthquakes recorded by the Reftek array during our deployment.

  16. The Oceanic Crustal Structure of the Southwestern Subbasin in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Ruan, A.; Li, J.; Lee, C.

    2012-12-01

    Located at the southwestern part of the South China Sea (SCS) among the Zhongsha Islands(Macclesfield Bank), the east subbasin, the Nansha Islands(Dangerous Ground), the V type southwest subbasin (SWSB) is an unique ocean basin in all the three subbasins of SCS. The crustal structure is one of the key problems to study the formation and evolution of SWSB. During December 2010 to March 2011, Ocean Bottom Seismometers (OBSs) experiment has been carried out in the SWSB to get the deep crustal structure information, especially under the fossil spreading center. Three types of OBS, Sedis IV type, I-4C type and MicrOBS type have been used in the experiment, and the energy source was supplied by 6000 inch3 large volume air-gun. High quality seismic data of four 2D profiles which covered the fossil spreading center of SWSB have been acquired. The data of the experiment can supply evidence for the study of oceanic crustal structure of the SWSB and seafloor spreading course, etc. The profile 1 extended 130 km in length. A total of 8 OBSs were deployed at intervals of 10 or 15 km and 7 OBSs were recovered. The data of the 7 stations of profile 1 have been processed, which shows that the seismic records are clear and seismic phases are abundance, and the air-guns have enough energy supply. The velocity model was obtained by using an interactive trial-and-error 2D ray-tracing method. The crustal structure indicates that the crustal thickness under the SWSB is about 6 km, and the moho depth is about 10km. The results reveal that the crust of SWSB is normal oceanic crust with a thin sedimentary layer on the seamount and shallow moho surface. The crustal velocity under the spreading center is extremely low, which shows the characteristic of the deep crustal structure of the fossil spreading center. Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant No. 91028006, 41106053, 41176046), Scientific Research Fund of the Second Institute of Oceanography, SOA(Grant No. JT1101) References: Ruan A G, Qiu X L, Li J B, et al. Wide aperture seismic sounding in the margin seas of China. South China Journal of Seismology,2009,29:10-18(in Chinese). Li J B, Jin X L, Gao J Y. Morpho-tectonic study on late-stage spreading of the Eastern Subbasin of South China Sea. Sci China Ser D-Earth Sci,2002, 45:978-989 WU Z L, LI J B, RUAN A G, et al. Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment[J]. Sci China Earth Sci, 2012,55:159-172. doi: 10.1007/s11430-011-4324-9.

  17. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep rupture off Fukushima at 90-135 s. The dominant-period difference of the seismic-wave radiation between two deep ruptures off Miyagi may result from the mechanism that small-scale heterogeneities on the fault are removed by the first rupture. This difference can be also interpreted by the concept of multi-scale dynamic rupture (Ide & Aochi, 2005).

  18. Investigating melting induced mantle heterogeneities in plate driven mantle convection models

    NASA Astrophysics Data System (ADS)

    Price, M.; Davies, H.; Panton, J.

    2017-12-01

    Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for heterogeneity in the mantle. Our work attempts to reconcile the many proposed current ideas for the deep mantle, giving additional insight from modelling on the latest observations from other Deep Earth disciplines.

  19. Deep structure of the Afro-Arabian hotspot by S receiver functions

    NASA Astrophysics Data System (ADS)

    Vinnik, L. P.; Farra, V.; Kind, R.

    2004-06-01

    We investigated deep structure of the Afro-Arabian hotspot by using recordings from Geoscope seismograph station ATD. The records are processed with the S receiver function technique, which allows a detection of Sp converted phases from the upper mantle discontinuities. The seismic data reveal two unusual discontinuities. The discontinuity at a depth of 160 km beneath the Gulf of Aden corresponds to the onset of melting. If the water content in olivine is around 800 H/106Si, melting at this depth requires a temperature close to 1550°C, about 120°C higher than the average. Another remarkable discontinuity is found at a depth of 480 km, where S velocity drops with depth by about 0.2 km/s. This can be the head of another plume which is trapped in the mantle transition zone.

  20. Preparing for InSight - using the continuous seismic data flow to investigate the deep interior of Mars

    NASA Astrophysics Data System (ADS)

    Hempel, S.; Garcia, R.; Weber, R. C.; Schmerr, N. C.; Panning, M. P.; Lognonne, P. H.; Banerdt, W. B.

    2016-12-01

    Complementary to investigating ray theoretically predictable parameters to explore the deep interior of Mars (see AGU contribution by R. Weber et al.), this paper presents the waveform approach to illuminate the lowermost mantle and core-mantle boundary of Mars. In preparation to the NASA discovery mission InSight, scheduled for launch in May, 2018, we produce synthetic waveforms considering realistic combinations of sources and a single receiver, as well as noise models. Due to a lack of constraints on the scattering properties of the Martian crust and mantle, we assume Earth-like scattering as a minimum and Moon-like scattering as a maximum possibility. Various seismic attenuation models are also investigated. InSight is set up to deliver event data as well as a continuous data flow. Where ray theoretical approaches will investigate the event data, the continuous data flow may contain signals reflected multiple times off the same reflector, e.g. the underside of the lithosphere, or the core-mantle boundary. It may also contain signals of individual events not detected or interfering wavefields radiated off multiple undetected events creating 'seismic noise'. We will use AxiSEM to simulate a continuous data flow for these cases for various 1D and 2D Mars models, and explore the possibilities of seismic interferometry to use seismic information hidden in the coda to investigate the deep interior of Mars.

  1. Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe

    2013-07-01

    The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed by applying the Material Failure Forecast Method (FFM) using cumulative Real-time Seismic Amplitude (RSAM) calculated both from raw records and on signals classified according to their dominant frequency. Stable estimates of eruption time with errors as small as ± 4 h are obtained within a 6 day lapse time before the eruption. This approach could therefore be useful to support decision making in the case of future large explosive episodes at Merapi.

  2. Understanding the nature of mantle upwelling beneath East-Africa

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.

  3. Blueschist- and Eclogite facies Pseudotachylytes: Products of Earthquakes in Collision- and Subduction zones

    NASA Astrophysics Data System (ADS)

    Andersen, T. B.; Austrheim, H.; John, T.; Medvedev, S.; Mair, K.

    2009-04-01

    Pseudotachylytes are the products of violent geological processes such as metorite impacts and seismic faulting. The fault-rock weakening processes leading to release of earthquakes are commonly related to phenomena such as grain size reduction and gouge formation, pressurization of pore-fluids and in some cases to melting by frictional heating. Explaining the frequently observed intermediate and deep earthquakes by brittle failure is, however, inherently difficult to reconcile because of extremely high normal stresses occuring at depth. In recent years several mechanisms for seismic events on deep faults have been suggested. These include: a) The most commonly accepted mechanism, dehydration embrittlement coupled to prograde metamorphic dehydration of wet rocks, such as serpentinites, at depth. b) Grain-size dependent flow-laws coupled with shear heating instability has been suggested as an alternative to explain repeated seismic faulting in Wadati-Benioff zones. c) Self-localized-thermal-runaway (SLTR) has been forwarded as a mechanism for ultimate failure of visco-elastic materials and as mechanism to explain the co-existence of shear zones and pseudotachylyte fault veins formed at eclogite facies conditions. All these mechanism point to the importance of metamorphism and/or metasomatism in understanding the mechanism(s) of intermediate- and deep earthquakes. Exhumed high to ultra-high pressure [(U)HP] metamorphic rocks are recognized in many orogenic belts. These complexes provide avenues to study a number of important products of geological processes including earthquakes with hypocentres at great depths. (U)HP co-seismic fault rocks are difficult to find in the field; nevertheless, a number of occurrences of co-seismic fault rocks from such complexes have been described after the initial discovery of such rocks in Norway (see: Austrheim and Boundy, Science 1994). In this talk we review some observations and interpretations based on these hitherto rarely observed but important co-seismic fault rocks from deep-crust and mantle complexes.

  4. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  5. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    NASA Astrophysics Data System (ADS)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper amphibolite-facies (0.9-1.0 GPa, 700 °C) mafic metagabbro from Precambrian exposures in Montana (USA) and in greenschist-facies (0.7-0.8 GPa, 450-500 °C) metagranites from the External Crystalline Massifs of the European Central Alps. The shear zones are characterized by strain gradients from undeformed coarse-grained protoliths to very fine grained ultramylonite, and by microstructures dominated by CPO-producing deformation mechanisms in the protomylonite and CPO-weakening mechanisms such as dissolution-precipitation creep and grain boundary sliding in the ultramylonite. In the mafic mylonites, the result is a lower seismic anisotropy ( 2%) in the core of the shear zones despite a well-developed hornblende shape-preferred orientation. Preliminary observations of these examples suggest that marginal gradients may contribute as much or more to the bulk anisotropy signal compared to the higher strained cores of these structures. If true, a similar effect could explain some otherwise puzzling anisotropy studies of larger scale shear zones such as from the Himalaya where anisotropy tilt proximal to the Main Himalayan Thrust is notably steeper than expected. In conclusion, while some anisotropy studies of crustal scale deformation patterns are relatively straightforward, others will require careful consideration of the limitations and potential future improvements to seismic detection methods, including ground truthing based on samples and exposures as well as a better understanding of physical processes involved in deformation localization.

  6. Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.

    2015-02-01

    Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpre­ted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.

  7. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    NASA Astrophysics Data System (ADS)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  8. Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data

    NASA Astrophysics Data System (ADS)

    Moscoso, Eduardo; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Flueh, Ernst R.; Dzierma, Yvonne; Rabbel, Wolfgang; Thorwart, Martin

    2011-07-01

    The 27 February, 2010 Maule earthquake (Mw = 8.8) ruptured ~ 400 km of the Nazca-South America plate boundary and caused hundreds of fatalities and billions of dollars in material losses. Here we present constraints on the fore-arc structure and subduction zone of the rupture area derived from seismic refraction and wide-angle data. The results show a wedge shaped body ~ 40 km wide with typical sedimentary velocities interpreted as a frontal accretionary prism (FAP). Landward of the imaged FAP, the velocity model shows an abrupt velocity-contrast, suggesting a lithological change which is interpreted as the contact between the FAP and the paleo accretionary prism (backstop). The backstop location is coincident with the seaward limit of the aftershocks, defining the updip limit of the co-seismic rupture and seismogenic zone. Furthermore, the seaward limit of the aftershocks coincides with the location of the shelf break in the entire earthquake rupture area (33°S-38.5°S), which is interpreted as the location of the backstop along the margin. Published seismic profiles at the northern and southern limit of the rupture area also show the presence of a strong horizontal velocity gradient seismic backstop at a distance of ~ 30 km from the deformation front. The seismic wide-angle reflections from the top of the subducting oceanic crust constrain the location of the plate boundary offshore, dipping at ~ 10°. The projection of the epicenter of the Maule earthquake onto our derived interplate boundary yielded a hypocenter around 20 km depth, this implies that this earthquake nucleated somewhere in the middle of the seismogenic zone, neither at its updip nor at its downdip limit.

  9. Hydro-mechanical modelling of induced seismicity during the deep geothermal project in St. Gallen, Switzerland

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan

    2017-04-01

    The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced seismicity during the St. Gallen project. The results will then allow us to more accurately estimate the seismic hazard for future geothermal projects.

  10. IODP Expedition 340T: Borehole Logging at Atlantis Massif Oceanic Core Complex

    NASA Astrophysics Data System (ADS)

    Blackman, D.; Slagle, A.; Harding, A.; Guerin, G.; McCaig, A.

    2013-03-01

    Integrated Ocean Drilling Program (IODP) Expedition 340T returned to the 1.4-km-deep Hole U1309D at Atlantis Massif to carry out borehole logging including vertical seismic profiling (VSP). Seismic, resistivity, and temperature logs were obtained throughout the geologic section in the footwall of this oceanic core complex. Reliable downhole temperature measurements throughout and the first seismic coverage of the 800-1400 meters below seafloor (mbsf) portion of the section were obtained. Distinct changes in velocity, resistivity, and magnetic susceptibility characterize the boundaries of altered, olivine-rich troctolite intervals within the otherwise dominantly gabbroic se-quence. Some narrow fault zones also are associated with downhole resistivity or velocity excursions. Small deviations in temperature were measured in borehole fluid adjacent to known faults at 750 mbsf and 1100 mbsf. This suggests that flow of seawater remains active along these zones of faulting and rock alteration. Vertical seismic profile station coverage at zero offset now extends the full length of the hole, including the uppermost 150 mbsf, where detachment processes are expected to have left their strongest imprint. Analysis of wallrock properties, together with alteration and structural characteristics of the cores from Site U1309, highlights the likely interplay between lithology, structure, lithospheric hydration, and core complex evolution. doi:10.2204/iodp.sd.15.04.2013

  11. Characterization of the seismically imaged Tuscarora fold system and implications for layer parallel shortening in the Pennsylvania salient

    NASA Astrophysics Data System (ADS)

    Mount, Van S.; Wilkins, Scott; Comiskey, Cody S.

    2017-12-01

    The Tuscarora fold system (TFS) is located in the Pennsylvania salient in the foreland of the Valley and Ridge province. The TFS is imaged in high quality 3D seismic data and comprises a system of small-scale folds within relatively flat-lying Lower Silurian Tuscarora Formation strata. We characterize the TFS structures and infer layer parallel shortening (LPS) directions and magnitudes associated with deformation during the Alleghany Orogeny. Previously reported LPS data in our study area are from shallow Devonian and Carboniferous strata (based on outcrop and core analyses) above the shallowest of three major detachments recognized in the region. Seismic data allows us to characterize LPS at depth in strata beneath the shallow detachment. Our LPS data (orientations and inferred magnitudes) are consistent with the shallow data leading us to surmise that LPS during Alleghanian deformation fanned around the salient and was distributed throughout the stratigraphic section - and not isolated to strata above the shallow detachment. We propose that a NW-SE oriented Alleghanian maximum principal stress was perturbed by deep structure associated with the non-linear margin of Laurentia resulting in fanning of shortening directions within the salient.

  12. The lithospheric Structure of the Sahara Metacraton From Joint Analysis of Satellite Gravity Gradients and Seismological Data

    NASA Astrophysics Data System (ADS)

    Sobh, M.; Ebbing, J.; Goetze, H. J.; Abdelsalam, M. G.

    2016-12-01

    For the Saharan Metacraton in northern Africa only a few geophysical results exists, which can be used to characterize its deep structure. We combine recent seismological models with satellite gravity gradients to build a 3D lithospheric density model of the metacraton and its surrounding regions. Due to the sparse distribution of seismic data, we estimate the Moho boundary by non-linear gravity inversion in spherical coordinates. The model is constrained by some wide angle refraction seismic profiles and receiver function Moho depths. Despite the high topography of the Darfur and Tibisti Cenozoic volcanic provinces, we estimate thin crust which indicates an upper mantle contribution to the isostatic balance. In combination with seismic tomography models, we found that the lithospheric thickness in the western part of the Metacraton is thicker than in the eastern part. This indicates that the western resembles the remnants of the pre-Neoproterozoic Sahara craton (e.g. the Marzuk craton which escaped the metacratonization process). In order to explain the partial loss of the expected cratonic root beneath the Metacraton, we present different petrological-geophysical scenario testing for different upper mantle compositions.

  13. Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi

    2018-03-01

    In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is characterized by an aseismic region landward of the trench axis. Spatial heterogeneity of seismicity and crustal structure might indicate the near-trench faults that could lead to future hazardous events such as the 1896 and 1933 Sanriku earthquakes, and should be taken into account in assessment of tsunami hazards related to large near-trench earthquakes.

  14. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

    USGS Publications Warehouse

    Brown, Justin R.; Beroza, Gregory C.; Ide, Satoshi; Ohta, Kazuaki; Shelly, David R.; Schwartz, Susan Y.; Rabbel, Wolfgang; Thorwart, M.; Kao, Honn

    2009-01-01

    Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity.

  15. Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.

    2017-12-01

    The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.

  16. The morphology and nature of the East Arctic ocean acoustic basement

    NASA Astrophysics Data System (ADS)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  17. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.

  18. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.

  19. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    NASA Astrophysics Data System (ADS)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  20. Plateau subduction, intraslab seismicity and the Denali Volcanic Gap

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.

    2017-12-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  1. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  2. Interferometric Seismic Sources on the Core Mantle Boundary Revealed by Seismic Coda Crosscorrelation

    NASA Astrophysics Data System (ADS)

    Pham, T. S.; Tkalcic, H.; Sambridge, M.

    2017-12-01

    The crosscorrelation of earthquake coda can be used to extract seismic body waves which are sensitive to deep Earth interior. The retrieved peaks in crosscorrelation of two seismic records are commonly interpreted as seismic phases that originate at a point source collocated with the first recorder (Huygens-Fresnel principle), reflected upward from prominent underground reflectors and reaching the second recorder. From the time shift of these peaks measured at different interstation distances, new travel time curves can be constructed. This study focuses on a previously unexplained interferometric phase (named temporarily a ghost or "G phase") observed in crosscorrelogram stack sections utilizing seismic coda. In particular, we deploy waveforms recorded by two regional seismic networks, one in Australia and another in Alaska. We show that the G phase cannot be explained by as a reflection. Moreover, we demonstrate that the G phase is explained through the principle of energy partitioning, and specifically, conversions from compressional to shear motions at the core-mantle boundary (CMB). This can be thought of in terms of a continuous distribution of Huygens sources across the CMB that are "activated" in long-range wavefield coda following significant earthquakes. The newly explained phase is renamed to cPS, to indicate a CMB origin and the P to S conversion. This mechanism explains a range of newly observed global interferometric phases that can be used in combination with existing phases to constrain Earth structure.

  3. Seismic reflection imaging with conventional and unconventional sources

    NASA Astrophysics Data System (ADS)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.

  4. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    NASA Astrophysics Data System (ADS)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  5. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  6. Seismic to­mography; theory and practice

    USGS Publications Warehouse

    Iver, H.M.; Hirahara, Kazuro

    1993-01-01

    Although highly theoretical and computer-orientated, seismic tomography has created spectacular images of anomolies within the Earth with dimensions of thousands of kilometers to few tens of meters. These images have enabled Earth scientists working on diverse areas to attack fundamental problems relating to the deep dynamical processes within our planet. Additionally, this technique is being used extensively to study the Earth's hazardous regions such as earthquake fault zones and volcanoes, as well as features beneficial to man such as oil or mineral-bearing structures. This book has been written by world experts and describes the theories, experimental and analytical procedures and results of applying seismic tomography from global to purely local scale. It represents the collective global perspective on the state of the art and focusses not only on the theoretical and practical aspects, but also on the uses for hydrocarbon, mineral and geothermal exploitation. Students and researchers in the Earth sciences, and research and exploration geophysicists should find this a useful, practical reference book for all aspects of their work.

  7. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    USGS Publications Warehouse

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2°–7° to 12° where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35–45 km deep) beneath the Cascade Range, with thinner crust (30–35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ∼25 km depth beneath the coastline to perhaps as far west as the deformation front ∼120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  8. The forearc crustal evolution of Izu-Bonin (Ogasawara) region obtained by seismic reflection and refraction surveys

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of tectonic activity of sediments between the west and east side of Oligocene paleoarc. We would present the crustal condition before rifting between present volcanic front and Oligocene paleoarc by comparison of reflection and velocity structure.

  9. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60 kilometers - from the Brenner Pass area located along the crestline of the Alps to mount Zugspitze near the northern fringe of the Northern Calcareous Alps. Major fault zones and intercalated rigid blocks thus can 'teleconnect' zones of preferred mass-wasting over large lateral distances in orogens. Reference: Prager, C., Zangerl, C., Patzelt, G., Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8, 377-407.

  10. Near-surface structure of the Central Scandinavian Caledonides in northern Trøndelag, Norway, from correlation of seismic and MT profiles using gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Ebbing, J.; Goerigk, L.; Nasuti, A.; Roberts, D.; Korja, T. J.; Smirnov, M.

    2014-12-01

    The deep geology of northern Trøndelag is somewhat speculative as the Central Scandinavian Caledonides are intersected by the Møre-Trøndelag Fault Complex (MTFC) and only a few depth-penetrating geophysical profiles exist. Here, we correlate the mapped geological units and faults between a seismic-reflection profile and a MT profile. The seismic-reflection data were acquired in 5 segments over the period 1986-1990. The westernmost section of the seismic profile is dominated by a complex pattern of reflections and diffractions. This type of pattern is typical of polydeformed terranes with a mixture of contrasting felsic and mafic lithologies. The two steeply-dipping strands of the MTFC (Hitra-Snåsa and Verran faults) that transect the profile do not show any distinctive signature in the seismic data. The MT data were acquired in 2007 from the Swedish border to the Norwegian coast. The conductivity profile shows some distinct vertical changes as well as changes from the near-surface to shallow depths. The strands of the MTFC show especially a distinctive change in conductivity. The two profiles are almost parallel but separated by 100 km. To correlate the structures seen on both profiles, we have applied lineament analysis and 3D modelling of the gravity and magnetic field. The tilt derivative of the magnetic and isostatic gravity anomaly clearly allows us to identify and link the main geological boundaries between the profiles and to trace the strands of the MTFC from one profile to the other. This trend analysis indicates that at least the Verran Fault visibly modifies the pattern of seismic reflections. However, the main change in crustal lithology occurs farther to the west, almost at the coast where the Tarva Fault intersects the MT profile. This integrated analysis shows the benefit of combining gravity and magnetic interpretations with MT and seismic data to enable us to understand the near-surface geology and structure in more detail.

  11. The derivation of an anisotropic velocity model from a combined surface and borehole seismic survey in crystalline environment at the COSC-1 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.

    2017-09-01

    The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0.03 and δ = 0.3, estimated by laboratory studies and the analysis of the surface seismic and walkaway VSP data. This resulting anisotropic model provides the basis for further detailed geological and geophysical investigations in the direct vicinity of the borehole.

  12. Integrated geological-geophysical models of unstable slopes in seismogenic areas in NW and SE Europe

    NASA Astrophysics Data System (ADS)

    Mreyen, Anne-Sophie; Micu, Mihai; Onaca, Alexandru; Demoulin, Alain; Havenith, Hans-Balder

    2017-04-01

    We will present a series of new integrated 3D models of landslide sites that were investigated in distinctive seismotectonic and climatic contexts: (1) along the Hockai Fault Zone in Belgium, with the 1692 Verviers Earthquake (M 6 - 6.5) as most prominent earthquake that occurred in that fault zone and (2) in the seismic region of Vrancea, Romania, where four earthquakes with Mw > 7.4 have been recorded during the last two centuries. Both sites present deep-seated failures located in more or less seismically active areas. In such areas, slope stability analyses have to take into account the possible contributions to ground failure. Our investigation methods had to be adapted to capture the deep structure as well as the physico-mechanical characteristics that influence the dynamic behaviour of the landslide body. Field surveys included electrical resistivity tomography profiles, seismic refraction profiles (analysed in terms of both seismic P-wave tomography and surface waves), ambient noise measurements to determine the soil resonance frequencies through H/V analysis, complemented by geological and geomorphic mapping. The H/V method, in particular, is more and more used for landslide investigations or sites marked by topographic relief (in addition to the more classical applications on flat sites). Results of data interpretation were compiled in 3D geological-geophysical models supported by high resolution remote sensing data of the ground surface. Data and results were not only analysed in parallel or successively; to ensure full integration of all inputs-outputs, some data fusion and geostatistical techniques were applied to establish closer links between them. Inside the 3D models, material boundaries were defined in terms of surfaces and volumes. Those models were used as inputs for 2D dynamic numerical simulations completed with the UDEC (Itasca) software. For some sites, a full back-analysis was carried out to assess the possibility of a seismic triggering of the landslides.

  13. Sedimentary Cover of the Central Arctic

    NASA Astrophysics Data System (ADS)

    Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg

    2017-04-01

    Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data. Structural prolongation of the shallow shelf into deep-water could be observed on this sedimentary map.

  14. Near-Surface Geophysical Imaging of Deformation Associated with the Daytona Beach Sand Blow Deposits, Lee County, Arkansas

    NASA Astrophysics Data System (ADS)

    Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.

    2017-12-01

    Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.

  15. Wide-angle Marine Seismic Refraction Imaging of Vertical Faults: Pre-Stack Turning Wave Migrations of Synthetic Data and Implications for Survey Design

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.

    2006-12-01

    We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.

  16. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    NASA Astrophysics Data System (ADS)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform”), were performed to obtain reflection images from heterogeneous geological structure. As the results, the reflective events that seemed to correspond with sedimentary layers, the unconformity between sedimentary rocks and granite, and fracture zones in granite could be detected by reflection profiles using “conventional VSP data processing” and “Seismic interferometry”. However, it is difficult to identify the faults around the MIU because they are generally at a high-angle. “IP transform” is one type of Radon transform which change common shot gather to IP domain. Image Points are defined through geometries of sources and reflectors. Reflection signals in time domain can be accumulated and enhanced in IP domain by “IP transform” on the condition of the right angle to a fault. So, by a search of the direction that reflection signals are enhanced using “IP transform”, the locations of faults can be inferred. By this method, the distribution of faults that correspond with faults in the current geological model constructed from investigation data in the MIU project could be detected.

  17. Crustal architecture of an inverted back arc rift basin, Niigata, central Japan

    NASA Astrophysics Data System (ADS)

    Sato, H.; Abe, S.; Kawai, N.; Saito, H.; Kato, N.; Ishiyama, T.; Iwasaki, T.; Kurashimo, E.; Inaba, M.; Van Horne, A.

    2012-04-01

    A back arc rift basin, formed during the Miocene opening of the Japan Sea, now uplifted and exposed in Niigata, central Japan, provides an exceptional opportunity to study a back arc rift formed on a short time scale and in a still active setting for the present day shortening deformation. Due to stress build up before the 2011 Tohoku earthquake (M9), two damaging earthquakes (M6.8) occurred in 2004 and 2007 in this inverted rift basin. Deep seismic profiling was performed along four seismic lines between 2008 and 2011. We used onshore-offshore deep seismic reflection profiling to examine the crustal architecture of the back arc basin, in particular the geometry of the source faults. We further applied refraction tomography analysis to distinguish between previously undifferentiated syn-rift volcanics and pre-rift Mesozoic rock based on P-wave velocity. Our findings indicate that the Miocene rift structure created during the extensional phase regulates the style of deformation and the geometry of the source faults in the current compressional regime. Syn-rift volcanics with a maximum thickness of 6 km filled the fault controlled basins as rifting proceeded. The volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation, including the Teradomari Formation, an over-pressured mudstone in the middle of the section that later became an important shallow detachment layer. Continued compression has caused fault-related fold and wedge thrusting in the post-rift sedimentary strata which are highly deformed by thin-skin style deformation. Since the Pliocene, normal faults created during the rift phase have been reactivated as reverse faults, including a shallow detachment in the Teradomari Formation which forms a complicated shortened deformation structure. Quaternary geomorphology suggests ongoing shortening. Transform faults inherited from the rift stage control the extent of present day reverse source faults and more importantly, earthquake magnitude.

  18. Pre-stack depth Migration imaging of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hussni, S. G.; Becel, A.; Schenini, L.; Laigle, M.; Dessa, J. X.; Galve, A.; Vitard, C.

    2017-12-01

    In 365 AD, a major M>8-tsunamignic earthquake occurred along the southwestern segment of the Hellenic subduction zone. Although this is the largest seismic event ever reported in Europe, some fundamental questions remain regarding the deep geometry of the interplate megathrust, as well as other faults within the overriding plate potentially connected to it. The main objective here is to image those deep structures, whose depths range between 15 and 45 km, using leading edge seismic reflection equipment. To this end, a 210-km-long multichannel seismic profile was acquired with the 8 km-long streamer and the 6600 cu.in source of R/V Marcus Langseth. This was realized at the end of 2015, during the SISMED cruise. This survey was made possible through a collective effort gathering labs (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Dpt. Geosciences of Pau Univ). A preliminary processing sequence has first been applied using Geovation software of CGG, which yielded a post-stack time migration of collected data, as well as pre-stack time migration obtained with a model derived from velocity analyses. Using Paradigm software, a pre-stack depth migration was subsequently carried out. This step required some tuning in the pre-processing sequence in order to improve multiple removal, noise suppression and to better reveal the true geometry of reflectors in depth. This iteration of pre-processing included, the use of parabolic Radon transform, FK filtering and time variant band pass filtering. An initial velocity model was built using depth-converted RMS velocities obtained from SISMED data for the sedimentary layer, complemented at depth with a smooth version of the tomographic velocities derived from coincident wide-angle data acquired during the 2012-ULYSSE survey. Then, we performed a Kirchhoff Pre-stack depth migration with traveltimes calculated using the Eikonal equation. Velocity model were then tuned through residual velocity analyses to flatten reflections in common reflection point gathers. These new results improve the imaging of deep reflectors and even reveal some new features. We will present this work, a comparison with our previously obtained post-stack time migration, as well as some insights into the new geological structures revealed by the depth imaging.

  19. Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

    2000-01-01

    Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

  20. Seismic stratigraphy of the Heuksan mud belt in the southeastern Yellow Sea, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Soo; Yoo, Dong Geun; Bae, Sung Ho; Min, Gun-Hong; Kim, Seong-Pil; Choi, Hunsoo

    2015-12-01

    To establish the seismic stratigraphy of the Heuksan mud belt (HMB) and reconstruct its depositional history, approximately 1,600 km of high-resolution seismic data were newly obtained using chirp acoustic sub-bottom profiler, sparker, and air-gun seismic systems. Based on seismic stratigraphic analysis, the HMB can be divided into three major seismic units (I, II, and III, from top to bottom) and four subunits (II-a, II-b, III-a, and III-b) overlying transgressive sands, pre-last glacial maximum (LGM) deposits, and the acoustic basement. Each unit and subunit show different seismic facies and geometry, being clearly separated from each other by bounding surfaces formed since the LGM. The spatial distribution, thicknesses and volumes of the seismic units were determined and plotted to document the sequential formation of the HMB. The correlation between deep drill core data (HMB-101, HMB-102, HMB-103, YSDP-101, and YSDP-102) and the seismic data suggests that subunits III-b and III-a were formed by the continuous accumulation of fine-grained sediment with partial sandy sediment in an estuarine/deltaic environment during the early to middle transgressive stage, accompanied by landward migration of the shoreline. Subunits II-b and II-a were probably formed by re-deposition of large volumes of sediment eroded from unit III during the middle transgressive to early highstand stage. Unit I is interpreted as the most recent mud deposit representing the highstand systems tract when sea-level rise terminated. The careful definition of seismic units and their interpretation proposed in this study, on the basis of the large and partly new seismic dataset covering the entire HMB together with deep drill core data, have been instrumental in reconstructing the depositional environment and formation mechanisms of the HMB.

  1. Lithospheric structure beneath Central Europe from the POLONAISE'97, CELEBRATION 2000, ALP 2002, and SUDETES 2003 seismic refraction experiments

    NASA Astrophysics Data System (ADS)

    Guterch, A.; Grad, M.; Keller, G. R.

    2005-12-01

    Beginning in 1997, Central Europe between the Baltic and Adriatic Seas, has been covered by an unprecedented network of seismic refraction experiments POLONAISE'97, CELEBRATION 2000, ALP 2002, and SUDETES 2003, have only been possible due to a massive international consortium consisted of more than 30 institutions from 16 countries in Europe and North America. The majority of recording instruments was provided by the IRIS/PASSCAL Instrument Center and the University of Texas at El Paso (USA), and several other countries also provided instrumentation. Total length of seismic profiles in all experiments is about 20,000 km. The main results of these experiments are: 1) the delineation of the deep structure of the southwestern margin of the East European Craton (southern Baltica) and its relationship to younger terranes; delineation of the major terranes and crustal blocks in the Trans European Suture Zone; determination of the structural framework of the Pannonian basin; elucidation of the deep structure and evolution of the Western Carpathian Mountains and Eastern Alps; determination of the structural relationships between the structural elements of the Bohemian massif and adjacent features; construction of 3-D models of the lithospheric structure; and evaluation and develop geodynamic models for the tectonic evolution of the region. Experiment Working Groups Members: K. Aric, M. Behm, E. Brueckl, W. Chwatal, H. Grassl, S. Hock, V. Hoeck, F. Kohlbeck, E.-M. Rumpfhuber, Ch. Schmid, R. Schmoller, C. Tomek, Ch. Ullrich, F.Weber (Austria), A.A. Belinsky (Belarus), I. Asudeh, R. Clowes, Z. Hajnal (Canada), F. Sumanova (Croatia), M. Broz , P. Hrubcova, M. Korn, O. Karousova, J. Malek, A. Spicak (Czech Republic), S.L. Jensen, P. Joergensen, H. Thybo (Denmark), K. Komminaho, U. Luosto, T. Tiira, J. Yliniemi (Finland), F. Bleibinhaus, R. Brinkmann, B. Forkmann, H. Gebrande, H. Geissler, A. Hemmann, G. Jentzsch, D. Kracke, A. Schulze, K. Schuster (Germany), T. Bodoky, T. Fancik, E. Hegedas, K. Posgay, E. Takacs (Hungary), J. Jacyna, L. Korabliova, G. Motuza, V. Nasedkin (Lithuania), W. Czuba, E. Gaczynski, M. Grad, A. Guterch, T. Janik, M. Majdanski, M. Malinowski, P. Sroda, M. Wilde-Piorko, (Poland), S.L. Kostiuchenko, A.F. Morozov (Russia), J. Vozar (Slovakia), A. Gosar (Slovenia), O. Selvi (Turkey), S. Acevedo, M. Averill, M. Fort, R. Greschke, S.Harder, G. Kaip, G.R. Keller, K.C. Miller, C.M. Snelson (USA)

  2. United States crustal thickness

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.; Schnetzler, C. C.

    1983-01-01

    The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.

  3. The Crustal Structure And CTBT Monitoring Of India: New Insights From Deep Seismic Profiling

    DTIC Science & Technology

    2000-09-01

    transitional type crust as a major source of Deccan trap flows. The Narmada-Son lineament is the most conspicuous linear geological feature in the... Deccan proto-continents) buckling of the upper and middle crustal layers of the proto-continents took place, resulting in the western block’s lower...crustal column subducting below the Deccan proto-continents. Thus, the collision process was of such severe magnitude that the impact was seen in both

  4. Velocity model of the crust and upper mantle at the southern margin of the East European Craton (Azov Sea-Crimea-Black Sea area), DOBRE-2 & DOBRE'99 transect

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Janik, Tomasz; Stephenson, Randell; Gryn, Dmytro; Tolkunov, Anatoliy; Czuba, Wojciech; Środa, Piotr; Sydorenko, Grigoriy; Lysynchuk, Dmytro; Omelchenko, Victor; Grad, Marek; Guterch, Aleksander; Kolomiyets, Katerina; Thybo, Hans; Dannowski, Anke; Flűh, Ernst R.; Legostaeva, Olga

    2013-04-01

    The southern part of the eastern European continental landmass consists mainly of a thick platform of Vendian and younger sediments overlying Precambrian basement, part of the East European Craton (EEC). The Scythian Platform (SP) lies between the EEC and the (mainly Alpine) deformed belt running from Dobrudja (Romania) to Crimea (Ukraine) and the Greater Caucasus (Russia), along the northern margin of the Black Sea. Hard constraints on the Palaeozoic history on the SP are very sparse and little is known of its crustal structure in this area. The poster presents the seismic results of a multidisciplinary project that fills some of this gap. The project is called DOBRE-2 (as it forms a prolongation of the successful DOBRE project executed in 1999-2001). The main objectives of DOBRE-2 were to elucidate the deep-seated structure of the lithosphere and geodynamic setting of the shelf zones of the Azov and Black seas and the Crimean peninsula and to study the deep controls on the structure of basement and sedimentary cover. DOBRE-2 traverses a number of major faults and suture zones separating the EEC from the SP, the Crimean Mountains, and the Black Sea depression. Significant hydrocarbon reserves occur in the basins traversed by DOBRE-2. Deep seismic reflection profiling (30 second, Vibroseis) has been completed on a 100-km segment of the profile on the Azov massif (part of the Ukrainian Shield) as well as a 47-km segment in Crimea. These are complemented by refraction profiling on the shelf zones of the Azov (~53 km) and Black (~160 km) seas and coincident near-vertical (CDP) in the Black Sea, using a combination of onshore seismograph stations, ocean-bottom seismometers, onshore explosive energy sources (6 shot points), as well as ship-borne seismic acquisition. We present a 2-D seismic velocity model (Vp in the crust, depth to the Moho and depth to the intracrustal reflectors) along (~780 km) the DOBRE-2 & DOBRE'99 transect. Our model extends the model published for the DOBRE'99 profile (The DOBREfraction'99 Working Group, 2003) to the southwest. The Moho dips in this direction, from a depth of 40 km below the Azov Sea to ~47 km, below Crimea. A short segment of a reflector interpreted to represent Moho was detected at a depth of ~37 km in the Black Sea part of the profile. We also present a comparison of the DOBRE-2 velocity model with an interpretation of a coincident CDP profile.

  5. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of mass movements and other environmental sources at the local, regional and even global scale.

  6. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.

  7. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave propagation, which could be related to subrosion processes.

  8. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of groundwater in the concession area. Results from this study demonstrate that original seismic field tapes collected for deep petroleum exploration can be reprocessed to explore for groundwater. ?? 1994.

  9. Anisotropy and tectonic deformation in the Ordos basin revealed by an active source seismic experiment

    NASA Astrophysics Data System (ADS)

    Jun, W. S.; Wang, F.; Xu, T.

    2016-12-01

    With the purpose of exploring the Ordos block, western North China Craton, two controlled-source deep seismic transects were conducted across this region. The first one is a 650 km long profile oriented N-S; the second is 1530 km and is oriented E-W. The upper mantle P wave-velocity derived from these profiles features a 0.25 km/s difference between them. Being the E-W higher that the N-S. The results obtained from both seismic profiles indicate that the upper mantle beneath the Ordos block presents seismic anisotropy in terms of discrepancy in Pn-wave velocity, such as the apparent seismic velocities observed along the two reference profiles demonstrate. This result is consistent with SKS-wave splitting measurements in the interior of the Ordos block. This indicates that the compressive stress state in Ordos during the Mesozoic became an extensional stress state in the Cenozoic. The high-velocity anomaly in the uppermost mantle under the west-east profile suggests that the lithospheric mantle is still not water-rich. Unlike what happened in the NCC to east of the Taihang Mountains, where the lithosphere experienced its thinning and destruction since the Mesozoic, the lithosphere in the interior of Ordos has suffered less deformation and remained tectonically stable. Keywords: wide-angle seismic profiling, Pn phase, high-velocity anomaly, upper mantle anisotropy, Ordos block, North China Craton. ReferencesChen L., 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys. Earth Planet. Inter. 173, 216-227. Gao S., Rudnick R.L., Xu W.L., et al., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41-53. Xu T., Zhang Z.J., Gao E.G., et al., 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seism. Soc. Am. 100, 841-850. Zhu R.X., Zheng T.Y., 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chinese Sci. Bull. 54(14), 1950-1961 (in Chinese).

  10. Using 3D Reflection Seismics for Deep Platinum Mine Planning and Risk Mitigation: A Case Study from the Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Scheiber-Enslin, S. E.; Manzi, M. S.; Webb, S. J.

    2017-12-01

    Loss-of-ground in mining is a common problem. Using the integration of high resolution aeromagnetic and 3D reflection seismic data to delineate the causative geological features allows for more efficient mine planning and risk reduction. High resolution data from Impala Platinum mine in the western Bushveld Complex are used to image potholes, iron-rich ultramafic pegmatoids (IRUPs), faults, dykes and diapirs that may impact the economic horizons (UG2). Imaging of these structures was previously limited to outcrop, both on surface and underground, as well as 2D seismic data. These high resolution seismic data are able to resolve faults with throws as small as 10 m. A diapir is imaged in the southwest of the study area with a diameter of approximately 6 km. The diapir has a depth extend of around 4 km below the UG2 horizon and displaces the horizon by 350 m. It has been suggested that topographic highs in the Transvaal Supergroup basement initiate the formation of these diapirs as new magma is injected into the chamber. The origin of the diapir within the layered basement rocks, and disruption of layering within the complex is visible on the seismic section. In the north of the study area a large region of slumping or several merged potholes is identified that is up to 2.5 km in length, with up to 700 m of vertical displacement. Ductile deformation that formed the potholes is imaged on the seismic section, with the UG2 cutting down into the footwall. However, brittle deformation of the UG2 is also imaged with faulting at the edges of the regions of slumping. The edges of these slump regions are also characterised by the emplacement of iron-rich ultramafic pegmatoids (IRUPs), which show up as regions of diffuse reflectivity on the seismic data and magnetic highs. The proximity of these faults and IRUPs to the edges of the slump structure brings in to question whether they contribute to pothole formation. The diapir and slump structure displaces the economic UG2 horizon at the mining levels and cause faulting of the horizon. Imaging of these structures could be used for future mining planning and design to assess and mitigate the risks posed by these features during mining activities.

  11. Passive seismic experiment and receiver functions analysis to determine crustal structure at the contact of the northern Dinarides and southwestern Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.

    2016-06-01

    Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.

  12. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images derived from LET. Interestingly, a deep (> 5 km), subtle LVZ imaged between Trident and Mount Katmai may represent remnants of the magmatic conduit system from the cataclysmic 1912 eruption of Novarupta. A deployment of 11 temporary broadband seismometers are currently in place around Katmai Pass and should provide more constraints on the structure of the deep LVZ. The availability of many three-component seismometers within the Katmai permanent/temporary network makes it possible to additionally invert Love waves and the ratio of the horizontal-to-vertical motion of Rayleigh waves, the HV ratio, to further delineate volcanic structure from the ambient seismic field.

  13. Plate boundary and major fault system in the overriding plate within the Shumagin gap at the Alaska-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.

    2013-12-01

    Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also suggests also that this fault system might be still active. The coincident wide-angle seismic data coincident with one MCS profile allow the addition of more information about the deep P-wave velocity structure whereas the streamer tomography (Michaelson-Rotermund et al., this session) around the fault system add more detailed view into the complex structure in the shallow portions (upper 2km) of these structures showing a low velocity zone along one large fault suggesting that this fault is still active. These large-scale structures imaged in the overriding plate within the Shumagin gap are probably sufficiently profound to play a major role in the behavior of the megathrust in this area, segmentation of great earthquake rupture area, tsunami generation and may influence the frictional properties of the seismogenic zone at depth.

  14. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  15. Vertical Cable Seismic Survey for SMS exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two hundred meters. Our VCS system has been demonstrated as a promising survey tool for the SMS exploration.

  16. Subduction structure beneath the eastern part of the Kii Peninsula, southwestern Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Tsumura, N.; Iwasaki, T.

    2016-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. In recent years, various slip motions with a different time scale, including episodic tremors and very low-frequency earthquakes have been recognized at or near the updip and downdip limits of seismogenic zone [e.g., Obara, 2002; Ito and Obara, 2006]. Revealing structural factors that control the fault slip behavior is important to understand the earthquake rupture dynamics. In 2006, active-source seismic experiment was conducted to obtain the subduction structure beneath the eastern part of the Kii Peninsula [Iwasaki et al., 2008]. Iwasaki et al. (2008) provided the geometry of the subducting PHS and the overlying crustal structure. However, little is known about the deeper part of the plate boundary, especially Vp/Vs structure in and around the source region of the tremor. Previous studies indicate the fluid pressure on a plate interface is one of the key factors to understand the fault slip process [e.g., Saffer and Tobin, 2011]. Seismic velocity variation provides important information on the fluid-related heterogeneous structure. Passive seismic data is useful to obtain a deep image including the S-wave velocity. Therefore, we conducted passive seismic experiment in the eastern part of the Kii Peninsula. Ninety 3-component portable seismographs were installed on a 90-km-long line nearly parallel to the direction of the subduction of the PHS. Waveforms were continuously recorded during a six-month period from May, 2015. Seismic data from 116 permanent stations around the survey line were also incorporated into our analysis to obtain a high-resolution velocity model. Arrival times of 356 local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures. Velocity structures are resolved down to 50 km depth. Clustered tremors are located in and around the low Vp and high Vp/Vs zone. Reported strong reflector interpreted to be the top of the PHS [Iwasaki et al., 2008] well corresponds to the top of the low Vp and high Vp/Vs zone. The low Vp and high Vp/Vs zone generally suggests the existence of fluid (e.g., Zhao et al., 1996). These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the PHS.

  17. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  18. Fragmentation of wall rock garnets during deep crustal earthquakes

    PubMed Central

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale. PMID:28261660

  19. A recent deep earthquake doublet in light of long-term evolution of Nazca subduction

    NASA Astrophysics Data System (ADS)

    Zahradník, J.; Čížková, H.; Bina, C. R.; Sokos, E.; Janský, J.; Tavera, H.; Carvalho, J.

    2017-03-01

    Earthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ˜30-year gap in a narrow, deep fault zone, fully consistent with the stress field derived from neighbouring 1976-2015 earthquakes. Seismic observations are interpreted using a geodynamic model of regional subduction, incorporating realistic rheology and major phase transitions, yielding a model slab that is nearly vertical in the deep-earthquake zone but stagnant below 660 km, consistent with tomographic imaging. Geodynamically modelled stresses match the seismically inferred stress field, where the steeply down-dip orientation of compressive stress axes at ˜600 km arises from combined viscous and buoyant forces resisting slab penetration into the lower mantle and deformation associated with slab buckling and stagnation. Observed fault-rupture geometry, demonstrated likelihood of seismic triggering, and high model temperatures in young subducted lithosphere, together favour nanometric crystallisation (and associated grain-boundary sliding) attending high-pressure dehydration as a likely seismogenic mechanism, unless a segment of much older lithosphere is present at depth.

  20. Analysis and Modeling of the Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2012-09-01

    09NA29328 Proposal No. BAA09-69 ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3...Administration (NNSA). 14. ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3 kilometer (km) depth...in the lower half of the borehole array . The strong velocity discontinuity at 2.0 km depth gives rise to another converted S wave, best seen in

  1. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  2. Exploring Asteroid Interiors: The Deep Interior Mission Concept

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.

    2003-01-01

    Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.

  3. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.

  4. 3-D architecture modeling using high-resolution seismic data and sparse well control: Example from the Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.

    1996-12-31

    Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.

  5. Geology and structure of the Pine River, Florida River, Carbon Junction, and Basin Creek gas seeps, La Plata County, Colorado

    USGS Publications Warehouse

    Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.

    1997-01-01

    Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.

  6. Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation

    NASA Astrophysics Data System (ADS)

    Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques

    2018-03-01

    During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus be a characteristic feature of inverted rifted margins.

  7. Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench

    PubMed Central

    Arai, Ryuta; Takahashi, Tsutomu; Kodaira, Shuichi; Kaiho, Yuka; Nakanishi, Ayako; Fujie, Gou; Nakamura, Yasuyuki; Yamamoto, Yojiro; Ishihara, Yasushi; Miura, Seiichi; Kaneda, Yoshiyuki

    2016-01-01

    It has been recognized that even weakly coupled subduction zones may cause large interplate earthquakes leading to destructive tsunamis. The Ryukyu Trench is one of the best fields to study this phenomenon, since various slow earthquakes and tsunamis have occurred; yet the fault structure and seismic activity there are poorly constrained. Here we present seismological evidence from marine observation for megathrust faults and low-frequency earthquakes (LFEs). On the basis of passive observation we find LFEs occur at 15–18 km depths along the plate interface and their distribution seems to bridge the gap between the shallow tsunamigenic zone and the deep slow slip region. This suggests that the southern Ryukyu Trench is dominated by slow earthquakes at any depths and lacks a typical locked zone. The plate interface is overlaid by a low-velocity wedge and is accompanied by polarity reversals of seismic reflections, indicating fluids exist at various depths along the plate interface. PMID:27447546

  8. Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.

    2009-08-01

    The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.

  9. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw < 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.

  10. Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective

    NASA Astrophysics Data System (ADS)

    England, R. W.; Cornwell, D. G.; Ramsden, A. M.

    2014-12-01

    One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.

  11. Stable isotopic and molecular compositions of void and hydrate-bound gases in typical seismic chimney setting of the Ulleung Basin, East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Chun, J.; Lee, J.; Kim, J.; Bahk, J.; Ryu, B.

    2009-12-01

    Two UBGH cores were collected at vertical seismic chimney setting in the deep-water (> 2,000 m) Ulleung Basin, East Sea during UBGH-Expedition-01 in 2007. Gas hydrates were recovered from UBGH-10 and UBGH-09 sites with different occurrences associated with seismic chimney blanking zone. Site UBGH-10 is characterized by a small mound as well as a near-surface structure, indicated by a seafloor extension of vertical seismic chimney. Site UBGH-09 consists of acoustic blanking in the shallow section and seismic chimney in the deep section. Highly GH-concentrated zones have been found in vertical seismic chimney interval at these two sites from the Ulleung Basin. Methane is the dominant component of void gases with traces of C2 and C3 at UBGH-09. No C4 hydrocarbon gases were determined. The C1/C2+C3 ratio range from 3222 to 31654. The stable carbon (δ13C) and hydrogen (δD) isotope values of CH4 range from -71.8‰ to -59.8‰ PDB and -203.6‰ to -185.6 ‰ SMOW, respectivley. Methane is the main component of void gases at UBGH-10. The C1/C2+C3 ratio range from 657 to 7968. The δ13C of CH4 varies from -67.7‰ to -60.6‰ PDB, and δD of CH4 ranges from -201.9‰ to -183.3 ‰ SMOW. Isotopic properties of void gases from the two sites suggest that CH4 is largely microbial with CO2 reduction environment. In the vertical seismic chimney interval, void gases have low C1/C2+C3 ratio (> 10,000). At shallow depth (0-67 mbsf) in UBGH-09 contain relatively high C1/C2+C3 ratio (11115 to 31654). The stable carbon and hydrogen isotope values of hydrate-bound gases range from -63.1‰ to 61.9‰ PDB and -200.2‰ to -191.4‰ SMOW, respectively. The C1/C2+C3 ratio range from 979 to 5085. The molecular and stable isotopic compositions of hydrate-bound gases suggest that CH4 is largely microbial with CO2 reduction.

  12. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method

    NASA Astrophysics Data System (ADS)

    Tün, M.; Pekkan, E.; Özel, O.; Guney, Y.

    2016-10-01

    Amplification can occur in a graben as a result of strong earthquake-induced ground motion. Thus, in seismic hazard and seismic site response studies, it is of the utmost importance to determine the geometry of the bedrock depth. The main objectives of this study were to determine the bedrock depth and map the depth-to-bedrock ratio for use in land use planning in regard to the mitigation of earthquake hazards in the Eskişehir Basin. The fundamental resonance frequencies (fr) of 318 investigation sites in the Eskişehir Basin were determined through case studies, and the 2-D S-wave velocity structure down to the bedrock depth was explored. Single-station microtremor data were collected from the 318 sites, as well as microtremor array data from nine sites, seismic reflection data from six sites, deep-drilling log data from three sites and shallow drilling log data from ten sites in the Eskişehir Graben. The fundamental resonance frequencies of the Eskişehir Basin sites were obtained from the microtremor data using the horizontal-to vertical (H/V) spectral ratio (HVSR) method. The phase velocities of the Rayleigh waves were estimated from the microtremor data using the spatial autocorrelation (SPAC) method. The fundamental resonance frequency range at the deepest point of the Eskişehir Basin was found to be 0.23-0.35 Hz. Based on the microtremor array measurements and the 2-D S-wave velocity profiles obtained using the SPAC method, a bedrock level with an average velocity of 1300 m s-1 was accepted as the bedrock depth limit in the region. The log data from a deep borehole and a seismic reflection cross-section of the basement rocks of the Eskişehir Basin were obtained and permitted a comparison of bedrock levels. Tests carried out using a multichannel walk-away technique permitted a seismic reflection cross-section to be obtained up to a depth of 1500-2000 m using an explosive energy source. The relationship between the fundamental resonance frequency in the Eskişehir Basin and the results of deep drilling, shallow drilling, shear wave velocity measurement and sedimentary cover depth measurement obtained from the seismic reflection section was expressed in the form of a nonlinear regression equation. An empirical relationship between fr, the thickness of sediments and the bedrock depth is suggested for use in future microzonation studies of sites in the region. The results revealed a maximum basin depth of 1000 m, located in the northeast of the Eskişehir Basin, and the SPAC and HVSR results indicated that within the study area the basin is characterized by a thin local sedimentary cover with low shear wave velocity overlying stiff materials, resulting in a sharp velocity contrast. The thicknesses of the old Quaternary and Tertiary fluvial sediments within the basin serve as the primary data sources in seismic hazard and seismic site response studies, and these results add to the body of available seismic hazard data contributing to a seismic microzonation of the Eskişehir Graben in advance of the severe earthquakes expected in the Anatolian Region.

  13. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon saturation in most perspective prospects. Factors of tectonic history, high thickness of sediments in basin, founded possible oil and gas source rocks promise success in future exploration, but in ESSB we also recommend further geophysical investigations (seismic, gravy and magnetic) and well testing of some most perspective prospects, despite of high cost of these activities. We suppose, that investigations of ESSB should be continued to receive positive effects for Russian national economy in the nearest future. References [1] Kirillova (eds) [2013] Geological setting and petroleum potential of sedimentary basins of East Siberian Sea continental margin, v. 1, (in Russian) 249. [2] Sobolev (eds) [2012] Investigation of main sequences of Paleozoic and Meso-Cenozoic sedimentary and magmatic complexes of New Siberian Islands Archipelago, (in Russian), 143. [3] Suprunenko (eds) [2005] Petroleum zoning of Russian East Arctic shelf, Comparative analysis of petroleum potential of this aquatories with definition of perspective prospects and choise of most perspective objects for future projects, v. 1, (in Russian), 264.

  14. The isolated ˜680 km deep 30 May 2015 MW 7.9 Ogasawara (Bonin) Islands earthquake

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Lay, Thorne; Zhan, Zhongwen; Kanamori, Hiroo; Hao, Jin-Lai

    2016-01-01

    Deep-focus earthquakes, located in very high-pressure conditions 300 to 700 km below the Earth's surface within sinking slabs of relatively cold oceanic lithosphere, are mysterious phenomena. The largest recorded deep-focus earthquake (MW 7.9) in the Izu-Bonin slab struck on 30 May 2015 beneath the Ogasawara (Bonin) Islands, isolated from prior seismicity by over 100 km in depth, and followed by only a few small aftershocks. Globally, this is the deepest (680 km centroid depth) event with MW ≥ 7.8 in the seismological record. Seismicity indicates along-strike contortion of the Izu-Bonin slab, with horizontal flattening near a depth of 550 km in the Izu region and rapid steepening to near-vertical toward the south above the location of the 2015 event. This event was exceptionally well-recorded by seismic stations around the world, allowing detailed constraints to be placed on the source process. Analyses of a large global data set of P, SH and pP seismic phases using short-period back-projection, subevent directivity, and broadband finite-fault inversion indicate that the mainshock ruptured a shallowly-dipping fault plane with patchy slip that spread over a distance of ∼40 km with a multi-stage expansion rate (∼ 5 + km /s down-dip initially, ∼3 km/s up-dip later). During the 17 s total rupture duration the radiated energy was ∼ 3.3 ×1016 J and the stress drop was ∼38 MPa. The radiation efficiency is moderate (0.34), intermediate to that of the 1994 Bolivia and 2013 Sea of Okhotsk MW 8.3 deep earthquakes, indicating that source processes of very large deep earthquakes sample a wide range of behavior from dissipative, more viscous failure to very brittle failure. The isolated occurrence of the event, much deeper than the apparently thermally-bounded distribution of Bonin-slab seismicity above 600 km depth, suggests that localized stress concentration associated with the pronounced deformation of the Izu-Bonin slab and proximity to the 660-km phase transition likely played a dominant role in generating this major earthquake.

  15. Source and Aftershock Analysis of a Large Deep Earthquake in the Tonga Flat Slab

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Warren, L. M.

    2013-12-01

    The 9 November 2009 (Mw 7.3) deep focus earthquake (depth = 591 km) occurred in the Tonga flat slab region, which is characterized by limited seismicity but has been imaged as a flat slab in tomographic imaging studies. In addition, this earthquake occurred immediately beneath the largest of the Fiji Islands and was well recorded by a temporary array of 16 broadband seismographs installed in Fiji and Tonga, providing an excellent opportunity to study the source mechanism of a deep earthquake in a partially aseismic flat slab region. We determine the positions of main shock hypocenter, its aftershocks and moment release subevents relative to the background seismicity using a hypocentroidal decomposition relative relocation method. We also investigate the rupture directivity by measuring the variation of rupture durations at different azimuth [e.g., Warren and Silver, 2006]. Arrival times picked from the local seismic stations together with teleseismic arrival times from the International Seismological Centre (ISC) are used for the relocation. Teleseismic waveforms are used for directivity study. Preliminary results show this entire region is relatively aseismic, with diffuse background seismicity distributed between 550-670 km. The main shock happened in a previously aseismic region, with only 1 small earthquake within 50 km during 1980-2012. 11 aftershocks large enough for good locations all occurred within the first 24 hours following the earthquake. The aftershock zone extends about 80 km from NW to SE, covering a much larger area than the mainshock rupture. The aftershock distribution does not correspond to the main shock fault plane, unlike the 1994 March 9 (Mw 7.6) Fiji-Tonga earthquake in the steeply dipping, highly seismic part of the Tonga slab. Mainshock subevent locations suggest a sub-horizontal SE-NW rupture direction. However, the directivity study shows a complicated rupture process which could not be solved with simple rupture assumption. We will present the result of this example earthquake and some other deep earthquakes at the fall meeting. Warren, L. M., and P. G. Silver (2006), Measurement of differential rupture durations as constraints on the source finiteness of deep earthquakes, J. Geophys. Res., 111, B06304, doi:10.1029/2005JB004001.

  16. A Closer Look at Recent Deep Mauna Loa Seismicity

    NASA Astrophysics Data System (ADS)

    Okubo, P. G.; Wolfe, C. J.; Nakata, J. S.; Koyanagi, S. K.; Uribe, J. O.

    2005-12-01

    In 2002, Mauna Loa Volcano showed signs of reawakening, some 18 years since its last eruption in 1984. First, in April, a brief flurry of microearthquakes occurred at cataloged depths from 25 to 55 km beneath Mauna Loa's summit caldera. Then in May 2002, after the microearthquake swarm had ended, geodetic monitors across Mauna Loa's summit caldera registered a change, from line-length shortening to extension, interpreted as reinflation of a magma body approximately 4 km beneath the volcano's summit. Accordingly, the Hawaiian Volcano Observatory issued advisories related to Mauna Loa's stirring. In July 2004, HVO began to record deep long-period (LP) earthquakes beneath Mauna Loa. Historically, interpretations of such seismicity patterns have associated LP source volumes with magma chambers and magma pathways. Over a few weeks, this seismicity dramatically jumped to levels of several dozen per day. Between the months of July and December 2004, nearly 2000 Mauna Loa LPs were located between roughly 25 km and greater than 60 km depths by HVO seismic analysts. In late December, these earthquakes rather abruptly ceased, and their levels have remained low ever since. We seek a more detailed understanding of how these earthquakes may factor into Mauna Loa's eruptive framework. Given that their first arrivals are typically emergent, hypocentral estimates using only P-wave first-arrival times of LP earthquakes are often marginally constrained. With such hypocentral estimates, it is difficult to establish clear relationships among the earthquake locations themselves, or between the earthquakes and other processes like crustal extension or magma accumulation or withdrawl. Building on earlier applications to deep earthquakes in Hawaii and LP earthquakes beneath Kilauea, we are reexamining this unprecedented Mauna Loa deep seismicity with waveform correlation and precise earthquake relocation techniques. Work to date reveals that, although the waveform correlation coefficients are low, a significant subset of the deep Mauna Loa LPs can be relocated to improve our understanding of the remarkable 2004 swarm. We are currently seeking stronger resolution to determine whether the waveform data are consistent with the vertically extended, conduit-like source distributions suggested by the catalog locations or, alternatively, whether the events are consistent with one or more narrowly extended point sources.

  17. Large-scale landslide triggering mechanisms in Debre Sina area, Central Ethiopian Highlands at the western Afar rift margin

    NASA Astrophysics Data System (ADS)

    Kiros, T.; Wohnlich, S.; Hussien, B.

    2017-12-01

    The Central Highlands of Ethiopia have repeatedly experiencing large-scale landslide events. Debre Sina area is one of the most landslide prone areas located along the western Afar rift margin of Ethiopia, which is frequently affected by large-scale and deep-seated landslides. Despite that, urban and rural development is currently taking place in almost all constricted valleys as well as on the imposing cliffs. Therefore, understanding the major triggering factors and failure mechanisms in the Debre Sina area and surroundings is of critical importance. In the present study, we investigate the landslide in the area using geological and topographic analysis, structural settings, geophysical investigation (seismic refraction), rainfall data and seismicity. Furthermore, petrographical as well as X-ray Diffraction (XRD) analysis are conducted to explain the mineral composition of parent rock and its weathering products. The topographic analysis result revealed that the slope range from 100 - 400, with elevation of 1,800 - 2,500m, with aspect to east and southeast are highly prone to landslide. The seismic refraction method identified four main layers of geomaterials which contained a subsurface landslides anomaly within the layers. The results consist of clay, loosely cemented colluvial sediments and highly weathered agglomerates (1000-1500m/s) 7-15m, highly to moderately fractured porphyritic basalt, ignimbrite, rhyolite/trachyte and volcanic ash (1500-2500m/s) 10-30m, moderately to slightly fractured ignimbrite, rhyolite/trachyte and basalt (2500-3500m/s) 30-50m and very strong, massive, fresh rock/bed rock (>3500m/s) from 45m depth. The large-scale and deep-seated landslides problem in the study area appears to be caused by heavy rainfall, complex geology and rugged topography, the presence of geological structures oriented parallel to the rift margin N-S fault (NNE-SSW trending) of the central Ethiopian highlands and coinciding with the head scarp of the slides and seismicity. These findings could serve as a basis for planners and policy-makers, and will lead to an increased level of understanding of the natural geohazards problems in the country.

  18. Crust structure of the Northern Margin of North China Craton and adjacent region from Sinoprobe-02 North China seismic WAR/R experiment

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Li, Q.; Cox, C. M.; Hou, H.; Guan, Y.

    2011-12-01

    The Central Asian Orogen Belt (CAOB) or Altaids, situated between the Siberian craton(SC) to the north and north China craton (NCC) with tarim to the south, is one of the world's largest accretionary orogens formed by subduction and accretion of juvenile material from the Neoproterozoic through the Paleozoic. The NCC is the oldest craton in China, which suffered Yanshan intercontinental orogenic process and lithosphere thinning in Mesozoic. In the past 20 years, remarkable studies about this region have been carried out and different tectonic models were proposed, however, some crucial geologic problems remain controversial. In order to obtain better knowledge of deep structure and properties of crust on the northern margin of north China craton, a 450 km long WAR/R section was completed jointly by Institute of Geology, CAGS and University of Oklahoma. Our 450 km long NW-SE WAR/R line extends from west end of the Yanshan orogen, across the Bainaimiao arc, Ondor sum subduction accretion complex to the Solonker suture zone. The recording of seismic waves from 8 explorations was conducted in 4 deployments of 300 reftek-125A records and single-channel 4.5Hz geophones with station spacing of 1km. The shooting procedure was employ 500 or 1500kg explosives in 4-5 or 15-23 boreholes at 40-45m depth. The sampling rate was 100 HZ, and recording time window was 1200s. The P wave field on the sections got high quality data for most part of the profile, but have low signal-to-noise for the south end, where closed to Beijing with a lot of ambient noise from traffic, industry and human activity. Arrivals from of refracted and reflected waves from sediments and basement (Pg), intracrust (Pcp, Plp) and Moho (Pmp) were typically observed, but Pn phase through the upper most mantle was only observed for 2 shots. Identification and correlation of seismic phases was done manually on computer screen Zplot software. Each trace has been bandpass filtered (1-20Hz) and normalized with AGC. The records were cut to 60s and reduced by 8 km/s. The initial velocity model began with a subhorizontal multilayer frame, in which the velocity was constructed and modified from adjacent deep seismic sounding sections for the profile, and the structure was constrained by the high-resolution deep seismic reflection stack section alone the same profile. The 2D ray-tracing program RAYINVR was used for forward modeling and inversion of travel times (Zelt, 1992), and VMED was used for creating and modifying velocity models. The travel time modeling was done using the top to bottom approach layer by layer. The velocity model was altered by trial and error, and travel times were calculated many times until the agreement between observed and calculated travel times were acceptable. Subsequently, the forward model was updated by damped least-squares inversion for the velocity and interface nodes. In our modeling, calculated travel times fit observed travel times for all trace with RMS of 0.1-0.2.The final velocity models derived for the profile reveals large variations both in structure and velocity. Supported by Sinoprobe-02 and US NSF PIRE grant (0730154)

  19. Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.

  20. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  1. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults.

    PubMed

    Magnani, Maria Beatrice; Blanpied, Michael L; DeShon, Heather R; Hornbach, Matthew J

    2017-11-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques.

  2. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults

    PubMed Central

    Magnani, Maria Beatrice; Blanpied, Michael L.; DeShon, Heather R.; Hornbach, Matthew J.

    2017-01-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques. PMID:29202029

  3. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the displacement hazard is strongly affected. Our results show that neglecting the effects of the deeper discontinuity implies an underestimation of the hazard of up to about 49% for a mean return period (MRP) of 475 years and 57% for an MRP of 2475 years, with possible consequences on the design of very tall buildings and large bridges.

  4. Deep thermal structure of Southeast Asia constrained by S-velocity data

    NASA Astrophysics Data System (ADS)

    Yu, Chuanhai; Shi, Xiaobin; Yang, Xiaoqiu; Zhao, Junfeng; Chen, Mei; Tang, Qunshu

    2017-12-01

    Southeast Asia, located in the southeastern part of the Eurasian Plate, is surrounded by tectonically active margins, exhibiting intense seismicity and volcanism, contains complex geological units with a perplexing evolution history. Because tectonic evolution is closely related to the deep thermal structure, an accurate estimation of the lithosphere thermal structure and thickness is important in extracting information on tectonics and geodynamics. However, there are significant uncertainties in the calculated deep thermal state constrained only by the observed surface heat flow. In this study, in order to obtain a better-constrained deep thermal state, we first calculate the deep thermal structure of Southeast Asia by employing an empirical relation between S-velocity and temperature, and then we estimate the base of the thermal lithosphere from the calculated temperature-depth profiles. The results show that, in general, the temperature is higher than the dry mantle solidus below the top of the seismic low-velocity zone, possibly indicating the presence of partial melt in the asthenosphere, particularly beneath oceanic basins such as the South China Sea. The temperature at a depth of 80 km in rifted and oceanic basins such as the Thailand Rift Basin, Thailand Bay, Andaman Sea, and South China Sea is about 200 °C higher than in plateaus and subduction zones such as the Khorat Plateau, Sumatra Island, and Philippine Trench regions. We suggest that the relatively cold and thick lithosphere block of the Khorat Plateau has not experienced significant internal deformation and might be extruded and rotated as a rigid block in response to the Indo-Eurasia collision. Our results show that the surface heat flow in the South China Sea is mainly dominated by the deep thermal state. There is a thermal anomaly in the Leiqiong area and in the areas adjacent to the northern margin of the South China Sea, indicating the presence of a high-temperature and thin lithosphere in the area of the well-known and controversial Hainan plume. The thermal lithosphere-asthenosphere boundary uplift area along the Xisha and southeastern Vietnam margin, in the western margin of South China Sea, which corresponds to the volcanic belt around this area, might indicate upwelling of hot mantle materials. The temperature values at 100 and 120 km depths through most regions of Southeast Asia are about 1400-1500 and 1550-1600 °C, respectively, which are nearly uniform with a small temperature difference. Our results also show that the lithosphere becomes thinner from the continent blocks toward the oceanic basins, with the smaller thickness values of 65-70 km in the South China Sea. The estimated base of the lithosphere corresponds approximately to the 1400 °C isotherm and shows good correlation with the tectonic setting.

  5. Seismic interpretation of the deep structure of the Wabash Valley Fault System

    USGS Publications Warehouse

    Bear, G.W.; Rupp, J.A.; Rudman, A.J.

    1997-01-01

    Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.

  6. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  7. Analysis of Deep Long-Period Subglacial Seismicity in Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Aster, R. C.; Myers, E. K.; Lough, A. C.

    2017-12-01

    We utilize subspace detection methodology to extend the detection and analysis of deep, long-period seismic activity associated with the subglacial and lower crust magmatic complex beneath the Executive Committee Range volcanoes of Marie Byrd Land (Lough et al., 2013). The Marie Byrd Land (MBL) volcanic province is a remote continental region that is almost completely covered by the West Antarctic Ice Sheet (WAIS). The southern extent of Marie Byrd Land lies within the West Antarctic Rift System (WARS), which includes the volcanic Executive Committee Range. Lough et al. noted that seismic stations in the POLENET/ANET seismic network detected two swarms of seismic activity during 2010 and 2011. These events have been interpreted as deep, long-period (DLP) earthquakes based on their depth (25-40 km), tectonic context, and low frequency spectra. The DLP events in MBL lie beneath an inferred volcanic edifice that is visible in ice penetrating radar images via subglacial topography and intraglacial ash deposits, and have been interpreted as a present location of Moho-proximal magmatic activity. The magmatic swarm activity in MBL provides a promising target for advanced subspace detection, and for the temporal, spatial, and event size analysis of an extensive deep long period earthquake swarm using a remote and sparse seismographic network. We utilized a catalog of 1370 traditionally identified DLP events to construct subspace detectors for the nine nearest stations using two years of data spanning 2010-2011. Via subspace detection we increase the number of observable detections more than 70 times at the highest signal to noise station while decreasing the overall minimum magnitude of completeness. In addition to the two previously identified swarms during early 2010 and early 2011, we find sustained activity throughout the two years of study that includes several previously unidentified periods of heightened activity. These events have a very high Gutenberg-Richter b-value (>2.0). We also note evidence of continuing seismicity through 2015 examining data from the small number of longer-running POLENET stations in the region.

  8. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2) absence of sediment waves on the basin floor, which is covered mainly by muds and hemipelagic sediments with a low sand-mud ratio; and (3) presence of sediment waves on the lower slope with a moderate sand-mud ratio.

  9. Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka, Russia) revealed by long-period seismicity

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Shapiro, Nikolaï M.; Gusev, Alexander A.

    2018-07-01

    After lying dormant for 36 yr, the Tolbachik volcano of the Klyuchevskoy group started to erupt on 27 November 2012. We investigate the preparatory phase of this eruption via a statistical analysis of the temporal behavior of long-period (LP) earthquakes that occurred beneath this volcanic system. The LP seismicity occurs close to the surface beneath the main volcanic edifices and at 30 km depth in the vicinity of a deep magmatic reservoir. The deep LP earthquakes and those beneath the Klyuchevskoy volcano occur quasi-periodically, while the LP earthquakes beneath Tolbachik are clustered in time. As the seismicity rate increased beneath Tolbachik days before the eruption, the level of the time clustering decreased. We interpret this as a manifestation of the evolution of the volcano plumbing system. We suggest that when a plumbing system awakes after quiescence, multiple cracks and channels are reactivated simultaneously and their interaction results in the strong time clustering of LP earthquakes. With time, this network of channels and cracks evolves into a more stable state with an overall increased permeability, where fluids flow uninhibited throughout the plumbing system except for a few remaining impediments that continue to generate seismic radiation. The inter-seismic source interaction and the level of earthquake time clustering in this latter state is weak. This scenario suggests that the observed evolution of the statistical behavior of the shallow LP seismicity beneath Tolbachik is an indicator of the reactivation and consolidation of the near-surface plumbing system prior to the Tolbachik eruption. The parts of the plumbing system above the deep magmatic reservoir and beneath the Klyuchevskoy volcano remain in nearly permanent activity, as demonstrated by the continuous occurrence of the deep LP earthquakes and very frequent Klyuchevskoy eruptions. This implies that these parts of the plumbing system remain in a stable permeable state and contain a few weakly interacting seismogenic sources. Our results provide new constraints on future mechanical models of the magmatic plumbing systems and demonstrate that the level of time clustering of LP earthquakes can be a useful parameter to infer information about the state of the plumbing system.

  10. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    NASA Astrophysics Data System (ADS)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  11. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  12. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  13. Rethinking turbidite paleoseismology along the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie

    2014-01-01

    A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.

  14. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath the inner forearc domain. In comparison, little seismicity is observed beneath the outer forearc domain. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate. At depth, interplate earthquakes observed between 35 and 45 km depth, deeper than the Moho of the forearc (~30 km), possibly reveal the downdip limit of the seismogenic zone. The Thales Scientific Party is composed of: Bayrakci, G., Bécel, A., Charvis, P., Diaz, J., Evain, M., Flueh, E., Gallart, J., Gailler, A., Galve, A., Hello, Y., Hirn, A., Kopp, H., Krabbenhoeft, A., Laigle, M., Lebrun, J. F., Monfret, T., Papenberg, C., Planert, L., Ruiz, M., Sapin, M., Weinzierl, W.

  15. Drilling the centre of the Thuringian Basin, Germany, to decipher potential interrelation between shallow and deep fluid systems

    NASA Astrophysics Data System (ADS)

    Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team

    2014-05-01

    To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.

  16. The Ural-Herirud transcontinental postcollisional strike-slip fault and its role in the formation of the Earth's crust

    NASA Astrophysics Data System (ADS)

    Leonov, Yu. G.; Volozh, Yu. A.; Antipov, M. P.; Kheraskova, T. N.

    2015-11-01

    The paper considers the morphology, deep structure, and geodynamic features of the Ural-Herirud postorogenic strike-slip fault (UH fault), along which the Moho (the "M") shifts along the entire axial zone of the Ural Orogen, then further to the south across the Scythian-Turan Plate to the Herirud sublatitudinal fault in Afghanistan. The postcollisional character of dextral displacements along the Ural-Herirud fault and its Triassic-Jurassic age are proven. We have estimated the scale of displacements and made an attempt to make a paleoreconstruction, illustrating the relationship between the Variscides of the Urals and the Tien Shan before tectonic displacements. The analysis of new data includes the latest generation of 1: 200000 geological maps and the regional seismic profiling data obtained in the most elevated part of the Urals (from the seismic profile of the Middle Urals in the north to the Uralseis seismic profile in the south), as well as within the sedimentary cover of the Turan Plate, from Mugodzhary to the southern boundaries of the former water area of the Aral Sea. General typomorphic signs of transcontinental strike-slip fault systems are considered and the structural model of the Ural-Herirud postcollisional strike-slip fault is presented.

  17. One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco

    2010-05-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L'Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigation.

  18. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  19. Clamped seismic metamaterials: ultra-low frequency stop bands

    NASA Astrophysics Data System (ADS)

    Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R. V.; Enoch, S.; Guenneau, S.

    2017-06-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1-10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0-30 Hz.

  20. Morphogenesis of the SW Balearic continental slope and adjacent abyssal plain, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Accettella, Daniela; Costa, Sergio; Lastras, Galderic; Acosta, Juan; Canals, Miquel; Wardell, Nigel

    2009-06-01

    We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW-NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW-ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.

  1. Earthquakes in the Mantle? Insights from Ultramafic Pseudotachylytes

    NASA Astrophysics Data System (ADS)

    Meado, A.; Ferre, E. C.; Ueda, T.; Ashwal, L. D.; Deseta, N.

    2015-12-01

    Deep earthquakes in subduction/collision zones may originate from mechanical failure of ultramafic rocks at mantle depths. Fault pseudotachylytes in peridotites have been attributed to seismic slip at depths >30 km. However, the possibility of frictional melting at shallower depths still exist. While pristine mantle rocks typically lack magnetite, postseismic serpentinization would likely involve formation of abundant multi-domain (MD) magnetite. Single-domain (SD) to pseudo-single domain (PSD) magnetite may also form in pseudotachylytes through breakdown of mafic silicates. Magnetite has a large magnetic susceptibility (Km). MD magnetite shows low magnetic remanence / magnetic saturation ratios (Mr/Ms) compared to SD-PSD magnetite. The formation of coseismic magnetite however would depend on fO2. Hence, in unserpentinized ultramafic pseudotachylytes, magnetite would form preferentially under shallow, high fO2 conditions. Coseismically deformed magnetite would result in a high anisotropy of magnetic susceptibility (AMS). Here, we present a predictive model of the magnetic properties and magnetic fabrics of ultramafic pseudotachylytes formed under four conditions: i) deep seismic slip and no syn- or postseismic serpentinization: low Km (<600 . 10^-6 [SI]), low Mr/Ms (<0.1), and low AMS (<1.1) ii) deep seismic slip followed by static serpentinization: high Km (>3,000 . 10^-6 [SI]), low Mr/Ms (<0.1), low AMS (<1.1) iii) deep or shallow seismic slip in previously serpentinized peridotites: high Km (>3,000 . 10^-6 [SI]), moderate Mr/Ms (0.1-0.5), high AMS (>1.5) iv) shallow seismic slip with no serpentinization: moderate Km (600-3,000 . 10^-6 [SI]), high Mr/Ms (>0.5), moderate AMS (1.1-1.5) We test these models using samples from the Balmuccia Massif (Italy) and the Schistes Lustrés (Corsica). These models may provide new constrains for ultramafic pseudotachylytes regarding their depth of formation and the timing of serpentinization.

  2. Numerical Modeling of Wastewater Injection in the Denver Basin combined disposal zone in northeast Colorado

    NASA Astrophysics Data System (ADS)

    Brown, M. R. M.; Ge, S.; Sheehan, A. F.

    2016-12-01

    Previous studies have correlated seismicity with high rate injection at Underground Injection Control Class II wastewater disposal wells. In this study, we examine the impact of injection in the Denver Basin combined disposal zone that is used by numerous Class II wells. The disposal zone includes the Lyons Formation, a sandstone unit, and the Fountain Formation, an arkose unit just above the basement. Within a 30-km radius of the deep Class II injection well (NGL C4A) closest to the June 1, 2014 M3.2 Greeley earthquake, there are fifteen deep wastewater disposal wells injecting into the disposal zone and two shallow wastewater disposal wells injecting into the Lyons Formation only. One of the shallow wells is located at the same disposal facility as NGL-C4A and started injection in October 2004; the earliest deep injection in this region, at well NGL-C6, began in November 2007. The major episode of seismicity in the area started in November 2013. The timing of injection operation and seismicity occurrence raises several questions. Why did seismicity not begin in the area until nearly 10 years after the start of injection? Nine of the deep wastewater disposal wells began injection after the M3.2 earthquake on June 1, 2014; how does the large increase in the number of injection wells in the area change the pore-pressure in the disposal zone? How does the injection from the various wells interact? Does this increase the chances of induced seismicity? We conduct numerical modeling of 18 injection wells from 2004 to 2016 to explore these questions by better understanding the pore-pressure changes through time, pore-pressure changes in areas of induced earthquakes, and the interactions between injection wells. We include the asymmetry of the basin geometry in the model. We also use this case study to refine how well spacing and injection rate influences the occurrence of induced earthquakes.

  3. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  4. Ambient seismic noise applications for Titan

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Zhan, Z.; Clayton, R. W.; Helmberger, D. V.; Tsai, V. C.

    2010-12-01

    Titan is Saturn’s largest moon and is host to a myriad of surface, crustal, and perhaps interior dynamic processes (e.g., Lunine & Lorenz 2009; Sotin et al. 2009). Although recent gravity data put constraints on the nature of Titan’s deep interior (Iess et al. 2010), details regarding the layering and crustal structure remain poorly constrained. For example, the crustal thickness derived from modeling of the gravity data suggests a value ~100 km, but with a large uncertainty. There may exist a subsurface ocean or reservoirs of liquid that actively connects with Titan’s hyrdrocarbon-bearing lakes and atmosphere. Cross-correlation of ambient seismic noise is an emerging method to study crustal structures (e.g., Shapiro et al. 2005). Recent results show that under certain conditions, such as post-critical reflections, the Moho-reflected shear wave (SmS) can be clearly identified with ambient seismic noise [Zhan et al. 2010]. Titan may represent a plausible planetary body to apply the methods of ambient seismic noise, thereby providing a unique opportunity to better understand the interior of an icy body in our solar system. We will explore the use of ambient seismic noise on Titan and assess its application to determine interior structures, such as signals expected for different crust-(ocean)-mantle boundary depths. References: Iess, L. et al. (2010), Science 327: 1367-1369 Lunine, J.I. and Lorenz, R.D. (2009), Ann. Rev. Earth Planet. Sci. 37: 299-320. Shapiro et al. (2005), Science 307: 1615-1618. Sotin et al. (2009), in Titan from Cassini-Huygens: 61-73. R.H. Brown, J.-P. Lebreton, J. Hunter Waite, Eds. Zhan, Z. et al. (2010), Geophys. J. Int. doi: 10.1111/j/1365-246X.2010.04625.x Acknowledgments: Parts of this work grew out of discussions during a mini study at the Keck Institute for Space Studies, which is funded by the W. M. Keck Foundation.

  5. Configuration of the Moho discontinuity beneath the Japanese Islands derived from three-dimensional seismic tomography

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Sato, Hiroshi; Ishiyama, Tatsuya; Van Horne, Anne

    2017-07-01

    The Mohorovičić discontinuity (Moho) is defined on the basis of an abrupt increase in seismic velocity in the lithosphere which has been observed using seismic refraction and receiver function analysis methods worldwide. Moho depth varies regionally and remains a fundamental parameter of crustal structure. We present a new method of mapping the Moho using a 3D seismic tomography model. Since the tomographic method cannot locate discontinuities, we treat the Moho as a zone of high velocity gradient. Maximum lower crust/minimum upper mantle P-wave velocities in Japan are known to be 7.0 km/s and 7.5 km/s, respectively. We map the residual between isovelocity surfaces of 7.0 km/s and 7.5 km/s to find areas where the residual is small, the separation between the surfaces is narrow, and the velocity gradient is high. The Moho is best constrained where the isovelocity surfaces are close together, and under much of Japan, they are < 6 km and rarely > 10 km apart. We chose an isovelocity surface of 7.2 km/s as a representative Moho 'proxy' in these areas. Our resulting 'Moho' map under Japan compares favorably with existing regional Moho models that were obtained from controlled-source seismic investigations. The 'Moho' varies from shallow (25-30 km) to deep (> 30 km), and this variability relates to the structural evolution of the Japanese islands: the opening of the Sea of Japan back-arc, ongoing arc-arc collisions at the Hidaka and Izu collision zones, ongoing back-arc extension in Kyushu, and a possible failed back-arc extensional event of Mesozoic age. It is apparent that the Moho is less well-constrained in areas where the crustal structure has been modified by magmatic activity or thickened due to arc-arc collision.

  6. Nature of the uppermost mantle below the Porcupine Basin, offshore Ireland: new insights from seismic refraction and gravity data modeling

    NASA Astrophysics Data System (ADS)

    Prada, M.; Watremez, L.; Chen, C.; O'Reilly, B.; Minshull, T. A.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a tongue-shaped basin SW of Ireland formed during the opening of the North Atlantic Ocean. Its history of sedimentation reveals several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on seismic and gravity data, suggest the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Serpentinization is a key factor in lithospheric extension since it reduces the strength of mantle rocks, and hence, influences the tectonics of the lithosphere. Besides reducing the seismic velocity of the rock, serpentinization decreases mantle rock density favoring isostatic rebound and basin uplift, thus affecting the tectonic and thermal evolution of the basin. Here we characterize the deep structure of the Porcupine Basin from wide-angle seismic (WAS) and gravity data, with especial emphasis on the nature of the underlying mantle. The WAS data used were acquired along a 300 km long transect across the northern region of the basin. We used a travel time inversion method to model the data and obtain a P-wave velocity (Vp) model of the crust and uppermost mantle, together with the geometry of the main geological interfaces. The crustal structure along the model reveals a maximum stretching factor of ~5-6. These values are well within the range of crustal extension at which the crust becomes entirely brittle allowing the formation of major crustal faulting and serpentinization of the mantle. To further constrain the seismic structure and hence the nature of the mantle we assess the Vp uncertainty of the model by means of a Monte Carlo analysis and perform gravity modeling to test different interpretations regarding mantle rock nature. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  7. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  8. 4-D crustal structure of the conterminous U.S.: Continental assembly, crustal growth, and deformation history from receiver functions, xenoliths, and structural mapping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.

    2015-12-01

    We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.

  9. Seismic data collection from water gun and industrial background sources in the Chicago Sanitary and Ship Canal area, Illinois, 2011

    USGS Publications Warehouse

    Morrow, William S.; Carpenter, Phillip J.; Adams, Ryan F.

    2015-01-01

    The water gun is a tool adapted from deep marine geophysical surveys that is being evaluated for use as an acoustic fish deterrent to control the movement of invasive marine species. The water gun creates a seismic signal by using a compressed air discharge to move a piston rapidly within the water, resulting in an implosion. This energy pulse may be able to modify fish behavior or destroy marine life, such as the Asian carp, at some distance. The effects of this energy pulse on structures in the Chicago Sanitary and Ship Canal (CSSC), such as canal walls, shore lines, and lock structures, are not known. The potential effects of the use of a water gun on structures was identified as a concern in the CSSC and was assessed relative to existing background sources during this study. During September 2011, two water guns with piston sizes of 80 and 343 cubic inches, respectively, were tested in the CSSC at varying pressures and distances from a canal wall consisting of dolomite and dolomite setblock. Seismic data were collected during these water gun firings using geophones on land, in boreholes, and at the canal wall interface. Data were collected at varying depths in the canal water using hydrophones. Seismic data were also collected during the occurrences of barge traffic, railroad traffic located near the electric fish barrier in Lemont, and coal-loading operations at a coal power plant near the electric fish barrier. In general, energy produced by barge and railroad sources was less than energy created by the water gun. Energy levels produced by coal-loading operations at least 200 feet from geophones were approximately four times lower than energy levels measured during water gun operations.

  10. The KRISP 90 seismic experiment-a technical review

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Achauer, U.; Keller, Gordon R.; Khan, M.A.; Mooney, W.D.; Gaciri, S.J.; Obel, J.D.

    1994-01-01

    On the basis of a preliminary experiment in 1985 (KRISP 85), a seismic refraction/wide-angle reflection survey and a teleseismic tomography experiment were jointly undertaken to study the lithospheric structure of the Kenya rift down to depths of greater than 200 km. This report serves as an introduction to a series of subsequent papers and will focus on the technical description of the seismic surveys of the main KRISP 90 effort. The seismic refraction/wide-angle reflection survey was carried out in a 4-week period in January and February 1990. It consisted of three profiles: one extending along the rift valley from Lake Turkana to Lake Magadi, one crossing the rift at Lake Baringo, and one located on the eastern flank of the rift proper. A total of 206 mobile vertical-component seismographs, with an average station interval of about 2 km, recorded the energy of underwater and borehole explosions to distances of up to about 550 km. During the teleseismic survey an array of 65 seismographs was deployed to record teleseismic, regional and local events for a period of about 7 months from October 1989 to April 1990. The elliptical array spanned the central portion of the rift, with Nakuru at its center, and covered an area about 300 ?? 200 km, with an average station spacing of 10-30 km. Major scientific goals of the project were to reveal the detailed crustal and upper-mantle structure under the Kenya rift, to study the relationship between deep crustal and mantle structure and the development of sedimentary basins and volcanic features within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system, and to answer fundamental questions such as the mode and mechanism of continental rifting. ?? 1994.

  11. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    NASA Astrophysics Data System (ADS)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  12. The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.

    1983-01-01

    Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.

  13. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  14. Reprocessing Seismic Data - Using Wits Seismic Exploration Data to Image the Karoo Basin

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Scheiber-Enslin, S. E.; Manzi, M. S.

    2016-12-01

    During the heyday of seismic exploration of the Witwatersrand Basin, Anglo American's Gold Division acquired several thousand kilometres of Vibroseis reflection seismic data. These data, acquired from 1983-1994, were collected with the goal of finding extensions to the Witwatersrand Basin. In a prescient move, over 500 line kilometres were collected at 16 s two way travel time (TWT), extending to depths of 50 -70 km and have provided critical insight into the formation of the Kaapvaal Craton. In addition to these deep seismic lines, Anglo American acquired an extensive network of heretofore unpublished seismic lines that were collected at 6 sec TWT extending well beyond the known limits of the Witwatersrand Basin. The South African government as part of the national geophysical program in the late 1980s acquired six research reflection seismic lines in varied geological settings accruing another 700 km of data. Many of these data are now hosted at the University of the Witwatersrand's newly established Seismic Research Centre and represent unprecedented coverage and research opportunities. With recent global interest in shale gas, attention focused on the Karoo Basin in South Africa. Early exploration seismic data acquired by Soekor in the 1970s has been lost; however, digitized paper records indicate clear reflection targets. Here we examine one of the AngloGold seismic lines that was acquired in the middle of the Karoo Basin just south of Trompsburg extending to the southeast towards Molteno. This 150 km long line crosses the edge of the Kaapvaal Craton and shows clear reflectors throughout the Karoo Basin. These include the well-defined base of the Karoo and a number of dolerite sills within it. Nearby gas escape structures have been identified on surface and it is likely that several disruptions along this line are related to these or to dykes associated with the sills.

  15. Surprises from the Magnetotelluric Component of the USArray in the Eastern United States: Perplexing Anticorrelations with Seismic Images and Puzzling Insights into Continental Dynamics

    NASA Astrophysics Data System (ADS)

    Murphy, B. S.; Egbert, G. D.

    2017-12-01

    In addition to its broadband seismic component, the USArray has also been collecting long-period magnetotelluric (MT) data across the continental United States. These data allow for an unprecedented three-dimensional view of the lithospheric geoelectric structure of the continent. As electrical conductivity and seismic properties provide complementary views of the Earth, synthesizing seismic and MT images can reduce ambiguity inherent in each technique and can thereby allow for tighter constraints on lithospheric properties. In the western US, comparison of MT and seismic results has clarified some issues (e.g., with regard to fluids and volatiles) and has raised some new questions, but for the most part the two techniques provide views that generally mesh well together. In sharp contrast, MT and seismic results in the eastern US lead to seemingly contradictory conclusions about lithosphere properties. The most striking example is the Piedmont region of the southeastern United States; here seismic images suggest a relatively thin, warm Phanerozoic lithosphere, while MT images show a large, deep, highly resistive body that seems to require thick, cold, even cratonic lithosphere. While these MT results shed intriguing new light onto the enigmatic post-Paleozoic history of eastern North America, the strong anticorrelation with seismic images remains a mystery. A similar anticorrelation appears to also exist in the Northern Appalachians, and preliminary views of the geoelectric signature of the well-studied Northern Appalachian Anomaly suggest that synthesizing the seismic and MT images of that region may be nontrivial. Clearly, a major challenge in continued analysis of USArray data is the reconciliation of seemingly contradictory seismic and MT images. The path forward in addressing this problem will require closer collaboration between seismologists and MT scientists and will likely require a careful reconsideration of how each group interprets the physical meaning of their respective anomalies.

  16. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less

  17. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  18. Vital Signs: Seismology of Europa and Other Ocean World

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Vance, S.; Anandakrishnan, S.; Banerdt, W. B.; Bills, B. G.; Castillo, J. C.; Huang, H. H.; Jackson, J. M.; Lognonne, P. H.; Lorenz, R. D.; Panning, M. P.; Pike, W. T.; Stähler, S. C.; Tsai, V. C.

    2016-12-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. The InSight mission and concepts for a Europa Lander and a Lunar Geophysical Network present unique opportunies for seismology to play a critical role in constraining interior structure and thermal state. In oceanic icy worlds, measuring the radial depths of compositional interfaces using seismology in a broad frequency range can sharpen inferences of interior structures deduced from gravity and magnetometry studies, such as those planned for NASA's proposed Europa Mission and ESA's JUICE mission. Seismology may also offer information about fluid motions within or beneath ice, which complements magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these structures and processes in the future calls for detailed modeling of seismic sources and signatures, in order to develop the most suitable instrumentation. We will present results of simulations of plausible seismic sources and wave-field propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow, a possible seismic source similar to that seen from turbulent flow in terrestrial rivers; downflow of dense brines from chaos regions on Europa into its underlying ocean, which possibly resemble riverine flows and flows through glacial channels and ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150(2):279-287. Lee, S. W., Zanolin, M., Thode, A. M., Pappalardo, R. T., and Makris, N. C. (2003). Icarus, 165(1):144-167. Leighton, T. G., Finfer, D. C., and White, P. R. (2008). Icarus, 193(2):649-652. Panning, M., Lekic, V., Manga, M., and Romanowicz, B. (2006). Journal of Geophysical Research, E12008:doi:10.1029/2006JE002712.

  19. Upper Mantle Discontinuity Structure Beneath the Western Atlantic Ocean and Eastern North America from SS Precursors

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.

    2015-12-01

    Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.

  20. Seismic imaging of a transform segment of the Maranhão-Barreirinhas-Ceará margin, NW Brazil

    NASA Astrophysics Data System (ADS)

    Schnurle, Philippe; Moulin, Maryline; Gallais, Flora; Afilhado, Alexandra; Afonso Dias, Nuno; Soares, José; Loureiro, Afonso; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Matias, Luís; Evain, Mikael; Aslanian, Daniel

    2017-04-01

    The structure of the North-East equatorial Brazilian margin was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) seismic experiment, a project conducted by IFREMER (Institut Francais de Recherche pour l'Exploration de la Mer), UnB (University of Brasilia), FCUL (Faculdade de Ciências da Universidade de Lisboa) and Petrobras. The survey consists of 5 deep seismic profiles totaling 1900 km of marine multi-channel seismic reflection and wide angle acquisition with 143 deployments of short-period OBS's from the IFREMER pool. Three of the profiles were extended into land using Land Seismic Stations (LSS) from the Brazilian pool at a total of 50 points. This study focuses on the MC1 and MC5 wide-angle profiles: MC5 spans NW-SE 720 km in length, from the São Paulo Double Fracture Zone to the Borborema-Cearà margin. MC-1 spans parallel east of MC5, 360 km in length, in the presumed oceanic domain. Our main objective is to understand the fundamental processes which lead to the thinning and finally to the breakup of the continental crust in a specific context of a pull-apart system with two strike-slip borders. The experiment was devised to obtain the 2D structure along the profiles from joint pre-stack depth migration of the reflection data, and tomography and forward modeling of the OBS records. Along the MC1/MC5 wide-angle transects, 5 major sectors are identified: - the São Paulo Double Fracture Zone and the volcanic line associated to the southern São Paulo strike-slip zone presenting a 4.5 km thick volcano-sedimentary basin on top of a 5.5 km thick basement; - the intermediate domain, formed by the 4.5 km thick Basin III, the 7.5 km thick Basin II (interleaved by a 0.5-1 km thick volcanic layer), and the 5.5 km thick Basin I composing the continental slope. While the crust remains about 6 km thick, its acoustic velocity evolves from two-layer typical (4.8-6 km/s and 6.1-6.8 km/s) beneath Basin III to two-layer high velocity (6.1-6.8 km/s and 7.2-7.4 km/s) beneath Basin II and I, interpreted as exhumed lower continental crust; - to the east, the oceanic crust, evolves to an 2 layers crust 5 km thick, characterized by typical oceanic crustal velocities and also overlain by 5.5 km of sedimentary deposits, spanning between the two main fracture zones that fringe the Maranhão-Barreirinhas-Ceará segment; - the 50 km wide necking zone, forming the Parnaiba Platform and associated Ceará Basins, where the upper and lower crust thin abruptly; - the Medio Coreaù and Ceará Central thrust belt, where the unthinned continental crust thickness reaches 32 km. Keywords: North-East equatorial Brazil, transform margin, deep seismic structure

Top