Sample records for deep space station

  1. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  2. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.

  3. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  4. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  5. Space Station-based deep-space optical communication experiments

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Schwartz, Jon A.

    1988-01-01

    A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.

  6. Orbiting deep space relay station. Volume 3: Implementation plan

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    An implementation plan for the Orbiting Deep Space Relay Station (ODSRS) is described. A comparison of ODSRS life cycle costs to other configuration options meeting future communication requirements is presented.

  7. Deep Space Station (DSS-13) automation demonstration

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Lorden, G.

    1980-01-01

    The data base collected during a six month demonstration of an automated Deep Space Station (DSS 13) run unattended and remotely controlled is summarized. During this period, DSS 13 received spacecraft telemetry data from Voyager, Pioneers 10 and 11, and Helios projects. Corrective and preventive maintenance are reported by subsystem including the traditional subsystems and those subsystems added for the automation demonstration. Operations and maintenance data for a comparable manned Deep Space Station (DSS 11) are also presented for comparison. The data suggests that unattended operations may reduce maintenance manhours in addition to reducing operator manhours. Corrective maintenance for the unmanned station was about one third of the manned station, and preventive maintenance was about one half.

  8. Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.

  9. Workstation Designs for a Cis-Lunar Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2014-01-01

    Using the International Standard Payload Rack (ISPR) system, a suite of workstations required for deep space missions have been proposed to fill out habitation functions in an International Space Station (ISS) derived Cis-lunar Deep Space Habitat. This paper introduces the functional layout of the Cis-lunar habitat design, and describes conceptual designs for modular deployable work surfaces, General Maintenance Workstation (GMWS), In-Space Manufacturing Workstation (ISMW), Intra-Vehicular Activity Telerobotics Work Station (IVA-TRWS), and Galley / Wardroom.

  10. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and telepresence/kinetic processes), (3) subsystem tests of advanced nuclear power, nuclear propulsion and communication systems (using boom extensions, remote station-keeping platforms and mobile EVA crew and robots), and (4) logistics support (crew and equipment) and command and control of deep space transport assembly, maintenance, and refueling (using a station-keeping platform).

  11. Potential availability of diesel waste heat at Echo Deep Space Station (DSS 12)

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    Energy consumption at the Goldstone Echo Deep Space Station (DSS 12) is predicted and quantified for a future station configuration which will involve implementation of proposed energy conservation modifications. Cogeneration by the utilization of diesel waste-heat to satisfy site heating and cooling requirements of the station is discussed. Scenarios involving expanded use of on-site diesel generators are presented.

  12. Recycling used lubricating oil at the deep space stations

    NASA Technical Reports Server (NTRS)

    Koh, J. L.

    1981-01-01

    A comparison is made of the lubricating oil recycling methods used in the Deep Space Station 43 test and the basic requirements which could favor recycling of oil for continuous reuse. The basic conditions for successful recycling are compared to the conditions that exist in the Deep Space Network (DSN). This comparison shows that to recycle used oil in the DSN would not only be expensive but also nonproductive.

  13. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    NASA Astrophysics Data System (ADS)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  14. An AI Approach to Ground Station Autonomy for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  15. Energy consumption analysis for the Mars deep space station

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  16. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more a.ected by weather than is RF communication, it requires groundstation site diversity to mitigate the adverse e.ects of inclement weather on the link. An optical relay satellite is not a.ected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10- m optical ground stations. This makes the relay link an attractive option vis- a-vis a ground-station network.

  17. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  18. The deep space network, volume 13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.

  19. A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.; Hoppe, D.; Roberts, W.; Page, N.

    2001-01-01

    This article describes a telescope design for a 10-m optical ground station for deep-space communications. The design for a direct-detection optical communications telescope differs dramatically from a telescope for imaging applications. In general, the requirements for optical manufacturing and tracking performance are much less stringent for direct detection of optical signals. The technical challenge is providing a design that will operate in the daytime/nighttime conditions required for a Deep Space Network tracking application. The design presented addresses these requirements. The design will provide higher performance at lower cost than existing designs.

  20. Optical ground station site diversity for Deep Space Optical Communications the Mars Telecom Orbiter optical link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.

    2003-01-01

    Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.

  1. Tracks of a Giant

    NASA Image and Video Library

    2010-08-25

    The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.

  2. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  3. 47 CFR 101.147 - Frequency assignments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... connection with deep space research. (8) This frequency band is shared with station(s) in the Local...) Frequencies in this band are shared with stations in the earth exploration satellite service (space to earth..., to a licensee's customer or for its own internal communications. The paired frequencies listed in...

  4. A ten-meter optical telescope for deep-space communications

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran; Kerr, Edwin L.

    1990-01-01

    Optical communications using laser light in the visible spectral range is being considered for future deep-space missions. Such a system will require a large telescope in earth vicinity to be used as a receiving station for data return from the spacecraft. A preliminary discussion for a ground-based receiving station consisting of a 10-meter hexagonally segmented primary with high surface tolerance and a unique sunshade is presented.

  5. DSN test and training system

    NASA Technical Reports Server (NTRS)

    Thorman, H. C.

    1975-01-01

    Key characteristics of the Deep Space Network Test and Training System were presented. Completion of the Mark III-75 system implementation is reported. Plans are summarized for upgrading the system to a Mark III-77 configuration to support Deep Space Network preparations for the Mariner Jupiter/Saturn 1977 and Pioneer Venus 1978 missions. A general description of the Deep Space Station, Ground Communications Facility, and Network Operations Control Center functions that comprise the Deep Space Network Test and Training System is also presented.

  6. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  7. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization, of the Deep Space Network are summarized. Deep Space stations, ground communications, and network operations control capabilities are described. The network is designed for two-way communications with unmanned spacecraft traveling approximately 1600 km from earth to the farthest planets in the solar system. It has provided tracking and data acquisition support for the following projects: Ranger, Surveyor, Mariner, Pioneer, Apollo, Helios, Viking, and the Lunar Orbiter.

  8. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    NASA Astrophysics Data System (ADS)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The Lunar Space Tug represents an alternative to the SLS scenario, especially for what concerns all unmanned or logistic missions (e.g. cargo transfer, on orbit assembly, samples return), from Low Earth Orbit to Cislunar space. The paper focuses on the mission analysis and conceptual design of the Lunar Space Tug to support the growth and sustainment of the Cislunar Station. Particular attention is dedicated to the analysis of the propulsion subsystem effects of the Lunar Space Tug design. Main results are presented and discussed, and main conclusions are drawn.

  9. Dishing Up the Data: The Role of Australian Space Tracking and Radioastronomy Facilities in the Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Dougherty, K.; Sarkissian, J.

    2002-01-01

    The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network in Australia and consider the joint US-Australian agreement under which it was managed. It will also discuss the relationship of the NASA stations to the Parkes Radio Telescope and the integration of Parkes into the NASA network to support specific space missions. The particular involvement of Australian facilities in significant space missions will be highlighted and assessed.

  10. The deep space network, volume 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported in the DSN for Nov. and Dec. 1973. Research is described for the following areas: functions and facilities, mission support for flight projects, tracking and ground-based navigation, spacecraft/ground communication, network control and operations technology, and deep space stations.

  11. The deep space network, volume 15

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.

  12. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  13. An analysis and demonstration of clock synchronization by VLBI. [Very Long Baseline Interferometry for Deep Space Net

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1974-01-01

    A prototype of a semi-real time system for synchronizing the Deep Space Net station clocks by radio interferometry was successfully demonstrated on August 30, 1972. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time sync estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 ns rms were achieved between Deep Space Stations 11 and 12, both at Goldstone, Calif. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to baseline and source position uncertainties and atmospheric effects are reached. These limitations are under 10 ns for transcontinental baselines.

  14. Deep Space 1 moves to CCAS for testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.

  15. Feasibility of utilizing Cherenkov Telescope Array gamma-ray telescopes as free-space optical communication ground stations.

    PubMed

    Carrasco-Casado, Alberto; Vilera, Mariafernanda; Vergaz, Ricardo; Cabrero, Juan Francisco

    2013-04-10

    The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.

  16. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth based radio technology as applied to geodynamics, astrophysics, and radio astronomy's use of the deep space stations for a radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum are reported.

  17. Evolutionary Scheduler for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  18. Goldstone (GDSCC) administrative computing

    NASA Technical Reports Server (NTRS)

    Martin, H.

    1981-01-01

    The GDSCC Data Processing Unit provides various administrative computing services for Goldstone. Those activities, including finance, manpower and station utilization, deep-space station scheduling and engineering change order (ECO) control are discussed.

  19. The deep space network, volume 10

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.

  20. Deep Space 1 moves to CCAS for testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After covering the bulk of Deep Space 1 in thermal insulating blankets, workers in the Payload Hazardous Servicing Facility lift it from its work platform before moving it onto its transporter (behind workers at left). Deep Space 1 is being moved to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the winds measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.

  1. Deep space network support of the manned space flight network for Apollo, volume 3. [support for Apollo 14, 15, 16, and 17 flights

    NASA Technical Reports Server (NTRS)

    Hartley, R. B.

    1974-01-01

    The Deep Space Network (DSN) activities in support of Project Apollo during the period of 1971 and 1972 are reported. Beginning with the Apollo 14 mission and concluding with the Apollo 17 mission, the narrative includes, (1) a mission description, (2) the NASA support requirements placed on the DSN, and, (3) a comprehensive account of the support activities provided by each committed DSN deep space communication station. Associated equipment and activities of the three elements of the DSN (the Deep Space Instrumentation Facility (DSIF), the Space Flight Operations Facility (SFOF), and the Ground Communications Facility (GCF)) used in meeting the radio-metric and telemetry demands of the missions are documented.

  2. The deep space network, volume 12

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress in the development of the DSN is reported along with TDA research and technology, network engineering, hardware, and software implementation. Included are descriptions of the DSN function and facilities, Helios mission support, Mariner Venus/Mercury 1973 mission support, Viking mission support, tracking and ground-based navigation, communications, network control and data processing, and deep space stations.

  3. Tracking and data system support for the Mariner Mars 1971 mission. Prelaunch phase through first trajectory correction maneuver, volume 1

    NASA Technical Reports Server (NTRS)

    Laeser, R. P.; Textor, G. P.; Kelly, L. B.; Kelly, M.

    1972-01-01

    The DSN command system provided the capability to enter commands in a computer at the deep space stations for transmission to the spacecraft. The high-rate telemetry system operated at 16,200 bits/sec. This system will permit return to DSS 14 of full-resolution television pictures from the spacecraft tape recorder, plus the other science experiment data, during the two playback periods of each Goldstone pass planned for each corresponding orbit. Other features included 4800 bits/sec modem high-speed data lines from all deep space stations to Space Flight Operations Facility (SFOF) and the Goddard Space Flight Center, as well as 50,000 bits/sec wideband data lines from DSS 14 to the SFOF, thus providing the capability for data flow of two 16,200 bits/sec high-rate telemetry data streams in real time. The TDS performed prelaunch training and testing and provided support for the Mariner Mars 1971/Mission Operations System training and testing. The facilities of the ETR, DSS 71, and stations of the MSFN provided flight support coverage at launch and during the near-earth phase. The DSSs 12, 14, 41, and 51 of the DSN provided the deep space phase support from 30 May 1971 through 4 June 1971.

  4. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.

  5. KSC-98pc1195

    NASA Image and Video Library

    1998-10-01

    Workers at this clean room facility, Cape Canaveral Air Station, maneuver the protective can that covered Deep Space 1 during transportation from KSC away from the spacecraft. Deep Space 1 will undergo spin testing at the site. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  6. Deep Space 1 moves to CCAS for testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KSC workers lower the 'can' over Deep Space 1. The can will protect the spacecraft during transport to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non- chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.

  7. Deep Space 1 is prepared for spin test at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.

  8. Deep Space 1 is prepared for spin test at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.

  9. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  10. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  11. Automated Planning for a Deep Space Communications Station

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve

    1999-01-01

    This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.

  12. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  13. HVAC modifications and computerized energy analysis for the Operations Support Building at the Mars Deep Space Station at Goldstone

    NASA Technical Reports Server (NTRS)

    Halperin, A.; Stelzmuller, P.

    1986-01-01

    The key heating, ventilation, and air-conditioning (HVAC) modifications implemented at the Mars Deep Space Station's Operation Support Building at Jet Propulsion Laboratories (JPL) in order to reduce energy consumption and decrease operating costs are described. An energy analysis comparison between the computer simulated model for the building and the actual meter data was presented. The measurement performance data showed that the cumulative energy savings was about 21% for the period 1979 to 1981. The deviation from simulated data to measurement performance data was only about 3%.

  14. Experiments to ensure Space Station fire safety - A challenge

    NASA Technical Reports Server (NTRS)

    Youngblood, W. W.; Seiser, K. M.

    1988-01-01

    Three experiments have been formulated in order to address prominent fire safety requirements aboard the NASA Space Shuttle; these experiments are to be conducted as part of a Space Station-based Technology Development Mission for the growth phase of Space Station construction and operation. The experiments are: (1) an investigation of the flame-spread rate and combustion-product evolution in the burning of typical spacecraft materials in low gravity; (2) an evaluation of the interaction of fires and candidate fire extinguishers in low gravity; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion in low gravity.

  15. KSC-98pc1188

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  16. KSC-98pc1187

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- After covering the bulk of Deep Space 1 in thermal insulating blankets, workers in the Payload Hazardous Servicing Facility lift it from its work platform before moving it onto its transporter (behind workers at left). Deep Space 1 is being moved to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  17. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  18. KSC-98pc1386

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- Photographed at Launch Complex 17, Cape Canaveral Station, just after midnight on launch day, Boeing's Delta II rocket is bathed in light as it awaits its destiny, hurling NASA's Deep Space 1 into space. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  19. Expedition_55_Education_In-flight_Interview_with Boeing_Genes_in Space_2018_130_1615_651411

    NASA Image and Video Library

    2018-05-10

    SPACE STATION CREW MEMBERS DISCUSS RESEARCH WITH TEXAS STUDENTS------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed research on the orbital laboratory during an in-flight educational event May 10 with students gathered at Space Center Houston. The in-flight event centered around the Boeing-sponsored Genes in Space experiment which enlisted students in grades 7-12 to submit various ideas for DNA research with an eye to future implications for deep space exploration.

  20. Implementation of the 64-meter-diameter Antennas at the Deep Space Stations in Australia and Spain

    NASA Technical Reports Server (NTRS)

    Bartos, K. P.; Bell, H. B.; Phillips, H. P.; Sweetser, B. M.; Rotach, O. A.

    1975-01-01

    The management and construction aspects of the Overseas 64-m Antenna Project in which two 64-m antennas were constructed at the Tidbinbilla Deep Space Communications Complex in Australia, and at the Madrid Deep Space Communications Complex in Spain are described. With the completion of these antennas the Deep Space Network is equipped with three 64-m antennas spaced around the world to maintain continuous coverage of spacecraft operations. These antennas provide approximately a 7-db gain over the capabilities of the existing 26-m antenna nets. The report outlines the project organization and management, resource utilization, fabrication, quality assurance, and construction methods by which the project was successfully completed. Major problems and their solutions are described as well as recommendations for future projects.

  1. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1341 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  2. Planetary stations and Abyssal Benthic Laboratories: An overview of parallel approaches for long-term investigation in extreme environments

    NASA Technical Reports Server (NTRS)

    Dipippo, S.; Prendin, W.; Gasparoni, F.

    1994-01-01

    In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station.

  3. Potential Interference from Wireless Water Tank Transmitters at Goldstone

    NASA Astrophysics Data System (ADS)

    Ho, C.

    2008-02-01

    The Deep Space Network (DSN) facility in the Goldstone, California, area is considering installation of a new type of wireless transmitter (M2400S) within the facility. The transmitters will be used to monitor the water levels in several water tanks. Then these water-level signals will be transmitted to the nearby DSN facilities using transmitters operating in the UHF band (900-MHz) or S-band (2.4-GHz). This study is to evaluate the interference effects from the transmitters in adjacent DSN receiving stations. First we perform a terrain profile analysis to identify if there is a line of sight between each transmitter and the nearby DSN stations. After taking into account terrain shielding using high-resolution data, total propagation losses are calculated along each path. Then we perform the link analysis for each site to identify if the interference power exceeds the protection threshold of DSN receiving stations. As a result, we find that, because there is no bandpass filter installed in the transmitter system, interference power from the new transmitter at S-band will greatly exceed the protection criteria of broadband radio astronomy services (RAS) at S-band, such as Deep Space Station (DSS) 12 and DSS 28, by about 50 dB. The interference may also cause problems on all deep-space research stations at S-band, such as the Mars, Apollo, Venus, and Gemini sites. Without a sharp bandpass filter to suppress the out-of-band emissions in the frequency bands that the DSN station and RAS use, the author recommends not installing this type of transmitter within the Goldstone DSN facility area.

  4. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby. II. Doppler tracking: Formulation of observed and computed values, and noise budget

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.

    2018-01-01

    Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.

  5. Veg-03 Ground Harvest

    NASA Image and Video Library

    2016-12-05

    Inside the Veggie flight laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a research scientist harvests a portion of the 'Outredgeous' red romaine lettuce from the Veg-03 ground control unit. The purpose of the ground Veggie system is to provide a control group to compare against the lettuce grown in orbit on the International Space Station. Veg-03 will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  6. KSC-98pc1177

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the media (below), dressed in "bunny" suits, learn about Deep Space 1 from Leslie Livesay (facing cameras), Deep Space 1 spacecraft manager from the Jet Propulsion Laboratory. In the background, KSC workers place insulating blankets on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  7. Design, construction, and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Bush, Harold G.

    1987-01-01

    The primary characteristics of the 5-meter erectable truss is presented, which was baselined for the Space Station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are approx. 14.5 ft (4.4 m) in diameter. Truss nodes and quick attachment erectable joints are described which provide for evolutionary three dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the Space Station and the associated extravehicular active (EVA) time.

  8. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  9. Russian-Cuban Colocation Station for Radio Astronomical Observation and Monitoring of Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Uratsuka, M.-R.; Ipatov, A. V.; Marshalov, D. A.; Shuygina, N. V.; Vasilyev, M. V.; Gayazov, I. S.; Ilyin, G. N.; Bondarenko, Yu. S.; Melnikov, A. E.; Suvorkin, V. V.

    2018-04-01

    The article presents the main possibilities of using the projected Russian-Cuban geodynamic colocation station on the basis of the Institute of Geophysics and Astronomy of the Ministry of Science, Technology and the Environment of the Republic of Cuba to carry out radio observations and monitoring the near-Earth space. Potential capabilities of the station are considered for providing various observational programs: astrophysical observations; observations by space geodesy methods using radio very long baselines interferometers, global navigation satellite systems, laser rangers, and various Doppler systems, as well as monitoring of artificial and natural bodies in the near-Earth and deep space, including the ranging of asteroids approaching the Earth. The results of modeling the observations on the planned station are compared with that obtained on the existing geodynamic stations. The efficiency of the projected Russian-Cuban station for solving astronomical tasks is considered.

  10. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, 18 plant pillows for the Veg-03 experiment have been prepared for delivery to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  11. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  12. Expedition 48/49 crew visit to MSFC

    NASA Image and Video Library

    2017-04-06

    NASA astronaut Kate Rubins presents highlights from Expedition 48/49, her mission to the International Space Station, to team members and Space Camp students from the U.S. Space & Rocket Center in Huntsville, April 6 at NASA's Marshall Space Flight Center. During her mission, Rubins became the first person to sequence DNA in space, researching technology development for deep-space exploration by humans, Earth and space science. She also conducted two spacewalks, in which she and NASA astronaut Jeff Williams installed an International Docking Adapter and performed maintenance of the station's external thermal control system and installed high-definition cameras.

  13. Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao

    2015-08-01

    The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.

  14. So You Want to Go To Mars? Episode 1

    NASA Image and Video Library

    2018-04-10

    So you want to go to Mars? The International Space Station (ISS) is helping us get there. This short 1.18 minute video highlights several ways the ISS is helping NASA extend human presence into deep space. Orion Spacecraft and SLS webpage https://www.nasa.gov/content/j2m-getting-to-mars-sls-and-orion International Space Station https://www.nasa.gov/mission_pages/station/main/index.html HD Download: https://archive.org/details/jsc2018m000132_SoYouWantToGoToMars_E1 Youtube: https://youtu.be/UCNNTwlu9kE

  15. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  16. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    PubMed

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  17. Simple gain probability functions for large reflector antennas of JPL/NASA

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.

    2003-01-01

    Simple models for the patterns as well as their cumulative gain probability and probability density functions of the Deep Space Network antennas are developed. These are needed for the study and evaluation of interference from unwanted sources such as the emerging terrestrial system, High Density Fixed Service, with the Ka-band receiving antenna systems in Goldstone Station of the Deep Space Network.

  18. KSC-98pc1182

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers complete the insulation of Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  19. KSC-98pc1157

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility maneuver a second solar panel to attach it to Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  20. KSC-98pc1178

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, KSC workers place insulating blankets on Deep Space 1 to prepare it for launch. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  1. KSC-98pc1175

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility install blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  2. KSC-98pc1158

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility get ready to attach a second solar panel to Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  3. KSC-98pc1174

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility begin installing blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  4. KSC-98pc1176

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility finish installing blanket insulation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  5. KSC-98pc1194

    NASA Image and Video Library

    1998-10-01

    Workers at this clean room facility, Cape Canaveral Air Station, prepare to lift the protective can that covered Deep Space 1 during transportation from KSC. The spacecraft will undergo spin testing at the site. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  6. Demonstration of intercontinental DSN clock synchronization by VLBI

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1973-01-01

    The prototype system for Deep Space Network clock synchronization by VLBI has been demonstrated to operate successfully over intercontinental baselines in a series of experiments between Deep Space Stations at Madrid, Spain, and Goldstone, California. As predicted by analysis and short baseline demonstration, the system achieves reliable synchronization between 26m and 64m antenna stations with 17 and 37K nominal system temperatures using under one million bits of data from each station. Semi-real-time operation is feasible since this small amount of data can be transmitted to JPL and processed within minutes. The system resolution is 50 to 400ns, depending on the amount of data processed and the source intensity. The accuracy is believed to be comparable to the resolution, although it could be independently confirmed to only about 5 microseconds using LORAN C.

  7. Payload Operations Integration Center Tour

    NASA Image and Video Library

    2013-11-22

    Step inside the International Space Station Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Ala. Listen to the people who work around-the-clock with scientists around the world and the crew in space to conduct experiments that improve life on Earth and enable deep space exploration. (NASA/MSFC)

  8. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  9. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1363 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  10. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1342 (02/11/2015) --- Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky..

  11. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    Open Image KSC-2015-1368.KSC-2015-1368 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  12. Space Programs Summary 37-33. Volume 3. The Deep Space Network for the period 1 March-30 April 1965

    DTIC Science & Technology

    1965-05-31

    designed to communicate To improve the data rate and distance capability, a 210-ft with, and permit control of, spacecraft designed for deep antenna is...51 experienced doppler problems. It was neces- tracking momentarily to make this change. It was de - sary to determine the bias oscillator frequencies...is being designed and constructed for the Mars site of the Gold- stone space communications station. The operating fre- quency of the AAS will be at

  13. Veg-03 Ground Harvest

    NASA Image and Video Library

    2016-12-05

    Inside the Veggie flight laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Matthew Romeyn, a NASA Pathways intern from the University of Edinburgh in Scotland, harvests a portion of the 'Outredgeous' red romaine lettuce from the Veg-03 ground control unit. The purpose of the ground Veggie system is to provide a control group to compare against the lettuce grown in orbit on the International Space Station. Veg-03 will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  14. KSC-98pc1208

    NASA Image and Video Library

    1998-10-02

    KENNEDY SPACE CENTER, FLA. -- KSC workers prepare Deep Space 1 for a spin test on the E6R Spin Balance Machine at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  15. KSC-98pc1209

    NASA Image and Video Library

    1998-10-02

    KENNEDY SPACE CENTER, FLA. -- KSC workers give a final check to Deep Space 1 before starting a spin test on the spacecraft at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  16. KSC-98pc1193

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- KSC workers lower the "can" over Deep Space 1. The can will protect the spacecraft during transport to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. The spacecraft will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  17. Optical subnet concepts for the deep space network

    NASA Technical Reports Server (NTRS)

    Shaik, K.; Wonica, D.; Wilhelm, M.

    1993-01-01

    This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.

  18. Tracking and data system support for the Viking 1975 mission to Mars. Volume 3: Planetary operations

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.

    1977-01-01

    The support provided by the Deep Space Network to the 1975 Viking Mission from the first landing on Mars July 1976 to the end of the Prime Mission on November 15, 1976 is described and evaluated. Tracking and data acquisition support required the continuous operation of a worldwide network of tracking stations with 64-meter and 26-meter diameter antennas, together with a global communications system for the transfer of commands, telemetry, and radio metric data between the stations and the Network Operations Control Center in Pasadena, California. Performance of the deep-space communications links between Earth and Mars, and innovative new management techniques for operations and data handling are included.

  19. Next Space Station Crew Previews Mission

    NASA Image and Video Library

    2017-10-11

    NASA astronaut Scott Tingle and crewmates Anton Shkaplerov of the Russian space agency Roscosmos and Norishege Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their upcoming mission to the International Space Station in a news conference on Oct. 11 at NASA’s Johnson Space Center in Houston. Tingle, Shkaplerov and Kanai will launch to the space station aboard the Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan. They will join the station’s Expedition 54 crew, and return to Earth in April 2018 as members of Expedition 55. During a planned four-month mission, the station crew members will take part in about 250 research investigations and technology demonstrations not possible on Earth in order to advance scientific knowledge of Earth, space, physical and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including missions past the Moon and Mars. This will be the first spaceflight for Tingle and Kanai, and the third for Shkaplerov.

  20. Deep Space 1 Using its Ion Engine (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999.

  1. Future of Human Space Exploration

    NASA Image and Video Library

    2014-07-01

    Now that the Space Shuttle era is over, NASA is writing the next chapters in human Spaceflight with its commercial and international partners. It is advancing research and technology on the International Space Station, opening low-Earth orbit to US industry, and pushing the frontiers of deep space even farther ... all the way to Mars.

  2. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    Kennedy Space Center, Florida. - Deep Space 1 is lifted from its work platform, giving a closeup view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. http://photojournal.jpl.nasa.gov/catalog/PIA04232

  3. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Technical Reports Server (NTRS)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  4. Earth Observations taken by the Expedition 10 crew

    NASA Image and Video Library

    2004-12-04

    ISS010-E-09366 (4 December 2004) --- New York’s Finger Lakes region is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station. Shapes of the snow-covered hills are accented by the low sun angles, and contrast with the darker, finger-shaped lakes filling the region’s valleys. Scientists believe the steep, roughly parallel valleys and hills of the Finger Lakes region were shaped by advancing and retreating ice sheets that were as much as 2 miles deep during the last ice age. River valleys were scoured into deep troughs; many are now filled with lakes. The two largest lakes, Seneca and Cayuga, are so deep that the bases of their lakebeds are below sea level. The cities of Rochester, Syracuse and Ithaca are included in this field-of-view, as seen from the Space Station. These three cities enjoy large seasonal snowpacks, thanks to the influence of the Great Lakes producing lake-effect snowstorms. According to NASA scientists studying the Space Station imagery, despite its reputation for long winters, the region is balmy compared with the glacial climate present when the landscape was carved. Scientists believe, at the time of the greatest ice extent, yearly average temperatures over northern North America were several degrees lower than today.

  5. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  6. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  7. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  8. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  9. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  10. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  11. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  12. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  13. DSN Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Baldwin, John

    2007-01-01

    TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.

  14. Precision time distribution within a deep space communications complex

    NASA Technical Reports Server (NTRS)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  15. Deep Space Network and Lunar Network Communication Coverage of the Moon

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2006-01-01

    In this article, we describe the communication coverage analysis for the lunar network and the Earth ground stations. The first part of this article focuses on the direct communication coverage of the Moon from the Earth's ground stations. In particular, we assess the coverage performance of the Moon based on the existing Deep Space Network (DSN) antennas and the complimentary coverage of other potential stations at Hartebeesthoek, South Africa and at Santiago, Chile. We also address the coverage sensitivity based on different DSN antenna scenarios and their capability to provide single and redundant coverage of the Moon. The second part of this article focuses on the framework of the constrained optimization scheme to seek a stable constellation six relay satellites in two planes that not only can provide continuous communication coverage to any users on the Moon surface, but can also deliver data throughput in a highly efficient manner.

  16. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, measures out the calcined clay, or space dirt, for one of the plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  17. KSC-98pc1071

    NASA Image and Video Library

    1998-09-15

    KENNEDY SPACE CENTER, FLA. -- Arriving in the early morning hours at Pad 17A, Cape Canaveral Air Station, the fairing for Deep Space 1 is lifted from the truck before being raised to its place on the Boeing Delta 7326 rocket that will launch on Oct. 15, 1998. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  18. KSC-98pc1382

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad, a Boeing Delta II (7326) rocket propels Deep Space 1 through the morning clouds after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  19. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  20. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  1. KSC-98pc1155

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility maneuver a solar panel and rack to be attached to Deep Space 1 (background). The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  2. KSC-98pc1156

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility check fittings for the solar panel (right) they are attaching to Deep Space 1, preparing it for flight in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  3. KSC-98pc1181

    NASA Image and Video Library

    1998-09-29

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, Tom Shain, project manager on Deep Space 1, displays a CD containing 350,000 names of KSC workers that he will place in a pouch and insert inside the spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  4. KSC-98pc1370

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- Attached to the second stage of a Boeing Delta II at Pad 17A, Cape Canaveral Air Station, is the Students for the Exploration and Development of Space Satellite-1 (SEDSat-1). An international project, SEDSat-1 is a secondary payload on the Deep Space 1 mission and will be deployed 88 minutes after launch over Hawaii. The satellite includes cameras for imaging Earth, a unique attitude determination system, and amateur radio communication capabilities. Deep Space 1, targeted for launch on Oct. 24, is the first flight in NASA's New Millennium Program and is designed to validate 12 new technologies for scientific space missions of the next century

  5. KSC-98pc1369

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- Attached to the second stage of a Boeing Delta II at Pad 17A, Cape Canaveral Air Station, is the Students for the Exploration and Development of Space Satellite-1 (SEDSat-1). An international project, SEDSat-1 is a secondary payload on the Deep Space 1 mission and will be deployed 88 minutes after launch over Hawaii. The satellite includes cameras for imaging Earth, a unique attitude determination system, and amateur radio communication capabilities. Deep Space 1, targeted for launch on Oct. 24, is the first flight in NASA's New Millennium Program and is designed to validate 12 new technologies for scientific space missions of the next century

  6. Range Measurement as Practiced in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Bryant, Scott H.; Kinman, Peter W.

    2007-01-01

    Range measurements are used to improve the trajectory models of spacecraft tracked by the Deep Space Network. The unique challenge of deep-space ranging is that the two-way delay is long, typically many minutes, and the signal-to-noise ratio is small. Accurate measurements are made under these circumstances by means of long correlations that incorporate Doppler rate-aiding. This processing is done with commercial digital signal processors, providing a flexibility in signal design that can accommodate both the traditional sequential ranging signal and pseudonoise range codes. Accurate range determination requires the calibration of the delay within the tracking station. Measurements with a standard deviation of 1 m have been made.

  7. Why Deep Space Habitats Should Be Different from the International Space Station

    NASA Technical Reports Server (NTRS)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  8. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Dr. Mathew Mickens, a post-doctoral researcher, inserts a bonding agent into one of the Veg-03 plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  9. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  10. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, precisely sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  11. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  12. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, plant pillows for the Veg-03 experiment are prepared for delivery to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Dr. Mathew Mickens, a post-doctoral researcher, inserts a bonding agent into one of the Veg-03 plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  13. Deep Space Environmental Effects on Immune, Oxidative Stress and Damage, and Health and Behavioral Biomarkers in Humans

    NASA Astrophysics Data System (ADS)

    Crucian, B.; Zwart, S.; Smith, S. M.; Simonsen, L. C.; Williams, T.; Antonsen, E.

    2018-02-01

    Biomarkers will be assessed in biological samples (saliva, blood, urine, feces) collected from crewmembers and returned to Earth at various intervals, mirroring (where feasible) collection timepoints used on the International Space Station (ISS).

  14. Free-space optical communications in support of future manned space flight

    NASA Technical Reports Server (NTRS)

    Stephens, Elaine M.

    1990-01-01

    Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.

  15. KSC-05PD-0128

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft stands out against an early dawn sky. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  16. KSC-05PD-0124

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft is bathed in light waiting for tower rollback before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  17. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  18. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  19. Viking telecommunication effects of GEOS satellite interference based on testing at the Madrid deep space station

    NASA Technical Reports Server (NTRS)

    Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.

    1976-01-01

    In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.

  20. KSC-98pc1381

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket hurls Deep Space 1 through the morning clouds after liftoff, creating sun-challenging light with its exhaust, from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  1. KSC-98pc1385

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket lights up the ground as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  2. KSC-98pc1383

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad below, a Boeing Delta II (7326) rocket is silhouetted in the morning light as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  3. KSC-98pc1384

    NASA Image and Video Library

    1998-10-24

    KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket lights up the clouds of exhaust below as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  4. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, inserts a measured amount of calcined clay, or space dirt, into one of the plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  5. 3D Printer Coupon removal and stowage

    NASA Image and Video Library

    2014-12-09

    iss042e031282 (12/09/2014) ---US Astronaut Barry (Butch) Wilmore holding a 3D coupon works with the new 3D printer aboard the International Space Station. The 3D Printing experiment in zero gravity demonstrates that a 3D printer works normally in space. In general, a 3D printer extrudes streams of heated plastic, metal or other material, building layer on top of layer to create 3 dimensional objects. Testing a 3D printer using relatively low-temperature plastic feedstock on the International Space Station is the first step towards establishing an on-demand machine shop in space, a critical enabling component for deep-space crewed missions and in-space manufacturing.

  6. The first stage of Boeing's Delta 7326 arrives at Pad 17A, CCAS, in preparation for the Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, arrives at Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  7. KSC-98pc1261

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  8. KSC-98pc1262

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  9. KSC-98pc1264

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  10. KSC-98pc1260

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  11. KSC-98pc1265

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  12. KSC-98pc1263

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  13. KSC-98pc1314

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  14. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  15. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Developments in Earth-based ratio technology as applied to the Deep Space Network are reported. Topics include ratio astronomy and spacecraft tracking networks. Telemetric methods and instrumentation are described. Station control and system technology for space communication is discussed. Special emphasis is placed on network data processing.

  16. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Space 1, to protect the spacecraft during transport to the launch pad. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  17. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), after covering the lower portion of Deep Space 1, workers adjust the anti-static blanket covering the upper portion. The blanket will protect the spacecraft during transport to the launch pad. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  18. Deep Space 1 Using its Ion Engine Artist Concept

    NASA Image and Video Library

    2003-07-02

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999. http://photojournal.jpl.nasa.gov/catalog/PIA04604

  19. KSC-05PD-0133

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. From the nearby Press Site at Cape Canaveral Air Force Station, Fla., photographers capture the exciting launch of the Deep Impact spacecraft at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  20. KSC-05PD-0134

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  1. KSC-05PD-0131

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  2. KSC-05PD-0135

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  3. KSC-05PD-0136

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Engulfed by flames and smoke, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  4. KSC-05PD-0130

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. With a burst of flames, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-08

    This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.

  6. Relocation of the Deep Space Network Maintenance Center

    NASA Technical Reports Server (NTRS)

    Beutler, K. F.

    1981-01-01

    The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.

  7. System concepts and design examples for optical communication with planetary spacecraft

    NASA Astrophysics Data System (ADS)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  8. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    Deep Space Network and Systems topics addressed include: tracking and ground-base navigation; communications, spacecraft-ground; station control and system technology; capabilities for existing projects; and network upgrading and sustaining.

  9. The Case for Deep Space Telecommunications Relay Stations

    NASA Technical Reports Server (NTRS)

    Chandler, Charles W.; Miranda, Felix A. (Technical Monitor)

    2004-01-01

    Each future mission to Jupiter and beyond must carry the traditional suite of telecommunications systems for command and control and for mission data transmission to earth. The telecommunications hardware includes the large antenna and the high-power transmitters that enable the communications link. Yet future spacecraft will be scaled down from the hallmark missions of Galileo and Cassini to Jupiter and Saturn, respectively. This implies that a higher percentage of the spacecraft weight and power must be dedicated to telecommunications system. The following analysis quantifies this impact to future missions and then explores the merits of an alternative approach using deep space relay stations for the link back to earth. It will be demonstrated that a telecommunications relay satellite would reduce S/C telecommunications weight and power sufficiently to add one to two more instruments.

  10. Environmental projects. Volume 7: Environmental resources document

    NASA Technical Reports Server (NTRS)

    Kushner, Len; Kroll, Glenn

    1988-01-01

    The Goldstone Deep Space Communications Complex (GDSCC) in Barstow, California, is part of the NASA Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Goldstone is managed, directed and operated by the Jet Propulsion Laboratory of Pasadena, California. The GDSCC includes five distinct operational sites: Echo, Venus, Mars, Apollo, and Mojave Base. Within each site is a Deep Space Station (DPS), consisting of a large dish antenna and its support facilities. As required by NASA directives concerning the implementation of the National Environmental Policy Act, each NASA field installation is to publish an Environmental Resources Document describing the current environment at the installation, including any adverse effects that NASA operations may have on the local environment.

  11. Biofilms On Orbit and On Earth: Current Methods, Future Needs

    NASA Technical Reports Server (NTRS)

    Vega, Leticia

    2013-01-01

    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  12. LSG_Broll

    NASA Image and Video Library

    2018-05-15

    NASA engineers discussed the Life Sciences Glovebox, the agency's newest research facility for the International Space Station today at Marshall Space Flight Center in Huntsville, Alabama. The Life Sciences Glovebox will be used to study the long-term impact of microgravity on human physiology, revealing new ways to improve life on Earth while protecting human explorers during long-duration deep space missions.

  13. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. From left, are Matt Romeyn, NASA pathways intern; Dr. Gioia Massa, NASA payload scientist for Veggie; and Dr. Mathew Mickens, a post-doctoral researcher. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  14. Anatomy of the fasciae and fascial spaces of the maxillofacial and the anterior neck regions.

    PubMed

    Kitamura, Seiichiro

    2018-01-01

    This review provides an overview of comprehensive knowledge regarding the anatomy of the fasciae and fascial spaces of the maxillofacial and the anterior neck regions, principally from the standpoint of oral surgery, whose descriptions have long been puzzling and descriptively much too complex. The maxillofacial and the anterior neck regions are divided into four portions: the portions superficial and deep to the superficial layer of the deep cervical fascia (SfDCF) including its rostral extension to the face, the intermediate portion sandwiched by the splitting SfDCF, and the superficial portion peculiar to the face where the deep structures open on the body surface to form the oral cavity. Different fascial spaces are contained in each of the portions, although the spaces belonging to the portion of the same depth communicate freely with each other. The spaces of the superficial portions are adjacent to the oral cavity and constitute the starting point of deep infections from that cavity. The spaces of the intermediate portion lie around the mandible and occupy the position connecting the superficial and deep portions. Among these spaces, the submandibular and prestyloid spaces play an important role as relay stations conveying the infections into the deep portion. The spaces of the deep portion lie near the cervical viscera and communicate inferiorly with the superior mediastinum, among which the poststyloid space plays a role as a reception center of the infections and conveys the infections into the superior mediastinum particularly by way of the retrovisceral space and the carotid sheath.

  15. Deep Space 1 is encapsulated on launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  16. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  17. Random Access Frames (RAF): Alternative to Rack and Standoff for Deep Space Habitat Outfitting

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Polit-Casillas, Raul

    2014-01-01

    A modular Random Access Frame (RAF) system is proposed as an alternative to the International Standard Payload Rack (ISPR) for internal module layout and outfitting in a Deep Space Habitat (DSH). The ISPR approach was designed to allow for efficient interchangeability of payload and experiments for the International Space Station (ISS) when frequent resupply missions were available (particularly the now-retired Space Shuttle). Though the standard interface approach to the ISPR system allowed integration of subsystems and hardware from a variety of sources and manufacturers, the heavy rack and standoff approach may not be appropriate when resupply or swap-out capabilities are not available, such as on deep space, long-duration missions. The lightweight RAF concept can allow a more dense packing of stowage and equipment, and may be easily broken down for repurposing or reuse. Several example layouts and workstations are presented.

  18. Deep Space Optical Link ARQ Performance Analysis

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Miles, Gregory

    2016-01-01

    Substantial advancements have been made toward the use of optical communications for deep space exploration missions, promising a much higher volume of data to be communicated in comparison with present -day Radio Frequency (RF) based systems. One or more ground-based optical terminals are assumed to communicate with the spacecraft. Both short-term and long-term link outages will arise due to weather at the ground station(s), space platform pointing stability, and other effects. To mitigate these outages, an Automatic Repeat Query (ARQ) retransmission method is assumed, together with a reliable back channel for acknowledgement traffic. Specifically, the Licklider Transmission Protocol (LTP) is used, which is a component of the Disruption-Tolerant Networking (DTN) protocol suite that is well suited for high bandwidth-delay product links subject to disruptions. We provide an analysis of envisioned deep space mission scenarios and quantify buffering, latency and throughput performance, using a simulation in which long-term weather effects are modeled with a Gilbert -Elliot Markov chain, short-term outages occur as a Bernoulli process, and scheduled outages arising from geometric visibility or operational constraints are represented. We find that both short- and long-term effects impact throughput, but long-term weather effects dominate buffer sizing and overflow losses as well as latency performance.

  19. KSC-98pc1192

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Deep Space 1 is lifted from its work platform, giving a closeup view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  20. KSC-98pc1334

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is viewed from above after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  1. KSC-98pc1354

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver the second half of the fairing to encapsulate Deep Space 1, targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  2. KSC-98pc1335

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is uncovered after installation on a Boeing Delta 7326 rocket. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  3. KSC-98pc1355

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers check make a final check of the fairing encapsulating Deep Space 1, which is targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  4. KSC-98pc1331

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered in the white room for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  5. KSC-98pc1333

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers remove the transportation canister around Deep Space 1 after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  6. KSC-98pc1346

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  7. KSC-98pa001

    NASA Image and Video Library

    1998-10-24

    In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket is framed between the ghostly silhouettes of two press photographers as it launches Deep Space 1 on its mission from Launch Complex 17A. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  8. The first stage of Boeing's Delta 7326 arrives at Pad 17A, CCAS, in preparation for the Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, is lifted into place above the surface of Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  9. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, measures out the calcined clay, or space dirt, for one of the plant pillows. To his right is Dr. Gioia Massa, NASA payload scientist for Veggie. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  10. Developing a Habitat for Long Duration, Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Thompson, Shelby

    2011-01-01

    One possible next leap in human space exploration is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to be designed to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be 268 m3 distributed over the functions. The work was validated through comparison with the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concepts. In the end, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

  11. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  12. KSC-05PP-0138

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  13. KSC-05PD-0137

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. After a perfect liftoff at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket with Deep Impact spacecraft aboard soars through the clear blue sky. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  14. KSC-05pp0138

    NASA Image and Video Library

    2005-01-12

    KENNEDY SPACE CENTER, FLA. - Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASA’s Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impact’s flyby spacecraft will reveal the secrets of the comet’s interior by collecting pictures and data of how the crater forms, measuring the crater’s depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  15. KSC-05PD-0132

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Guests of NASA gather near the launch site at Cape Canaveral Air Force Station, Fla., to watch the Deep Impact spacecraft as it speeds through the air after a perfect launch at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  16. Paving the Path for Human Space Exploration: The Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hansen, Lauri

    2016-01-01

    Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.

  17. Goldstone Tracking the Echo Satelloon.

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This photograph shows the first pass of Echo 1, NASA's first communications satellite, over the Goldstone Tracking Station managed by NASA's Jet Propulsion Laboratory, in Pasadena, California, in the early morning of Aug. 12, 1960. The movement of the antenna, star trails (shorter streaks), and Echo 1 (the long streak in the middle) are visible in this image. Project Echo bounced radio signals off a 10-story-high, aluminum-coated balloon orbiting the Earth. This form of "passive" satellite communication -- which mission managers dubbed a "satelloon" -- was an idea conceived by an engineer from NASA's Langley Research Center in Hampton, Virginia, and was a project managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL's role involved sending and receiving signals through two of its 85-foot-diameter (26-meter-diameter) antennas at the Goldstone Tracking Station in California's Mojave Desert. The Goldstone station later became part of NASA's Deep Space Network. JPL, a division of Caltech in Pasadena, California, manages the Deep Space Network for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA21114

  18. The International Space Station: Stepping-stone to Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; Kelly, Brian K.; Kelly, Brian K.

    2005-01-01

    As the Space Shuttle returns to flight this year, major reconfiguration and assembly of the International Space Station continues as the United States and our 5 International Partners resume building and carry on operating this impressive Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush ratified the United States' commitment to completing construction of the ISS by 2010. The current ongoing research aboard the Station on the long-term effects of space travel on human physiology will greatly benefit human crews to venture through the vast voids of space for months at a time. The continual operation of ISS leads to new knowledge about the design, development and operation of system and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration. This paper will provide an overview of the ISS Program, including a review of the events of the past year, as well as plans for next year and the future.

  19. KSC-98pc1316

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), after covering the lower portion of Deep Space 1, workers adjust the anti-static blanket covering the upper portion. The blanket will protect the spacecraft during transport to the launch pad. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  20. KSC-98pc1317

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Space 1, to protect the spacecraft during transport to the launch pad. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  1. Developing a Habitat for Long Duration, Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Thompson, Shelby

    2012-01-01

    One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

  2. Three-Dimensional Printing in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.

  3. KSC-05PD-0126

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., shadows paint the Boeing Delta II rocket carrying the Deep Impact spacecraft as the mobile service tower at left is rolled back before launch.Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  4. KSC-05PD-0125

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft looms into the night sky as the mobile service tower at right is rolled back before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  5. KSC-05PD-0127

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II carrying the Deep Impact spacecraft rocket shines under spotlights in the early dawn hours as it waits for launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  6. KSC-05PD-0129

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  7. Space-Data Routers: Enhancing Deep Space communications for scientific data transmission and exploitation from Mars through Space Internetworking

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Daglis, Ioannis; Rontogiannis, Athanasios; Tsaoussidis, Vassilis; Diamantopoulos, Sotirios

    2014-05-01

    Dissemination and exploitation of data from Deep Space missions, such as planetary missions, face two major impediments: limited access capabilities due to narrow connectivity window via satellites (thus, resulting to confined scientific capacity) and lack of sufficient communication and dissemination mechanisms between deep space missions such the current missions to Mars, space data receiving centers, space-data collection centers and the end-user community. Although large quantities of data have to be transferred from deep space to the operation centers and then to the academic foundations and research centers, due to the aforementioned impediments more and more stored space data volumes remain unexploited, until they become obsolete or useless and are consequently removed. In the near future, these constraints on space and ground segment resources will rapidly increase due to the launch of new missions. The Space-Data Routers (SDR) project aims into boosting collaboration and competitiveness between the European Space Agency, the European Space Industry and the European Academic Institutions towards meeting these new challenges through Space Internetworking. Space internetworking gradually replaces or assists traditional telecommunication protocols. Future deep space operations, such as those to Mars, are scheduled to be more dynamic and flexible; many of the procedures, which are now human-operated, will become automated, interoperable and collaborative. As a consequence, space internetworking will bring a revolution in space communications. For this purpose, one of the main scientific objectives of the project is, through the examination of a specific scenario, the enhanced transmission and dissemination of Deep Space data from Mars, through unified communication channels. Specifically, the scenario involves enhanced data transmission acquired by the OMEGA sensor on-board ESA's Mars Express satellite. We consider two separate issues considering the capabilities of SDR in terms of (i) augmenting the data volume received from the Mars Express, through the increase of the spacecraft's connectivity with the Earth ground receiving stations and in terms of (ii) increasing the user's access speed to the OMEGA scientific data. Especially for the first, we test alternative scenarios for augmenting the data volume received specifically from OMEGA, through the enhancement of the spacecraft's connectivity with ground receiving stations. Simulation results have proven the potential of SDR in efficiently meeting the new enhanced challenges in future robotic and human missions to Mars in terms of data transmission and data handling. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  8. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew up the end of a bag that contains one of the Veg-03 plant pillows. In the foreground are all of the other plant pillows that need to be sealed. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  9. The 26-meter antenna s-x conversion project. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Programmatic and management aspects of converting an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet of the Deep Space Network are described. The stations involved were DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems affected by the conversion were the antenna mechanical, antenna microwave, and receiver-exciter. Antenna mechanial modifications and electronic additions and changes are described. The design and analysis of critical areas are considered and antenna performance is discussed.

  10. DSN command system Mark III-78. [data processing

    NASA Technical Reports Server (NTRS)

    Stinnett, W. G.

    1978-01-01

    The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.

  11. Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Esquivel, M. S.

    1992-01-01

    Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.

  12. Transferring Files Between the Deep Impact Spacecrafts and the Ground Data System Using the CCSDS File Delivery Protocol (CFDP): A Case Study

    NASA Technical Reports Server (NTRS)

    Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael

    2006-01-01

    The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.

  13. Ixion: A Wet-Lab Habitat Platform for Leo and the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Wald, S. I.; Cummins, C. K.; Manber, J.

    2018-02-01

    Cislunar and LEO habitats derived from launch vehicle upper stages are technically feasible and continues development toward flight. Present station specifications, configurations, and concepts for scientific, exploration, and commercial utilization.

  14. The telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1980-01-01

    Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.

  15. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Smoot, G. F.; Golden, R. L.; Israel, M. H.; Kephart, R.; Niemann, R.; Mewalt, R. A.; Ormes, J. F.; Spillantini, P.; Widenbeck, M. E.

    1986-01-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more.

  16. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  17. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section leaves of the payload transportation container prior to its move to Launch Pad 17A. The spacecraft is targeted for launch Oct. 25 aboard a Boeing Delta 7326 rocket. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  18. STS-104 Crew at the NBL

    NASA Image and Video Library

    2001-04-11

    JSC2001-E-10917 (13 April 2001) --- Astronaut Charles O. Hobaugh, pilot, training for extravehicular activity (EVA), prepares to enter a deep pool of the Neutral Buoyancy Laboratory (NBL) at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.

  19. STS-104 Crew at the NBL

    NASA Image and Video Library

    2001-04-11

    JSC2001-E-10916 (13 April 2001) --- Astronaut Michael L. Gernhardt, mission specialist, training for extravehicular activity (EVA), prepares to enter a deep pool of the Neutral Buoyancy Laboratory (NBL) at the Johnson Space Center (JSC). The STS-104 mission to the International Space Station (ISS) represents the Space Shuttle Atlantis' first flight using a new engine and is targeted for a liftoff no earlier than June 14, 2001.

  20. Long-term Changes in Habitat Provision by a Temperate Benthic Bioconstructor Threatened by Extreme Events

    NASA Astrophysics Data System (ADS)

    Cocito, S.; Lombardi, C.

    2016-02-01

    In a wide range of temperate environmental settings, long-lived, carbonate benthic organisms provide the framework of biogenic constructions, which create and maintain habitats and ecological niches for many species. These physical structures provide living space which progressively increases as framework grows. In temperate waters, bryozoans can have reef-constructing roles, and can substitute for corals in abundance and structure. As all bioconstructional species, they are seriously threaten by climate changes and its consequences such as thermal anomalies. The present study provides an assessment of changes in habitat provision by a reef-forming bryozoan dominating sub-tidal rocky reefs in the Ligurian Sea (NW Mediterranean) through 9-year time. Large ellipsoidal foliaceous colonies of Pentapora fascialis were monitored in 12 replicated stations (area: 1 m2) at two depths (11 and 22 m) from 1997 to 2005. Variation of living space (i.e. empty colony spaces) was computed by using colony width and high recorded annually. Impacts and long-term consequences of the 1999 and 2003 thermal anomalies were evaluated as changes in empty colony spaces. Over the 9 year monitoring, living space resulted more abundant at the deep stations (2947±617 cm3) than at the shallow ones (1652±494 cm3). Rapid decline in living space (90% and 94% reduction at 11 and 22 m stations, respectively) following the 1999 event was mainly due to the necrosis and reduction of the largest colonies. Differently, after the 2003 thermal anomaly the living space decline occurred gradually during the following 2 years. Interestingly, between the two events, colonies at the deep stations regained living space to pre-disturbance level (5671±1862 cm3) showing higher resilience to disturbance. Detecting effects of extreme events on bioconstructions and associated biota will contribute to the assessment of biodiversity changes and to predict future changes in threatened marine ecosystems.

  1. Life Support for Deep Space and Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  2. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  3. KSC-98pc1328

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  4. KSC-98pc1345

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  5. KSC-98pc1329

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is lifted out of the transporter that carried it to Launch Pad 17A at Cape Canaveral Air Station. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  6. KSC-98pc1318

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard Boeing's Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including an ion propulsion engine. Propelled by the gas xenon, the engine is being flight tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include softwre that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the firs two months, but will also make a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  7. KSC-98pc1313

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  8. KSC-98pc1332

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered toward the second stage of a Boeing Delta 7326 rocket. The adapter on the spacecraft can be seen surrounding the booster motor. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  9. KSC-98pc1347

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver part of the fairing (viewed from the inside) to encapsulate Deep Space 1. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  10. KSC-98pc1330

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Just before sunrise, on Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is hoisted up the mobile service tower for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  11. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  12. Habitation Concepts for Human Missions Beyond Low-Earth-Orbit

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2016-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.

  13. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Technical Reports Server (NTRS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  14. Intercontinental time and frequency transfer using a global positioning system timing receiver

    NASA Technical Reports Server (NTRS)

    Clements, P. A.

    1983-01-01

    The Deep Space Network (DSN) has a requirement to maintain knowledge of the frequency offset between DSN stations within 3 x 10 to the -13th power and time offset within 10 microseconds. It is further anticipated that in the 1987-1990 era the requirement for knowledge of time offset between DSN stations will be less than 10 nanoseconds. The Jet Propulsion Laboratory (JPL) is using the Global Positioning System (GPS) Space Vehicles, as a development project, to transfer time and frequency over intercontinental distances between stations of the DSN and between the DSN and other agencies. JPL has installed GPS timing receivers at its tracking station near Barstow, California and at its tracking station near Madrid, Spain. The details of the experiment and the data are reported. There is a discussion of the ultimate capabilities of these techniques for meeting the functional requirements of the DSN.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Activities in space communication, radio navigation, radio science, and ground-based astronomy are reported. Advanced systems for the Deep Space Network and its Ground-Communications Facility are discussed including station control and system technology. Network sustaining as well as data and information systems are covered. Studies of geodynamics, investigations of the microwave spectrum, and the search for extraterrestrial intelligence are reported.

  16. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  17. Delay/Disruption Tolerant Networking for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.

    2017-01-01

    Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.

  18. Advancing the Journey to Mars on This Week @NASA – October 30, 2015

    NASA Image and Video Library

    2015-10-30

    During an Oct. 28 keynote speech at the Center for American Progress, in Washington, NASA Administrator Charlie Bolden spoke about the advancement made on the journey to Mars and what lies ahead for future administrations and policy makers. NASA’s recently released report “Journey to Mars: Pioneering Next Steps in Space Exploration,” outlines its plan to reach Mars in phases – with technology demonstrations and research aboard the International Space Station, followed by hardware and procedure development in the proving ground around the moon, before sending humans to the Red Planet. Also, Space station spacewalk, Another record in space for Kelly, Mars Landing Sites/ Exploration Zones Workshop, Cassini’s “deep dive” flyby and more!

  19. Reliability Impacts in Life Support Architecture and Technology Selection

    NASA Technical Reports Server (NTRS)

    Lange Kevin E.; Anderson, Molly S.

    2012-01-01

    Quantitative assessments of system reliability and equivalent system mass (ESM) were made for different life support architectures based primarily on International Space Station technologies. The analysis was applied to a one-year deep-space mission. System reliability was increased by adding redundancy and spares, which added to the ESM. Results were thus obtained allowing a comparison of the ESM for each architecture at equivalent levels of reliability. Although the analysis contains numerous simplifications and uncertainties, the results suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support ESM and could influence the optimal degree of life support closure. Approaches for reducing reliability impacts were investigated and are discussed.

  20. KSC-98pc1050

    NASA Image and Video Library

    1998-09-11

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, arrives at Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  1. KSC-98pc1051

    NASA Image and Video Library

    1998-09-11

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, arrives at Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  2. KSC-98pc1049

    NASA Image and Video Library

    1998-09-11

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, arrives at Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  3. The Challenges and Opportunities for International Cooperative Radio Science; Experience with Mars Express and Venus Express Missions

    NASA Technical Reports Server (NTRS)

    Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel; hide

    2008-01-01

    Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.

  4. Initial economic and operations data base for DSS 13 automation test

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Lorden, G.

    1979-01-01

    A summary is given of the data base collected for nine weeks of Deep Space Station II. Life cycle cost parameters on efficiency and productivity ratios, costs, and telemetry were calculated from this data base.

  5. KSC-04PD-2699

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is mated to the Boeing Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  6. KSC-04PD-2693

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Boeing technicians at Astrotech Space Operations in Titusville, Fla., prepare the third stage of a Delta II rocket for mating with the Deep Impact spacecraft. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  7. Environmental projects. Volume 1: Polychlorinated biphenyl (PCB) abatement program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. Some of the ancillary electrical equipment of thes Deep Space Stations, particularly transformers and power capicitors, were filled with stable, fire-retardant, dielectric fluids containing substances called polychlorobiphenyls (PCBs). Because the Environmental Protection Agency has determined that PCBs are environmental pollutants toxic to humans, all NASA centers have been asked to participate in a PCB-abatement program. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a two-year long PCB-abatement program has eliminated PCBs from the Goldstone Complex.

  8. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-29

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's Space Launch System rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  9. Spacecraft fire-safety experiments for space station: Technology development mission

    NASA Technical Reports Server (NTRS)

    Youngblood, Wallace W.

    1988-01-01

    Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.

  10. NASA's New Astronauts to Conduct Research Off the Earth , For the Earth and Deep Space Missions

    NASA Image and Video Library

    2017-06-07

    After receiving a record-breaking number of applications to join an exciting future of space exploration, NASA has selected its largest astronaut class since 2000. Rising to the top of more than 18,300 applicants, NASA chose 12 women and men as the agency’s new astronaut candidates. Vice President Mike Pence joined Acting NASA Administrator Robert Lightfoot, Johnson Space Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly to welcome the new astronaut candidates during an event June 7 at the agency’s Johnson Space Center in Houston. The astronaut candidates will return to Johnson in August to begin two years of training. Then they could be assigned to any of a variety of missions: performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and departing for deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

  11. An estimating rule for deep space station control room equipment energy costs

    NASA Technical Reports Server (NTRS)

    Younger, H. C.

    1980-01-01

    A rule is described which can be used to estimate power costs for new equipment under development, helping to reduce life-cycle costs and energy consumption by justifying design alternatives that are more costly, but more efficient.

  12. KSC-2015-1333

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  13. KSC-2015-1341

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  14. KSC-2015-1335

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket rises from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  15. KSC-2015-1334

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1991-01-01

    This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.

  17. Overview of Intelligent Power Controller Development for the Deep Space Gateway

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey

    2017-01-01

    Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.

  18. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  19. KSC-2015-1364

    NASA Image and Video Library

    2015-02-11

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, gets a boost into space aboard the SpaceX Falcon 9 rocket. Liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  20. KSC-2015-1358

    NASA Image and Video Library

    2015-02-11

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, is boosted into space aboard the SpaceX Falcon 9 rocket. Liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  1. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui

    2015-01-01

    The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.

  2. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket arrives at the Booster Fabrication Facility at the agency’s Kennedy Space Center in Florida, from the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  3. KSC-98pc1191

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Deep Space 1 is lifted from its work platform, giving a closer view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Above the engine is one of the two solar wings, folded for launch, that will provide the power for it. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  4. KSC-98pc1189

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The reflective insulation is designed to protect the spacecraft as this side faces the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  5. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  6. KSC-98pc1190

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The dark insulation is designed to protect the side of the spacecraft that faces away from the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches

  7. KSC-98pc1315

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section leaves of the payload transportation container prior to its move to Launch Pad 17A. The spacecraft is targeted for launch Oct. 25 aboard a Boeing Delta 7326 rocket. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  8. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  9. KSC-04PD-2460

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Boeing Delta II rocket arrives at the top of the mobile service tower. The element will be mated to the Delta II, which will launch NASAs Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  10. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. KSC-98pc1053

    NASA Image and Video Library

    1998-09-11

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, is lifted into place above the flame trench at Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  13. KSC-98pc1052

    NASA Image and Video Library

    1998-09-11

    The first stage of Boeing's Delta 7326 rocket, which will be used to launch the Deep Space 1 spacecraft, is lifted into place above the surface of Pad 17A at Cape Canaveral Air Station. Targeted for launch on Oct. 15, 1998, this first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  14. Application of non-coherent Doppler data types for deep space navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    1995-01-01

    Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.

  15. Availability analysis of the traveling-wave maser amplifiers in the deep space network. Part 1: The 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1992-01-01

    The results of the reliability and availability analyses of the individual S- and X-band traveling-wave maser (TWM) assemblies and their operational configurations in the 70-meter antennas of NASA's Deep Space Network (DSN) are described. For the period 1990 through 1991, the TWM availability parameters for the Telemetry Data System are: mean time between failures (MTBF), 930 hr; mean time to restore services (MTTRS), 1.4 hr; and the average availability, 99.85 percent. In previously published articles, the performance analysis of the TWM assemblies was confined to the determination of the parameters specified above. However, as the mean down time (MDT) for the repair of TWM's increases, the levels of the TWM operational availabilities and MTTRS are adversely affected. A more comprehensive TWM availability analysis is presented to permit evaluation of both MTBF and MDT effects. Performance analysis of the TWM assemblies, based on their station monthly failure reports, indicates that the TWM's required MTBF and MDT levels of 3000 hr and 36 to 48 hr, respectively, have been achieved by the TWM's only at the Canberra Deep Space Station (DSS 43). The Markov Process technique is employed to develop suitable availability measures for the S- and X-band TWM configurations when each is operated in a two-assembly standby mode. The derived stochastic expressions allow for the evaluation of those configurations' simultaneous availability for the Antenna Microwave Subsystem. The application of these expressions to demonstrate the impact of various levels of TWM maintainability (or MDT) on their configurations' operational availabilities is presented for each of the 70-m antenna stations.

  16. Vice President Pence Visits NASA's Marshall Space Flight Center

    NASA Image and Video Library

    2017-09-25

    Vice President Mike Pence offered his thanks Monday to employees working on NASA’s human spaceflight programs during a tour of the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Vice President saw the progress being made on NASA’s Space Launch System (SLS), the world’s most powerful deep space rocket, that will send astronauts on missions around the Moon and ultimately to Mars. He also visited Marshall’s Payload Operations Integration Center, where the agency manages all research aboard the International Space Station.

  17. MSFC_09-25-17_VPatPOIC

    NASA Image and Video Library

    2017-09-25

    From Marshall’s science command center, Vice President Pence called the NASA astronauts aboard the space station and spoke with Expedition 53 commander Randy Bresnik, and flight engineers Mark Vande Hei and Joe Acaba. He also met with the ground controllers that provide around-the-clock support of the crew’s scientific activities on the orbiting laboratory, paving the way for future deep space exploration missions.

  18. KSC-2015-1338

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket clears the tower at Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station. On board is NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  19. KSC-2015-1365

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  20. KSC-2015-1359

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  1. KSC-2015-1368

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  2. KSC-2015-1362

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  3. KSC-2015-1366

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  4. KSC-2015-1340

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket climbs away from Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station. On board is NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  5. KSC-2015-1367

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  6. KSC-2015-1363

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  7. KSC-2015-1357

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, rises from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  8. KSC-2015-1356

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  9. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-31

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  10. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  11. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  12. KSC-04PD-2697

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians oversee the final movement of the Deep Impact spacecraft being lowered onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  13. KSC-04PD-2698

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians oversee the final movement of the Deep Impact spacecraft being lowered onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  14. KSC-05PD-0010

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is secure in the canister for its move to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  15. KSC-04PD-2696

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians watch as an overhead crane lowers the Deep Impact spacecraft onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  16. KSC-04PD-2695

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians watch as an overhead crane lifts the Deep Impact spacecraft, which is being moved for mating to the Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  17. KSC-04PD-2694

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach a crane to the Deep Impact spacecraft in order to move it to the Delta II third stage at left for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  18. KSC-04PD-2180

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Joe Galamback mounts a bracket on a solar panel on the Deep Impact spacecraft. Galamback is a lead mechanic technician with Ball Aerospace and Technologies Corp. in Boulder, Colo. The spacecraft is undergoing verification testing after its long road trip from Colorado.A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. The spacecraft is scheduled to launch Dec. 30, 2004, aboard a Boeing Delta II rocket from Launch Complex 17 at Cape Canaveral Air Force Station, Fla.

  19. Analysis of large optical ground stations for deep-space optical communications

    NASA Astrophysics Data System (ADS)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the performance. The different configurations are compared from the technical point of view, taking into account the effect of atmospheric conditions. Finally a very preliminary cost analysis for a large aperture OGS is presented.

  20. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.

  1. KSC-2015-1361

    NASA Image and Video Library

    2015-02-11

    Umbilicals pull away from the SpaceX Falcon 9 rocket as it launches from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  2. KSC-2015-1342

    NASA Image and Video Library

    2015-02-11

    Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  3. KSC-2015-1339

    NASA Image and Video Library

    2015-02-11

    Lit by the glow of sunset, the SpaceX Falcon 9 rocket climbs away from Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station. On board is NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  4. KSC-2015-1337

    NASA Image and Video Library

    2015-02-11

    Sunset colors the horizon to the east as the SpaceX Falcon 9 rocket climbs away from Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station. On board is NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  5. KSC-2015-1328

    NASA Image and Video Library

    2015-02-10

    Birds fly past the SpaceX Falcon 9 rocket standing on its seaside launch pad at Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida. The rocket is set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. The mission is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  6. KSC-2015-1336

    NASA Image and Video Library

    2015-02-11

    The glow of sunset illuminates the SpaceX Falcon 9 rocket as it soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  7. KSC-2015-1360

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket’s nine first-stage engines burn brightly during the launch of NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  8. AJ26 rocket engine testing news briefing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.

  9. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, preps a section of the right hand aft skirt for primer and paint in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  10. Spectrum Project

    NASA Image and Video Library

    2017-10-16

    Dr. Scott Shipley of Ascentech Enterprises makes an adjustment to the Spectrum unit. He is the project engineer for the effort working under the Engineering Services Contract at NASA's Kennedy Space Center. The device is being built for use aboard the International Space Station and is designed to expose different organisms to different color of fluorescent light while a camera records what's happening with time-laps imagery. Results from the Spectrum project will shed light on which living things are best suited for long-duration flights into deep space.

  11. KSC-2015-1316

    NASA Image and Video Library

    2015-02-08

    Gaseous oxygen vents away from the SpaceX Falcon 9 rocket standing at Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station during the first launch attempt for NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. The mission is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  12. KSC-2015-1307

    NASA Image and Video Library

    2015-02-08

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, is flanked by lightning masts at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  13. KSC-2015-1305

    NASA Image and Video Library

    2015-02-08

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, awaits liftoff at 6:10 p.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  14. KSC-2015-1315

    NASA Image and Video Library

    2015-02-08

    The SpaceX Falcon 9 rocket set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, stands at Space Launch Complex 40 at Florida’s Cape Canaveral Air Force Station during the mission’s first launch attempt. The mission is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  15. KSC-2015-1309

    NASA Image and Video Library

    2015-02-08

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, awaits liftoff at 6:10 p.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  16. KSC-2015-1332

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, rises in the background as the countdown clock at NASA’s Kennedy Space Center in Florida reads 44 seconds into flight. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin

  17. KSC-2015-1329

    NASA Image and Video Library

    2015-02-11

    Liftoff of the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, is visible in the realtime camera view on the countdown clock at NASA’s Kennedy Space Center in Florida. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin

  18. KSC-2015-1331

    NASA Image and Video Library

    2015-02-11

    The countdown clock at NASA’s Kennedy Space Center in Florida reads 30 seconds into flight of the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, seen rising in the background. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin

  19. Vice President Pence lands at Redstone Army Airfield

    NASA Image and Video Library

    2017-09-25

    Air Force Two lands with Vice President Mike Pence along with Congressman Robert Aderholt at the Redstone Army Airfield in Huntsville, Alabama, on Monday, Sept. 25. They were greeted by NASA’s Marshall Space Flight Center Director Todd May and Redstone Arsenal’s Lt. Gen. Edward Daly. The Vice President is visiting NASA’s Marshall Center to meet with employees, view test hardware for NASA’s Space Launch System — America’s new deep-space rocket, and tour the Payload Operations Integration Center, “science central” for the International Space Station.

  20. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Workers align NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, onto a portable work stand at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  1. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    Workers deploy the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  2. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  3. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket arrives at the agency’s Kennedy Space Center in Florida, from the Hangar AF facility at Cape Canaveral Air Force Station. The aft skirt will be transported to the Booster Fabrication Facility. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  4. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket is transported across the Roy D. Bridges Bridge from the Hangar AF facility at Cape Canaveral Air Force Station in Florida, on its way to the Booster Fabrication Facility at the agency’s Kennedy Space Center. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  5. 2017 Astronaut Class

    NASA Image and Video Library

    2017-06-07

    nhq201706070006 (06/07/2017) --- Vice President Mike Pence takes a group selfie with kids that were in attendance during an event where NASA introduced 12 new astronaut candidates, Wednesday, June 7, 2017 at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Bill Ingalls)

  6. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Preparations are underway to remove a protective shipping container from around NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  7. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, enclosed in a protective shipping container, is delivered by truck to the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  8. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  9. Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.; hide

    2015-01-01

    An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.

  10. Developing an Advanced Life Support System for the Flexible Path into Deep Space

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Kliss, Mark H.

    2010-01-01

    Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.

  11. Journey to Mars Update on This Week @NASA – September 30, 2016

    NASA Image and Video Library

    2016-09-30

    NASA Administrator Charlie Bolden joined other leaders of the world’s space agencies to discuss the latest technological breakthroughs and developments in space exploration at the 67th International Astronautical Congress, Sept. 26-30th in Guadalajara, Mexico. At the event, NASA discussed new elements to its multi-phase Journey to Mars to extend the human footprint all the way to the Red Planet. NASA will continue operations aboard the International Space Station through 2024. Work currently underway aboard the station to encourage commercial development of low-Earth orbit, develop deep space systems, life support and human health is part of the Earth Reliant phase of the Journey to Mars. In the 2020s, during the Proving Ground phase when NASA steps out farther, the agency now plans to send an astronaut crew on a yearlong mission to a deep space destination near the moon. They will conduct activities to verify habitation and test our readiness for Mars. A round-trip robotic Mars sample return mission is being targeted for the 2020s, as part of the Earth Independent phase before finally sending humans on a mission to orbit Mars in the early 2030s. Also, Zurbuchen Named Head of NASA Science, Hubble Spots Possible Water Plumes on Europa, Rosetta’s Mission Ends, and Armstrong Celebrates 70 Years of Flight Research!

  12. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  13. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    NASA Technical Reports Server (NTRS)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  14. A history of the deep space network

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1976-01-01

    The Deep Space Network (DSN) has been managed and operated by the Jet Propulsion Laboratory (JPL) under NASA contract ever since NASA was formed in late 1958. The Tracking and data acquisition tasks of the DSN are markedly different from those of the other NASA network, STDN. STDN, which is an amalgamation of the satellite tracking network (STADAN) and the Manned Space Flight Network (MSFN), is primarily concerned with supporting manned and unmanned earth satellites. In contrast, the DSN deals with spacecraft that are thousands to hundreds of millions of miles away. The radio signals from these distant craft are many orders of magnitude weaker than those from nearby satellites. Distance also makes precise radio location more difficult; and accurate trajectory data are vital to deep space navigation in the vicinities of the other planets of the solar system. In addition to tracking spacecraft and acquiring data from them, the DSN is required to transmit many thousands of commands to control the sophisticated planetary probes and interplanetary monitoring stations. To meet these demanding requirements, the DSN has been compelled to be in the forefront of technology.

  15. KSC-98pc1116

    NASA Image and Video Library

    1998-09-17

    A booster is raised off a truck bed and prepared for lifting to the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  16. KSC-98pc1111

    NASA Image and Video Library

    1998-09-17

    A booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  17. KSC-98pc1119

    NASA Image and Video Library

    1998-09-17

    Three boosters are lifted into place at Launch Pad 17A, Cape Canaveral Air Station, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  18. KSC-98pc1117

    NASA Image and Video Library

    1998-09-17

    A booster is lifted off a truck for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  19. KSC-98pc1118

    NASA Image and Video Library

    1998-09-17

    Two boosters are lifted into place, while a third waits on the ground, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  20. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  1. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  2. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    NASA Astrophysics Data System (ADS)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  3. A magnetotelluric feasibility study of the Alps

    NASA Astrophysics Data System (ADS)

    Ritter, O.; Weckmann, U.

    2016-12-01

    The Alps are a famous and extensive mountain range system in central Europe. The mountains were formed as the African and Eurasian tectonic plates collided and they have been a prime target for geological and geophysical investigations since the beginning of modern geosciences. Consequently, the Alps have been investigated with active and passive seismological methods and extensive sets of potential field data exist. Hardly anything is known, however, about the deep electrical conductivity structure, as it has been notoriously difficult to acquire magnetotelluric (MT) data in the Alps. The Alps are densely populated and a lot of infrastructure for tourism has been built over the years. MT measurements, which rely on natural variations of the electromagnetic background fields, are severely hampered by this man-made noise. Here, we report on a feasibility study to acquire MT data in the Alps, where all stations are deployed outside the valleys, on high mountain ranges and alpine pastures. Overall we recorded MT data at 7 stations, along an approximately north-south profile centred on Mayrhofen in the Austrian Alps. The average station spacing was 5 kilometers. The data were processed using robust remote-reference processing and the results clearly show that MT measurements are feasible. We used Mare2DEM for 2D inversion to include a somewhat realistic topography. The 2D section indicates moderate resistivity for the top 2 - 5 km, consistent with the regional geology, which suggests (meta-) sedimentary sequences. From depths of 5 km and below resistivities exceed 5,000 Ohmm. This means we can sense very deep with MT but also, that we should be cautious with an interpretation of this short profile. The data also clearly indicate 3D effects. We therefore propose to deploy an array of stations covering the entire Alps in USArray style, e.g. with a station spacing of approximately 50 km, to derive a 3D model of the deep electrical resistivity structure of the Alps. Such a model could also serve as reference for more detailed investigations of key structures such as major fault systems or nappe structures. It will be essential to install stations on high ground, as far away as possible from valleys and cultural installations.

  4. A growth path for deep space communications

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Smith, J. G.

    1987-01-01

    Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.

  5. Space Station view of the Pyramids at Giza

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  6. KSC-04PD-2413

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a crane begins lifting the third in a set of three Solid Rocket Boosters (SRBs). The SRBs will be hoisted up the mobile service tower and join three others already mated to the Boeing Delta II rocket that will launch the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  7. KSC-04PD-2664

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  8. KSC-04PD-2662

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Pad 17-B, Cape Canaveral Air Force Station, the Boeing Delta II second stage reaches the top of the mobile service tower. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  9. KSC-04PD-2663

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  10. Attitude Control Tradeoff Study Between the Use of a Flexible Beam and a Tether Configuration for the Connection of Two Bodies in Orbit

    NASA Technical Reports Server (NTRS)

    Graff, S. H.

    1985-01-01

    Sometimes it is necessary to mount a payload remotely from the main body of a spacecraft or space station. The reasons for this vary from vibration isolation to avoidance of measurement contamination. For example the SP-100 project, which grew out of the increased interest in nuclear power in space for space stations and for deep space explorations, requires separation of the nuclear reactor from the user because of vibration, heat and radiation. The different attitude control problems for beam and tether configurations are discussed. The beam configuration uses a conservative design approach. The vibration, beam flexibility and deployment concerns are analyzed. The tether configuration offers some very attractive design features, but not without several thorny problems. These problems are analyzed. One configuration will be recommended for the main thrust of the SP-100 design effort based on attitude control considerations.

  11. KSC-04PD-2404

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a second Solid Rocket Booster (SRB) is raised off a transporter to be lifted up the mobile service tower. It will be attached to the Boeing Delta II launch vehicle for launch of the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact project management is handled by the Jet Propulsion Laboratory in Pasadena, Calif. The spacecraft is scheduled to launch Dec. 30, 2004.

  12. KSC-05PD-0075

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  13. KSC-05PD-0079

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the partly enclosed Deep Impact spacecraft (background) waits while the second half of the fairing (foreground left) moves toward it. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  14. KSC-05PD-0076

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved toward the Deep Impact spacecraft for installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  15. KSC-05PD-0078

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  16. KSC-05PD-0074

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  17. KSC-05PD-0077

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  18. KSC-05PD-0073

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  19. KSC-05PD-0080

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., workers attach the two halves of the fairing around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  20. KSC-05PD-0001

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits at Astrotech Space Operations in Titusville, Fla., for placement of a protective cover before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  1. KSC-05PD-0004

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians place the lower segments of a protective canister around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  2. KSC-05PD-0007

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  3. KSC-05PD-0005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians roll the Deep Impact spacecraft into another area where the upper canister can be lowered around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  4. KSC-05PD-0002

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., a protective cover is being lowered over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  5. KSC-05PD-0011

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft leaves Astrotech Space Operations in Titusville, Fla., in the pre-dawn hours on a journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  6. KSC-05PD-0003

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians lower a protective cover over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  7. KSC-05PD-0006

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians install a crane onto the upper canister before lifting it to install around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  8. KSC-05PD-0009

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach the upper canister with the lower segments surrounding the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  9. KSC-05PD-0008

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  10. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  11. Sub-nanosecond clock synchronization and precision deep space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  12. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  13. DSN diplexer, noise burst testing

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.

    1976-01-01

    The testing of a new design high power S-band diplexer is reported. The megawatt Cassegrain diplexer (MCD) is to be used for DSN operations. The tests described were performed at 100 kW at the Venus Deep Space Station (DSS 13) transmitter test area. At 100 kW or less no degradation of receive performance was detected.

  14. Using manufacturing message specification for monitor and control at Venus

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Chen, Richard L.; Stockett, Michael H.

    1993-01-01

    The flexibility and robustness of a monitor and control (M&C) system are a direct result of the underlying interprocessor communications architecture. A new architecture for M&C at the Deep Space Communications Complexes (DSCC's) has been developed based on the Manufacturing Message Specification (MMS) process control standard of the Open System Interconnection (OSI) suite of protocols. This architecture has been tested both in a laboratory environment and under operational conditions at the Deep Space Network (DSN) experimental Venus station (DSS-13). The Venus experience in the application of OSI standards to support M&C has been extremely successful. MMS meets the functional needs of the station and provides a level of flexibility and responsiveness previously unknown in that environment. The architecture is robust enough to meet current operational needs and flexible enough to provide a migration path for new subsystems. This paper will describe the architecture of the Venus M&C system, discuss how MMS was used and the requirements this imposed on other parts of the system, and provide results from systems and operational testing at the Venus site.

  15. KSC-2015-1330

    NASA Image and Video Library

    2015-02-11

    The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, rises above the treeline as a realtime camera view of the launch is visible on the countdown clock at NASA’s Kennedy Space Center in Florida. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin

  16. KSC-2015-1306

    NASA Image and Video Library

    2015-02-08

    CAPE CANAVERAL, Fla. – The payload fairing protecting NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, tops the SpaceX Falcon 9 rocket set to lift off at 6:10 p.m. EST from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  17. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Workers remove the plastic cover from NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  18. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  19. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Preparations are underway to lift NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  20. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, has been uncovered and is ready for processing in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  1. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    A lifting device is attached to NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, to remove it from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  2. Orion rolled out and mated on This Week @NASA - November 14, 2014

    NASA Image and Video Library

    2014-11-14

    In preparation for its first spaceflight test next month, NASA’s Orion spacecraft was transported from Kennedy Space Center’s Launch Abort System Facility to Space Launch Complex 37 at nearby Cape Canaveral Air Force Station on November 11, arriving at the launch pad early Nov. 12. NASA’s new deep space exploration capsule then was attached to the top of the Delta IV Heavy rocket that will carry it to space for the Dec. 4 test. Also, ISS crew returns safely, Earth Science research to continue with developing nations, Rosetta update, Rocks and Robots and more!

  3. EM-1 Booster Prep, Right Aft Skirt Work-In-Progress

    NASA Image and Video Library

    2016-10-30

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is ready for the assembly process in the Booster Fabrication Facility at the agency's Kennedy Space Center in Florida. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  4. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, comes into view as the protective shipping container is lifted from around the spacecraft at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  5. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, is transferred from its transportation pallet to a portable work stand at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  6. Random Access Frame (RAF) System Neutral Buoyancy Evaluations

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Polit-Casillas, Raul; Akin, David L.; McBryan, Katherine; Carlsen, Christopher

    2015-01-01

    The Random Access Frame (RAF) concept is a system for organizing internal layouts of space habitats, vehicles, and outposts. The RAF system is designed as a more efficient improvement over the current International Standard Payload Rack (ISPR) used on the International Space Station (ISS), which was originally designed to allow for swapping and resupply by the Space Shuttle. The RAF system is intended to be applied in variable gravity or microgravity environments. This paper discusses evaluations and results of testing the RAF system in a neutral buoyancy facility simulating low levels of gravity that might be encountered in a deep space environment.

  7. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare the right hand aft skirt for NASA’s SLS rocket for primer and painting inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  8. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare a paint mixture for the right hand aft skirt for NASA’s SLS in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced, and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the Journey to Mars.

  9. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  10. (abstract) Application of Non-coherent Data Types for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    1995-01-01

    Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.

  11. Instructional computing in space physics moves ahead

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Omidi, N.

    As the number of spacecraft stationed in the Earth's magnetosphere exponentiates and society becomes more technologically sophisticated and dependent on these spacebased resources, both the importance of space physics and the need to train people in this field will increase.Space physics is a very difficult subject for students to master. Both mechanical and electromagnetic forces are important. The treatment of problems can be very mathematical, and the scale sizes of phenomena are usually such that laboratory studies become impossible, and experimentation, when possible at all, must be carried out in deep space. Fortunately, computers have evolved to the point that they are able to greatly facilitate instruction in space physics.

  12. KSC-2009-2178

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – The Materials Science Research Rack-1, or MSRR-1, arrived at NASA's Kennedy Space Center in Florida for final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann

  13. KSC-2009-2179

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a technician checks out the Materials Science Research Rack-1, or MSRR-1, which will undergo final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann

  14. Environmental projects. Volume 16: Waste minimization assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.

  15. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  16. DSN telemetry system performance with convolutionally code data

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.; Benjauthrit, B.; Greenhall, C. A.; Kuma, D. M.; Lam, J. K.; Wong, J. S.; Urech, J.; Vit, L. D.

    1975-01-01

    The results obtained to date and the plans for future experiments for the DSN telemetry system were presented. The performance of the DSN telemetry system in decoding convolutionally coded data by both sequential and maximum likelihood techniques is being determined by testing at various deep space stations. The evaluation of performance models is also an objective of this activity.

  17. The 26-meter S-X Conversion Project. [Deep Space Network stations

    NASA Technical Reports Server (NTRS)

    Lobb, V. B.

    1977-01-01

    The 26-meter S-X conversion project provides for the conversion of an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet. The subnet chosen for conversion consists of the following stations: DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems effected by this project are the antenna mechanical, antenna microwave, and receiver-exciter. In addition to these, there are many project-related electronic equipments that have been added to the existing station equipment. The major subsystems are essentially through the design stage with the antenna mechanical subsystem completed through detail design with procurement in process.

  18. Procesamiento de señales radioastronómicas; implementación para la antena de espacio profundo DSA 3 de la Agencia Espacial Europea.

    NASA Astrophysics Data System (ADS)

    Cancio, A.; Colazo, M.; García, B.

    2017-10-01

    In December 2012, the European Space Agency opened its third Deep Space Station in Malargüe, province of Mendoza, Argentina. Due to the nature of its operations, the antenna has requirements for the stability of reference signals and low phase noise equipment that makes it a candidate for use in radio astronomy applications. The present work evaluates the first experience of observation of astronomical sources.

  19. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements.

  20. Simulation of Ophthalmic Alterations at the Arctic, Antarctica and the International Space Station for Long-Duration Spaceflight

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio; Gonçalves, Cristiane

    2016-07-01

    Well, we propose a series of long-period medical simulations in scientific bases at the Arctic, at Antarctica and aboard the International Space Station (ISS), involving natural ophthalmic diseases such as radiation, solar and trauma retinopathy, keratoconus, cataract, glaucoma, etc., and ophthalmic alterations by accidental injuries. These natural diseases, without a previous diagnosis, specially those specific retinopathy, appear after 1 month to 1.5 year, in average. Such studies will be valuable for the human deep-space exploration because during long-duration spaceflight, such as staying at the ISS, a Moon base and a manned trip to planet Mars, requires several months within such environments, and during such periods ophthalmic diseases and accidents might eventually occur, which could seriously affect the 'round-the-clock' work schedule of the astronauts and the long-duration spaceflight manned program.

  1. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    PubMed

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  2. Pointing and Tracking Concepts for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. W.; Lee, S.; Chen, C.

    2000-01-01

    This paper summarizes part of a FY1998 effort on the design and development of an optical communications (Opcomm) subsystem for the Advanced Deep Space System Development (ADSSD) Project. This study was funded by the JPL X2000 program to develop an optical communications (Opcomm) subsystem for use in future planetary missions. The goal of this development effort was aimed at providing prototype hardware with the capability of performing uplink, downlink, and ranging functions from deep space distances. Such a system was envisioned to support future deep space missions in the Outer Planets/Solar Probe (OPSP) mission set such as the Pluto express and Europa orbiter by providing a significant enhancement of data return capability. A study effort was initiated to develop a flyable engineering model optical terminal to support the proposed Europa Orbiter mission - as either the prime telecom subsystem or for mission augmentation. The design concept was to extend the prototype lasercom terminal development effort currently conducted by JPL's Optical Communications Group. The subsystem would track the sun illuminated Earth at Europa and farther distances for pointing reference. During the course of the study, a number of challenging issues were found. These included thermo-mechanical distortion, straylight control, and pointing. This paper focuses on the pointing aspects required to locate and direct a laser beam from a spacecraft (S/C) near Jupiter to a receiving station on Earth.

  3. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David

    2008-01-01

    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  4. KSC-05PD-0013

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted from its transporter into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  5. KSC-05PD-0012

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft arrives before dawn at the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. The spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  6. KSC-05PD-0017

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers stand by as the canister is lifted away from the Deep Impact spacecraft. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  7. KSC-05PD-0018

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers watch as the protective cover surrounding the Deep Impact spacecraft is lifted away. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  8. KSC-05PD-0015

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers begin lowering the Deep Impact spacecraft toward the second stage of the Boeing Delta II launch vehicle below for mating. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  9. KSC-05PD-0016

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers attach the third stage motor, connected to the Deep Impact spacecraft, to the spin table on the second stage of the Boeing Delta II launch vehicle below. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  10. KSC-05PD-0014

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted into the top of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  11. KSC-05PD-0147

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. NASA Administrator Sean OKeefe (center) is presented with a Deep Impact hat in the Press Site Auditorium following his report to employees on the state of the Agency. He is accompanied on stage by Center Director Jim Kennedy (right). The update was broadcast live via NASA Television. O'Keefe focused on the achievements of 2004 and the goals set for 2005. His remarks emphasized the milestones met in NASA's Vision for Space Exploration, including the launch of the comet-chasing Deep Impact mission and the landing of the Huygens probe on Jupiters moon Titan, both occurring in the past two days, and the progress made in meeting the requirements to return the Space Shuttle to flight. OKeefes briefing included a dialogue with Associate Administrator of NASAs Office of Exploration Systems Craig Steidle and Center Director Jim Kennedy, live; and Manager of the Space Station Office Bill Gerstenmaier and Director of Advanced Planning and Jet Propulsion Laboratory Charles Elachi, via satellite.

  12. KSC-2015-1308

    NASA Image and Video Library

    2015-02-08

    CAPE CANAVERAL, Fla. – CAPE CANAVERAL, Fla. – Backdropped by a blue sky streaked with white clouds, the SpaceX Falcon 9 rocket set to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, is flanked by lightning masts at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  13. jsc2017e067186

    NASA Image and Video Library

    2017-06-07

    jsc2017e067186 (06/07/2017) --- United States Vice President Mike Pence delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Robert Markowitz)

  14. jsc2017e067268

    NASA Image and Video Library

    2017-06-06

    jsc2017e067268 (06/06/2017) --- New Astronaut Candidate's First Day at NASA's Ellington Field. NASA selected 12 new astronaut candidates, Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  15. jsc2017e067161

    NASA Image and Video Library

    2017-06-07

    jsc2017e067161 06/07/2017) --- Robert Lightfoot, NASA's Acting Administrator, delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  16. jsc2017e067275

    NASA Image and Video Library

    2017-06-06

    jsc2017e067275 (06/06/2017) -- New Astronaut Candidate's First Day at NASA's Ellington Field. NASA selected 12 new astronaut candidates, Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  17. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s newly arrived Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, is delivered to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  18. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Workers are on hand to receive NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, into the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  19. Optimized shielding for space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  20. Optimized Shielding for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.

    2000-01-01

    Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  1. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    The truck delivering NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, enclosed in a protective shipping container, backs up to the door of the airlock of Building 2 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  2. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Workers transfer NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, from the airlock of Building 2 to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  3. Earth Observation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-08-26

    ISS011-E-12148 (26 August 2005) --- South Georgia Island is featured in this image photographed by an Expedition 11 crewmember on the international space station. There is no permanent human base on South Georgia Island, a British territory in the South Atlantic Ocean that lies 1300 kilometers east of the Falkland Islands. Using a long lens (800 mm focal length) and positioned for an oblique view, the crew of the international space station was able to capture the rugged and isolated landscape of the northern shore of the island. The high mountains protect the north and eastern coast of the island from the prevailing gales coming from Antarctica and the west. The steep topography also makes deep embayments along the coast that provide habitat for wildlife and anchorages for whaling ships. The island supports major rookeries of penguins and albatrosses, and large seal populations. This view centers on Mt. Paget and Cumberland Bay. The former whaling station Grytviken is located within the bay. The encampment supports the scientific base for the British Antarctic Survey and Bird Island Research Station.

  4. Earth Observation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-08-26

    ISS011-E-12147 (26 Aug. 2005) --- South Georgia Island is featured in this image photographed by an Expedition 11 crewmember on the International Space Station. There is no permanent human base on South Georgia Island, a British territory in the South Atlantic Ocean that lies 1300 kilometers east of the Falkland Islands. Using a long lens (800 mm focal length) and positioned for an oblique view, the crew of the international space station was able to capture the rugged and isolated landscape of the northern shore of the island. The high mountains protect the north and eastern coast of the island from the prevailing gales coming from Antarctica and the west. The steep topography also makes deep embayments along the coast that provide habitat for wildlife and anchorages for whaling ships. The island supports major rookeries of penguins and albatrosses, and large seal populations. This view centers on Mt. Paget and Cumberland Bay. The former whaling station Grytviken is located within the bay. The encampment supports the scientific base for the British Antarctic Survey and Bird Island Research Station.

  5. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  6. KSC-2013-2762

    NASA Image and Video Library

    2013-06-17

    CAPE CANAVERAL, Fla. - Stephanie Abrams, a meteorologist with The Weather Channel, prepares for a live interview with Ed Mango, manager of NASA's Commercial Crew Program, or CCP, in front of the Atlantis display at the Kennedy Space Center Visitor Complex in Florida. During the interview, Mango explained the program is working with the commercial aerospace industry to return America's domestic capability to launch astronauts from U.S. soil to the International Space Station around the middle of the decade. He also discussed the program's role in helping NASA reach its deep-space exploration goals. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett

  7. KSC-2013-2763

    NASA Image and Video Library

    2013-06-17

    CAPE CANAVERAL, Fla. - Stephanie Abrams, a meteorologist with The Weather Channel, performs a live interview with Ed Mango, manager of NASA's Commercial Crew Program, or CCP, in front of the Atlantis display at the Kennedy Space Center Visitor Complex in Florida. Mango explained the program is working with the commercial aerospace industry to return America's domestic capability to launch astronauts from U.S. soil to the International Space Station around the middle of the decade. He also discussed the program's role in helping NASA reach its deep-space exploration goals. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett

  8. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A paint technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, uses an air gun to apply paint to the right hand aft skirt for NASA’s SLS rocket inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected and resurfaced to prepare it for primer and paint. The aft skirt will be used on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  9. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  10. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  11. jsc2017e067167

    NASA Image and Video Library

    2017-06-07

    jsc2017e067167 (06/07/2017)--- Ellen Ochoa, Director of the Johnson Space Center delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Robert Markowitz)

  12. KSC-2009-2180

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – This close-up shows some of the components of the Materials Science Research Rack-1, or MSRR-1, which arrived at NASA's Kennedy Space Center in Florida for final flight preparations. The size of a large refrigerator, MSRR-1 is 6 feet high, 3.5 feet wide and 40 inches deep and weighs about 1 ton. MSRR-1 is the payload for the STS-128 mission targeted to launch in August. The rack will be installed in the Leonardo Multi-Purpose Logistics Module for transport to the International Space Station . After arriving at the station, the rack will be housed in the U.S. Destiny laboratory. MSRR-1 will allow for study of a variety of materials including metals, ceramics, semiconductor crystals and glasses onboard the orbiting laboratory. Photo credit: NASA/Jim Grossmann

  13. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  14. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  15. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. KSC-2011-5243

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- A media event was held for the Multi-Purpose Crew Vehicle (MPCV) that was on display in a tent on the grounds of the Press Site at NASA's Kennedy Space Center in Florida during launch activities for space shuttle Atlantis' STS-135 mission to the International Space Station. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  18. Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study

    NASA Astrophysics Data System (ADS)

    Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.

    2016-12-01

    Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.

  19. Standard high-reliability integrated circuit logic packaging. [for deep space tracking stations

    NASA Technical Reports Server (NTRS)

    Slaughter, D. W.

    1977-01-01

    A family of standard, high-reliability hardware used for packaging digital integrated circuits is described. The design transition from early prototypes to production hardware is covered and future plans are discussed. Interconnections techniques are described as well as connectors and related hardware available at both the microcircuit packaging and main-frame level. General applications information is also provided.

  20. DSS 13 phase 2 pedestal room microwave layout

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Chen, J. C.

    1991-01-01

    The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.

  1. The DSN radio science system

    NASA Technical Reports Server (NTRS)

    Buckles, B. J.

    1981-01-01

    The Radio Science experiments at Voyager 1 Saturn encounter which included two atmospheric occultations, a planetary ring occultation, and ring scattering experiment were supported by Deep Space Stations in Australia (DSS 43) and Spain (DSS 63). The DSN Radio Science System data flow from receipt of the radio signals at the antenna to delivery of the recorded data to the project are described.

  2. Deep Space Habitat Configurations Based On International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples,Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  3. Deep Space Habitat Configurations Based on International Space Station Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  4. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  5. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  6. Mothers of Invention: Hubble Engineers Push Robotic 'Evolution' to Save Telescope, Enable New Exploration

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Robotic technology being developed out of necessity to keep the Hubble Space Telescope operating could also lead to new levels of man-machine team-work in deep-space exploration down the road-if it survives the near-term scramble for funding. Engineers here who have devoted their NASA careers to the concept of humans servicing the telescope in orbit are planning modifications to International Space Station (ISS) robots that would leave the humans on the ground. The work. forced by post-Columbia flight rules that killed a planned shuttle-servicing mission to Hubble, marks another step in the evolution of robot-partners for human space explorers. "Hubble has always been a pathfider for this agency," says Mike Weiss. Hubble deputy program manager technical. "When the space station was flown and assembled, Hubble was the pathfinder. not just for modularity, but for operations, for assembly techniques. Exploration is the next step. Things we're going to do on Hubble are going to be applied to exploration. It's not just putting a robot in space. It's operating a robot in space. It's adapting that robot to what needs to be done the next time you're up there."

  7. Internationally supported data acquisition for solar system exploration in the 1990's

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Lyman, P. T.; Layland, J. W.; Renzetti, N. A.

    1983-01-01

    Procedures that could be followed for cooperative agreements between countries with large ground station antennas to help provide mission telemetry support for increasing solar system exploration are outlined. It is noted that mission cost reductions, and thereby greater chances that missions will be approved, are offered by the opportunity to make planetary probes multinational efforts. The Canberra station is a suitable site for the Japanese Planet A Halley's comet intercept probe. The French have requested U.S. cooperation in developing VLBI stations in the L-band to receive signals from the Venus balloons and landers being sent as part of a joint French-Soviet mission to Venus and Halley's comet. The construction of the stations would extend the capabilities already present with NASA's deep space network, particularly for tracking the Voyager visits to Uranus and Neptune.

  8. DSS 13 frequency stability tests performed during May 1985 through March 1986

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1986-01-01

    Results of station frequency stability testing performed at DSS 13 (Deep Space Station) during May 1985 through March 1986 are presented. The testing was done on X-band uplink and X- and S-band downlink subsystems as well as on end-to-end systems. The subsystem test data are useful for assessing the frequency stability of various prototype X-band uplink or downlink subsystems for purposes of making design improvements. Information derived from extensive testing at DSS 13 will be useful in the preparation of an X-band Uplink Demonstration Experiment to be conducted at DSS 13, and will also be valuable in the preparations of gravity wave experiments to be conducted at other DSN stations in the future.

  9. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  10. ELISA: a cryocooled 10 GHz oscillator with 10(-15) frequency stability.

    PubMed

    Grop, S; Bourgeois, P Y; Bazin, N; Kersalé, Y; Rubiola, E; Langham, C; Oxborrow, M; Clapton, D; Walker, S; De Vicente, J; Giordano, V

    2010-02-01

    This article reports the design, the breadboarding, and the validation of an ultrastable cryogenic sapphire oscillator operated in an autonomous cryocooler. The objective of this project was to demonstrate the feasibility of a frequency stability of 3x10(-15) between 1 and 1000 s for the European Space Agency deep space stations. This represents the lowest fractional frequency instability ever achieved with cryocoolers. The preliminary results presented in this paper validate the design we adopted for the sapphire resonator, the cold source, and the oscillator loop.

  11. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.

  12. KSC-2015-1240

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  13. KSC-2014-4580

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  14. KSC-2014-4578

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  15. KSC-2014-4582

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  16. KSC-2014-4581

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  17. KSC-2015-1241

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-4568

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, has been uncovered and is ready for processing in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  19. KSC-2015-1239

    NASA Image and Video Library

    2015-01-18

    CAPE CANAVERAL, Fla. – Preparations to launch NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, near completion in the Building 1 high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for no earlier than Feb. 8 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-4547

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – A lifting device is attached to NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, to remove it from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  1. Researching Seeds: Films, Sanitation Methods, Microbiological Growth, Viability, and Selection for New Crops

    NASA Technical Reports Server (NTRS)

    Padgett, Niki; Smith, Trent

    2018-01-01

    A major factor in long-term human exploration of the solar system is crop growth in microgravity. Space crops can provide fresh, nutritious food to supplement diets for astronauts. Important factors impacting space plant growth and consumption are water delivery to root zone in microgravity, sanitation methods for microbiological safety, plant responses to light quality/spectrum, and identifying optimal edible plants suitable for growth on the International Space Station (ISS). Astronauts growing their own food on the ISS provides necessary data for crop production for long duration deep space missions. The seed film project can be used in Advanced Plant Habitat and Veggies that are currently being utilized on the ISS.

  2. 2017 Astronaut Class

    NASA Image and Video Library

    2017-06-07

    nhq201706070004 (06/07/2017) --- Vice President Mike Pence poses for a group photograph with NASA's 12 new astronaut candidates, Wednesday, June 7, 2017 at NASA’s Johnson Space Center in Houston, Texas. NASA astronaut candidates, standing from left, Robb Kulin, Jonathan Kim, Robert Hines, Warren Hoburg, Matthew Dominick, Kayla Barron, Jessica Watkins, from left kneeling, Francisco Rubio, Loral O’Hara, Jasmin Moghbeli, Zena Cardman, and Raja Chari. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Bill Ingalls) Original Filename

  3. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    Workers monitor NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, as it travels between the airlock of Building 2 to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  4. EM-1 Booster Prep, Left Aft Skirt Work-In-Progress

    NASA Image and Video Library

    2016-10-30

    Inside the Booster Fabrication Facility at NASA's Kennedy Space Center in Florida, the left hand aft skirt for the agency's Space Launch System (SLS) rocket is ready for the assembly process. From left, are Chad Goetz, quality technician with Orbital ATK, and Robbie Blaue, quality assurance specialist with the Defense Contract Management Agency. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the left hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  5. Orion Leaves from the VAB

    NASA Image and Video Library

    2014-11-11

    At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  6. KSC-2014-4548

    NASA Image and Video Library

    2014-11-20

    CAPE CANAVERAL, Fla. – NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, is transferred from its transportation pallet to a portable work stand at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett

  7. Orion and SLS showcased at Michoud on This Week @NASA – January 29, 2016

    NASA Image and Video Library

    2016-01-29

    A Jan. 26 event at NASA’s Michoud Assembly Facility in New Orleans, marked recently completed work by technicians there to weld together the pressure vessel for the next Orion deep space crew module. The event also was an opportunity for NASA officials to thank employees and to show the progress on Orion and the core stage of the agency’s Space Launch System (SLS) rocket. The Orion pressure vessel will be shipped to Kennedy Space Center in Florida next month, where engineers will continue to prepare it for the first flight of the SLS rocket. Also, Space station One-year crew update, New color movie of Ceres and NASA Day of Remembrance!

  8. Effects of nuclear cross sections at different energies on the radiation hazard from galactic cosmic rays.

    PubMed

    Lin, Z W; Adams, J H

    2007-03-01

    The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.

  9. sts098-s-001

    NASA Image and Video Library

    2000-11-01

    STS098-S-001 (November 2000) --- This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew will deliver the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the space shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the shuttle and station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  10. Results from the DOLCE (Deep Space Optical Link Communications Experiment) project

    NASA Astrophysics Data System (ADS)

    Baister, Guy; Kudielka, Klaus; Dreischer, Thomas; Tüchler, Michael

    2009-02-01

    Oerlikon Space AG has since 1995 been developing the OPTEL family of optical communications terminals. The optical terminals within the OPTEL family have been designed so as to be able to position Oerlikon Space for future opportunities open to this technology. These opportunities range from commercial optical satellite crosslinks between geostationary (GEO) satellites, deep space optical links between planetary probes and the Earth, as well as optical links between airborne platforms (either between the airborne platforms or between a platform and GEO satellite). The OPTEL terminal for deep space applications has been designed as an integrated RF-optical terminal for telemetry links between the science probe and Earth. The integrated architecture provides increased TM link capacities through the use of an optical link, while spacecraft navigation and telecommand are ensured by the classical RF link. The optical TM link employs pulsed laser communications operating at 1058nm to transmit data using PPM modulation to achieve a robust link to atmospheric degradation at the optical ground station. For deep space links from Lagrange (L1 / L2) data rates of 10 - 20 Mbps can be achieved for the same spacecraft budgets (mass and power) as an RF high gain antenna. Results of an inter-island test campaign to demonstrate the performance of the pulsed laser communications subsystem employing 32-PPM for links through the atmosphere over a distance of 142 km are presented. The transmitter of the communications subsystem is a master oscillator power amplifier (MOPA) employing a 1 W (average power) amplifier and the receiver a Si APD with a measured sensitivity of -70.9 dBm for 32-PPM modulation format at a user data rate of 10 Mbps and a bit error rate (BER) of 10-6.

  11. 2011 Mars Science Laboratory Trajectory Reconstruction and Performance from Launch Through Landing

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2013-01-01

    The Mars Science Laboratory (MSL) mission successfully launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) from the Eastern Test Range (ETR) at Cape Canaveral Air Force Station (CCAFS) in Florida at 15:02:00 UTC on November 26th, 2011. At 15:52:06 UTC, six minutes after the MSL spacecraft separated from the Centaur upper stage, the spacecraft transmitter was turned on and in less than 20 s spacecraft carrier lock was achieved at the Universal Space Network (USN) Dongara tracking station located in Western Australia. MSL, carrying the most sophisticated rover ever sent to Mars, entered the Martian atmosphere at 05:10:46 SpaceCraft Event Time (SCET) UTC, and landed inside Gale Crater at 05:17:57 SCET UTC on August 6th, 2012. Confirmation of nominal landing was received at the Deep Space Network (DSN) Canberra tracking station via the Mars Odyssey relay spacecraft at 05:31:45 Earth Received Time (ERT) UTC. This paper summarizes in detail the actual vs. predicted trajectory performance in terms of launch vehicle events, launch vehicle injection performance, actual DSN/USN spacecraft lockup, trajectory correction maneuver performance, Entry, Descent, and Landing events, and overall trajectory and geometry characteristics.

  12. Dive Europa: a search-for-life initiative.

    PubMed

    Naganuma, T; Uematsu, H

    1998-06-01

    Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.

  13. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  14. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  15. Orion is Lifted for Mating with Delta IV

    NASA Image and Video Library

    2014-11-12

    At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

  16. Analysis of a Radiation Model of the Shuttle Space Suit

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Kim, Myung-Hee; Qualls, Garry D.; Wilson, John W.

    2003-01-01

    The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.

  17. Aerodynamics of Reentry Vehicle Clipper at Descent Phase

    NASA Astrophysics Data System (ADS)

    Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.

    2005-02-01

    From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.

  18. Deep seismic exploration into the Arctic Lithosphere: Arctic-2012 Russian wide-angle seismic experiment

    NASA Astrophysics Data System (ADS)

    Kashubin, S.

    2013-12-01

    Integrated geological and geophysical studies of the Earth's crust and upper mantle (the Russian project 'Arctic-2012') were carried out in 2012 in the Mendeleev Rise, central Arctic. The set of studies included wide-angle seismic observations along the line crossing the Mendeleev Rise in its southern part. The DSS seismic survey was aimed at the determination of the Mendeleev Rise crust type. A high-power air gun (120 liters or 7320 cu.in) and ocean stations with multi-component recording (X, Y, Z geophone components and a hydrophone) were used for the DSS. The line was studied using a dense system of observation: bottom station spacing was from 10 to 20 km, excitation point spacing (seismic traces interval) was 315 m. Observation data were obtained in 27 location points of bottom stations, the distance between the first and the last stations was 480 km, the length of the excitation line was 740 km. In DSS wave fields, in the first and later arrivals, there are refracted and reflected waves associated with boundaries in the sedimentary cover, with the top of the basement, and with boundaries in the consolidated crust, including its bottom (Moho discontinuity). The waves could be traced for offsets up to 170-240 km. The DSS line coincides with the near-vertical CMP line worked out with the use of a 4500-m-long seismic streamer and with a 50 m shot point interval that allowed essential detalization of the upper part of the section and taking it into account in the construction of a deep crust model. The deep velocity model was constructed using ray-trace modeling of compressional, shear, and converted waves with the use of the SeisWide program. Estimates were obtained for Vp/Vs velocity ratios, which played an important role in determining the type of crust. The results of the interpretation show that the Mendeleev Rise section corresponds to sections of a thin continental crust of shelf seas and a thinned continental crust of submarine ridges and rises.

  19. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR. In addition, DSN performed well. However, there are concerns with the active pointing of the Ka-band antennas as well as delivery of the monitor data from the stations. The spacecraft also presented challenges not normally associated with planetary missions mostly because of its very high equivalent isotropic radiated power (EIRP). This caused problems in accurately evaluating the in-flight EIRP of the spacecraft which led to difficulties evaluating the quality of the HGA calibration data. These led to the development of additional measurement techniques that could be used for future high-power deep space missions.

  20. KSC-2013-2880

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. From the left, are Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA manager of International Space Station Operations Philippe Deloo, ESA European Service Module study manager and Mark Geyer, Orion Production Operations manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-2884

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay and viewed the Orion crew module at NASA’s Kennedy Space Center in Florida. Among the group were Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA International Space Station Operations manager and Philippe Deloo, ESA European Service Module Study manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3346

    NASA Image and Video Library

    2013-08-15

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, members of the media observe the Orion boilerplate test article and support equipment for a stationary recovery test secured in a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2013-3344

    NASA Image and Video Library

    2013-08-15

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, members of the news media observe the stationary recovery test being conducted on the Orion boilerplate test article in the water near a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  4. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  5. KSC-2013-3288

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred to a U.S. Navy ship from a floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2013-3320

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, NASA and U.S. Navy personnel have attached tether lines to the Orion boilerplate test article for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2013-3316

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, NASA and U.S. Navy personnel prepare the Orion boilerplate test article and support equipment for a stationary recovery test on a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2013-3275

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2013-3286

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred by floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2013-3330

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article floats in the water near a U.S. Navy ship during a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2013-3322

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article floats in the water near a U.S. Navy ship during a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2013-3287

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article is transferred to a U.S. Navy ship from a floating dock system for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2013-3268

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are secured on a floating dock system for transfer to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2013-3263

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, a floating dock system carries the Orion boilerplate test article and support equipment for a stationary recovery test aboard a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2013-3290

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article has been secured on a U.S. Navy ship after arriving by floating dock system for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-2013-3325

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, U.S. Navy personnel detach tether lines from the Orion boilerplate test article during a stationary recovery test in the water. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-2013-3335

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article is being returned to a U.S. Navy ship following a stationary recovery test in the water. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2013-3276

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2013-3327

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article floats in the water near a U.S. Navy ship during a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2013-3326

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, U.S. Navy personnel detach tether lines from the Orion boilerplate test article during a stationary recovery test in the water. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

Top