Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent
2017-09-01
Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.
Advanced Microelectronics Technologies for Future Small Satellite Systems
NASA Technical Reports Server (NTRS)
Alkalai, Leon
1999-01-01
Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.
TID Simulation of Advanced CMOS Devices for Space Applications
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
2016-07-01
This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.
Submicron mapping of strained silicon-on-insulator features induced
NASA Astrophysics Data System (ADS)
Murray, Conal E.; Sankarapandian, M.; Polvino, S. M.; Noyan, I. C.; Lai, B.; Cai, Z.
2007-04-01
Real-space maps of strain within silicon-on-insulator (SOI) features induced by adjacent, embedded shallow-trench-isolation (STI) SiO2 regions were obtained using x-ray microbeam diffraction. The quantitative strain mapping indicated that the SOI strain was largest at the SOI/STI interface and decreased as a function of distance from this interface. An out-of-plane residual strain of approximately -31μɛ was observed in the blanket regions of the SOI. A comparison of the depth-averaged strain distributions to the strain profiles calculated from an Eshelby inclusion model indicated an equivalent eigenstrain of -0.55% in the STI regions acting on the SOI features.
Sah, Parimal; Das, Bijoy Krishna
2018-03-20
It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500 nm≤λ≤1650 nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24 nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2 nm) exhibits a pass bandwidth down to ∼10 nm.
High responsivity CMOS imager pixel implemented in SOI technology
NASA Technical Reports Server (NTRS)
Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.
2000-01-01
Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.
Research on SOI-based micro-resonator devices
NASA Astrophysics Data System (ADS)
Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong
2010-10-01
SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.
Characterization of pixel sensor designed in 180 nm SOI CMOS technology
NASA Astrophysics Data System (ADS)
Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.
2018-01-01
A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.
Optical interconnects based on VCSELs and low-loss silicon photonics
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian
2018-02-01
Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.
Low-Power SOI CMOS Transceiver
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.
2003-01-01
The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS process. Potential advantages of SOI CMOS for deep-space communication electronics include: (1) Radiation hardness, (2) Low-power operation, and (3) System-on-Chip (SOC) solutions.
Indium arsenide-on-SOI MOSFETs with extreme lattice mismatch
NASA Astrophysics Data System (ADS)
Wu, Bin
Both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) have been used to explore the growth of InAs on Si. Despite 11.6% lattice mismatch, planar InAs structures have been observed by scanning electron microscopy (SEM) when nucleating using MBE on patterned submicron Si-on-insulator (SOI) islands. Planar structures of size as large as 500 x 500 nm 2 and lines of width 200 nm and length a few microns have been observed. MOCVD growth of InAs also generates single grain structures on Si islands when the size is reduced to 100 x 100 nm2. By choosing SOI as the growth template, selective growth is enabled by MOCVD. Post-growth pattern-then-anneal process, in which MOCVD InAs is deposited onto unpatterned SOI followed with patterning and annealing of InAs-on-Si structure, is found to change the relative lattice parameters of encapsulated 17/5 nm InAs/Si island. Observed from transmission electron diffraction (TED) patterns, the lattice mismatch of 17/5 nm InAs/Si island reduces from 11.2 to 4.2% after being annealed at 800°C for 30 minutes. High-k Al2O3 dielectrics have been deposited by both electron-beam-enabled physical vapor deposition (PVD) and atomic layer deposition (ALD). Films from both techniques show leakage currents on the order of 10-9A/cm2, at ˜1 MV/cm electric field, breakdown field > ˜6 MV/cm, and dielectric constant > 6, comparable to those of reported ALD prior arts by Groner. The first MOSFETs with extreme lattice mismatch InAs-on-SOI channels using PVD Al2O3 as the gate dielectric are characterized. Channel recess was used to improve the gate control of the drain current.
Rauf, Abdul; Bhatnagar, Aseem; Sisodia, S S; Khar, Roop K; Ahmad, Farhan J
2017-01-01
The purpose of the present investigation was to study the aerosolization, lungs deposition and pharmacokinetic study of inhalable submicron particles of budesonide in male Wistar rats. Submicron particles were prepared by antisolvent nanoprecipitation method and freeze-dried to obtain free flowing powder. The freeze-drying process yielded dry powder with desirable aerodynamic properties for inhalation therapy. An in-house model inhaler was designed to deliver medicine to lungs, optimized at dose level of 10 mg for 30 sec of fluidization. The in vitro aerosolization study demonstrates that submicron particles dissolve faster with improved aerosolization effect as compared to micronized budesonide. Both submicron and micron particles were compared for in vivo lungs deposition. The results showed that relatively high quantity of submicron particles reaches deep into the lungs as compared to micron particles. Most pronounced effect observed with submicron particles from pharmacokinetic parameters was the enhancement in peak plasma concentration (C max ) by 28.85 %, and increase in area under concentration curve (AUC 0-8h ) by 30.33 % compared to micron sized particles. The results suggested that developed submicronized formulation of budesonide can be used for pulmonary drug delivery for high deposition to deep lungs tissues.
Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation
NASA Astrophysics Data System (ADS)
Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.
2008-09-01
In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.
Is there a quasi-biennial oscillation in tropical deep convection?
NASA Astrophysics Data System (ADS)
Collimore, Christopher C.; Hitchman, Matthew H.; Martin, David W.
We investigate the possibility that the stratospheric Quasi-Biennial Oscillation (QBO) modulates deep convection in the tropics. Interannual variations of outgoing longwave radiation (OLR) in the tropics during 1975-87 are compared with stratospheric zonal winds at Singapore (a measure of the QBO), and with the Tahiti-Darwin sea level pressure difference (the Southern Oscillation Index, or SOI). A monthly time series of anomalous OLR was constructed for regions of consistently low OLR, thus targeting areas of chronic deep convection. This “chronic cold” index and the SOI correlate at -0.6 for zero lag. The “chronic cold” index correlates with 30 hPa Singapore winds at +0.3 and with 50 hPa-70 hPa wind differences at +0.4, both near zero lag. These results are not inconsistent with the hypothesis that deep convection may be enhanced in chronically cold areas when QBO westward shear exists in the lower stratosphere, and diminished during eastward shear.
Evaluation of a High Temperature SOI Half-Bridge MOSFET Driver, Type CHT-HYPERION
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
Silicon-On-Insulator (SOI) technology utilizes the addition of an insulation layer in its structure to reduce leakage currents and to minimize parasitic junctions. As a result, SOIbased devices exhibit reduced internal heating as compared to the conventional silicon devices, consume less power, and can withstand higher operating temperatures. In addition, SOI electronic integrated circuits display good tolerance to radiation by virtue of introducing barriers or lengthening the path for penetrating particles and/or providing a region for trapping incident ionization. The benefits of these parts make them suitable for use in deep space and planetary exploration missions where extreme temperatures and radiation are encountered. Although designed for high temperatures, very little data exist on the operation of SOI devices and circuits at cryogenic temperatures. In this work, the performance of a commercial-off-the-shelf (COTS) SOI half-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
Electronics for Extreme Environments
NASA Astrophysics Data System (ADS)
Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.
2001-01-01
Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems designed for use in deep space and planetary exploration missions are expected to encounter extreme temperatures and wide thermal swings. Silicon-based devices are limited in their wide-temperature capability and usually require extra measures, such as cooling or heating mechanisms, to provide adequate ambient temperature for proper operation. Silicon-On-Insulator (SOI) technology, on the other hand, lately has been gaining wide spread use in applications where high temperatures are encountered. Due to their inherent design, SOI-based integrated circuit chips are able to operate at temperatures higher than those of the silicon devices by virtue of reducing leakage currents, eliminating parasitic junctions, and limiting internal heating. In addition, SOI devices provide faster switching, consume less power, and offer improved radiation-tolerance. Very little data, however, exist on the performance of such devices and circuits under cryogenic temperatures. In this work, the performance of an SOI bootstrapped, full-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
FIELD TEST OF AIR SPARGING COUPLED WITH SOIL VAPOR EXTRACTION
A controlled field study was designed and conducted to assess the performance of air sparging for remediation of petroleum fuel and solvent contamination in a shallow (3-m deep) groundwater aquifer. Sparging was performed in an insolation test cell (5 m by 3 m by 8-m deep). A soi...
Assessment of SOI Devices and Circuits at Extreme Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.
2007-01-01
Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.
Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming
NASA Astrophysics Data System (ADS)
Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao
2017-06-01
Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.
NASA Astrophysics Data System (ADS)
Jovanović, B.; Brum, R. M.; Torres, L.
2014-04-01
After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.
Fast and low power Michelson interferometer thermo-optical switch on SOI.
Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L
2008-09-29
We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.
NASA Technical Reports Server (NTRS)
Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.
2001-01-01
To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.
Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter
2015-08-18
In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.
Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures
NASA Astrophysics Data System (ADS)
Sökmen, Ü.; Stranz, A.; Fündling, S.; Wehmann, H.-H.; Bandalo, V.; Bora, A.; Tornow, M.; Waag, A.; Peiner, E.
2009-10-01
Inductively coupled plasma (ICP) cryogenic dry etching was used to etch submicron pores, nano contact lines, submicron diameter pillars, thin and thick cantilevers, membrane structures and anisotropic deep structures with high aspect ratios in silicon for bio-nanoelectronics, optoelectronics and nano-micro electromechanical systems (NMEMS). The ICP cryogenic dry etching gives us the advantage of switching plasmas between etch rates of 13 nm min-1 and 4 µm min-1 for submicron pores and for membrane structures, respectively. A very thin photoresist mask can endure at -75 °C even during etching 70 µm deep for cantilevers and 300 µm deep for membrane structures. Coating the backsides of silicon membrane substrates with a thin photoresist film inhibited the lateral etching of cantilevers during their front release. Between -95 °C and -140 °C, we realized crystallographic-plane-dependent etching that creates facets only at the etch profile bottom. By varying the oxygen content and the process temperature, we achieved good control over the shape of the etched structures. The formation of black silicon during membrane etching down to 300 µm was delayed by reducing the oxygen content.
Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter
2015-01-01
In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA. PMID:26295235
Design and implementation of a low-power SOI CMOS receiver
NASA Astrophysics Data System (ADS)
Zencir, Ertan
There is a strong demand for wireless communications in civilian and military applications, and space explorations. This work attempts to implement a low-power, high-performance fully-integrated receiver for deep space communications using Silicon on Insulator (SOI) CMOS technology. Design and implementation of a UHF low-IF receiver front-end in a 0.35-mum SOI CMOS technology are presented. Problems and challenges in implementing a highly integrated receiver at UHF are identified. Low-IF architecture, suitable for low-power design, has been adopted to mitigate the noise at the baseband. Design issues of the receiver building blocks including single-ended and differential LNA's, passive and active mixers, and variable gain/bandwidth complex filters are discussed. The receiver is designed to have a variable conversion gain of more than 100 dB with a 70 dB image rejection and a power dissipation of 45 mW from a 2.5-V supply. Design and measured performance of the LNA's, and the mixer are presented. Measurement results of RF front-end blocks including a single-ended LNA, a differential LNA, and a double-balanced mixer demonstrate the low power realizability of RF front-end circuits in SOI CMOS technology. We also report on the design and simulation of the image-rejecting complex IF filter and the full receiver circuit. Gain, noise, and linearity performance of the receiver components prove the viability of fully integrated low-power receivers in SOI CMOS technology.
NASA Astrophysics Data System (ADS)
Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin
2017-06-01
Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.
NASA Technical Reports Server (NTRS)
White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph
2005-01-01
As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.
Active pixel sensors: the sensor of choice for future space applications?
NASA Astrophysics Data System (ADS)
Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning
2007-10-01
It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less
An analytical model with flexible accuracy for deep submicron DCVSL cells
NASA Astrophysics Data System (ADS)
Valiollahi, Sepideh; Ardeshir, Gholamreza
2018-07-01
Differential cascoded voltage switch logic (DCVSL) cells are among the best candidates of circuit designers for a wide range of applications due to advantages such as low input capacitance, high switching speed, small area and noise-immunity; nevertheless, a proper model has not yet been developed to analyse them. This paper analyses deep submicron DCVSL cells based on a flexible accuracy-simplicity trade-off including the following key features: (1) the model is capable of producing closed-form expressions with an acceptable accuracy; (2) model equations can be solved numerically to offer higher accuracy; (3) the short-circuit currents occurring in high-low/low-high transitions are accounted in analysis and (4) the changes in the operating modes of transistors during transitions together with an efficient submicron I-V model, which incorporates the most important non-ideal short-channel effects, are considered. The accuracy of the proposed model is validated in IBM 0.13 µm CMOS technology through comparisons with the accurate physically based BSIM3 model. The maximum error caused by analytical solutions is below 10%, while this amount is below 7% for numerical solutions.
Silicon photonics: Design, fabrication, and characterization of on-chip optical interconnects
NASA Astrophysics Data System (ADS)
Hsieh, I.-Wei
In recent years, the research field of silicon photonics has been developing rapidly from a concept to a demonstrated technology, and has gathered much attention from both academia and industry communities. Its many potential applications in long-haul telecommunication, mid-range data-communication, on-chip optical interconnection networks, and nano-scale sensing as well as its compatibility with electronic integrated circuits have driven much effort in realizing silicon photonics both as a disruptive technology for existing markets and as an enabling technology for new ones. Despite the promising future of silicon photonics, many fundamental issues still remain to be understood---both in the linear- and nonlinear-optical regimes. There are also many engineering challenges to make silicon photonics the gold standard in photonic integrated circuits. In this thesis, we focus on the design, fabrication, and characterization of active and passive silicon-on-insulator (SOI) photonic devices. The SOI material system differs from most conventional optical material platforms because of its high-refractive-index-contrast, which enables engineers to design very compact integrated photonic networks with sub-micron transverse waveguide dimensions and sharp bends. On the other hand, because most analytical formulas for designing waveguide devices are valid only in low-index-contrast cases, SOI photonic devices need to be analyzed numerically for accurate results. The second chapter of this thesis describes some common numerical methods such as Beam Propagation Method (BPM) and Finite Element Method (FEM) for waveguide-design simulations, and presents two design studies based on these methods. The compatibility of silicon photonic integrated circuits with conventional CMOS fabrication technology is another important aspect that distinguishes silicon photonics from others such as III-V materials and lithium niobate. However, the requirements for fabricating silicon photonic devices are quite different from those of electronic devices. Minimizing propagation losses by reducing sidewall roughness to nanometer scale over a device length of several millimeters or even centimeters has prompted researchers in academia and industry to refine the fabrication process. Chapter 3 of this thesis summarizes our efforts in fabricating silicon photonic devices using standard CMOS technology. Chapter 4 describes the characterization of nonlinear effects, including self-phase modulation (SPM), cross-phase modulation (XPM), and supercontinuum generation in silicon-wire waveguides. Silicon-wire waveguides are strip waveguides with submicron transverse dimensions, which allow strong light confinement inside the silicon core. This strong optical confinement, in addition to the large third-order nonlinear optical susceptibility of crystalline silicon, leads to a net nonlinearity which is several orders of magnitude higher than the nonlinearity of silica fiber. Significant nonlinear effects can be observed and characterized over a device length of only several millimeters in silicon wires with very small input power. These effects provide opportunities for engineers to design active silicon photonic devices which are compact and energy-efficient. Chapter 5 presents a realization of an integrated SOI optical isolator, which is a critical yet often overlooked component in photonic integrated circuits. This study shows the feasibility to make a hybrid garnet/SOI active device with very promising results. Finally, Chapter 6 summarizes our demonstration of transmitting terabit-scale data streams in silicon-wire waveguides, which is an important first-step towards enabling intra-chip interconnection networks with ultra-high bandwidths. Although the scope of this thesis is limited to providing only fractional views of the whole silicon photonics area, it provides enough references for interested readers to conduct further literature research in other aspects of silicon photonics. It is the author's hope that the thesis would convey to its readers the significance and potential of this exciting emerging technology.
High density submicron magnetoresistive random access memory (invited)
NASA Astrophysics Data System (ADS)
Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.
1999-04-01
Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.
Ionizing radiation effects on CMOS imagers manufactured in deep submicron process
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Magnan, Pierre; Bernard, Frédéric; Rolland, Guy; Saint-Pé, Olivier; Huger, Nicolas; Corbière, Franck
2008-02-01
We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 μm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed.
NASA Astrophysics Data System (ADS)
Hayama, K.; Ohyama, H.; Simoen, E.; Rafí, J. M.; Mercha, A.; Claeys, C.
2004-04-01
The degradation of the electrical properties of deep submicron metal-oxide-semiconductor field-effect transistors (MOSFETs) by 2 MeV electron irradiation at high temperatures was studied. The irradiation temperatures were 30, 100, 150 and 200 °C, and the fluence was fixed at 1015e/cm2. For most experimental conditions, the threshold voltage (VT) is observed to reduce in absolute value both for n- and p-MOSFETs. This reduction is most pronounced at 100 °C, as at this irradiation temperature, the radiation-induced density of interface traps is highest. It is proposed that hydrogen neutralization of the dopants in the substrate plays a key role, whereby the hydrogen is released from the gate by the 2 MeV electrons.
NASA Astrophysics Data System (ADS)
Caillau, Mathieu; Chevalier, Céline; Crémillieu, Pierre; Delair, Thierry; Soppera, Olivier; Leuschel, Benjamin; Ray, Cédric; Moulin, Christophe; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François; Yeromonahos, Christelle; Laurenceau, Emmanuelle; Chevolot, Yann; Leclercq, Jean-Louis
2018-03-01
Biopolymers represent natural, renewable and abundant materials. Their use is steadily growing in various areas (food, health, building …) but, in lithography, despite some works, resists, solvents and developers are still oil-based and hazardous chemicals. In this work, we replaced synthetic resist by chitosan, a natural, abundant and hydrophilic polysaccharide. High resolution sub-micron patterns were obtained through chitosan films as water developable, chemically unmodified, positive tone mask resist for an eco-friendly electron beam and deep-UV (193 nm) lithography process. Sub-micron patterns were also successfully obtained using a 248 nm photomasker thanks to the addition of biosourced photoactivator, riboflavin. Patterns were then transferred by plasma etching into silica even for high resolution patterns.
Deep Trek High Temperature Electronics Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce Ohme
2007-07-31
This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
Frequency dividers constitute essential elements in designing phase-locked loop circuits and microwave systems. In addition, they are used in providing required clocking signals to microprocessors and can be utilized as digital counters. In some applications, particularly space missions, electronics are often exposed to extreme temperature conditions. Therefore, it is required that circuits designed for such applications incorporate electronic parts and devices that can tolerate and operate efficiently in harsh temperature environments. While present electronic circuits employ COTS (commercial-off- the-shelf) parts that necessitate and are supported with some form of thermal control systems to maintain adequate temperature for proper operation, it is highly desirable and beneficial if the thermal conditioning elements are eliminated. Amongst these benefits are: simpler system design, reduced weight and size, improved reliability, simpler maintenance, and reduced cost. Devices based on silicon-on-insulator (SOI) technology, which utilizes the addition of an insulation layer in the device structure to reduce leakage currents and to minimize parasitic junctions, are well suited for high temperatures due to reduced internal heating as compared to the conventional silicon devices, and less power consumption. In addition, SOI electronic integrated circuits display good tolerance to radiation by virtue of introducing barriers or lengthening the path for penetrating particles and/or providing a region for trapping incident ionization. The benefits of these parts make them suitable for use in deep space and planetary exploration missions where extreme temperatures and radiation are encountered. Although designed for high temperatures, very little data exist on the operation of SOI devices and circuits at cryogenic temperatures. In this work, the performance of a divide-by-two frequency divider circuit built using COTS SOI logic gates was evaluated over a wide temperature range and thermal cycling to determine suitability for use in space exploration missions and terrestrial fields under extreme temperature conditions.
Fabricating with crystalline Si to improve superconducting detector performance
NASA Astrophysics Data System (ADS)
Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.
2017-05-01
We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.
Growth of carbon nanotubes on fully processed silicon-on-insulator CMOS substrates.
Haque, M Samiul; Ali, S Zeeshan; Guha, P K; Oei, S P; Park, J; Maeng, S; Teo, K B K; Udrea, F; Milne, W I
2008-11-01
This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.
Single Versus Multiple Solid Organ Injuries Following Blunt Abdominal Trauma.
El-Menyar, Ayman; Abdelrahman, Husham; Al-Hassani, Ammar; Peralta, Ruben; AbdelAziz, Hiba; Latifi, Rifat; Al-Thani, Hassan
2017-11-01
We aimed to describe the pattern of solid organ injuries (SOIs) and analyze the characteristics, management and outcomes based on the multiplicity of SOIs. A retrospective study in a Level 1 trauma center was conducted and included patients admitted with blunt abdominal trauma between 2011 and 2014. Data were analyzed and compared for patients with single versus multiple SOIs. A total of 504 patients with SOIs were identified with a mean age of 28 ± 13 years. The most frequently injured organ was liver (45%) followed by spleen (30%) and kidney (18%). One-fifth of patients had multiple SOIs, of that 87% had two injured organs. Patients with multiple SOIs had higher frequency of head injury and injury severity scores (p < 0.05). The majority of SOIs were treated nonoperatively, whereas operative management was required in a quarter of patients, mostly in patients with multiple SOIs (p = 0.01). Blood transfusion, sepsis and hospital stay were greater in multiple than single SOIs (p < 0.05). The overall mortality was 11% which was comparable between the two groups. In patients with single SOIs, the mortality was significantly higher in those who had pancreatic (28.6%) or hepatic injuries (13%) than the other SOIs. SOIs represent one-tenth of trauma admissions in Qatar. Although liver was the most frequently injured organ, the rate of mortality was higher in pancreatic injury. Patients with multiple SOIs had higher morbidity which required frequent operative management. Further prospective studies are needed to develop management algorithm based on the multiplicity of SOIs.
Jyothi, I; Janardhanam, V; Kang, Min-Sung; Yun, Hyung-Joong; Lee, Jouhahn; Choi, Chel-Jong
2014-11-01
The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.
Standby Power Management Architecture for Deep-Submicron Systems
2006-05-19
Driver 61 5.1 Quark PicoNode System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Power Domain Architecture... Quark system protocol stack. . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Quark system block diagram...the implementation of the chip using an industry-standard place and route design flow. Lastly some measurements from the chip are presented. 5.1 Quark
Analysis of Aluminum-Nitride SOI for High-Temperature Electronics
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Osman, Mohamed A.; Yu, Zhiping
2000-01-01
We use numerical simulation to investigate the high-temperature (up to 500K) operation of SOI MOSFETs with Aluminum-Nitride (AIN) buried insulators, rather than the conventional silicon-dioxide (SiO2). Because the thermal conductivity of AIN is about 100 times that of SiO2, AIN SOI should greatly reduce the often severe self-heating problem of conventional SOI, making SOI potentially suitable for high-temperature applications. A detailed electrothermal transport model is used in the simulations, and solved with a PDE solver called PROPHET In this work, we compare the performance of AIN-based SOI with that of SiO2-based SOI and conventional MOSFETs. We find that AIN SOI does indeed remove the self-heating penalty of SOL However, several device design trade-offs remain, which our simulations highlight.
30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.
Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi
2011-04-11
We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America
Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.
Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu
2015-09-28
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics
NASA Astrophysics Data System (ADS)
Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung
2015-09-01
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Neural Imaging Using Single-Photon Avalanche Diodes
Karami, Mohammad Azim; Ansarian, Misagh
2017-01-01
Introduction: This paper analyses the ability of single-photon avalanche diodes (SPADs) for neural imaging. The current trend in the production of SPADs moves toward the minimum dark count rate (DCR) and maximum photon detection probability (PDP). Moreover, the jitter response which is the main measurement characteristic for the timing uncertainty is progressing. Methods: The neural imaging process using SPADs can be performed by means of florescence lifetime imaging (FLIM), time correlated single-photon counting (TCSPC), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Results: This trend will result in more precise neural imaging cameras. While achieving low DCR SPADs is difficult in deep submicron technologies because of using higher doping profiles, higher PDPs are reported in green and blue part of light. Furthermore, the number of pixels integrated in the same chip is increasing with the technology progress which can result in the higher resolution of imaging. Conclusion: This study proposes implemented SPADs in Deep-submicron technologies to be used in neural imaging cameras, due to the small size pixels and higher timing accuracies. PMID:28446946
Post-Deployment Reintegration Experiences of AF Personnel: Implications for Scale Development
2006-09-01
peuvent également présenter des avantages, notamment une amélioration aux points de vue suivants : confiance en soi , tolérance à l’égard de soi...notamment une amélioration aux points de vue suivants : confiance en soi , tolérance à l’égard de soi, compréhension politique et compétence militaire... confiance en soi , tolérance à l’égard de soi, compréhension politique et compétence militaire. À ce jour, les études sur l’expérience de réinsertion
Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.
A 320-year AMM+SOI Index Reconstruction from Historical Atlantic Tropical Cyclone Records
NASA Astrophysics Data System (ADS)
Chenoweth, M.; Divine, D.
2010-12-01
Trends in the frequency of North Atlantic tropical cyclones, including major hurricanes, are dominated by those originating in the deep tropics. In addition, these tropical cyclones are stronger when making landfall and their total power dissipation is higher than storms forming elsewhere in the Atlantic basin. Both the Atlantic Meridional Mode (AMM) and El Nino-Southern Oscillation (ENSO) are the leading modes of coupled air-sea interaction in the Atlantic and Pacific, respectively, and have well-established relationships with Atlantic hurricane variability. Here we use a 320-year record of tropical cyclone activity in the Lesser Antilles region of the North Atlantic from historical manuscript and newspaper records to reconstruct a normalized seasonal (July-October) index combining the Southern Oscillation Index (SOI) and AMM employing both the modern analog technique and back-propagation artificial neural networks. Our results indicate that the AMM+SOI index since 1690 shows no long-term trend but is dominated by both short-term (<10 years) and long-term (quasi-decadal to bi-decadal) variations. The decadal-scale variation is consistent with both instrumental and proxy records elsewhere from the global tropics. Distinct periods of high and low index values, corresponding to high and low tropical cyclone frequency, are regularly-appearing features in the record and provides further evidence that natural decadal -scale variability in Atlantic tropical cyclone frequency must be accounted for when determining trends in records and attribution of climate change.
Deep Sea Gazing: Making Ship-Based Research Aboard RV Falkor Relevant and Accessible
NASA Astrophysics Data System (ADS)
Wiener, C.; Zykov, V.; Miller, A.; Pace, L. J.; Ferrini, V. L.; Friedman, A.
2016-02-01
Schmidt Ocean Institute (SOI) is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation, and open sharing of information. Our research vessel Falkorprovides ship time to selected scientists and supports a wide range of scientific functions, including ROV operations with live streaming capabilities. Since 2013, SOI has live streamed 55 ROV dives in high definition and recorded them onto YouTube. This has totaled over 327 hours of video which received 1,450, 461 views in 2014. SOI is one of the only research programs that makes their entire dive series available online, creating a rich collection of video data sets. In doing this, we provide an opportunity for scientists to make new discoveries in the video data that may have been missed earlier. These data sets are also available to students, allowing them to engage with real data in the classroom. SOI's video collection is also being used in a newly developed video management system, Ocean Video Lab. Telepresence-enabled research is an important component of Falkor cruises, which is exemplified by several that were conducted in 2015. This presentation will share a few case studies including an image tagging citizen science project conducted through the Squidle interface in partnership with the Australian Center for Field Robotics. Using real-time image data collected in the Timor Sea, numerous shore-based citizens created seafloor image tags that could be used by a machine learning algorithms on Falkor's high performance computer (HPC) to accomplish habitat characterization. With the use of the HPC system real-time robot tracking, image tagging, and other outreach connections were made possible, allowing scientists on board to engage with the public and build their knowledge base. The above mentioned examples will be used to demonstrate the benefits of remote data analysis and participatory engagement in science-based telepresence.
NASA Astrophysics Data System (ADS)
Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.
2018-05-01
In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.
Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET
NASA Astrophysics Data System (ADS)
Ramezani, Zeinab; Orouji, Ali A.
2016-10-01
For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
Performance analysis of SOI MOSFET with rectangular recessed channel
NASA Astrophysics Data System (ADS)
Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.
2016-03-01
In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.
Investigation of radiation hardened SOI wafer fabricated by ion-cut technique
NASA Astrophysics Data System (ADS)
Chang, Yongwei; Wei, Xing; Zhu, Lei; Su, Xin; Gao, Nan; Dong, Yemin
2018-07-01
Total ionizing dose (TID) effect on Silicon-on-Insulator (SOI) wafers due to inherent buried oxide (BOX) is a significant concern as it leads to the degradation of electrical properties of SOI-based devices and circuits, even failures of the systems associated with them. This paper reports the radiation hardening implementation of SOI wafer fabricated by ion-cut technique integrated with low-energy Si+ implantation. The electrical properties and radiation response of pseudo-MOS transistors are analyzed. The results demonstrate that the hardening process can significantly improve the TID tolerance of SOI wafers by generating Si nanocrystals (Si-NCs) within the BOX. The presence of Si-NCs created through Si+ implantation is evidenced by high-resolution transmission electron microscopy (HR-TEM). Under the pass gate (PG) irradiation bias, the anti-radiation properties of H-gate SOI nMOSFETs suggest that the radiation hardened SOI wafers with optimized Si implantation dose can perform effectively in a radiation environment. The radiation hardening process provides an excellent way to reinforce the TID tolerance of SOI wafers.
Fabrication Methods for Adaptive Deformable Mirrors
NASA Technical Reports Server (NTRS)
Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio
2013-01-01
Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.
NASA Astrophysics Data System (ADS)
Dupré, C.; Ernst, T.; Hartmann, J.-M.; Andrieu, F.; Barnes, J.-P.; Rivallin, P.; Faynot, O.; Deleonibus, S.; Fazzini, P. F.; Claverie, A.; Cristoloveanu, S.; Ghibaudo, G.; Cristiano, F.
2007-11-01
Based on electrical measurements and transmission electron microscopy (TEM) imaging, we propose an explanation for the electron and hole mobility degradation with gate length reduction in metal-oxide-semiconductor field effect transistors (MOSFETs). We demonstrate that ion implantation, normally used for source/drain doping, is responsible for transport degradation for short-channel devices. Implantation impact on electrons and holes mobility was investigated both on silicon-on-insulator (SOI) and tensile strained silicon-on-insulator (sSOI) substrates. Wafers with ultrathin Si films (from 8 to 35 nm) were Ge implanted at 3 keV and various concentrations (from 5×1014 to 2×1015 atoms cm-2), then annealed at 600 °C for 1 h. Secondary ion mass spectrometry enabled us to quantify the Ge-implanted atoms concentrations. The end-of-range defects impact on mobility was investigated with the pseudo-MOSFET technique. Measurements showed a mobility decrease as the implantation dose increased. We demonstrated that sSOI mobility is more sensitive to implantation than SOI mobility, without any implantation-induced strain relaxation in sSOI (checked using the ultraviolet Raman technique). A 36% (25%) holes (electrons) mobility degradation was measured for sSOI, while SOI presented a 21% mobility degradation for holes and 5% for electrons. Finally, the electrical results were compared with morphological studies. Plan-view TEM showed the presence of interstitial defects formed during ion implantation and annealing. The defect density was estimated to be two times higher in sSOI than in SOI, which is in full agreement with electrical results mentioned before. The results are relevant for the optimization of the source and drain regions of advanced nanoscale SOI and sSOI transistors.
A novel nanoscale SOI MOSFET by embedding undoped region for improving self-heating effect
NASA Astrophysics Data System (ADS)
Ghaffari, Majid; Orouji, Ali A.
2018-06-01
Because of the low thermal conductivity of the SiO2 (oxide), the Buried Oxide (BOX) layer in a Silicon-On-Insulator Metal-Oxide Semiconductor Field-Effect Transistor (SOI MOSFET) prevents heat dissipation in the silicon layer and causes increase in the device lattice temperature. In this paper, a new technique is proposed for reducing Self-Heating Effects (SHEs). The key idea in the proposed structure is using a Silicon undoped Region (SR) in the nanoscale SOI MOSFET under the drain and channel regions in order to decrease the SHE. The novel transistor is named Silicon undoped Region SOI-MOSFET (SR-SOI). Due to the embedded silicon undoped region in the suitable place, the proposed structure has decreased the device lattice temperature. The location and dimensions of the proposed region have been carefully optimized to achieve the best results. This work has explored enhancement such as decreased maximum lattice temperature, increased electron mobility, increased drain current, lower DC drain conductance and higher DC transconductance and also decreased bandgap energy variations. Also, for modeling of the structure in the SPICE tools, the main characterizations have been extracted such as thermal resistance (RTH), thermal capacitance (CTH), and SHE characteristic frequency (fTH). All parameters are extracted in relation with the AC operation indicate excellent performance of the SR-SOI device. The results show that proposed region is a suitable alternative to oxide as a part of the buried oxide layer in SOI structures and has better performance in high temperature. Using two-dimensional (2-D) and two-carrier device simulation is done comparison of the SR-SOI structure with a Conventional SOI (C-SOI). As a result, the SR-SOI device can be regarded as a useful substitution for the C-SOI device in nanoscale integrated circuits as a reliable device.
The Bridges SOI Model School Program at Palo Verde School, Palo Verde, Arizona.
ERIC Educational Resources Information Center
Stock, William A.; DiSalvo, Pamela M.
The Bridges SOI Model School Program is an educational service based upon the SOI (Structure of Intellect) Model School curriculum. For the middle seven months of the academic year, all students in the program complete brief daily exercises that develop specific cognitive skills delineated in the SOI model. Additionally, intensive individual…
NASA Technical Reports Server (NTRS)
Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.
2006-01-01
Single-event upset effects from heavy ions are measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes. The results are compared with previous results for SOI microprocessors with feature sizes of 130 and 180 nm. The cross section of the 90 nm SOI processors is smaller than results for 130 and 180 nm counterparts, but the threshold is about the same. The scaling of the cross section with reduction of feature size and core voltage for SOI microprocessors is discussed.
NASA Astrophysics Data System (ADS)
Fan, Ji; Zhang, Wen Ting; Liu, Jin Quan; Wu, Wen Jie; Zhu, Tao; Tu, Liang Cheng
2015-04-01
We systematically investigate the fabrication and dry-release technology for a high aspect ratio (HAR) structure with vertical and smooth silicon etching sidewalls. One-hundred-micrometer silicon on insulator (SOI) wafers are used in this work. By optimizing the process parameters of inductively coupled plasma deep reactive-ion etching, a HAR (˜25∶1) structure with a microtrench width of 4 μm has been demonstrated. A perfect etching profile has been obtained in which the structures present an almost perfect verticality of 0.10 μm and no sidewall scallops. The root-mean square roughness of silicon sidewalls is 20 to 29 nm. An in situ dry-release method using notching effect is employed after etching. By analysis, we found that the final notch length is typically an aspect-ratio-dependent process. The structure designed in this work has been successfully released by this in situ dry-release method, and the released bottom roughness effectively prohibits the stiction mechanism. The results demonstrate potential applications for design and fabrication of HAR SOI MEMS/MOEMS.
Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics
Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung
2015-01-01
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932
Scalable sub-micron patterning of organic materials toward high density soft electronics
Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...
2015-09-28
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less
Novel detectors for silicon based microdosimetry, their concepts and applications
NASA Astrophysics Data System (ADS)
Rosenfeld, Anatoly B.
2016-02-01
This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE-E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE-E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter "bridge" with 3D SVs can derive the relative biological effectiveness (RBE) in 12C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.
Concurrent rib and pelvic fractures as an indicator of solid abdominal organ injury.
Al-Hassani, Ammar; Afifi, Ibrahim; Abdelrahman, Husham; El-Menyar, Ayman; Almadani, Ammar; Recicar, Jan; Al-Thani, Hassan; Maull, Kimball; Latifi, Rifat
2013-01-01
To study the association of solid organ injuries (SOIs) in patients with concurrent rib and pelvic fractures. Retrospective analysis of prospectively collected data from November 2007 to May 2010. Patients' demographics, mechanism of injury, Injury severity scoring, pelvic fracture, and SOIs were analyzed. Patients with SOIs were compared in rib fractures with and without pelvic fracture. The study included 829 patients (460 with rib fractures ± pelvic fracture and 369 with pelvic fracture alone) with mean age of 35 ± 12.7 years. Motor vehicle crashes (45%) and falls from height (30%) were the most common mechanism of injury. The overall incidence of SOIs in this study was 22% (185/829). Further, 15% of patient with rib fractures had associated pelvic fracture. SOI was predominant in patients with concurrent rib fracture and pelvic fracture compared to ribs or pelvic fractures alone (42% vs. 26% vs. 15%, respectively, p = 0.02). Concurrent multiple rib fractures and pelvic fracture increases the risk of SOI compared to either group alone. Lower RFs and pelvic fracture had higher association for SOI and could be used as an early indicator of the presence of SOIs. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Method to improve commercial bonded SOI material
Maris, Humphrey John; Sadana, Devendra Kumar
2000-07-11
A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.
NASA Astrophysics Data System (ADS)
Chung, Gwiy-Sang; Choi, Sung-Kyu; Nam, Hoy-Duck
2001-10-01
This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SDB and SOI membranes and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10 micrometers thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro- heater was fabricated with Pt-RTD on the same substrate by using MgO as medium layer. The thermal characteristics of the micro-heater with the SOI membrane is 280 degree(s)C at input power 0.9 W; for the SOI membrane with 10 trenches, it is 580 degree(s)C due to reduction of the external thermal loss. Consequently, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.
BIMOS transistor solutions for ESD protection in FD-SOI UTBB CMOS technology
NASA Astrophysics Data System (ADS)
Galy, Philippe; Athanasiou, S.; Cristoloveanu, S.
2016-01-01
We evaluate the Electro-Static Discharge (ESD) protection capability of BIpolar MOS (BIMOS) transistors integrated in ultrathin silicon film for 28 nm Fully Depleted SOI (FD-SOI) Ultra Thin Body and BOX (UTBB) high-k metal gate technology. Using as a reference our measurements in hybrid bulk-SOI structures, we extend the BIMOS design towards the ultrathin silicon film. Detailed study and pragmatic evaluations are done based on 3D TCAD simulation with standard physical models using Average Current Slope (ACS) method and quasi-static DC stress (Average Voltage Slope AVS method). These preliminary 3D TACD results are very encouraging in terms of ESD protection efficiency in advanced FD-SOI CMOS.
Optical modulation in silicon waveguides via charge state control of deep levels.
Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A
2009-10-12
The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.
McCabe, G.J.; Dettinger, M.D.
1999-01-01
Changing patterns of correlations between the historical average June-November Southern Oscillation Index (SOI) and October-March precipitation totals for 84 climate divisions in the western US indicate a large amount of variability in SOI/precipitation relations on decadal time scales. Correlations of western US precipitation with SOI and other indices of tropical El Nino-Southern Oscillation (ENSO) processes were much weaker from 1920 to 1950 than during recent decades. This variability in teleconnections is associated with the character of tropical air-sea interactions as indexed by the number of out-of-phase SOI/tropical sea surface temperature (SST) episodes, and with decadal variability in the North Pacific Ocean as indexed by the Pacific Decadal Oscillation (PDO). ENSO teleconnections with precipitation in the western US are strong when SOI and NINO3 are out-of-phase and PDO is negative. ENSO teleconnections are weak when SOI and NINO3 are weakly correlated and PDO is positive. Decadal modes of tropical and North Pacific Ocean climate variability are important indicators of periods when ENSO indices, like SOI, can be used as reliable predictors of winter precipitation in the US.
Soft-light overhead illumination systems improve laparoscopic task performance.
Takai, Akihiro; Takada, Yasutsugu; Motomura, Hideki; Teramukai, Satoshi
2014-02-01
The aim of this study was to evaluate the impact of attached shadow cues for laparoscopic task performance. We developed a soft-light overhead illumination system (SOIS) that produced attached shadows on objects. We compared results using the SOIS with those using a conventional illumination system with regard to laparoscopic experience and laparoscope-to-target distances (LTDs). Forty-two medical students and 23 surgeons participated in the study. A peg transfer task (LTD, 120 mm) for students and surgeons, and a suture removal task (LTD, 30 mm) for students were performed. Illumination systems were randomly assigned to each task. Endpoints were: total number of peg transfers; percentage of peg-dropping errors; and total execution time for suture removal. After the task, participants filled out a questionnaire on their preference for a particular illumination system. Total number of peg transfers was greater with the SOIS for both students and surgeons. Percentage of peg-dropping errors for surgeons was lower with the SOIS. Total execution time for suture removal was shorter with the SOIS. Forty-five participants (69% in total) evaluated the SOIS for easier task performance. The present results confirm that the SOIS improves laparoscopic task performance, regardless of previous laparoscopic experience or LTD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshizumi, K.; Sasaki, A.; Kohda, M.
We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.
Mulrooney-Cousins, Patricia M.; Michalak, Tomasz I.
2015-01-01
Woodchuck hepatitis virus (WHV) is molecularly and pathogenically closely related to hepatitis B virus (HBV). Both viruses display tropism towards hepatocytes and cells of the immune system and cause similar liver pathology, where acute hepatitis can progress to chronic hepatitis and to hepatocellular carcinoma (HCC). Two forms of occult hepadnaviral persistence were identified in the woodchuck-WHV model: secondary occult infection (SOI) and primary occult infection (POI). SOI occurs after resolution of a serologically apparent infection with hepatitis or after subclinical serologically evident virus exposure. POI is caused by small amounts of virus and progresses without serological infection markers, but the virus genome and its replication are detectable in the immune system and with time in the liver. SOI can be accompanied by minimal hepatitis, while the hallmark of POI is normal liver morphology. Nonetheless, HCC develops in about 20% of animals with SOI or POI within 3 to 5 years. The virus persists throughout the lifespan in both SOI and POI at serum levels rarely greater than 100 copies/mL, causes hepatitis and HCC when concentrated and administered to virus-naïve woodchucks. SOI is accompanied by virus-specific T and B cell immune responses, while only virus-specific T cells are detected in POI. SOI coincides with protection against reinfection, while POI does not and hepatitis develops after challenge with liver pathogenic doses >1000 virions. Both SOI and POI are associated with virus DNA integration into the liver and the immune system genomes. Overall, SOI and POI are two distinct forms of silent hepadnaviral persistence that share common characteristics. Here, we review findings from the woodchuck model and discuss the relevant observations made in human occult HBV infection (OBI). PMID:26623268
Mulrooney-Cousins, Patricia M; Michalak, Tomasz I
2015-09-28
Woodchuck hepatitis virus (WHV) is molecularly and pathogenically closely related to hepatitis B virus (HBV). Both viruses display tropism towards hepatocytes and cells of the immune system and cause similar liver pathology, where acute hepatitis can progress to chronic hepatitis and to hepatocellular carcinoma (HCC). Two forms of occult hepadnaviral persistence were identified in the woodchuck-WHV model: secondary occult infection (SOI) and primary occult infection (POI). SOI occurs after resolution of a serologically apparent infection with hepatitis or after subclinical serologically evident virus exposure. POI is caused by small amounts of virus and progresses without serological infection markers, but the virus genome and its replication are detectable in the immune system and with time in the liver. SOI can be accompanied by minimal hepatitis, while the hallmark of POI is normal liver morphology. Nonetheless, HCC develops in about 20% of animals with SOI or POI within 3 to 5 years. The virus persists throughout the lifespan in both SOI and POI at serum levels rarely greater than 100 copies/mL, causes hepatitis and HCC when concentrated and administered to virus-naïve woodchucks. SOI is accompanied by virus-specific T and B cell immune responses, while only virus-specific T cells are detected in POI. SOI coincides with protection against reinfection, while POI does not and hepatitis develops after challenge with liver pathogenic doses >1000 virions. Both SOI and POI are associated with virus DNA integration into the liver and the immune system genomes. Overall, SOI and POI are two distinct forms of silent hepadnaviral persistence that share common characteristics. Here, we review findings from the woodchuck model and discuss the relevant observations made in human occult HBV infection (OBI).
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
2016-03-31
Abstract: With the decrease of transistor feature sizes into the ultra-deep submicron range, leakage power becomes an important design challenge for...MTNCL design showed substantial improvements in terms of active energy and leakage power compared to the equivalent synchronous design. Keywords...switching could use a large portion of power. Additionally, leakage power has come to dominate power consumption as process sizes shrink. Adaptive
NASA Astrophysics Data System (ADS)
Ian, Ka Wa; Exarchos, Michael; Missous, Mohamed
2013-02-01
We report a new and simple low temperature soft reflow process using solvent vapour. The combination of this soft reflow and conventional i-line lithography enables low cost, highly efficient fabrication at the deep-submicron scale. Compared to the conventional thermal reflow process, the key benefits of the new soft reflow process are its low temperature operation (<50 °C), greater shrinkage of the structure size (up to 75%) and better controllability. Gate openings reflowed from 1 μm to 250 nm have been routinely and reproducibly achieved by utilizing the saturation characteristics of the process. The feasibility of this soft reflow process is demonstrated in the fabrication of a 350 nm T-gate pseudomorphic high electron mobility transistor. By shrinking the gate length by a factor of three (from a 1 μm initial opening), the output current is improved by 60% (500 mA mm-1 from 300 mA mm-1) and fT and fMAX are increased to 70 GHz (from 20 GHz) and 120 GHz (from 40 GHz) respectively. The proposed soft reflow could potentially be applied on other compatible substrates such as polymer based material for organic or thin film devices, potentially leading to many new possible applications.
Feature Extraction and Classification of Magnetic and EMI Data, Camp Beale, CA
2012-05-01
and non-specialists. However, as part of ESTCP 1004 we are presently working on transitioning our inversion algorithms to an API that will be...10 0 Time (ms) Cell 663 - Target 1965 - Model 1 (SOI) ISO IVS 0.001 0.005 10 0 Time (ms) Cell 1104 - Target 2532 - Model 1 (SOI) ISO IVS...0.0 1 0.005 10 0 Time (ms) Cell 663 - Target 1965 - Model 1 (SOI) ISO IVS 0.0 1 0.005 10 0 Time (ms) Cell 1104 - Target 2532 - Model 1 (SOI
Reduction of leakage current at the gate edge of SDB SOI NMOS transistor
NASA Astrophysics Data System (ADS)
Kang, Sung-Weon; Lyu, Jong-Son; Kang, Jin-Young; Kang, Sang-Won; Lee, Jin-Hyo
1995-06-01
Leakage current through the parasitic channel formed at the sidewall of the SOI active region has been investigated by measuring the subthreshold I-V characteristics. Partially depleted (PD, approximately 2500 Angstrom) and fully depleted (FD, approximately 800 Angstrom) SOI NMOS transistors of enhancement mode have been fabricated using the silicon direct bonding (SDB) technology. Isolation processes for the SOI devices were LOCOS, LOCOS with channel stop ion implantation or fully recessed trench (FRT). The electron concentration of the parasitic channel is calculated by the PISCES Ilb simulation. As a result, leakage current of the FD mode SOI device with FRT isolation at the front and back gate biases of 0 V was reduced to approximately pA and no hump was seen on the drain current curve.
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Sano, Yasuhisa; Yamamura, Kazuya; Mimura, Hidekazu; Yamauchi, Kazuto; Mori, Yuzo
2007-08-01
Metal-oxide semiconductor field-effect transistors fabricated on a silicon-on-insulator (SOI) wafer operate faster and at a lower power than those fabricated on a bulk silicon wafer. Scaling down, which improves their performances, demands thinner SOI wafers. In this article, improvement on the thinning of SOI wafers by numerically controlled plasma chemical vaporization machining (PCVM) is described. PCVM is a gas-phase chemical etching method in which reactive species generated in atmospheric-pressure plasma are used. Some factors affecting uniformity are investigated and methods for improvements are presented. As a result of thinning a commercial 8 in. SOI wafer, the initial SOI layer thickness of 97.5+/-4.7 nm was successfully thinned and made uniform at 7.5+/-1.5 nm.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
Improved operation of graded-channel SOI nMOSFETs down to liquid helium temperature
NASA Astrophysics Data System (ADS)
Pavanello, Marcelo Antonio; de Souza, Michelly; Ribeiro, Thales Augusto; Martino, João Antonio; Flandre, Denis
2016-11-01
This paper presents the operation of Graded-Channel (GC) Silicon-On-Insulator (SOI) nMOSFETs at low temperatures down to liquid helium temperature in comparison to standard uniformly doped transistors. Devices from two different technologies have been measured and show that the mobility increase rate with temperature for GC SOI transistors is similar to uniformly doped devices for temperatures down to 90 K. However, at liquid helium temperature the rate of mobility increase is larger in GC SOI than in standard devices because of the different mobility scattering mechanisms. The analog properties of GC SOI devices have been investigated down to 4.16 K and show that because of its better transconductance and output conductance, an intrinsic voltage gain improvement with temperature is also obtained for devices in the whole studied temperature range. GC devices are also capable of reducing the impact ionization due to the high electric field in the drain region, increasing the drain breakdown voltage of fully-depleted SOI MOSFETs at any studied temperature and the kink voltage at 4.16 K.
Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers
NASA Astrophysics Data System (ADS)
Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko
2017-04-01
Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.
NASA Astrophysics Data System (ADS)
Wiener, C.; Miller, A.; Zykov, V.
2016-12-01
Advanced robotic vehicles are increasingly being used by oceanographic research vessels to enable more efficient and widespread exploration of the ocean, particularly the deep ocean. With cutting-edge capabilities mounted onto robotic vehicles, data at high resolutions is being generated more than ever before, enabling enhanced data collection and the potential for broader participation. For example, high resolution camera technology not only improves visualization of the ocean environment, but also expands the capacity to engage participants remotely through increased use of telepresence and virtual reality techniques. Schmidt Ocean Institute is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation and analysis, and open sharing of information. Telepresence-enabled research is an important component of Schmidt Ocean Institute's science research cruises, which this presentation will highlight. Schmidt Ocean Institute is one of the only research programs that make their entire underwater vehicle dive series available online, creating a collection of video that enables anyone to follow deep sea research in real time. We encourage students, educators and the general public to take advantage of freely available dive videos. Additionally, other SOI-supported internet platforms, have engaged the public in image and video annotation activities. Examples of these new online platforms, which utilize citizen scientists to annotate scientific image and video data will be provided. This presentation will include an introduction to SOI-supported video and image tagging citizen science projects, real-time robot tracking, live ship-to-shore communications, and an array of outreach activities that enable scientists to interact with the public and explore the ocean in fascinating detail.
Kim, Shin Hye; Kim, Jeongkwon; Moon, Dae Won; Han, Sang Yun
2013-01-01
We report here that a commercial silicon-on-insulator (SOI) wafer offers an opportunity for laser desorption/ionization (LDI) of peptide molecules, which occurs directly from its flat surface without requiring special surface preparation. The LDI-on-SOI exhibits intact ionization of peptides with a good detection limit of lower than 20 fmol, of which the mass range is demonstrated up to insulin with citric acid additives. The LDI process most likely arises from laser-induced surface heating promoted by two-dimensional thermal confinement in the thin Si surface layer of the SOI wafer. As a consequence of the thermal process, the LDI-on-SOI method is also capable of creating post-source decay (PSD) of the resulting peptide LDI ions, which is suitable for peptide sequencing using conventional TOF/TOF mass spectrometry.
CCSDS SOIS Subnetwork Services: A First Reference Implementation
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, S.; Notebaert, O.; Farges, P.-Y.; Fowell, S.
2008-08-01
The CCSDS SOIS working groups are developing a range of standards for spacecraft onboard interfaces with the intention of promoting reuse of hardware and software designs across a range of missions while enabling interoperability of onboard systems from diverse sources. The CCSDS SOIS working groups released in June 2007 their red books for both Subnetwork and application support layers. In order to allow the verification of these recommended standards and to pave the way for future implementation onboard spacecrafts, it is essential for these standards to be prototyped on a representative spacecraft platform, to provide valuable feed back to the SOIS working group. A first reference implementation of both Subnetwork and Application Support SOIS services over SpaceWire and Mil-Std-1553 bus is thus being realised by SciSys Ltd and Astrium under an ESA contract.
A novel self-aligned oxygen (SALOX) implanted SOI MOSFET device structure
NASA Astrophysics Data System (ADS)
Tzeng, J. C.; Baerg, W.; Ting, C.; Siu, B.
The morphology of the novel self-aligned oxygen implanted SOI (SALOX SOI) [1] MOSFET was studied. The channel silicon of SALOX SOI was confirmed to be undamaged single crystal silicon and was connected with the substrate. Buried oxide formed by oxygen implantation in this SALOX SOI structure was shown by a cross section transmission electron micrograph (X-TEM) to be amorphous. The source/drain silicon on top of the buried oxide was single crystal, as shown by the transmission electron diffraction (TED) pattern. The source/drain regions were elevated due to the buried oxide volume expansion. A sharp silicon—silicon dioxide interface between the source/drain silicon and buried oxide was observed by Auger electron spectroscopy (AES). Well behaved n-MOS transistor current voltage characteristics were obtained and showed no I-V kink.
Single-event upset in highly scaled commercial silicon-on-insulator PowerPc microprocessors
NASA Technical Reports Server (NTRS)
Irom, Farokh; Farmanesh, Farhad H.
2004-01-01
Single event upset effects from heavy ions are measured for Motorola and IBM silicon-on-insulator (SOI) microprocessors with different feature sizes, and core voltages. The results are compared with results for similar devices with build substrates. The cross sections of the SOI processors are lower than their bulk counterparts, but the threshold is about the same, even though the charge collections depth is more than an order of magnitude smaller in the SOI devices. The scaling of the cross section with reduction of feature size and core voltage dependence for SOI microprocessors discussed.
Schmitt, David P
2005-04-01
The Sociosexual Orientation Inventory (SOI; Simpson & Gangestad 1991) is a self-report measure of individual differences in human mating strategies. Low SOI scores signify that a person is sociosexually restricted, or follows a more monogamous mating strategy. High SOI scores indicate that an individual is unrestricted, or has a more promiscuous mating strategy. As part of the International Sexuality Description Project (ISDP), the SOI was translated from English into 25 additional languages and administered to a total sample of 14,059 people across 48 nations. Responses to the SOI were used to address four main issues. First, the psychometric properties of the SOI were examined in cross-cultural perspective. The SOI possessed adequate reliability and validity both within and across a diverse range of modem cultures. Second, theories concerning the systematic distribution of sociosexuality across cultures were evaluated. Both operational sex ratios and reproductively demanding environments related in evolutionary-predicted ways to national levels of sociosexuality. Third, sex differences in sociosexuality were generally large and demonstrated cross-cultural universality across the 48 nations of the ISDP, confirming several evolutionary theories of human mating. Fourth, sex differences in sociosexuality were significantly larger when reproductive environments were demanding but were reduced to more moderate levels in cultures with more political and economic gender equality. Implications for evolutionary and social role theories of human sexuality are discussed.
Pure gauge spin-orbit couplings
NASA Astrophysics Data System (ADS)
Shikakhwa, M. S.
2017-01-01
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.
Characterization of silicon-on-insulator wafers
NASA Astrophysics Data System (ADS)
Park, Ki Hoon
The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.
Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications
Schwank, James R.; Shaneyfelt, Marty R.; Draper, Bruce L.; Dodd, Paul E.
2001-01-01
A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.
SOI technology for power management in automotive and industrial applications
NASA Astrophysics Data System (ADS)
Stork, Johannes M. C.; Hosey, George P.
2017-02-01
Semiconductor on Insulator (SOI) technology offers an assortment of opportunities for chip manufacturers in the Power Management market. Recent advances in the automotive and industrial markets, along with emerging features, the increasing use of sensors, and the ever-expanding "Internet of Things" (IoT) are providing for continued growth in these markets while also driving more complex solutions. The potential benefits of SOI include the ability to place both high-voltage and low-voltage devices on a single chip, saving space and cost, simplifying designs and models, and improving performance, thereby cutting development costs and improving time to market. SOI also offers novel new approaches to long-standing technologies.
Product Reliability Trends, Derating Considerations and Failure Mechanisms with Scaled CMOS
NASA Technical Reports Server (NTRS)
White, Mark; Vu, Duc; Nguyen, Duc; Ruiz, Ron; Chen, Yuan; Bernstein, Joseph B.
2006-01-01
As microelectronics is scaled into the deep sub-micron regime, space and aerospace users of advanced technology CMOS are reassessing how scaling effects impact long-term product reliability. The effects of electromigration (EM), time-dependent-dielectric-breakdown (TDDB) and hot carrier degradation (HCI and NBTI) wearout mechanisms on scaled technologies and product reliability are investigated, accelerated stress testing across several technology nodes is performed, and FA is conducted to confirm the failure mechanism(s).
Characterizing SOI Wafers By Use Of AOTF-PHI
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu
1995-01-01
Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.
Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena
2015-01-01
The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet-triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.
Development of the Stress of Immigration Survey (SOIS): a Field Test among Mexican Immigrant Women
Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A.; Stewart, Anita L.
2016-01-01
The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field-testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language; immigrant status; work issues; yearning for family and home country; and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (1-5 scale, higher is more stress). Cronbach's alphas >.80 for all sub-scales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women. PMID:26605954
Fabrication of an Absorber-Coupled MKID Detector
NASA Technical Reports Server (NTRS)
Brown, Ari; Hsieh, Wen-Ting; Moseley, Samuel; Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward
2012-01-01
Absorber-coupled microwave kinetic inductance detector (MKID) arrays were developed for submillimeter and far-infrared astronomy. These sensors comprise arrays of lambda/2 stepped microwave impedance resonators patterned on a 1.5-mm-thick silicon membrane, which is optimized for optical coupling. The detector elements are supported on a 380-mm-thick micro-machined silicon wafer. The resonators consist of parallel plate aluminum transmission lines coupled to low-impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The transmission lines simultaneously act to absorb optical power and employ an appropriate surface impedance and effective filling fraction. The fabrication techniques demonstrate high-fabrication yield of MKID arrays on large, single-crystal membranes and sub-micron front-to-back alignment of the micro strip circuit. An MKID is a detector that operates upon the principle that a superconducting material s kinetic inductance and surface resistance will change in response to being exposed to radiation with a power density sufficient to break its Cooper pairs. When integrated as part of a resonant circuit, the change in surface impedance will result in a shift in its resonance frequency and a decrease of its quality factor. In this approach, incident power creates quasiparticles inside a superconducting resonator, which is configured to match the impedance of free space in order to absorb the radiation being detected. For this reason MKIDs are attractive for use in large-format focal plane arrays, because they are easily multiplexed in the frequency domain and their fabrication is straightforward. The fabrication process can be summarized in seven steps: (1) Alignment marks are lithographically patterned and etched all the way through a silicon on insulator (SOI) wafer, which consists of a thin silicon membrane bonded to a thick silicon handle wafer. (2) The metal microwave circuitry on the front of the membrane is patterned and etched. (3) The wafer is then temporarily bonded with wafer wax to a Pyrex wafer, with the SOI side abutting the Pyrex. (4) The silicon handle component of the SOI wafer is subsequently etched away so as to expose the membrane backside. (5) The wafer is flipped over, and metal microwave circuitry is patterned and etched on the membrane backside. Furthermore, cuts in the membrane are made so as to define the individual detector array chips. (6) Silicon frames are micromachined and glued to the silicon membrane. (7) The membranes, which are now attached to the frames, are released from the Pyrex wafer via dissolution of the wafer wax in acetone.
Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L
2016-03-09
Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.
SOI-silicon as structural layer for NEMS applications
NASA Astrophysics Data System (ADS)
Villarroya, Maria; Figueras, Eduard; Perez-Murano, Francesc; Campabadal, Francesca; Esteve, Jaume; Barniol, Nuria
2003-04-01
The objective of this paper is to present the compatibilization between a standard CMOS on bulk silicon process and the fabrication of nanoelectromechanical systems using Silicon On Insulator (SOI) wafers as substrate. This compatibilization is required as first step to fabricate a very high sensitive mass sensor based on a resonant cantilever with nanometer dimensions using the crystal silicon COI layer as the structural layer. The cantilever is driven electrostatically to its resonance frequency by an electrode placed parallel to the cantilever. A capacitive readout is performed. To achieve very high resolution, very small dimensions of the cantilever (nanometer range) are needed. For this reason, the control and excitation circuitry has to be integrated on the same substrate than the cantilever. Prior to the development of this sensor, it is necessary to develop a substrate able to be used first to integrate a standard CMOS circuit and afterwards to fabricate the nano-resonator. Starting from a SOI wafer and using very simple processes, the SOI silicon layer is removed, except from the areas in which nano-structures will be fabricated; obtaining a silicon substrate with islands with a SOI structure. The CMOS circuitry will be integrated on the bulk silicon region, while the remainder SOI region will be used for the nanoresonator. The silicon oxide of this SOI region is used as insulator; and as sacrificial layer, etched to release the cantilever from the substrate. To assure the cover of the different CMOS layers over the step of the islands, it is essential to avoid very sharp steps.
NASA Astrophysics Data System (ADS)
Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François
2008-03-01
Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.
NASA Technical Reports Server (NTRS)
Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.
2006-01-01
SEU from heavy-ions is measured for SOI PowerPC microprocessors. Results for 0.13 micron PowerPC with 1.1V core voltages increases over 1.3V versions. This suggests that improvement in SEU for scaled devices may be reversed. In recent years there has been interest in the possible use of unhardened commercial microprocessors in space because of their superior performance compared to hardened processors. However, unhardened devices are susceptible to upset from radiation space. More information is needed on how they respond to radiation before they can be used in space. Only a limited number of advanced microprocessors have been subjected to radiation tests, which are designed with lower clock frequencies and higher internal core voltage voltages than recent devices [1-6]. However the trend for commercial Silicon-on-insulator (SOI) microprocessors is to reduce feature size and internal core voltage and increase the clock frequency. Commercial microprocessors with the PowerPC architecture are now available that use partially depleted SOI processes with feature size of 90 nm and internal core voltage as low as 1.0 V and clock frequency in the GHz range. Previously, we reported SEU measurements for SOI commercial PowerPCs with feature size of 0.18 and 0.13 m [7, 8]. The results showed an order of magnitude reduction in saturated cross section compared to CMOS bulk counterparts. This paper examines SEUs in advanced commercial SOI microprocessors, focusing on SEU sensitivity of D-Cache and hangs with feature size and internal core voltage. Results are presented for the Motorola SOI processor with feature sizes of 0.13 microns and internal core voltages of 1.3 and 1.1 V. These results are compared with results for the Motorola SOI processors with feature size of 0.18 microns and internal core voltage of 1.6 and 1.3 V.
2012-10-05
Anisotropic Nanotribological Properties,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, Issue 4, pp. 515-522 (SCI) Kuo -Cheng Chen...Nanodiamond With the Polymer Used as an Additive in Lubricant Oil,” Journal of Materials Chemistry, Vol. 21, pp. 13213-13222 (SCI) Chih- Jung Chen, Ray...Deep Submicron to Nano-Scale,” Journal of Mechanics, Vol. 28, Issue 3, pp. 507-511 (SCI) Yeau-Ren Jeng, Yi-Min Wang, Hua-Chiang Wen, Shih -Ming Huang
NASA Astrophysics Data System (ADS)
Huff, Howard R.; Vigil, Joseph C.; Kuyel, Birol; Chan, David Y.; Nguyen, Long P.
1992-06-01
An experimental study was conducted to correlate wafer site flatness SFQD with stepper performance for half-micron lines and spaces. CD measurements were taken on wafers patterned on both GCA pre-production XLS i-line and SVGL Micrascan-90 DUV steppers as well as focus measurements on the Micrascan-90. Wafer site flatness SFQD less than 0.3 micrometers was observed to be a sufficiently small variable in CD non-uniformities for these initial half-micron stepper applications.
A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy
NASA Astrophysics Data System (ADS)
Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita
2016-07-01
We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
Acute care surgery: defining mortality in emergency general surgery in the state of Maryland.
Narayan, Mayur; Tesoriero, Ronald; Bruns, Brandon R; Klyushnenkova, Elena N; Chen, Hegang; Diaz, Jose J
2015-04-01
Emergency general surgery (EGS) is a major component of acute care surgery, however, limited data exist on mortality with respect to trauma center (TC) designation. We hypothesized that mortality would be lower for EGS patients treated at a TC vs non-TC (NTC). A retrospective review of the Maryland Health Services Cost Review Commission database from 2009 to 2013 was performed. The American Association for the Surgery of Trauma EGS ICD-9 codes were used to identify EGS patients. Data collected included demographics, TC designation, emergency department admissions, and All Patients Refined Severity of Illness (APR_SOI). Trauma center designation was used as a marker of a formal acute care surgery program. Primary outcomes included in-hospital mortality. Multivariable logistic regression analysis was performed controlling for age. There were 817,942 EGS encounters. Mean ± SD age of patients was 60.1 ± 18.7 years, 46.5% were males; 71.1% of encounters were at NTCs; and 75.8% were emergency department admissions. Overall mortality was 4.05%. Mortality was calculated based on TC designation controlling for age across APR_SOI strata. Multivariable logistic regression analysis did not show statistically significant differences in mortality between hospital levels for minor APR_SOI. For moderate APR_SOI, mortality was significantly lower for TCs compared with NTCs (p < 0.001). Among TCs, the effect was strongest for Level I TC (odds ratio = 0.34). For extreme APR_SOI, mortality was higher at TCs vs NTCs (p < 0.001). Emergency general surgery patients treated at TCs had lower mortality for moderate APR_SOI, but increased mortality for extreme APR_SOI when compared with NTCs. Additional investigation is required to better evaluate this unexpected finding. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions
NASA Astrophysics Data System (ADS)
Chakraborty, Subrata; Vijay, Amrendra
2017-06-01
We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Mizue, E-mail: mizue.ishikawa@toshiba.co.jp; Sugiyama, Hideyuki; Inokuchi, Tomoaki
2015-08-31
We investigate spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co{sub 2}FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co{sub 2}FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ∼1000 mV in which themore » increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co{sub 2}FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.« less
FinFET and UTBB for RF SOI communication systems
NASA Astrophysics Data System (ADS)
Raskin, Jean-Pierre
2016-11-01
Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.
Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale
NASA Astrophysics Data System (ADS)
Vázquez-Lozano, J. Enrique; Martínez, Alejandro
2018-03-01
Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.
El Niño Southern Oscillation (ENSO) and dysentery in Shandong province, China.
Zhang, Ying; Bi, Peng; Wang, Guoyong; Hiller, Janet E
2007-01-01
To investigate the impact of the El Niño Southern Oscillation (ENSO) on dysentery transmission, the relationship between monthly dysentery cases in Shandong Province of China and the monthly Southern Oscillation Index (SOI), a broad index of ENSO, was examined over the period 1991-2003. Spearman correlations and generalized linear models were calculated to detect the association between the SOI and dysentery cases. Data from 1991 to 2001 were used to estimate the parameters, while data from 2002 to 2003 were used to test the forecasting ability of the model. After controlling for seasonality, autocorrelation, and a time-lagged effect, the results indicate that there was a significant negative association between the number of dysentery cases and the SOI, with a lagged effect of 2 months. A one-standard-deviation decrease in the SOI might cause up to 207 more dysentery cases per month in Shandong Province. This is the first report of the impact of the Southern Oscillation on dysentery risk in China, indicating that the SOI may be a useful early indicator of potential dysentery risk in Shandong Province.
Characterization of wafer-level bonded hermetic packages using optical leak detection
NASA Astrophysics Data System (ADS)
Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils
2009-07-01
For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.
Silicon-based optoelectronics: Monolithic integration for WDM
NASA Astrophysics Data System (ADS)
Pearson, Matthew Richard T.
2000-10-01
This thesis details the development of enabling technologies required for inexpensive, monolithic integration of Si-based wavelength division multiplexing (WDM) components and photodetectors. The work involves the design and fabrication of arrayed waveguide grating demultiplexers in silicon-on-insulator (SOI), the development of advanced SiGe photodetectors capable of photodetection at 1.55 mum wavelengths, and the development of a low cost fabrication technique that enables the high volume production of Si-based photonic components. Arrayed waveguide grating (AWG) demultiplexers were designed and fabricated in SOI. The fabrication of AWGs in SOI has been reported in the literature, however there are a number of design issues specific to the SOI material system that can have a large effect on device performance and design, and have not been theoretically examined in earlier work. The SOI AWGs presented in this thesis are the smallest devices of this type reported, and they exhibit performance acceptable for commercial applications. The SiGe photodetectors reported in the literature exhibit extremely low responsivities at wavelengths near 1.55 mum. We present the first use of three dimensional growth modes to enhance the photoresponse of SiGe at 1.55 mum wavelengths. Metal semiconductor-metal (MSM) photodetectors were fabricated using this undulating quantum well structure, and demonstrate the highest responsivities yet reported for a SiGe-based photodetector at 1.55 mum. These detectors were monolithically integrated with low-loss SOI waveguides, enabling integration with nearly any Si-based passive WDM component. The pursuit of inexpensive Si-based photonic components also requires the development of new manufacturing techniques that are more suitable for high volume production. This thesis presents the development of a low cost fabrication technique based on the local oxidation of silicon (LOCOS), a standard processing technique used for Si integrated circuits. This process is developed for both SiGe and SOI waveguides, but is shown to be commercially suitable only for SOI waveguide devices. The technique allows nearly any Si microelectronics fabrication facility to begin manufacturing optical components with minimal change in processing equipment or techniques. These enabling technologies provide the critical elements for inexpensive, monolithic integration in a Si-based system.
Damiran, Daalkhaijav; Yu, Peiqiang
2010-02-24
Recently, a new "super" genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it was observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE(L3x), 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiran, D.; Yu, P
Recently, a new 'super' genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it wasmore » observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE{sub L3x}, 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.« less
A rugged 650 V SOI-based high-voltage half-bridge IGBT gate driver IC for motor drive applications
NASA Astrophysics Data System (ADS)
Hua, Qing; Li, Zehong; Zhang, Bo; Chen, Weizhong; Huang, Xiangjun; Feng, Yuxiang
2015-05-01
This paper proposes a rugged high-voltage N-channel insulated gate bipolar transistor (IGBT) gate driver integrated circuit. The device integrates a high-side and a low-side output stages on a single chip, which is designed specifically for motor drive applications. High-voltage level shift technology enables the high-side stage of this device to operate up to 650 V. The logic inputs are complementary metal oxide semiconductor (CMOS)/transistor transistor logic compatible down to 3.3 V. Undervoltage protection functionality with hysteresis characteristic has also been integrated to enhance the device reliability. The device is fabricated in a 1.0 μm, 650 V high-voltage bipolar CMOS double-diffused metal oxide semiconductor (BCD) on silicon-on-insulator (SOI) process. Deep trench dielectric isolation technology is employed to provide complete electrical isolation with advantages such as reduced parasitic effects, excellent noise immunity and low leakage current. Experimental results show that the isolation voltage of this device can be up to approximately 779 V at 25°C, and the leakage current is only 5 nA at 650 V, which is 15% higher and 67% lower than the conventional ones. In addition, it delivers an excellent thermal stability and needs very low quiescent current and offers a high gate driver capability which is needed to adequately drive IGBTs that have large input capacitances.
Makkonen, Ulla; Hellén, Heidi; Anttila, Pia; Ferm, Martin
2010-01-01
The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 microm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM(10) were actually in PM(2.5). For PAHs and trace elements, it is more beneficial to analyse the PM(2.5) or even the PM(1) fraction instead of PM(10), because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 microm, as well as those of submicron particles, increased, and also the ratio PM(1)/PM(10) increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 microm. PAH concentrations rose even to the same level as in winter.
Fabrication of Total-Dose-Radiation-Hardened (TDRH) SOI wafer with embedded silicon nanoclusters
NASA Astrophysics Data System (ADS)
Wu, Aimin; Wang, Xi; Wei, Xing; Chen, Jing; Chen, Ming; Zhang, Zhengxuan
2009-05-01
Si ion-implantation and post annealing of silicon wafers prior to wafer bonding were used to radiation-harden the thermal oxide layer of Silicon on Insulator structures. After grinding and polishing, Total-Dose-Radiation-Hardened SOI (TDRH-SOI) wafers with several-micron-thick device layers were prepared. Electrical characterization before and after X-ray irradiation showed that the flatband voltage shift induced by irradiation was reduced by this preprocessing. Photoluminescence Spectroscopy (PL), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated that the improvement of the total dose response of the TDRH-SOI wafer was associated with formation of Si nanoclusters in the implanted oxide layer, suggesting that these were the likely candidates for electron and proton trapping centers that reduce the positive charge buildup effect in the buried oxide.
Spacecraft Onboard Interface Services: Current Status and Roadmap
NASA Astrophysics Data System (ADS)
Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine
2016-08-01
Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.
NASA Astrophysics Data System (ADS)
Priya, Anjali; Mishra, Ram Awadh
2016-04-01
In this paper, analytical modeling of surface potential is proposed for new Triple Metal Gate (TMG) fully depleted Recessed-Source/Dain Silicon On Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The metal with the highest work function is arranged near the source region and the lowest one near the drain. Since Recessed-Source/Drain SOI MOSFET has higher drain current as compared to conventional SOI MOSFET due to large source and drain region. The surface potential model developed by 2D Poisson's equation is verified by comparison to the simulation result of 2-dimensional ATLAS simulator. The model is compared with DMG and SMG devices and analysed for different device parameters. The ratio of metal gate length is varied to optimize the result.
An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement
NASA Astrophysics Data System (ADS)
Ye, Fan; Xiaorong, Luo; Kun, Zhou; Yuanhang, Fan; Yongheng, Jiang; Qi, Wang; Pei, Wang; Yinchun, Luo; Bo, Zhang
2014-03-01
A low specific on-resistance (Ron,sp) SOI NBL TLDMOS (silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer (NBL) on the interface of the SOI layer/buried oxide (BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer. First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the Ron,sp. Second, in the y-direction, the BOX's electric field (E-field) strength is increased to 154 V/μm from 48 V/μm of the SOI Trench Gate LDMOS (SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage (BV), but also reduces the cell pitch and Ron,sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 μm, and decreases the Ron,sp by 80% at the same BV.
Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.
A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS
NASA Astrophysics Data System (ADS)
Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao
2001-04-01
Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Tanaka, Hiroyuki; Umeyama, Norio; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2018-06-01
P-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs) with the 〈110〉 or 〈100〉 channel direction have been successfully fabricated on circular silicon-on-insulator (SOI) diaphragms using a cost-effective minimal-fab process, and their electrical characteristics have been systematically investigated before and after the SOI diaphragm formation. It was found that almost the same subthreshold slope (S-slope) and threshold voltage (V t) are observed in the fabricated PMOSFETs before and after the SOI diaphragm formation, and they are independent of the channel direction. On the other hand, significant variations in drain current were observed in the fabricated PMOSFETs with the 〈110〉 channel direction after the SOI diaphragm formation owing to the residual mechanical stress-induced piezoresistive effect. It was also confirmed that electrical characteristics of the fabricated PMOSFETs with the 〈100〉 channel direction are almost the same before and after the SOI diaphragm formation, i.e., not sensitive to the mechanical stress. Moreover, the drain current variations at different directions of mechanical stress and current flow were systematically investigated and discussed.
Multi-wavelength transceiver integration on SOI for high-performance computing system applications
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Cherchi, Matteo; Neumeyr, Christian; Ortsiefer, Markus; Malacarne, Antonio
2015-03-01
We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.
SOAR Optical Imager (SOI) | SOAR
SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR ?: ADS link to SOI instrument SPIE paper Last update: C. Briceño, Aug 23, 2017 SOAR Optical Imager
SOI MESFETs on high-resistivity, trap-rich substrates
NASA Astrophysics Data System (ADS)
Mehr, Payam; Zhang, Xiong; Lepkowski, William; Li, Chaojiang; Thornton, Trevor J.
2018-04-01
The DC and RF characteristics of metal-semiconductor field-effect-transistors (MESFETs) on conventional CMOS silicon-on-insulator (SOI) substrates are compared to nominally identical devices on high-resistivity, trap-rich SOI substrates. While the DC transfer characteristics are statistically identical on either substrate, the maximum available gain at GHz frequencies is enhanced by ∼2 dB when using the trap-rich substrates, with maximum operating frequencies, fmax, that are approximately 5-10% higher. The increased fmax is explained by the reduced substrate conduction at GHz frequencies using a lumped-element, small-signal model.
2010-03-01
DATES COVERED (From - To) October 2008 – October 2009 4 . TITLE AND SUBTITLE PERFORMANCE AND POWER OPTIMIZATION FOR COGNITIVE PROCESSOR DESIGN USING...Computations 2 2.2 Cognitive Models and Algorithms for Intelligent Text Recognition 4 2.2.1 Brain-State-in-a-Box Neural Network Model. 4 2.2.2...The ASIC-style design and synthesis flow for FPU 8 Figure 4 : Screen shots of the final layouts 10 Figure 5: Projected performance and power roadmap
Kaye, I David; Adrados, Murillo; Karia, Raj J; Protopsaltis, Themistocles S; Bosco, Joseph A
2017-11-01
Observational database review. To determine the effect of patient severity of illness (SOI) on the cost of spine surgery among New York state hospitals. National health care spending has risen at an unsustainable rate with musculoskeletal care, and spine surgery in particular, accounting for a significant portion of this expenditure. In an effort towards cost-containment, health care payers are exploring novel payment models some of which reward cost savings but penalize excessive spending. To mitigate risk to health care institutions, accurate cost forecasting is essential. No studies have evaluated the effect of SOI on costs within spine surgery. The New York State Hospital Inpatient Cost Transparency Database was reviewed to determine the costs of 69,831 hospital discharges between 2009 and 2011 comprising the 3 most commonly performed spine surgeries in the state. These costs were then analyzed in the context of the specific all patient refined diagnosis-related group (DRG) SOI modifier to determine this index's effect on overall costs. Overall, hospital-reported cost increases with the patient's SOI class and patients with worse baseline health incur greater hospital costs (P<0.001). Moreover, these costs are increasingly variable for each worsening SOI class (P<0.001). This trend of increasing costs is persistent for all 3 DRGs across all 3 years studied (2009-2011), within each of the 7 New York state regions, and occurs irrespective of the hospital's teaching status or size. Using the 3M all patient refined-DRG SOI index as a measure of patient's health status, a significant increase in cost for spine surgery for patients with higher SOI index was found. This study confirms the greater cost and variability of spine surgery for sicker patients and illustrates the inherent unpredictability in cost forecasting and budgeting for these same patients.
Barnes, David K A; Ireland, Louise; Hogg, Oliver T; Morley, Simon; Enderlein, Peter; Sands, Chester J
2016-03-01
The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km(2) ), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea-ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice-free day, than anywhere-else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea-ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote-sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea-ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chung, Gwiy-Sang
2003-10-01
This paper describes the fabrication of SOI structures with buried cavities using SDB and electrochemical etch-stop. These methods are suitable for thick membrane fabrication with accurate thickness, uniformity, and flatness. After a feed-through hole for supplied voltage and buried cavities was formed on a handle Si wafer with p-type, the handle wafer was bonded to an active Si wafer consisting of a p-type substrate with an n-type epitaxial layer corresponding to membrane thickness. The bonded pair was then thinned until electrochemical etch-stop occurred at the pn junction during electrochemical etchback. By using the SDB SOI structure with buried cavities, active membranes, which have a free standing structure with a dimension of 900×900 μm2, were fabricated. It is confirmed that the fabrication process of the SDB SOI structure with buried cavities is a powerful and versatile technology for new MEMS applications.
A novel high-performance high-frequency SOI MESFET by the damped electric field
NASA Astrophysics Data System (ADS)
Orouji, Ali A.; Khayatian, Ahmad; Keshavarzi, Parviz
2016-06-01
In this paper, we introduce a novel silicon-on-insulator (SOI) metal-semiconductor field-effect-transistor (MESFET) using the damped electric field (DEF). The proposed structure is geometrically symmetric and compatible with common SOI CMOS fabrication processes. It has two additional oxide regions under the side gates in order to improve DC and RF characteristics of the DEF structure due to changes in the electrical potential, the electrical field distributions, and rearrangement of the charge carriers. Improvement of device performance is investigated by two-dimensional and two-carrier simulation of fundamental parameters such as breakdown voltage (VBR), drain current (ID), output power density (Pmax), transconductance (gm), gate-drain and gate-source capacitances, cut-off frequency (fT), unilateral power gain (U), current gain (h21), maximum available gain (MAG), and minimum noise figure (Fmin). The results show that proposed structure operates with higher performances in comparison with the similar conventional SOI structure.
SOI-CMOS Process for Monolithic, Radiation-Tolerant, Science-Grade Imagers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George; Lee, Adam
In Phase I, Voxtel worked with Jazz and Sandia to document and simulate the processes necessary to implement a DH-BSI SOI CMOS imaging process. The development is based upon mature SOI CMOS process at both fabs, with the addition of only a few custom processing steps for integration and electrical interconnection of the fully-depleted photodetectors. In Phase I, Voxtel also characterized the Sandia process, including the CMOS7 design rules, and we developed the outline of a process option that included a “BOX etch”, that will permit a “detector in handle” SOI CMOS process to be developed The process flows weremore » developed in cooperation with both Jazz and Sandia process engineers, along with detailed TCAD modeling and testing of the photodiode array architectures. In addition, Voxtel tested the radiation performance of the Jazz’s CA18HJ process, using standard and circular-enclosed transistors.« less
Detection of submicron scale cracks and other surface anomalies using positron emission tomography
Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.
2004-02-17
Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.
Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax
Lyu, Hongming; Lu, Qi; Liu, Jinbiao; Wu, Xiaoming; Zhang, Jinyu; Li, Junfeng; Niu, Jiebin; Yu, Zhiping; Wu, Huaqiang; Qian, He
2016-01-01
In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation velocity. However, its main disadvantage, the lack of bandgap, has not been satisfactorily solved. As a result, maximum oscillation frequency (fmax) which indicates transistors’ power amplification ability has been disappointing. Here, we present submicron field-effect transistors with specially designed low-resistance gate and excellent source/drain contact, and therefore significantly improved fmax. The fabrication was assisted by the advanced 8-inch CMOS back-end-of-line technology. A 200-nm-gate-length GFET achieves fT/fmax = 35.4/50 GHz. All GFET samples with gate lengths ranging from 200 nm to 400 nm possess fmax 31–41% higher than fT, closely resembling Si n-channel MOSFETs at comparable technology nodes. These results re-strengthen the promise of graphene field-effect transistors in next generation semiconductor electronics. PMID:27775009
Le Bras, Anne; Hesters, Laetitia; Gallot, Vanessa; Tallet, Cathie; Tachdjian, Gerard; Frydman, Nelly
2017-10-01
Short gamete co-incubation (SGCO) consists in decreasing the duration of contact between oocytes and sperm from the standard overnight insemination (SOI) toward 2 hours. However, the effectiveness of this technique to improve in vitro fertilization and embryo transfer (IVF-ET) outcomes remains controversial. Our study was designed to evaluate the efficiency of SGCO in a poor prognosis population with a history of fragmented embryos defined by the presence of at least 50% of the embryos with more than 25% of cytoplasmic fragments. From January 2010 to January 2014, 97 couples were included in a SGCO protocol. We separated women into 2 subgroups: younger and older than 35 years. Compared to SOI, after SGCO, 2-cell stage embryos were higher in all women (p<0.001) and less fragmented in women over 35 years (p<0.05). On day 2, top quality embryos obtained and transferred were higher with SCGO than with SOI, independently of the age of the women (p<0.001). Moreover, the number of embryos with less than 25% of fragmentation was higher after SGCO than SOI (p<0.001) whereas the number of multinucleated embryos was lower (p<0.001). We observed that after fresh ET, independently of the age of the women, the clinical pregnancy rate was 3 times higher after SGCO than after SOI. However, the live-birth rate was 4 times higher with SGCO than with SOI in women above 35 years but 3 times higher with SGCO than with SOI in women younger than 35 years. The present results indicate that for a particular indication, reducing the time of oocytes and sperm co-incubation may improve IVF-ET outcomes in terms of live-birth rate. AMH: anti mullerian hormone; COC: cumulus-oocytes complex; E2: estradiol; ET: embryo transfer; FET: frozen embryo transfer; FSH: follicle stimulating hormone; GnRH: gonadotrophin releasing hormone; hCG: human chorionic gonadotropin hormone; hMG: human menopausal gonadotropin hormone; IRB: institutional review board; IVF: in vitro fertilization; IVF-ET: in vitro fertilization and embryo transfer; MNB: multinucleated blastomere; mRNA: messanger ribonucleic acid; OC: oocyte retrieval; O2: oxygen; ROS: reactive oxygen species; SGCO: short gamete co-incubation; SOI: standard overnight insemination.
A photonic crystal ring resonator formed by SOI nano-rods.
Chiu, Wei-Yu; Huang, Tai-Wei; Wu, Yen-Hsiang; Chan, Yi-Jen; Hou, Chia-Hunag; Chien, Huang Ta; Chen, Chii-Chang
2007-11-12
The design, fabrication and measurement of a silicon-on-insulator (SOI) two-dimensional photonic crystal ring resonator are demonstrated in this study. The structure of the photonic crystal is comprised of silicon nano-rods arranged in a hexagonal lattice on an SOI wafer. The photonic crystal ring resonator allows for the simultaneous separation of light at wavelengths of 1.31 and 1.55mum. The device is fabricated by e-beam lithography. The measurement results confirm that a 1.31mum/1.55mum wavelength ring resonator filter with a nano-rod photonic crystal structure can be realized.
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Li, Yang; Yue, Wenjing; Fu, Xiaoqian; Li, Zhiming
2018-07-01
In this paper, the hot-carrier-induced current capability degradation of a 600 V lateral insulated gate bipolar transistor (LIGBT) on thick silicon on insulator (SOI) substrate is investigated. Our experiments found that, for the SOI-LIGBT, the worst stress condition is the maximum gate voltage (Vgmax) condition and the current degradation is dominated by the damages in the channel region under the Vgmax stress condition. However, further analyses show that the influence of channel region damages on the collector current degradation increases with the increase of measured collector voltage and is maximum in the current saturation region. Therefore, in our opinion, the hot-carrier-induced current capability degradation of the SOI-LIGBT should be evaluated by the degradation of saturation current under the Vgmax stress condition. In addition, a novel SOI-LIGBT structure with an external p-type region was also proposed, which can alleviate the damage in the channel region by reducing the lateral electric field peak. Our experimental results demonstrate that the proposed structure could optimize the hot-carrier reliability effectively with the other characteristics maintained. He is currently a lecturer at the University of Jinan, Jinan, China. His research interests include power electronics, high voltage devices and the electronics reliability.
Design and fabrication of piezoresistive p-SOI Wheatstone bridges for high-temperature applications
NASA Astrophysics Data System (ADS)
Kähler, Julian; Döring, Lutz; Merzsch, Stephan; Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2011-06-01
For future measurements while depth drilling, commercial sensors are required for a temperature range from -40 up to 300 °C. Conventional piezoresistive silicon sensors cannot be used at higher temperatures due to an exponential increase of leakage currents which results in a drop of the bridge voltage. A well-known procedure to expand the temperature range of silicon sensors and to reduce leakage currents is to employ Silicon-On-Insulator (SOI) instead of standard wafer material. Diffused resistors can be operated up to 200 °C, but show the same problems beyond due to leakage of the p-njunction. Our approach is to use p-SOI where resistors as well as interconnects are defined by etching down to the oxide layer. Leakage is suppressed and the temperature dependence of the bridges is very low (TCR = (2.6 +/- 0.1) μV/K@1 mA up to 400 °C). The design and process flow will be presented in detail. The characteristics of Wheatstone bridges made of silicon, n- SOI, and p-SOI will be shown for temperatures up to 300 °C. Besides, thermal FEM-simulations will be described revealing the effect of stress between silicon and the silicon-oxide layer during temperature cycling.
An extensive investigation of work function modulated trapezoidal recessed channel MOSFET
NASA Astrophysics Data System (ADS)
Lenka, Annada Shankar; Mishra, Sikha; Mishra, Satyaranjan; Bhanja, Urmila; Mishra, Guru Prasad
2017-11-01
The concept of silicon on insulator (SOI) and grooved gate help to lessen the short channel effects (SCEs). Again the work function modulation along the metal gate gives a better drain current due to the uniform electric field along the channel. So all these concepts are combined and used in the proposed MOSFET structure for more improved performance. In this work, trapezoidal recessed channel silicon on insulator (TRC-SOI) MOSFET and work function modulated trapezoidal recessed channel silicon on insulator (WFM-TRC-SOI) MOSFET are compared with DC and RF parameters and later linearity of both the devices is tested. An analytical model is formulated by using a 2-D Poisson's equation and develops a compact equation for threshold voltage using minimum surface potential. In this work we analyze the effect of negative junction depth and the corner angle on various device parameters such as minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL) and threshold voltage. The analysis interprets that the switching performance of WFM-TRC-SOI MOSFET surpasses TRC-SOI MOSFET in terms of high Ion/Ioff ratio and also the proposed structure can minimize the short channel effects (SCEs) in RF application. The validity of proposed model has been verified with simulation result performed on Sentaurus TCAD device simulator.
Richardson, Troy; Rodean, Jonathan; Harris, Mitch; Berry, Jay; Gay, James C; Hall, Matt
2018-04-25
In the Medicare population, measures of relative severity of illness (SOI) for hospitalized patents have been used in prospective payment models. Similar measures for pediatric populations have not been fully developed. To develop hospitalization resource intensity scores for kids (H-RISK) using pediatric relative weights (RWs) for SOI and to compare hospital types on case-mix index (CMI). Using the 2012 Kids' Inpatient Database (KID), we developed RWs for each All Patient Refined Diagnosis Related Group (APR-DRG) and SOI level. RW corresponded to the ratio of the adjusted mean cost for discharges in an APR-DRG SOI combination over adjusted mean cost of all discharges in the dataset. RWs were applied to every discharge from 3,117 hospitals in the database with at least 20 discharges. RWs were then averaged at the hospital level to provide each hospital's CMI. CMIs were compared by hospital type using Kruskal- Wallis tests. The overall adjusted mean cost of weighted discharges in Healthcare Cost and Utilization Project KID 2012 was $6,135 per discharge. Solid organ and bone marrow transplantations represented 4 of the 10 highest procedural RWs (range: 35.5 to 91.7). Neonatal APRDRG SOIs accounted for 8 of the 10 highest medical RWs (range: 19.0 to 32.5). Free-standing children's hospitals yielded the highest median (interquartile range [IQR]) CMI (2.7 [2.2-3.1]), followed by urban teaching hospitals (1.8 [1.3-2.6]), urban nonteaching hospitals (1.1 [0.9-1.5]), and rural hospitals (0.8 [0.7-0.9]; P < .001). H-RISK for populations of pediatric admissions are sensitive to detection of substantial differences in SOI by hospital type. © 2018 Society of Hospital Medicine.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, Kenji; et al.
We proposed a new high-resolution single-photon infrared spectrometer for search for radiative decay of cosmic neutrino background (CνB). The superconducting-tunnel-junctions(STJs) are used as a single-photon counting device. Each STJ consists of Nb/Al/Al xO y/Al/Nb layers, and their thicknesses are optimized for the operation temperature at 370 mK cooled by a 3He sorption refrigerator. Our STJs achieved the leak current 250 pA, and the measured data implies that a smaller area STJ fulfills our requirement. FD-SOI MOSFETs are employed to amplify the STJ signal current in order to increase signal-to-noise ratio (S/N). FD-SOI MOSFETs can be operated at cryogenic temperature ofmore » 370 mK, which reduces the noise of the signal amplification system. FD-SOI MOSFET characteristics are measured at cryogenic temperature. The Id-Vgs curve shows a sharper turn on with a higher threshold voltage and the Id-Vds curve shows a nonlinear shape in linear region at cryogenic temperature. Taking into account these effects, FD-SOI MOSFETs are available for read-out circuit of STJ detectors. The bias voltage for STJ detectors is 0.4 mV, and it must be well stabilized to deliver high performance. We proposed an FD-SOI MOSFET-based charge integrated amplifier design as a read-out circuit of STJ detectors. The requirements for an operational amplifier used in the amplifier is estimated using SPICE simulation. The op-amp is required to have a fast response (GBW ≥ 100 MHz), and it must have low power dissipation as compared to the cooling power of refrigerator.« less
GENFAS- Decentralised PUS-Based Data Handling Software Using SOIS and SpaceWire
NASA Astrophysics Data System (ADS)
Fowell, Stuart D.; Wheeler, Simon; Mendham, Peter; Gasti, Wahida
2011-08-01
This paper describes GenFAS, a decentralised PUS- based Data Handling onboard software architecture, based on the SOIS and SpaceWire communication specifications. GenFAS was initially developed for and deployed on the MARC system under an ESA GSTP contract.
Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks
NASA Technical Reports Server (NTRS)
Dogan, Numan S.
2003-01-01
The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.
NASA Astrophysics Data System (ADS)
Miyaji, Kousuke; Hung, Chinglin; Takeuchi, Ken
2012-04-01
The scaling trends and limitation in sub-20 nm a bulk and silicon-on-insulator (SOI) NAND flash memory is studied by the three-dimensional (3D) device simulation focusing on short channel effects (SCE), channel boost leakage and channel voltage boosting characteristics during the program-inhibit operation. Although increasing punch-through stopper doping concentration is effective for suppressing SCE in bulk NAND cells, the generation of junction leakage becomes serious. On the other hand, SCE can be suppressed by thinning the buried oxide (BOX) in SOI NAND cells. However, the boosted channel voltage decreases by the higher BOX capacitance. It is concluded that the scaling limitation is dominated by the junction leakage and channel boosting capability for bulk and SOI NAND flash cells, respectively, and the scaling limit is decreased to 9 nm using SOI NAND flash memory cells from 13 nm in bulk NAND flash memory cells.
Spin-orbit interaction and negative magnetoresistance for localized electrons in InSb quantum wells
NASA Astrophysics Data System (ADS)
Ishida, S.; Manago, T.; Nishizako, N.; Geka, H.; Shibasaki, I.
2010-02-01
Weak-field magnetoresistance (MR) in the variable-range hopping (VRH) in the presence of spin-orbit interaction (SOI) for 2DEGs at the hetero-interface of InSb quantum wells was examined in view of the quantum interference (QI) effect. Samples with the sheet resistance, ρ> ρc= h/ e2, exhibit VRH, while those with ρ< ρc exhibit weak localiz ation (WL) at low temperatures, where h/ e2 is the quantum resistance. In the WL regime, a positive magnetoresistance (MR) peak due to the weak anti-localization (WAL) with SOI is clearly observed in low magnetic field. In contrast, the low-field hopping MR remains entirely negative surviving the SOI, indicating that the hopping MR due to the QI is completely negative regardless of the SOI. This result supports the predictions based on the directed-path approach for forward-scattering paths ignoring the back-scattering return loops for the QI in the VRH.
Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide.
Min Lee, Seung; Hwan Yum, Jung; Larsen, Eric S; Chul Lee, Woo; Keun Kim, Seong; Bielawski, Christopher W; Oh, Jungwoo
2017-10-16
Silicon-on-insulator (SOI) technology improves the performance of devices by reducing parasitic capacitance. Devices based on SOI or silicon-on-sapphire technology are primarily used in high-performance radio frequency (RF) and radiation sensitive applications as well as for reducing the short channel effects in microelectronic devices. Despite their advantages, the high substrate cost and overheating problems associated with complexities in substrate fabrication as well as the low thermal conductivity of silicon oxide prevent broad applications of this technology. To overcome these challenges, we describe a new approach of using beryllium oxide (BeO). The use of atomic layer deposition (ALD) for producing this material results in lowering the SOI wafer production cost. Furthermore, the use of BeO exhibiting a high thermal conductivity might minimize the self-heating issues. We show that crystalline Si can be grown on ALD BeO and the resultant devices exhibit potential for use in advanced SOI technology applications.
Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.
Biodiesel sensing using silicon-on-insulator technologies
NASA Astrophysics Data System (ADS)
Casas Bedoya, Alvaro; Ling, Meng Y.; Brouckaert, Joost; Yebo, Nebiyu A.; Van Thourhout, Dries; Baets, Roel G.
2009-05-01
By measuring the transmission of Biodiesel/Diesel mixtures in the near- and far-infrared wavelength ranges, it is possible to predict the blend level with a high accuracy. Conventional photospectrometers are typically large and expensive and have a performance that often exceeds the requirements for most applications. For automotive applications for example, what counts is size, robustness and most important cost. As a result the miniaturization of the spectrometer can be seen as an attractive implementation of a Biodiesel sensor. Using Silicon-on-Insulator (SOI) this spectrometer miniaturization can be achieved. Due to the large refractive index contrast of the SOI material system, photonic devices can be made very compact. Moreover, they can be manufactured on high-quality SOI substrates using waferscale CMOS fabrication tools, making them cheap for the market. In this paper, we show that it is possible to determine Biodiesel blend levels using an SOI spectrometer-on-a-chip. We demonstrate absorption measurements using spiral shaped waveguides and we also present the spectrometer design for on-chip Biodiesel blend level measurements.
Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration
NASA Astrophysics Data System (ADS)
Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre
Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.
HARM processing techniques for MEMS and MOEMS devices using bonded SOI substrates and DRIE
NASA Astrophysics Data System (ADS)
Gormley, Colin; Boyle, Anne; Srigengan, Viji; Blackstone, Scott C.
2000-08-01
Silicon-on-Insulator (SOI) MEMS devices (1) are rapidly gaining popularity in realizing numerous solutions for MEMS, especially in the optical and inertia application fields. BCO recently developed a DRIE trench etch, utilizing the Bosch process, and refill process for high voltage dielectric isolation integrated circuits on thick SOI substrates. In this paper we present our most recently developed DRIE processes for MEMS and MOEMS devices. These advanced etch techniques are initially described and their integration with silicon bonding demonstrated. This has enabled process flows that are currently being utilized to develop optical router and filter products for fiber optics telecommunications and high precision accelerometers.
Some material structural properties of SOI substrates produced by SDB technology
NASA Astrophysics Data System (ADS)
Hui, Li; Guo-Liang, Sun; Juan, Zhan; Qin-Yi, Tong
1987-10-01
SOI substrates have been produced by silicon direct bonding (SDB) technology. Thermal oxides ranging in thickness from native oxide to 1 μm or even more, on either or both wafers have been bonded successfully. The fracture strength of the SOI layer is 130-200 kg/cm 2 which is similar to the value of intrinsic bulk silicon. Dislocations have been shown to be concentrated on the backsides of the substrate and no additional defects have been developed within 80 μm of the Si-SiO 2 bonding area. Mobility and minority carrier lifetime similar to that of the original bulk silicon have been obtained after annealing.
NASA Astrophysics Data System (ADS)
Terzic, Jasminka
Previous studies of iridates have shown that an interplay of strong SOI, Coulomb interaction U, Hund's rule coupling and crystalline electric fields result in unexpected insulating states with complex magnetic states. The novel Jeff =1/2 insulating state first observed in Sr2IrO4 is a direct consequence of such an intriguing interplay and is one of the central foci of this dissertation study. The work presented here consists of three projects: (1) Effects of Tb doping on Sr2IrO4 having tetravalent Ir4+ (5d5) ions; (2) Emergence of unexpected magnetic states in double-perovskite (Ba1-xSr x)2YIrO6 with pentavalent Ir5+ (5d4) ions in the presence of strong SOI, and ( 3) The coexistence of a charge and magnetic order in a magnetic dimer chain system, Ba5AlIr2O11, which has both tetravalent Ir4+ (5d5) and pentavalent Ir5+ (5d4) ions. A significant portion of this dissertation will focus on Tb doped Sr 2IrO4. A central finding of this work is that slight Tb doping (3%) readily suppresses the antiferromagnetic state but retains the insulating state, indicating an unusual correlation between the magnetic and insulating states as a result of the presence of the strong SOI. However, SOI is not the only significant phenomenon. The study on the double-perovskite (Ba1-xSrx)2YIrO6 revealed an exotic magnetic ground state, in sharp contrast to the anticipated singlet ground state in the strong SOI limit, raising an urgent question: is SOI as dominant as was initially anticipated in the iridates? Finally, this study turns to a system containing both Ir4+ and Ir5+ ions, Ba5AlIr2O11. This system features dimer chains of two inequivalent octahedra occupied by tetravalent Ir4+ (5d5) and pentavalent Ir 5+ (5d4) ions respectively. Ba5AlIr 2O11 undergoes charge and magnetic order transitions at 210 K and 4.5 K, respectively. SOI-driven physics is a rapidly evolving field with an ever growing list of theoretical proposals which have enjoyed very limited experimental confirmation thus far. This study has revealed a large range of interesting phenomena in the iridates that defy conventional theoretical arguments and that help to fill an experimental void in this field. Keywords: spin-orbit interaction (SOI), iridates, double exchange, Mott insulator, Coulomb interaction, Hund's rule coupling.
Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun
2013-05-06
In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.
NASA Astrophysics Data System (ADS)
Coleman, P. G.; Nash, D.; Edwardson, C. J.; Knights, A. P.; Gwilliam, R. M.
2011-07-01
Variable-energy positron annihilation spectroscopy (VEPAS) has been applied to the study of the formation and evolution of vacancy-type defect structures in silicon (Si) and the 1.5 μm thick Si top layer of silicon-on-insulator (SOI) samples. The samples were implanted with 2 MeV Si ions at fluences between 1013 and 1015 cm-2, and probed in the as-implanted state and after annealing for 30 min at temperatures between 350 and 800 °C. In the case of SOI the ions were implanted such that their profile was predominantly in the insulating buried oxide layer, and thus their ability to combine with vacancies in the top Si layer, and that of other interstitials beyond the buried oxide, was effectively negated. No measurable differences in the positron response to the evolution of small clusters of n vacancies (Vn, n ˜ 3) in the top Si layer of the Si and SOI samples were observed after annealing up to 500 °C; at higher temperatures, however, this response persisted in the SOI samples as that in Si decreased toward zero. At 700 and 800 °C the damage in Si was below detectable levels, but the VEPAS response in the top Si layer in the SOI was consistent with the development of nanovoids.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2017-06-01
Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.
Deep sub-micron low-Tc Josephson technology - The opportunities and the challenges
NASA Astrophysics Data System (ADS)
Ketchen, M. B.
1993-03-01
It is suggested that the possibility now exists of highly leveraging existing semiconductor technology to explore submicrometer Josephson technology. Some of the opportunities and challenges of such an undertaking are discussed in the context of SQUIDs and digital applications. In the area of digital Josephson, a 50-100-ps cycle-time 64-b reduced instruction set computer (RISC) microprocessor is proposed as a long-term goal. While it is unlikely that one will see a sub-100-ps system like this in the near term, research results supporting its feasibility may ultimately help build the case for the resources needed to produce it. Fabrication has been and will probably continue to be an impediment to the exploration of sub- and deep sub-micrometer Josephson technology. Coupling to existing semiconductor fabrication capability should help considerably in this area and should help to lay the groundwork for eventual manufacturing of sub-micrometer Josephson products.
28 CFR 345.73 - Procedures for granting awards for suggestions or inventions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... suggestions or inventions. 345.73 Section 345.73 Judicial Administration FEDERAL PRISON INDUSTRIES, INC... for granting awards for suggestions or inventions. Inmate suggestions for improvements in operations... the SOI. (b) The SOI shall ensure that all inmate suggestions and/or inventions formally submitted are...
A Kindergarten Teacher Bringing Science to a Community
ERIC Educational Resources Information Center
Theis, Becky; Galindo, Ed; Shockey, Tod
2014-01-01
The National Aeronautical and Space Administration (NASA) sponsored professional development of educators in the NASA Summer of Innovation (SOI) program. The Idaho, Montana, and Utah (IMU-SOI) program worked with educators and students from thirteen Native American communities. The summer sessions were focused on problem based learning and…
Highly Survivable Avionics Systems for Long-Term Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alkalai, L.; Chau, S.; Tai, A. T.
2001-01-01
The design of highly survivable avionics systems for long-term (> 10 years) exploration of space is an essential technology for all current and future missions in the Outer Planets roadmap. Long-term exposure to extreme environmental conditions such as high radiation and low-temperatures make survivability in space a major challenge. Moreover, current and future missions are increasingly using commercial technology such as deep sub-micron (0.25 microns) fabrication processes with specialized circuit designs, commercial interfaces, processors, memory, and other commercial off the shelf components that were not designed for long-term survivability in space. Therefore, the design of highly reliable, and available systems for the exploration of Europa, Pluto and other destinations in deep-space require a comprehensive and fresh approach to this problem. This paper summarizes work in progress in three different areas: a framework for the design of highly reliable and highly available space avionics systems, distributed reliable computing architecture, and Guarded Software Upgrading (GSU) techniques for software upgrading during long-term missions. Additional information is contained in the original extended abstract.
A Wide Range Temperature Sensor Using SOI Technology
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad
2009-01-01
Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.
Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS
NASA Astrophysics Data System (ADS)
Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.
2018-04-01
The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.
NASA Astrophysics Data System (ADS)
Tu, Hongen; Xu, Yong
2012-07-01
This paper reports a simple flexible electronics technology that is compatible with silicon-on-insulator (SOI) complementary-metal-oxide-semiconductor (CMOS) processes. Compared with existing technologies such as direct fabrication on flexible substrates and transfer printing, the main advantage of this technology is its post-SOI-CMOS compatibility. Consequently, high-performance and high-density CMOS circuits can be first fabricated on SOI wafers using commercial foundry and then be integrated into flexible substrates. The yield is also improved by eliminating the transfer printing step. Furthermore, this technology allows the integration of various sensors and microfluidic devices. To prove the concept of this technology, flexible MOSFETs have been demonstrated.
Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie
2016-05-01
We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.
Two-mode division multiplexing in a silicon-on-insulator ring resonator.
Dorin, Bryce A; Ye, Winnie N
2014-02-24
Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.
Very thin, high Ge content Si 0.3Ge 0.7 relaxed buffer grown by MBE on SOI(0 0 1) substrate
NASA Astrophysics Data System (ADS)
Myronov, M.; Shiraki, Y.
2007-04-01
Growth procedure and excellent properties of very thin 240 nm thick, 95% relaxed, high Ge content Si 0.3Ge 0.7 buffer grown on SOI(0 0 1) substrate are demonstrated. All epilayers of the newly developed Si 0.3Ge 0.7/SOI(0 0 1) variable-temperature virtual substrate were grown in a single process by solid-source molecular beam epitaxy. Surface analysis of grown samples revealed smooth, cross-hatch free surface with low root mean square surface roughness of 0.9 nm and low threading dislocations density of 5×10 4 cm -2.
NASA Technical Reports Server (NTRS)
Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.
2007-01-01
We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.
28 CFR 345.42 - Inmate worker dismissal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... worker dismissal. The SOI may remove an inmate from Industries work status in cooperation with the unit team. (a) The SOI may remove an inmate from FPI work status according to the conditions outlined in the pay and benefits section of this policy and in cooperation with the unit team. (b) An inmate may be...
NASA Astrophysics Data System (ADS)
Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio
We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Zheng, Xinyu (Inventor)
2002-01-01
Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.
Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate
NASA Technical Reports Server (NTRS)
Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)
2005-01-01
Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.
Measurement Matrix Design for Phase Retrieval Based on Mutual Information
NASA Astrophysics Data System (ADS)
Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.
2018-01-01
In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.
Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer
NASA Astrophysics Data System (ADS)
Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi
1986-07-01
A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.
The Southern Oscillation and Prediction of `Der' Season Rainfall in Somalia.
NASA Astrophysics Data System (ADS)
Hutchinson, P.
1992-05-01
Somalia survives in semiarid to arid conditions, with annual rainfall totals rarely exceeding 700 mm, which are divided between two seasons. Many areas are arid, with negligible precipitation. Seasonal totals are highly variable. Thus, any seasonal rainfall forecast would be of significant importance to both the agricultural and animal husbandry communities. An investigation was carried out to determine whether there is a relationship between the Southern Oscillation and seasonal rainfall. No relationship exists between the Southern Oscillation and rainfall during the midyear `Gu' season, but it is shown that the year-end `Der' season precipitation is attected by the Southern Oscillation in southern and central areas of Somalia. Three techniques were used: correlation, regression, and simple contingency tables. Correlations between the SOI (Southern Oscillation index) and seasonal rainfall vary from zero up to about 0.8, with higher correlations in the south, both for individual stations and for area-averaged rainfall. Regression provides some predictive capacity, but the `explanation' of the variation in rainfall is not particularly high. The contingency tables revealed that there were very few occasions of both high SOI and high seasonal rainfall, although there was a wide scatter of seasonal rainfall associated with a low SOI.It is concluded that the SOI would be useful for planners, governments, and agencies as one tool in food/famine early warning but that the relationships are not strong enough for the average farmer to place much reliance on forecasts produced solely using the SOI.
Formation of SIMOX-SOI structure by high-temperature oxygen implantation
NASA Astrophysics Data System (ADS)
Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji
2015-12-01
We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.
McCormick, Patrick J; Lin, Hung-Mo; Deiner, Stacie G; Levin, Matthew A
2018-03-22
The All Patient Refined Diagnosis Related Group (APR-DRG) is an inpatient visit classification system that assigns a diagnostic related group, a Risk of Mortality (ROM) subclass and a Severity of Illness (SOI) subclass. While extensively used for cost adjustment, no study has compared the APR-DRG subclass modifiers to the popular Charlson Comorbidity Index as a measure of comorbidity severity in models for perioperative in-hospital mortality. In this study we attempt to validate the use of these subclasses to predict mortality in a cohort of surgical patients. We analyzed all adult (age over 18 years) inpatient non-cardiac surgery at our institution between December 2005 and July 2013. After exclusions, we split the cohort into training and validation sets. We created prediction models of inpatient mortality using the Charlson Comorbidity Index, ROM only, SOI only, and ROM with SOI. Models were compared by receiver-operator characteristic (ROC) curve, area under the ROC curve (AUC), and Brier score. After exclusions, we analyzed 63,681 patient-visits. Overall in-hospital mortality was 1.3%. The median number of ICD-9-CM diagnosis codes was 6 (Q1-Q3 4-10). The median Charlson Comorbidity Index was 0 (Q1-Q3 0-2). When the model was applied to the validation set, the c-statistic for Charlson was 0.865, c-statistic for ROM was 0.975, and for ROM and SOI combined the c-statistic was 0.977. The scaled Brier score for Charlson was 0.044, Brier for ROM only was 0.230, and Brier for ROM and SOI was 0.257. The APR-DRG ROM or SOI subclasses are better predictors than the Charlson Comorbidity Index of in-hospital mortality among surgical patients.
Ferreira, Marcos C
2014-11-01
El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
Gasoline compression ignition (GCI) is a low temperature combustion (LTC) concept that has been gaining increasing interest over the recent years owing to its potential to achieve diesel-like thermal efficiencies with significantly reduced engine-out nitrogen oxides (NOx) and soot emissions compared to diesel engines. In this work, closed-cycle computational fluid dynamics (CFD) simulations are performed of this combustion mode using a sector mesh in an effort to understand effects of model settings on simulation results. One goal of this work is to provide recommendations for grid resolution, combustion model, chemical kinetic mechanism, and turbulence model to accurately capture experimental combustionmore » characteristics. Grid resolutions ranging from 0.7 mm to 0.1 mm minimum cell sizes were evaluated in conjunction with both Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) based turbulence models. Solution of chemical kinetics using the multi-zone approach is evaluated against the detailed approach of solving chemistry in every cell. The relatively small primary reference fuel (PRF) mechanism (48 species) used in this study is also evaluated against a larger 312-species gasoline mechanism. Based on these studies the following model settings are chosen keeping in mind both accuracy and computation costs – 0.175 mm minimum cell size grid, RANS turbulence model, 48-species PRF mechanism, and multi-zone chemistry solution with bin limits of 5 K in temperature and 0.05 in equivalence ratio. With these settings, the performance of the CFD model is evaluated against experimental results corresponding to a low load start of injection (SOI) timing sweep. The model is then exercised to investigate the effect of SOI on combustion phasing with constant intake valve closing (IVC) conditions and fueling over a range of SOI timings to isolate the impact of SOI on charge preparation and ignition. Simulation results indicate that there is an optimum SOI timing, in this case -30?aTDC (after top dead center), which results in the most stable combustion. Advancing injection with respect to this point leads to significant fuel mass burning in the colder squish region, leading to retarded phasing and ultimately misfire for SOI timings earlier than -42?aTDC. On the other hand, retarding injection beyond this optimum timing results in reduced residence time available for gasoline ignition kinetics, and also leads to retarded phasing, with misfire at SOI timings later than -15?aTDC.« less
Cantilever-type Thermal Microactuators Fabricated by SOI-MUMPs with U-type and I-type Configurations
NASA Astrophysics Data System (ADS)
Osada, Takahiro; Ochiai, Kuniyuki; Osada, Kazuki; Muro, Hideo
Recently, the micro fluid systems have been extensively studied, where microactuators such as micro valves fabricated by MEMS technology are essential for realizing these systems. In this paper thermal microactuators with U-type and I-type shapes fabricated by SOI-MUMPs technology have been investigated for optimizing their configurations.
Nanogranular SiO2 proton gated silicon layer transistor mimicking biological synapses
NASA Astrophysics Data System (ADS)
Liu, M. J.; Huang, G. S.; Feng, P.; Guo, Q. L.; Shao, F.; Tian, Z. A.; Li, G. J.; Wan, Q.; Mei, Y. F.
2016-06-01
Silicon on insulator (SOI)-based transistors gated by nanogranular SiO2 proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.
SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.
Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi
2011-08-01
In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America
Anomalous radiation effects in fully depleted SOI MOSFETs fabricated on SIMOX
NASA Astrophysics Data System (ADS)
Li, Ying; Niu, Guofu; Cressler, J. D.; Patel, J.; Marshall, C. J.; Marshall, P. W.; Kim, H. S.; Reed, R. A.; Palmer, M. J.
2001-12-01
We investigate the proton tolerance of fully depleted silicon-on-insulator (SOI) MOSFETs with H-gate and regular-gate structural configurations. For the front-gate characteristics, the H-gate does not show the edge leakage observed in the regular-gate transistor. An anomalous kink in the back-gate linear I/sub D/-V/sub GS/ characteristics of the fully depleted SOI nFETs has been observed at high radiation doses. This kink is attributed to charged traps generated in the bandgap at the buried oxide/silicon film interface during irradiation. Extensive two-dimensional simulations with MEDICI were used to understand the physical origin of this kink. We also report unusual self-annealing effects in the devices when they are cooled to liquid nitrogen temperature.
Development of the Stress of Immigration Survey: A Field Test Among Mexican Immigrant Women.
Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A; Stewart, Anita L
2016-01-01
The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language, immigrant status, work issues, yearning for family and home country, and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (a scale of 1-5, higher is more stress). Cronbach α values were more than 0.80 for all subscales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women.
X-ray/VUV transmission gratings for astrophysical and laboratory applications
NASA Technical Reports Server (NTRS)
Schattenburg, M. L.; Anderson, E. H.; Smith, Henry I.
1990-01-01
This paper describes the techniques used to fabricate deep-submicron-period transmission gratings for astrophysical and laboratory applications, with special attention given to the major steps involved in the transmission grating fabrication. These include the holographic lithography procedure used to pattern the master transmission grating, the fabrication of X-ray mask, the X-ray lithography step used to transfer the X-ray mask pattern into a substrate, and the electroplating of the substrate to form the final grating pattern. The various ways in which transmission gratings can be used in X-ray and VUV spectroscopy are discussed together with some examples of experiments reported in the literature.
Fundamental performance differences between CMOS and CCD imagers: part III
NASA Astrophysics Data System (ADS)
Janesick, James; Pinter, Jeff; Potter, Robert; Elliott, Tom; Andrews, James; Tower, John; Cheng, John; Bishop, Jeanne
2009-08-01
This paper is a status report on recent scientific CMOS imager developments since when previous publications were written. Focus today is being given on CMOS design and process optimization because fundamental problems affecting performance are now reasonably well understood. Topics found in this paper include discussions on a low cost custom scientific CMOS fabrication approach, substrate bias for deep depletion imagers, near IR and x-ray point-spread performance, custom fabricated high resisitivity epitaxial and SOI silicon wafers for backside illuminated imagers, buried channel MOSFETs for ultra low noise performance, 1 e- charge transfer imagers, high speed transfer pixels, RTS/ flicker noise versus MOSFET geometry, pixel offset and gain non uniformity measurements, high S/N dCDS/aCDS signal processors, pixel thermal dark current sources, radiation damage topics, CCDs fabricated in CMOS and future large CMOS imagers planned at Sarnoff.
Kondo effect with tunable spin-orbit interaction in LaTiO3/CeTiO3/SrTiO3 heterostructure.
Ghising, Pramod; Das, Debarchan; Das, Shubhankar; Hossain, Z
2018-07-18
We have fabricated epitaxial films of CeTiO 3 (CTO) on (0 0 1) oriented SrTiO 3 (STO) substrates, which exhibit highly insulating and diamagnetic properties. X-ray photoelectron spectroscopy was used to establish the 3+ valence state of the Ce and Ti ions. Furthermore, we have also fabricated δ (CTO) doped LaTiO 3 (LTO)/SrTiO 3 thin films which exhibit variety of interesting properties including Kondo effect and spin-orbit interaction (SOI) at low temperatures. The SOI shows a non-monotonic behaviour as the thickness of the CTO layer is increased and is reflected in the value of characteristic SOI field ([Formula: see text]) obtained from weak anti-localization fitting. The maximum value of [Formula: see text] is 1.00 T for δ layer thickness of 6 u.c. This non-monotonic behaviour of SOI is attributed to the strong screening of the confining potential at the interface. The screening effect is enhanced by the CTO layer thickness and the dielectric constant of STO which increases at low temperatures. Due to the strong screening, electrons confined at the interface are spread deeper into the STO bulk where it starts to populate the Ti [Formula: see text] subbands; consequently the Fermi level crosses over from [Formula: see text] to the [Formula: see text] subbands. At the crossover region of [Formula: see text] where there is orbital mixing, SOI goes through a maximum.
Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian
2015-01-01
A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678
ERIC Educational Resources Information Center
Leduc, Aimee
1980-01-01
The French language article is the second in a series and describes the principles of classic conditioning which underlie attitude formation and change. The article also notes the many functions of self-concept attitudes in order to guide the choices of intervention in attitude learning. (Author/SB)
NASA Technical Reports Server (NTRS)
Melvin, Leland
2010-01-01
In response to the White House Educate to Innovate campaign, NASA developed a new science, technology, engineering, and mathematics (STEM) education program for non-traditional audiences that also focused on public-private partnerships and nationwide participation. NASA recognized that summer break is an often overlooked but opportune time to engage youth in STEM experiences, and elevated its ongoing commitment to the cultivation of diversity. The Summer of Innovation (SoI) is the resulting initiative that uses NASA's unique missions and resources to boost summer learning, particularly for students who are underrepresented, underserved and underperforming in STEM. The SoI pilot, launched in June 2010, is a multi-faceted effort designed to improve STEM teaching and learning through partnership, multi-week summer learning programs, special events, a national concluding event, and teacher development. The SoI pilot features strategic infusion of NASA content and educational resource materials, sustainability through STEM Learning Communities, and assessments of effectiveness of SoI interventions with other pilot efforts. This paper examines the inception and development of the Summer of Innovation pilot project, including achievements and effectiveness, as well as lessons learned for future efforts.
Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.
Malits, Maria; Nemirovsky, Yael
2017-07-29
This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.
Electron mobility in the inversion layers of fully depleted SOI films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaitseva, E. G., E-mail: ZaytsevaElza@yandex.ru; Naumova, O. V.; Fomin, B. I.
The dependences of the electron mobility μ{sub eff} in the inversion layers of fully depleted double–gate silicon-on-insulator (SOI) metal–oxide–semiconductor (MOS) transistors on the density N{sub e} of induced charge carriers and temperature T are investigated at different states of the SOI film (inversion–accumulation) from the side of one of the gates. It is shown that at a high density of induced charge carriers of N{sub e} > 6 × 10{sup 12} cm{sup –2} the μeff(T) dependences allow the components of mobility μ{sub eff} that are related to scattering at surface phonons and from the film/insulator surface roughness to be distinguished.more » The μ{sub eff}(N{sub e}) dependences can be approximated by the power functions μ{sub eff}(N{sub e}) ∝ N{sub e}{sup −n}. The exponents n in the dependences and the dominant mechanisms of scattering of electrons induced near the interface between the SOI film and buried oxide are determined for different N{sub e} ranges and film states from the surface side.« less
NASA Astrophysics Data System (ADS)
Anvarifard, Mohammad K.; Orouji, Ali A.
2017-11-01
This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.
Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs
NASA Astrophysics Data System (ADS)
Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa
2017-07-01
Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.
An SEU resistant 256K SOI SRAM
NASA Astrophysics Data System (ADS)
Hite, L. R.; Lu, H.; Houston, T. W.; Hurta, D. S.; Bailey, W. E.
1992-12-01
A novel SEU (single event upset) resistant SRAM (static random access memory) cell has been implemented in a 256K SOI (silicon on insulator) SRAM that has attractive performance characteristics over the military temperature range of -55 to +125 C. These include worst-case access time of 40 ns with an active power of only 150 mW at 25 MHz, and a worst-case minimum WRITE pulse width of 20 ns. Measured SEU performance gives an Adams 10 percent worst-case error rate of 3.4 x 10 exp -11 errors/bit-day using the CRUP code with a conservative first-upset LET threshold. Modeling does show that higher bipolar gain than that measured on a sample from the SRAM lot would produce a lower error rate. Measurements show the worst-case supply voltage for SEU to be 5.5 V. Analysis has shown this to be primarily caused by the drain voltage dependence of the beta of the SOI parasitic bipolar transistor. Based on this, SEU experiments with SOI devices should include measurements as a function of supply voltage, rather than the traditional 4.5 V, to determine the worst-case condition.
Arns, Martijn; Kenemans, J Leon
2014-07-01
In this review article an overview of the history and current status of neurofeedback for the treatment of ADHD and insomnia is provided. Recent insights suggest a central role of circadian phase delay, resulting in sleep onset insomnia (SOI) in a sub-group of ADHD patients. Chronobiological treatments, such as melatonin and early morning bright light, affect the suprachiasmatic nucleus. This nucleus has been shown to project to the noradrenergic locus coeruleus (LC) thereby explaining the vigilance stabilizing effects of such treatments in ADHD. It is hypothesized that both Sensori-Motor Rhythm (SMR) and Slow-Cortical Potential (SCP) neurofeedback impact on the sleep spindle circuitry resulting in increased sleep spindle density, normalization of SOI and thereby affect the noradrenergic LC, resulting in vigilance stabilization. After SOI is normalized, improvements on ADHD symptoms will occur with a delayed onset of effect. Therefore, clinical trials investigating new treatments in ADHD should include assessments at follow-up as their primary endpoint rather than assessments at outtake. Furthermore, an implication requiring further study is that neurofeedback could be stopped when SOI is normalized, which might result in fewer sessions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultra compact triplexing filters based on SOI nanowire AWGs
NASA Astrophysics Data System (ADS)
Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu
2011-04-01
An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.
NASA Technical Reports Server (NTRS)
Denis, Kevin L. (Inventor)
2018-01-01
Disclosed are systems, methods, and non-transitory computer-readable storage media for fabrication of silicon on insulator (SOI) wafers with a superconductive via for electrical connection to a groundplane. Fabrication of the SOI wafer with a superconductive via can involve depositing a superconducting groundplane onto a substrate with the superconducting groundplane having an oxidizing layer and a non-oxidizing layer. A layer of monocrystalline silicon can be bonded to the superconducting groundplane and a photoresist layer can be applied to the layer of monocrystalline silicon and the SOI wafer can be etched with the oxygen rich etching plasma, resulting in a monocrystalline silicon top layer with a via that exposes the superconducting groundplane. Then, the fabrication can involve depositing a superconducting surface layer to cover the via.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.
A novel SOI LDMOS with substrate field plate and variable-k dielectric buried layer
NASA Astrophysics Data System (ADS)
Li, Qi; Wen, Yi; Zhang, Fabi; Li, Haiou; Xiao, Gongli; Chen, Yonghe; Fu, Tao
2018-09-01
A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer (VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is decreased from 7.15 mΩ·cm2 to 3.81 mΩ·cm2, the peak value of surface temperature is declined by 38 K.
ENSO and hydrologic extremes in the western United States
Cayan, D.R.; Redmond, K.T.; Riddle, L.G.
1999-01-01
Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nina), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) dealy the stream flow response by several more months. The combined 6-12 month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nina), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) delay the stream flow response by several more months. The combined 6-12-month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.
Socci, Luciano; Sorianello, Vito; Romagnoli, Marco
2015-07-27
Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.
Simulations for Making On-farm Decisions in Relation to ENSO in Semi-arid Areas, South Africa
NASA Astrophysics Data System (ADS)
Tesfuhuney, W. A.; Crespo, O. O.; Walker, S. S.; Steyn, S. A.
2017-12-01
The study was employed to investigate and improve on-farm decision making on planting dates and fertilization by relating simulated yield and seasonal outlook information. The Agricultural Production Systems SIMulator model (APSIM) was used to explore ENSO/SOI effects for small-scale farmers to represent weather conditions and soil forms of semi-arid areas of Bothaville, Bethlehem and Bloemfontein regions in South Africa. The relationships of rainfall and SOI anomalies indicate a positive correlation, signifies ENSO/SOI as seasonal outlooks for study areas. Model evaluation results showed higher degree of bias (RMSEs/RMSE value of 0.88-0.98). The D-index of agreement in the range 0.61-0.71 indicate the ability of the APSIM-Maize model is an adequate tool in evaluating relative changes in maize yield in relation to various management practices and seasonal variations. During rainy, La Niño years (SOI > +5), highest simulated yields were found for Bethlehem in November with addition of 100 - 150 kg ha-1 N fertilization and up to 50 kg ha-1 for both Bothaville and Bloemfontein. With respect to various levels of fertilization, the dry El Niño years (SOI < -5) had a range of 0.90-1.31, 3.03-3.54 and 1.11-1.26 t ha-1 yields and showed to increase during La Niña years with a range of 2.50-2.66, 3.36-4.79 and 2.24-2.38 t ha-1 at Bothaville, Bethlehem and Bloemfontein for November planting. During El Niño episodes planting earlier and using 50 kg ha-1 fertilizer with improved short maturing cultivar are effective adaptation measures to counteract poor soils and erratic rainfall of semi-arid environment, Under optimal soil conditions and/or when probability of La Niño episodes, optimal yields are obtained by maximizing fertilization. Effective rainfall and tactical on-farm management decisions in associate with seasonal rainfall out looks information is a useful mechanism in reducing risk for dryland farming in semi-arid regions. Key word: Semi-arid; APSIM; SOI; El Niño / La Niña; On-farm Decisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherm, H.; Yang, X.B.
The El Nino/Southern Oscillation (ENSO) is one of the most important and best-characterized mechanisms of global climatic variation. Because regional temperature and precipitation patterns are influenced by the ENSO and plant diseases are responsive to these factors, historical disease records may contain an ENSO-related signal. We used cross-spectral analysis to establish coherence and phase relationships between the Southern Oscillation Index (SOI), which is a measure of the ENSO, and long-term (>40 years) data on wheat stripe rust in five regions of northern China and wheat stem rust in four climatic divisions of the midwestern United States. Monthly SOI values weremore » averaged from March to June and October to March for analysis of the rust data from China and the United States, respectively, based when weather patterns in these regions are influenced by the ENSO. The coherence relationships showed consistent and significant (0.01 {le} P {le} 0.10) cooscillations between the rust and SOI series at temporal scales characteristic of the ENSO. The five stripe rust series were coherent with the SOI series at periodicities of 2.0 to 3.0 and 8.0 to 10.0 years, and three of the four stem rust series were coherent with the SOI series at a periodicity of 6.8 to 8.2 years. The phase relationships showed that, in most cases, the rust and SOI series cooscillated out of phase, suggesting that the associations between them are indirect. In a separate analysis of a shorter (18 years) stripe rust series form the Pacific Northwest of the United States, disease severity was significantly lower during El Nino years (warm phases of the ENSO) than during non-El Nino years (P {le} 0.0222) or during La Nina years (cold phases of the ENSO) (P {le}0.0253). Although no cause-and-effect relationships could be deduced, this analysis identified methods and directions for future research into relationships between climate and disease at extended temporal scales. 34 refs., 5 figs., 1 tab.« less
Rozas, Vicente; García-González, Ignacio
2012-09-01
The properties of El Niño-Southern Oscillation (ENSO), such as period, amplitude, and teleconnection strength to extratropical regions, have changed since the mid-1970s. ENSO affects the regional climatic regime in SW Europe, thus tree performance in the Iberian Peninsula could be affected by recent ENSO dynamics. We established four Quercus robur chronologies of earlywood and latewood widths in the NW Iberian Peninsula. The relationship between tree growth and the Southern Oscillation Index (SOI), the atmospheric expression of ENSO, showed that only latewood growth was correlated negatively with the SOI of the previous summer-autumn-winter. This relationship was non-stationary, with significant correlations only during the period 1952-1980; and also non-linear, with enhanced latewood growth only in La Niña years, i.e. years with a negative SOI index for the previous autumn. Non-linear relationship between latewood and SOI indicates an asymmetric influence of ENSO on tree performance, biassed towards negative SOI phases. During La Niña years, climate in the study area was warmer and wetter than during positive years, but only for 1952-1980. Winter temperatures became the most limiting factor for latewood growth since 1980, when mean regional temperatures increased by 1°C in comparison to previous periods. As a result, higher winter respiration rates, and the extension of the growing season, would probably cause an additional consumption of stored carbohydrates. The influence of ENSO and winter temperatures proved to be of great importance for tree growth, even at lower altitudes and under mild Atlantic climate in the NW Iberian Peninsula.
SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics
NASA Astrophysics Data System (ADS)
El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado
2018-02-01
In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).
Dynamic Regimes of El Niño Southern Oscillation and Influenza Pandemic Timing
Oluwole, Olusegun Steven Ayodele
2017-01-01
El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influenza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 to 2016 were characterized to determine if influenza pandemics are coupled to chaotic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface temperature (SST) were compared. SOI and SST were decomposed to components using the algorithm of noise-assisted multivariate empirical mode decomposition. The components were Hilbert transformed to generate instantaneous amplitudes and phases. The trajectories and attractors of components were characterized in polar coordinates and state space. Influenza pandemics were mapped to dynamic regimes of SOI and SST joint recurrence of annual components. State space geometry of El Niños lagged by influenza pandemics were characterized and compared with other El Niños. Timescales of SOI and SST components ranged from sub-annual to multidecadal. The trajectories of SOI and SST components and the joint recurrence of annual components were dissipative toward chaotic attractors. Periodic, quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, but chaos–chaos transitions dominated. Influenza pandemics occurred during chaotic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged by influenza pandemics had distinct state space geometry (p < 0.0001). Chaotic dynamics explains the aperiodic timing, and varying duration and strength of El Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. Forecasts models from ENSO dynamics should compliment surveillance for novel influenza viruses. PMID:29218303
Safavi, Arash; Skarsgard, Erik D; Rhee, Peter; Zangbar, Bardiya; Kulvatunyou, Narong; Tang, Andrew; O'Keeffe, Terence; Friese, Randall S; Joseph, Bellal
2016-03-01
Nonoperative management of hemodynamically stable children with Solid Organ Injury (SOI) has become standard of care. The aim of this study is to identify differences in management of children with SOI treated at Adult Trauma Centers (ATC) versus Pediatric Trauma Centers (PTC). We hypothesized that patients treated at ATC would undergo more procedures than PTC. Patients younger than 18 years old with isolated SOI (spleen, liver, kidney) who were treated at level I-II ATC or PTC were identified from the 2011-2012 National Trauma Data Bank. The primary outcome measure was the incidence of operative management. Data was analyzed using multivariate logistic regression analysis. Procedures were defined as surgery or transarterial embolization (TAE). 6799 children with SOI (spleen: 2375, liver: 2867, kidney: 1557) were included. Spleen surgery was performed more frequently at ATC than PTC {101 (7.7%) vs. 52 (4.9%); P=0.007}. After adjusting for potential confounders (grade of injury, age, gender and injury severity score), admission at ATC was associated with higher odds of splenic surgery (OR: 1.5, 95% CI: 1.02-2.25; p=0.03). 11 and 8 children underwent kidney and liver operations respectively. TAE was performed in 17 patients with splenic, 34 with liver and 14 with kidney trauma. There was no practice variation between ATC and PTC regarding kidney and liver operations or TAE incidence. Operative management for SOI was more often performed at ATC. The presence of significant disparity in the management of children with splenic injuries justifies efforts to use these surgeries as a reported national quality indicator for trauma programs. Published by Elsevier Inc.
Influence of southern oscillation on autumn rainfall in Iran (1951-2011)
NASA Astrophysics Data System (ADS)
Roghani, Rabbaneh; Soltani, Saeid; Bashari, Hossein
2016-04-01
This study aimed to investigate the relationships between southern oscillation and autumn (October-December) rainfall in Iran. It also sought to identify the possible physical mechanisms involved in the mentioned relationships by analyzing observational atmospheric data. Analyses were based on monthly rainfall data from 50 synoptic stations with at least 35 years of records up to the end of 2011. Autumn rainfall time series were grouped by the average Southern Oscillation Index (SOI) and SOI phase methods. Significant differences between rainfall groups in each method were assessed by Kruskal-Wallis and Kolmogorov-Smirnov non-parametric tests. Their relationships were also validated using the linear error in probability space (LEPS) test. The results showed that average SOI and SOI phases during July-September were related with autumn rainfall in some regions located in the west and northwest of Iran, west coasts of the Caspian Sea and southern Alborz Mountains. The El Niño (negative) and La Niña (positive) phases were associated with increased and decreased autumn rainfall, respectively. Our findings also demonstrated the persistence of Southern Pacific Ocean's pressure signals on autumn rainfall in Iran. Geopotential height patterns were totally different in the selected El Niño and La Niña years over Iran. During the El Niño years, a cyclone was formed over the north of Iran and an anticyclone existed over the Mediterranean Sea. During La Niña years, the cyclone shifted towards the Mediterranean Sea and an anticyclone developed over Iran. While these El Niño conditions increased autumn rainfall in Iran, the opposite conditions during the La Niña phase decreased rainfall in the country. In conclusion, development of rainfall prediction models based on the SOI can facilitate agricultural and water resources management in Iran.
NASA Astrophysics Data System (ADS)
Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.
2018-04-01
We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.
Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench
NASA Astrophysics Data System (ADS)
Hsieh, Jerwei; Hsiao, Sheng-Yi; Lai, Chun-Feng; Fang, Weileun
2007-08-01
This work presents the design concept of integrating a polymer lens, poly-Si MUMPs and single-crystal-silicon HARM structures on a SOI wafer to form a silicon optical bench. This approach enables the monolithic integration of various optical components on the wafer so as to improve the design flexibility of the silicon optical bench. Fabrication processes, including surface and bulk micromachining on the SOI wafer, have been established to realize bi-convex spherical polymer lenses with in-plane as well as out-of-plane optical axes. In addition, a micro device consisting of an in-plane polymer lens, a thick fiber holder and a mechanical shutter driven by an electrothermal actuator is also demonstrated using the present approach. In summary, this study significantly improves the design flexibility as well as the functions of SiOBs.
A Pearson Effective Potential for Monte Carlo Simulation of Quantum Confinement Effects in nMOSFETs
NASA Astrophysics Data System (ADS)
Jaud, Marie-Anne; Barraud, Sylvain; Saint-Martin, Jérôme; Bournel, Arnaud; Dollfus, Philippe; Jaouen, Hervé
2008-12-01
A Pearson Effective Potential model for including quantization effects in the simulation of nanoscale nMOSFETs has been developed. This model, based on a realistic description of the function representing the non zero-size of the electron wave packet, has been used in a Monte-Carlo simulator for bulk, single gate SOI and double-gate SOI devices. In the case of SOI capacitors, the electron density has been computed for a large range of effective field (between 0.1 MV/cm and 1 MV/cm) and for various silicon film thicknesses (between 5 nm and 20 nm). A good agreement with the Schroedinger-Poisson results is obtained both on the total inversion charge and on the electron density profiles. The ability of an Effective Potential approach to accurately reproduce electrostatic quantum confinement effects is clearly demonstrated.
The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments
NASA Astrophysics Data System (ADS)
Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.
2003-06-01
We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.
CMOS Image Sensor Using SOI-MOS/Photodiode Composite Photodetector Device
NASA Astrophysics Data System (ADS)
Uryu, Yuko; Asano, Tanemasa
2002-04-01
A new photodetector device composed of a lateral junction photodiode and a metal-oxide-semiconductor field-effect-transistor (MOSFET), in which the output of the diode is fed through the body of the MOSFET, has been investigated. It is shown that the silicon-on-insulator (SOI)-MOSFET amplifies the junction photodiode current due to the lateral bipolar action. It is also shown that the presence of the electrically floating gate enhances the current amplification factor of the SOI-MOSFET. The output current of this composite device linearly responds by four orders of illumination intensity. As an application of the composite device, a complementary-metal-oxide-semiconductor (CMOS) line sensor incorporating the composite device is fabricated and its operation is demonstrated. The output signal of the line sensor using the composite device was two times larger than that using the lateral photodiode.
Submicron Emulsions and Their Applications in Oral Delivery.
Mundada, Veenu; Patel, Mitali; Sawant, Krutika
2016-01-01
A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.
Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D.; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N.; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-01-01
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors. PMID:25242695
Filling schemes at submicron scale: development of submicron sized plasmonic colour filters.
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-09-22
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors.
Evaluation of an Empirical Traction Equation for Forestry Tires
C.R. Vechinski; C.E. Johnson; R.L. Raper
1998-01-01
Variable load test data were used to evaluate the applicability of an existing forestry tire traction model for a new forestry tire and a worn tire of the same size with and without tire chains in a range of soil conditions. `The clay and sandy soi!s ranged in moisture content from 17 to 28%. Soil bulk density varied between 1.1 and 1.4g cm-3...
1984-08-15
for the Same Signal 30 3 -1 Schematic Diagrams of Two Configurations with SOI/ CMOS and Bipolar Devices Fabricated on the Same Si Wafer. The Bipolar...Waveform of 39-Stage SOI/ CMOS Ring Oscillator for 5-V Supply Voltage. The Propagation Delay per Stage is 藨 ps 33 3 -4 Common-Emitter I-V...multiple beam splitters and delay lines. 3 . MATERIALS RESEARCH Two merged CMOS ! bipolar technologies utilizing S01 films have been developed for
Irregular Forces in Counterinsurgency Operations: Their Roles and Considerations
2010-05-10
highways channelized traffic between the larger population centers. Iraq’s oil reserves, conservatively estimated at 350 billion barrels , were the...laws, the easy availability of weapons made this matter hard to enforce. CF provided concrete barriers and other material to reinforce traffic control...sniper rifles, and handguns . To reduce GOI concerns of SOI rebellion, CF required all SOIs to obey Iraqi laws to include curfews when not on duty
NASA Astrophysics Data System (ADS)
Ganguly, Sudin; Basu, Saurabh
2018-04-01
We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.
A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.
2008-01-01
A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.
Guillas, Serge; Day, Simon J; McGuire, B
2010-05-28
We present statistical evidence for a temporal link between variations in the El Niño-Southern Oscillation (ENSO) and the occurrence of earthquakes on the East Pacific Rise (EPR). We adopt a zero-inflated Poisson regression model to represent the relationship between the number of earthquakes in the Easter microplate on the EPR and ENSO (expressed using the southern oscillation index (SOI) for east Pacific sea-level pressure anomalies) from February 1973 to February 2009. We also examine the relationship between the numbers of earthquakes and sea levels, as retrieved by Topex/Poseidon from October 1992 to July 2002. We observe a significant (95% confidence level) positive influence of SOI on seismicity: positive SOI values trigger more earthquakes over the following 2 to 6 months than negative SOI values. There is a significant negative influence of absolute sea levels on seismicity (at 6 months lag). We propose that increased seismicity is associated with ENSO-driven sea-surface gradients (rising from east to west) in the equatorial Pacific, leading to a reduction in ocean-bottom pressure over the EPR by a few kilopascal. This relationship is opposite to reservoir-triggered seismicity and suggests that EPR fault activity may be triggered by plate flexure associated with the reduced pressure.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Scheik, Leif; Vizkelethy, Gyorgy; Mojarradi, Mohammad M; Chen, Yuan; Miyahira, Tetsuo; Blalock, Benjamin; Greenwell, Robert; Doyle, Barney
2006-01-01
The next generation of Martian rover#s to be launched by JPL are to examine polar regions where temperatures are extremely low and the absence of an earth-like atmosphere results in high levels of cosmic radiation at ground level. Cosmic rays lead to a plethora of radiation effects including Single Event Transients (SET) which can severely degrade microelectronic functionality. As such, a radiation-hardened, temperature compensated CMOS Single-On-Insulator (SOI) Operational Amplifier has been designed for JPL by the University of Tennessee and fabricated by Honeywell using the SOI V process. SOI technology has been shownto be far less sensitive to transient effects than both bulk and epilayer Si. Broad beam heavy-ion tests at the University of Texas A&M using Kr and Xebeams of energy 25MeV/amu were performed to ascertain the duration and severity of the SET for the op-amp configured for a low and high gain application. However, some ambiguity regarding the location of transient formation required the use of a focused MeV ion microbeam. A 36MeV O6(+) microbeam. the Sandia National Laboratory (SNL) was used to image and verify regions of particular concern. This is a viewgraph presentation
Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology
Malits, Maria; Nemirovsky, Yael
2017-01-01
This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode’s sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor’s channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode’s small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing. PMID:28758932
Design of a 1200-V ultra-thin partial SOI LDMOS with n-type buried layer
NASA Astrophysics Data System (ADS)
Qiao, Ming; Wang, Yuru; Li, Yanfei; Zhang, Bo; Li, Zhaoji
2014-11-01
A novel 1200-V ultra-thin partial silicon-on-insulator (PSOI) lateral double-diffusion metal oxide semiconductor (LDMOS) with n-type buried (n-buried) layer (NBL PSOI LDMOS) is proposed in this paper. The new PSOI LDMOS features an n-buried layer underneath the n-type drift (n-drift) region close to the source side, providing a large conduction region for majority carriers and a silicon window to improve self-heating effect (SHE). A combination of uniform and linear variable doping (ULVD) profile is utilized in the n-drift region, which alleviates the inherent tradeoff between specific on-resistance (Ron,sp) and breakdown voltage (BV). With the n-drift region length of 80 μm, the NBL PSOI LDMOS obtains a high BV of 1243 V which is improved by around 105 V in comparison to the conventional SOI LDMOS with linear variable doping (LVD) profile for the n-drift region (LVD SOI LDMOS). Besides, the 1200-V NBL PSOI LDMOS has a lower maximum temperature (Tmax) of 333 K at a power (P) of 1 mW/μm which is reduced by around 61 K. Meanwhile, Ron,sp and Tmax of the NBL PSOI LDMOS are lower than those of the conventional LVD SOI LDMOS for a wide range of BV.
Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
Zhang, Han; Zuo, Xi-Nian; Ma, Shuang-Ye; Zang, Yu-Feng; Milham, Michael P; Zhu, Chao-Zhe
2010-07-15
Independent component analysis (ICA) is a data-driven approach to study functional magnetic resonance imaging (fMRI) data. Particularly, for group analysis on multiple subjects, temporally concatenation group ICA (TC-GICA) is intensively used. However, due to the usually limited computational capability, data reduction with principal component analysis (PCA: a standard preprocessing step of ICA decomposition) is difficult to achieve for a large dataset. To overcome this, TC-GICA employs multiple-stage PCA data reduction. Such multiple-stage PCA data reduction, however, leads to variable outputs due to different subject concatenation orders. Consequently, the ICA algorithm uses the variable multiple-stage PCA outputs and generates variable decompositions. In this study, a rigorous theoretical analysis was conducted to prove the existence of such variability. Simulated and real fMRI experiments were used to demonstrate the subject-order-induced variability of TC-GICA results using multiple PCA data reductions. To solve this problem, we propose a new subject order-independent group ICA (SOI-GICA). Both simulated and real fMRI data experiments demonstrated the high robustness and accuracy of the SOI-GICA results compared to those of traditional TC-GICA. Accordingly, we recommend SOI-GICA for group ICA-based fMRI studies, especially those with large data sets. Copyright 2010 Elsevier Inc. All rights reserved.
Virtual Vents: A Microbathymetrical Survey of the Niua South Hydrothermal Field, NE Lau Basin, Tonga
NASA Astrophysics Data System (ADS)
Kwasnitschka, T.; Köser, K.; Duda, A.; Jamieson, J. W.; Boschen, R.; Gartman, A.; Hannington, M. D.; Funganitao, C.
2016-12-01
At a diameter of 200 m, the 1100 m deep Niua South hydrothermal field (NE Lau Basin) was studied in an interdisciplinary approach during the SOI funded Virtual Vents cruise in March of 2016. On the grounds of a previously generated 50 cm resolution AUV multi beam map, the projects backbone is formed by a fully color textured, 5 cm resolution photogrammetrical 3D model. Several hundred smaller and about 15 chimneys larger than 3 m were surveyed including their basal mounds and surrounding environment interconnecting to each other. This model was populated through exhaustive geological, biological and fluid sampling as well as continuous Eh measurements, forming the basis for highly detailed geological structural and biological studies resulting in 3D maps of the entire field. At a reasonable effort, such surveys form the basis for repetitive time series analysis and have the potential of a new standard in seafloor monitoring.
Opportunities of CMOS-MEMS integration through LSI foundry and open facility
NASA Astrophysics Data System (ADS)
Mita, Yoshio; Lebrasseur, Eric; Okamoto, Yuki; Marty, Frédéfic; Setoguchi, Ryota; Yamada, Kentaro; Mori, Isao; Morishita, Satoshi; Imai, Yoshiaki; Hosaka, Kota; Hirakawa, Atsushi; Inoue, Shu; Kubota, Masanori; Denoual, Matthieu
2017-06-01
Since the 2000s, several countries have established micro- and nanofabrication platforms for the research and education community as national projects. By combining such platforms with VLSI multichip foundry services, various integrated devices, referred to as “CMOS-MEMS”, can be realized without constructing an entire cleanroom. In this paper, we summarize MEMS-last postprocess schemes for CMOS devices on a bulk silicon wafer as well as on a silicon-on-insulator (SOI) wafer using an open-access cleanroom of the Nanotechnology Platform of MEXT Japan. The integration devices presented in this article are free-standing structures and postprocess isolated LSI devices. Postprocess issues are identified with their solutions, such as the reactive ion etching (RIE) lag for dry release and the impact of the deep RIE (DRIE) postprocess on transistor characteristics. Integration with nonsilicon materials is proposed as one of the future directions.
Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwata, Yoshiya; Oto, Takao; Banal, Ryan G.
2015-03-21
Inhomogeneity in Al-rich AlGaN/AlN quantum wells is directly observed using our custom-built confocal microscopy photoluminescence (μ-PL) apparatus with a reflective system. The μ-PL system can reach the AlN bandgap in the deep ultra-violet spectral range with a spatial resolution of 1.8 μm. In addition, cathodoluminescence (CL) measurements with a higher spatial resolution of about 100 nm are performed. A comparison of the μ-PL and CL measurements reveals that inhomogeneities, which have different spatial distributions of a few- and sub-micron scales that are superimposed, play key roles in determining the optical properties.
NASA Astrophysics Data System (ADS)
Nanez-James, S. E.; Sager, W.
2016-02-01
Research published in 2013 showed that TAMU Massif, the largest mountain in the Shatsky Rise oceanic plateau, located approximately 1500 kilometers east of Japan, is the "World's Largest Single Volcano." This claim garnered widespread public interest and wonder concerning how something so big could remain so mysterious in the 21st century. This disconnect highlights the fact that oceans are still widely unexplored, especially the middle of the deep ocean. Because there is so much interest in TAMU Massif, a diverse outreach team lead by chief scientist Dr. William Sager from the University of Houston in partnership with the Texas State Aquarium and the Schmidt Ocean Institute (SOI) conducted a multifaceted ship-to-shore outreach project that included secondary school students, formal and informal educators, university students and professors, the aquarium and museum audience, and the general public. The objective was to work in conjunction with SOI and various other partners, including the Texas Regional Collaborative, the Aquarium of the Pacific, and the Houston Museum of Natural Science, to promote science and ocean literacy while inspiring future scientists - especially those from underserved and underrepresented groups - through ocean connections. Participants were connected through live ship-to-shore distance learning broadcasts of ongoing marine research and discovery of TAMU Massif aboard the R/V Falkor, allowing audiences to participate in real-time research and apply real world science to curriculum in the classrooms. These ship-to-shore presentations connected to existing curriculums and standards, lessons, and career interests of the students and educators with special teacher events and professional development workshops conducted from aboard the R/V Falkor.
The Early Development of Satellite Characterization Capabilities at the Air Force Laboratories
NASA Astrophysics Data System (ADS)
Lambert, J.; Kissell, K.
This presentation overviews the development of optical Space Object Identification (SOI) techniques at the Air Force laboratories during the two-decade "pre-operational" period prior to 1980 when the Groundbased Electro-Optical Deep Space Surveillance (GEODSS) sensors were deployed. Beginning with the launch of Sputnik in 1957, the United States Air Force has actively pursued the development and application of optical sensor technology for the detection, tracking, and characterization of artificial satellites. Until the mid-1980s, these activities were primarily conducted within Air Force research and development laboratories which supplied data to the operational components on a contributing basis. This presentation traces the early evolution of the optical space surveillance technologies from the early experimental sensors that led to the current generation of operationally deployed and research systems. The contributions of the participating Air Force organizations and facilities will be reviewed with special emphasis on the development of technologies for the characterization of spacecraft using optical signatures and imagery. The presentation will include descriptions and photographs of the early facilities and instrumentation, and examples of the SOI collection and analysis techniques employed. In this early period, computer support was limited so all aspects of space surveillance relied heavily on manual interaction. Many military, government, educational, and contractor agencies supported the development of instrumentation and analysis techniques. This overview focuses mainly on the role played by Air Force System Command and Office of Aerospace Research, and the closely related activities at the Department of Defense Advanced Research Projects Agency. The omission of other agencies from this review reflects the limitations of this presentation, not the significance of their contributions.
Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Luca, A.; Cole, M. T.; Milne, W. I.
2015-05-11
In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electronmore » microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm–15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO{sub 2} non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.« less
NASA Astrophysics Data System (ADS)
Dabos, G.; Pleros, N.; Tsiokos, D.
2016-03-01
Hybrid integration of VCSELs onto silicon-on-insulator (SOI) substrates has emerged as an attractive approach for bridging the gap between cost-effective and energy-efficient directly modulated laser sources and silicon-based PICs by leveraging flip-chip (FC) bonding techniques and silicon grating couplers (GCs). In this context, silicon GCs, should comply with the process requirements imposed by the complimentary-metal-oxide-semiconductor manufacturing tools addressing in parallel the challenges originating from the perfectly vertical incidence. Firstly, fully etched GCs compatible with deep-ultraviolet lithography tools offering high coupling efficiencies are imperatively needed to maintain low fabrication cost. Secondly, GC's tolerance to VCSEL bonding misalignment errors is a prerequisite for practical deployment. Finally, a major challenge originating from the perfectly vertical coupling scheme is the minimization of the direct back-reflection to the VCSEL's outgoing facet which may destabilize its operation. Motivated from the above challenges, we used numerical simulation tools to design an ultra-low loss, bidirectional VCSEL-to-SOI optical coupling scheme for either TE or TM polarization, based on low-cost fully etched GCs with a Si-layer of 340 nm without employing bottom reflectors or optimizing the buried-oxide layer. Comprehensive 2D Finite-Difference-Time- Domain simulations have been performed. The reported GC layout remains fully compatible with the back-end-of-line (BEOL) stack associated with the 3D integration technology exploiting all the inter-metal-dielectric (IMD) layers of the CMOS fab. Simulation results predicted for the first time in fully etched structures a coupling efficiency of as low as -0.87 dB at 1548 nm and -1.47 dB at 1560 nm with a minimum direct back-reflection of -27.4 dB and -14.2 dB for TE and TM polarization, respectively.
Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection.
Santra, S; Sinha, A K; De Luca, A; Ali, S Z; Udrea, F; Guha, P K; Ray, S K; Gardner, J W
2016-03-29
Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then 'written' directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm(-1) for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.
Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection
NASA Astrophysics Data System (ADS)
Santra, S.; Sinha, A. K.; De Luca, A.; Ali, S. Z.; Udrea, F.; Guha, P. K.; Ray, S. K.; Gardner, J. W.
2016-03-01
Here we report on the mask-less deposition of Au-SnO2 nanocomposites with a silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) platform through the use of dip pen nanolithography (DPN) to create a low-cost ethanol sensor. MEMS technology is used in order to achieve low power consumption, by the employment of a membrane structure formed using deep reactive ion etching technique. The device consists of an embedded tungsten micro-heater with gold interdigitated electrodes on top of the SOI membrane. The tungsten micro-heater is used to raise the membrane temperature up to its operating temperature and the electrodes are used to measure the resistance of the nanocomposite sensing layer. The CMOS MEMS devices have high electro-thermal efficiency, with 8.2 °C temperature increase per mW power of consumption. The sensing material (Au-SnO2 nanocomposite) was synthesised starting from SnO nanoplates, then Au nanoparticles were attached chemically to the surface of SnO nanoplates, finally the mixture was heated at 700 °C in an oven in air for 4 h. This composite material was sonicated for 2 h in terpineol to make a viscous homogeneous slurry and then ‘written’ directly across the electrode area using the DPN technique without any mask. The devices were characterised by exposure to ethanol vapour in humid air in the concentration range of 100-1000 ppm. The sensitivity varied from 1.2 to 0.27 ppm-1 for 100-1000 ppm of ethanol at 10% relative humid air. Selectivity measurements showed that the sensors were selective towards ethanol when they were exposed to acetone and toluene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R. L.; Damewood, L.; Zeng, Y. J.
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less
Investigation of high-speed Si photodetectors in standard CMOS technology
NASA Astrophysics Data System (ADS)
Wang, Huaqiang; Guo, Xia
2018-05-01
In this paper, the frequency response characteristics of the photodetector(PD) were studied considering intrinsic and extrinsic effects. Then we designed the interdigitated p-i-n PD on Silicon-on-Insulator (SOI) and epitaxial (EPI) substrates with photosensitive area of 30-μm diameter, fabricated by CMOS process. The 2-μm finger-spacing devices exhibited a 205 MHz bandwidth at a reverse bias of 3 V processed on 2-μm SOI substrates. EPI devices with 1 μm finger spacing exhibited a 131 MHz bandwidth under -3 V. Responsivity of 0.051 A/W and 0.21 A/W were measured at 850 nm on SOI and EPI substrates, respectively. Compared with the bulk silicon PD, the bandwidth is greatly improved. The PD gains the high cost performance ratio, which can be widely used in short distance communication such as visible light communication and free space optical communication.
NASA Astrophysics Data System (ADS)
Cao, G.; Terzic, J.; Zhao, H. D.; Zheng, H.; De Long, L. E.; Riseborough, Peter S.
2018-01-01
Electrical control of structural and physical properties is a long-sought, but elusive goal of contemporary science and technology. We demonstrate that a combination of strong spin-orbit interactions (SOI) and a canted antiferromagnetic Mott state is sufficient to attain that goal. The antiferromagnetic insulator Sr2IrO4 provides a model system in which strong SOI lock canted Ir magnetic moments to IrO6 octahedra, causing them to rigidly rotate together. A novel coupling between an applied electrical current and the canting angle reduces the Néel temperature and drives a large, nonlinear lattice expansion that closely tracks the magnetization, increases the electron mobility, and precipitates a unique resistive switching effect. Our observations open new avenues for understanding fundamental physics driven by strong SOI in condensed matter, and provide a new paradigm for functional materials and devices.
Solid-state semiconductor optical cryocooler based on CdS nanobelts.
Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua
2014-08-13
We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.
Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor
TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas
2017-01-01
Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate
NASA Astrophysics Data System (ADS)
Hermann, P.; Hecker, M.; Renn, F.; Rölke, M.; Kolanek, K.; Rinderknecht, J.; Eng, L. M.
2011-06-01
Local stress fields in strained silicon structures important for CMOS technology are essentially related to size effects and properties of involved materials. In the present investigation, Raman spectroscopy was utilized to analyze the stress distribution within strained silicon (sSi) and silicon-germanium (SiGe) island structures. As a result of the structuring of initially unpatterned strained films, a size-dependent relaxation of the intrinsic film stresses was obtained in agreement with model calculations. This changed stress state in the features also results in the appearance of opposing stresses in the substrate underneath the islands. Even for strained island structures on top of silicon-on-insulator (SOI) wafers, corresponding stresses in the silicon substrate underneath the oxide were detected. Within structures, the stress relaxation is more pronounced for islands on SOI substrates as compared to those on bulk silicon substrates.
Dislocation-free strained silicon-on-silicon by in-place bonding
NASA Astrophysics Data System (ADS)
Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.
2005-06-01
In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.
Zhang, R. L.; Damewood, L.; Zeng, Y. J.; ...
2017-07-07
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less
Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.
Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...
NASA Astrophysics Data System (ADS)
Butrouna, Kamal
There is no apparent, dominant interaction in heavy transition metal oxides (TMO), especially in 5d-TMO, where all relevant interactions are of comparable energy scales, and therefore strongly compete. In particular, the spin-orbit interaction (SOI) strongly competes with the electron-lattice and on-site Coulomb interaction (U). Therefore, any tool that allows one to tune the relative strengths of SOI and U is expected to offer an opportunity for the discovery and study of novel materials. BaIrO3 is a magnetic insulator driven by SOI, whereas the isostructural BaRuO3 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of SOI in the iridate. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of SOI and U via a systematic chemical substitution of the Ru4+(4d 4) ions for Ir4+(5d5) ions in BaIrO3, i.e., in high quality single crystals of BaIr1--x RuxO3(0.0 ≤ x ≤ 1.0). Our investigation of structural, magnetic, transport and thermal properties reveals that Ru substitution directly rebalances the competing energies so profoundly that it generates a rich phase diagram for BaIr 1--xRuxO 3 featuring two major effects: (1) Light Ru doping (0 ≤ x ≤ 0.15) prompts a simultaneous and precipitous drop in both the magnetic ordering temperature TC and the electrical resistivity, which exhibits metal-insulator transition at around TC. (2) Heavier Ru doping (0.41 ≤ x ≤ 0.82) induces a robust metallic and spin frustration state. For comparison and contrast, we also substituted Rh4+(4d 5) ions for Ir4+(5d5) ions in BaIrO3, i.e. in BaIr1--xRhxO 3(0.0 ≤ x ≤ 0.1), where Rh only reduces the SOI, but without altering the band filling. Hence, this system remains tuned at the Mott instability and is very susceptible to disorder scattering which gives rise to Anderson localization. KEYWORDS: spin-orbit interaction, heavy transition metal oxides, barium iridate, metal-insulator transition, magnetic order.
Dewilde, Sarah; Annemans, Lieven; Pincé, Hilde; Thijs, Vincent
2018-05-11
Several Western and Arab countries, as well as over 30 States in the US are using the "All-Patient Refined Diagnosis-Related Groups" (APR-DRGs) with four severity-of-illness (SOI) subcategories as a model for hospital funding. The aim of this study is to verify whether this is an adequate model for funding stroke hospital admissions, and to explore which risk factors and complications may influence the amount of funding. A bottom-up analysis of 2496 ischaemic stroke admissions in Belgium compares detailed in-hospital resource use (including length of stay, imaging, lab tests, visits and drugs) per SOI category and calculates total hospitalisation costs. A second analysis examines the relationship between the type and location of the index stroke, medical risk factors, patient characteristics, comorbidities and in-hospital complications on the one hand, and the funding level received by the hospital on the other hand. This dataset included 2513 hospitalisations reporting on 35,195 secondary diagnosis codes, all medically coded with the International Classification of Disease (ICD-9). Total costs per admission increased by SOI (€3710-€16,735), with severe patients costing proportionally more in bed days (86%), and milder patients costing more in medical imaging (24%). In all resource categories (bed days, medications, visits and imaging and laboratory tests), the absolute utilisation rate was higher among severe patients, but also showed more variability. SOI 1-2 was associated with vague, non-specific stroke-related ICD-9 codes as primary diagnosis (71-81% of hospitalisations). 24% hospitalisations had, in addition to the primary diagnosis, other stroke-related codes as secondary diagnoses. Presence of lung infections, intracranial bleeding, severe kidney disease, and do-not-resuscitate status were each associated with extreme SOI (p < 0.0001). APR-DRG with SOI subclassification is a useful funding model as it clusters stroke patients in homogenous groups in terms of resource use. The data on medical care utilisation can be used with unit costs from other countries with similar healthcare set-ups to 1) assess stroke-related hospital funding versus actual costs; 2) inform economic models on stroke prevention and treatment. The data on diagnosis codes can be used to 3) understand which factors influence hospital funding; 4) raise awareness about medical coding practices.
Genovart, Meritxell; Sanz-Aguilar, Ana; Fernández-Chacón, Albert; Igual, Jose M; Pradel, Roger; Forero, Manuela G; Oro, Daniel
2013-01-01
Large-scale seasonal climatic indices, such as the North Atlantic Oscillation (NAO) index or the Southern Oscillation Index (SOI), account for major variations in weather and climate around the world and may influence population dynamics in many organisms. However, assessing the extent of climate impacts on species and their life-history traits requires reliable quantitative statistical approaches. We used a new analytical tool in mark-recapture, the multi-event modelling, to simultaneously assess the influence of climatic variation on multiple demographic parameters (i.e. adult survival, transient probability, reproductive skipping and nest dispersal) at two Mediterranean colonies of the Cory's shearwater Calonectris diomedea, a trans-equatorial migratory long-lived seabird. We also analysed the impact of climate in the breeding success at the two colonies. We found a clear temporal variation of survival for Cory's shearwaters, strongly associated to the large-scale SOI especially in one of the colonies (up to 66% of variance explained). Atlantic hurricane season is modulated by the SOI and coincides with shearwater migration to their wintering areas, directly affecting survival probabilities. However, the SOI was a better predictor of survival probabilities than the frequency of hurricanes; thus, we cannot discard an indirect additive effect of SOI via food availability. Accordingly, the proportion of transients was also correlated with SOI values, indicating higher costs of first reproduction (resulting in either mortality or permanent dispersal) when bad environmental conditions occurred during winter before reproduction. Breeding success was also affected by climatic factors, the NAO explaining c. 41% of variance, probably as a result of its effect in the timing of peak abundance of squid and small pelagics, the main prey for shearwaters. No climatic effect was found either on reproductive skipping or on nest dispersal. Contrarily to what we expect for a long-lived organism, large-scale climatic indexes had a more pronounced effect on survival and transient probabilities than on less sensitive fitness parameters such reproductive skipping or nest dispersal probabilities. The potential increase in hurricane frequency because of global warming may interact with other global change agents (such as incidental bycatch and predation by alien species) nowadays impacting shearwaters, affecting future viability of populations. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits
1995-08-01
common dimensions are given in Table 1. Almost all of the device power is dissipated in the channel. The electri- cally insulating implanted layer...data. Region or Component substrate Material SOI implanted insulating layers single-crystal silicon, 3 x 1015 boron atoms cm -3 Thermal... implanted silicon-dioxide layer in SOI wafers. The data for each device for varying powers fall near a line originating at P = 0 and T0 = 303 K
Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology
NASA Technical Reports Server (NTRS)
Ned, Alex; Kurtz, Anthony; Shang, Tonghuo; Goodman, Scott; Giemette. Gera (d)
2013-01-01
This work focused on developing, fabricating, and fully calibrating a flowangle probe for aeronautics research by utilizing the latest microelectromechanical systems (MEMS), leadless silicon on insulator (SOI) sensor technology. While the concept of angle probes is not new, traditional devices had been relatively large due to fabrication constraints; often too large to resolve flow structures necessary for modern aeropropulsion measurements such as inlet flow distortions and vortices, secondary flows, etc. Mea surements of this kind demanded a new approach to probe design to achieve sizes on the order of 0.1 in. (.3 mm) diameter or smaller, and capable of meeting demanding requirements for accuracy and ruggedness. This approach invoked the use of stateof- the-art processing techniques to install SOI sensor chips directly onto the probe body, thus eliminating redundancy in sensor packaging and probe installation that have historically forced larger probe size. This also facilitated a better thermal match between the chip and its mount, improving stability and accuracy. Further, the leadless sensor technology with which the SOI sensing element is fabricated allows direct mounting and electrical interconnecting of the sensor to the probe body. This leadless technology allowed a rugged wire-out approach that is performed at the sensor length scale, thus achieving substantial sensor size reductions. The technology is inherently capable of high-frequency and high-accuracy performance in high temperatures and harsh environments.
NASA Astrophysics Data System (ADS)
Naderi, Ali; Mohammadi, Hamed
2018-06-01
In this paper a novel silicon-on-insulator metal oxide field effect transistor (SOI-MESFET) with high- and low-resistance boxes (HLRB) is proposed. This structure increases the current and breakdown voltage, simultaneously. The semiconductor at the source side of the channel is doped with higher impurity than the other parts to reduce its resistance and increase the driving current as low-resistance box. An oxide box is implemented at the upper part of the channel from the drain region toward the middle of the channel as the high-resistance box. Inserting a high-resistance box increases the breakdown voltage and improves the RF performance of the device because of its higher tolerable electric field and modification in gate-drain capacitance, respectively. The high-resistance region reduces the current density of the device which is completely compensated by low-resistance box. A 92% increase in breakdown voltage and an 11% improvement in the device current have been obtained. Also, maximum oscillation frequency, unilateral power gain, maximum available gain, maximum stable gain, and maximum output power density are improved by 7%, 35%, 23%, 26%, and 150%, respectively. These results show that the HLRB-SOI-MESFET can be considered as a candidate to replace Conventional SOI-MESFET (C-SOI-MESFET) for high-voltage and high-frequency applications.
Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing
Shi, Yaocheng; Ma, Ke; Dai, Daoxin
2016-01-01
A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO2 buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity. PMID:26950132
Radiation Effects in Advanced Multiple Gate and Silicon-on-Insulator Transistors
NASA Astrophysics Data System (ADS)
Simoen, Eddy; Gaillardin, Marc; Paillet, Philippe; Reed, Robert A.; Schrimpf, Ron D.; Alles, Michael L.; El-Mamouni, Farah; Fleetwood, Daniel M.; Griffoni, Alessio; Claeys, Cor
2013-06-01
The aim of this review paper is to describe in a comprehensive manner the current understanding of the radiation response of state-of-the-art Silicon-on-Insulator (SOI) and FinFET CMOS technologies. Total Ionizing Dose (TID) response, heavy-ion microdose effects and single-event effects (SEEs) will be discussed. It is shown that a very high TID tolerance can be achieved by narrow-fin SOI FinFET architectures, while bulk FinFETs may exhibit similar TID response to the planar devices. Due to the vertical nature of FinFETs, a specific heavy-ion response can be obtained, whereby the angle of incidence becomes highly important with respect to the vertical sidewall gates. With respect to SEE, the buried oxide in the SOI FinFETs suppresses the diffusion tails from the charge collection in the substrate compared to the planar bulk FinFET devices. Channel lengths and fin widths are now comparable to, or smaller than the dimensions of the region affected by the single ionizing ions or lasers used in testing. This gives rise to a high degree of sensitivity to individual device parameters and source-drain shunting during ion-beam or laser-beam SEE testing. Simulations are used to illuminate the mechanisms observed in radiation testing and the progress and needs for the numerical modeling/simulation of the radiation response of advanced SOI and FinFET transistors are highlighted.
Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing.
Shi, Yaocheng; Ma, Ke; Dai, Daoxin
2016-03-03
A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.
Li, Ting [Ventura, CA
2011-04-26
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.
Spin-dependent quantum transport in nanoscaled geometries
NASA Astrophysics Data System (ADS)
Heremans, Jean J.
2011-10-01
We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).
Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.
Yang, Yu; Capco, David G.; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677
NASA Astrophysics Data System (ADS)
Kong, Duanhua; Kim, Taek; Kim, Sihan; Hong, Hyungi; Shcherbatko, Igor; Park, Youngsoo; Shin, Dongjae; Ha, Kyoung-Ho; Jeong, Gitae
2014-03-01
We designed and fabricated a 1.3-um hybrid vertical Resonant-Cavity Light-Emitting Diode for optical interconnect by using direct III-V wafer bonding on silicon on insulator (SOI). The device included InP based front distributed Bragg reflector (DBR), InGaAlAs based active layer, and SOI-based high-contrast-grating (HCG) as a back reflector. 42-uW continuous wave optical power was achieved at 20mA at room temperature.
Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors
NASA Technical Reports Server (NTRS)
Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.
2004-01-01
This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.
High Efficiency Photovoltaic and Plasmonic Devices
2011-07-01
on Si or SOI substrate along with its band alignment. This elongated mesa forms a strip channel aveguide……………………………….…4 Figure 3 Radiative and...lattice matched GeSn relaxed buffer on Si or SOI substrate along with its band alignment. This elongated mesa forms a strip channel waveguide...Appl. Phys. Lett. 90, 251105 (2007). 8. R. A. Soref and C. H. Perry, J. Appl. Phys. 69, 539 (1991). 9. H. P. L. de Guevara, A. G. Rodriguez , H
NASA Astrophysics Data System (ADS)
Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi
2018-02-01
We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ting
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less
Reliability Considerations of ULP Scaled CMOS in Spacecraft Systems
NASA Technical Reports Server (NTRS)
White, Mark; MacNeal, Kristen; Cooper, Mark
2012-01-01
NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub-micron region. Decreasing the feature size of CMOS devices not only allows more components to be placed on a single chip, but it increases performance by allowing faster switching (or clock) speeds with reduced power compared to larger scaled devices. Higher performance, and lower operating and stand-by power characteristics of Ultra-Low Power (ULP) microelectronics are not only desirable, but also necessary to meet low power consumption design goals of critical spacecraft systems. The integration of these components in such systems, however, must be balanced with the overall risk tolerance of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun
The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less
Study of CMOS-SOI Integrated Temperature Sensing Circuits for On-Chip Temperature Monitoring.
Malits, Maria; Brouk, Igor; Nemirovsky, Yael
2018-05-19
This paper investigates the concepts, performance and limitations of temperature sensing circuits realized in complementary metal-oxide-semiconductor (CMOS) silicon on insulator (SOI) technology. It is shown that the MOSFET threshold voltage ( V t ) can be used to accurately measure the chip local temperature by using a V t extractor circuit. Furthermore, the circuit's performance is compared to standard circuits used to generate an accurate output current or voltage proportional to the absolute temperature, i.e., proportional-to-absolute temperature (PTAT), in terms of linearity, sensitivity, power consumption, speed, accuracy and calibration needs. It is shown that the V t extractor circuit is a better solution to determine the temperature of low power, analog and mixed-signal designs due to its accuracy, low power consumption and no need for calibration. The circuit has been designed using 1 µm partially depleted (PD) CMOS-SOI technology, and demonstrates a measurement inaccuracy of ±1.5 K across 300 K⁻500 K temperature range while consuming only 30 µW during operation.
Broadband non-polarizing beam splitter based on guided mode resonance effect
NASA Astrophysics Data System (ADS)
Ma, Jian-Yong; Xu, Cheng; Qiang, Ying-Huai; Zhu, Ya-Bo
2011-10-01
A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm~1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.
NASA Astrophysics Data System (ADS)
Terzic, J.; Zheng, H.; Ye, Feng; Zhao, H. D.; Schlottmann, P.; De Long, L. E.; Yuan, S. J.; Cao, G.
2017-08-01
We report an unusual magnetic ground state in single-crystal, double-perovskite B a2YIr O6 and Sr-doped B a2YIr O6 with I r5 +(5 d4) ions. Long-range magnetic order below 1.7 K is confirmed by dc magnetization, ac magnetic susceptibility, and heat-capacity measurements. The observed magnetic order is extraordinarily delicate and cannot be explained in terms of either a low-spin S =1 state, or a singlet Jeff=0 state imposed by the spin-orbit interactions (SOI). Alternatively, the magnetic ground state appears consistent with a SOI that competes with comparable Hund's rule coupling and inherently large electron hopping, which cannot stabilize the singlet Jeff=0 ground state. However, this picture is controversial, and conflicting magnetic behavior for these materials is reported in both experimental and theoretical studies, which highlights the intricate interplay of interactions that determine the ground state of materials with strong SOI.
Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation
2010-01-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391
Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.
Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan
2017-08-15
Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.
Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices
NASA Astrophysics Data System (ADS)
Li, Zhibo; Wang, Mengqi; Fang, Xin; Li, Yajie; Zhou, Xuliang; Yu, Hongyan; Wang, Pengfei; Wang, Wei; Pan, Jiaoqing
2018-02-01
A direct epitaxy of III-V nanowires with InGaAs/InP multiple quantum wells on v-shaped trenches patterned silicon on insulator (SOI) substrates was realized by combining the standard semiconductor fabrication process with the aspect ratio trapping growth technique. Silicon thickness as well as the width and gap of each nanowire were carefully designed to accommodate essential optical properties and appropriate growth conditions. The III-V element ingredient, crystalline quality, and surface topography of the grown nanowires were characterized by X-ray diffraction spectroscopy, photoluminescence, and scanning electron microscope. Geometrical details and chemical information of multiple quantum wells were revealed by transmission electron microscopy and energy dispersive spectroscopy. Numerical simulations confirmed that the optical guided mode supported by one single nanowire was able to propagate 50 μm with ˜30% optical loss. This proposed integration scheme opens up an alternative pathway for future photonic integrations of III-V devices on the SOI platform at nanoscale.
Sociosexuality in mainland China.
Zheng, Wei Jun; Zhou, Xu Dong; Wang, Xiao Lei; Hesketh, Therese
2014-04-01
The construct of sociosexuality or sociosexual orientation describes the extent to which people will have casual, uncommitted sexual relationships. The Sociosexual Orientation Inventory (SOI) has been used to measure sociosexuality in many countries, but not in China. The aims of this study were to explore sociosexuality in a cross-section of the Chinese adult population, to quantify sex differences in sociosexuality, and to examine the sociodemographic correlates and the impact of the high sex ratio. The study consisted of a cross-sectional survey using a self-completion questionnaire. It was administered to adults of reproductive age in three provinces: Zhejiang, Guizhou, and Yunnan. While questionnaires were received from 7,424 participants, total SOI scores could be computed only for the 4,645 (63 %) who completed all seven items of the SOI. The mean score for men and women combined was 21.0, very low compared with most other countries, indicating restricted sociosexuality. The men (n = 2,048) had a mean of 27, showing more restricted sociosexuality than in all other countries where the SOI has been used. Wealth was the strongest independent correlate of high (unrestricted) sociosexuality in men and women. The effect size for the difference between the sexes was moderate (Cohen's d = .64), and comparable to more developed countries, perhaps reflecting relative gender equality in contemporary China. Despite the very high sex ratio, which is theorized to lead to restricted sexuality, its influence was difficult to determine, since differences in sociosexuality between high and low sex ratio areas within this population were inconsistent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jin; Yi Byongyong; Lasio, Giovanni
Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less
NASA Astrophysics Data System (ADS)
Barrett, Hannah G.; Jones, Julie M.; Bigg, Grant R.
2018-02-01
The meteorological information found within ships' logbooks is a unique and fascinating source of data for historical climatology. This study uses wind observations from logbooks covering the period 1815 to 1854 to reconstruct an index of El Niño Southern Oscillation (ENSO) for boreal winter (DJF). Statistically-based reconstructions of the Southern Oscillation Index (SOI) are obtained using two methods: principal component regression (PCR) and composite-plus-scale (CPS). Calibration and validation are carried out over the modern period 1979-2014, assessing the relationship between re-gridded seasonal ERA-Interim reanalysis wind data and the instrumental SOI. The reconstruction skill of both the PCR and CPS methods is found to be high with reduction of error skill scores of 0.80 and 0.75, respectively. The relationships derived during the fitting period are then applied to the logbook wind data to reconstruct the historical SOI. We develop a new method to assess the sensitivity of the reconstructions to using a limited number of observations per season and find that the CPS method performs better than PCR with a limited number of observations. A difference in the distribution of wind force terms used by British and Dutch ships is found, and its impact on the reconstruction assessed. The logbook reconstructions agree well with a previous SOI reconstructed from Jakarta rain day counts, 1830-1850, adding robustness to our reconstructions. Comparisons to additional documentary and proxy data sources are provided in a companion paper.
NASA Astrophysics Data System (ADS)
German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong
2004-07-01
Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).
NASA Astrophysics Data System (ADS)
Jain, Neeraj; Raj, Balwinder
2017-12-01
Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity, short channel effects (SCEs), leakage currents, device variability and reliability etc. Nowadays, multigate structure has become the promising candidate to overcome these problems. SOI FinFET is one of the best multigate structures that has gained importance in all electronic design automation (EDA) industries due to its improved short channel effects (SCEs), because of its more effective gate-controlling capabilities. In this paper, our aim is to explore the sensitivity of underlap spacer region variation on the performance of SOI FinFET at 20 nm channel length. Electric field modulation is analyzed with spacer length variation and electrostatic performance is evaluated in terms of performance parameter like electron mobility, electric field, electric potential, sub-threshold slope (SS), ON current (I on), OFF current (I off) and I on/I off ratio. The potential benefits of SOI FinFET at drain-to-source voltage, V DS = 0.05 V and V DS = 0.7 V towards analog and RF design is also evaluated in terms of intrinsic gain (A V), output conductance (g d), trans-conductance (g m), gate capacitance (C gg), and cut-off frequency (f T = g m/2πC gg) with spacer region variations.
Separation of submicron bioparticles by dielectrophoresis.
Morgan, H; Hughes, M P; Green, N G
1999-01-01
Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array. PMID:10388776
Use of metallic glasses for fabrication of structures with submicron dimensions
Wiley, John D.; Perepezko, John H.
1986-01-01
Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.
Sub-micron particle sampler apparatus and method for sampling sub-micron particles
Gay, D.D.; McMillan, W.G.
1984-04-12
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.
1996-04-04
of multi-spectral SOI data. These spectra are for blue (B), visible (V), red (R) and infrared (I). Broadband SOI can also be collected in the open...the etalon is of order 200nm with a finesse of order 20, three spectral channels in blue , red and near-IR can be created and separated using a low...References 1 Lincoln Labs. J. 5 (1992) Nol. 2 Laser Guide Star Adaptive Optics Workshop, Vols 1&2, R Q Fugate (Ed), SOR, Phillips Lab/LITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Krit, S.; Coulie-Castellani, K.; Rahajandraibe, W.
2015-07-01
A transistor level implementation of the analog block of a readout system on SOI process is presented here. This system is dedicated to the signal conditioning of a neutron detector in harsh environment. The different parts of the readout circuits are defined. The harsh environment constraints (crossing particle effect, high temperatures) are also detailed and modeled in the circuit in order to test and evaluate the characteristics of the designed block when working under these conditions. (authors)
Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.
1998-06-01
Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC.
Common Capabilities for Trust and Security in Service Oriented Infrastructures
NASA Astrophysics Data System (ADS)
Brossard, David; Colombo, Maurizio
In order to achieve agility of the enterprise and shorter concept-to-market timescales for new services, IT and communication providers and their customers increasingly use technologies and concepts which come together under the banner of the Service Oriented Infrastructure (SOI) approach. In this paper we focus on the challenges relating to SOI security. The solutions presented cover the following areas: i) identity federation, ii) distributed usage & access management, and iii) context-aware secure messaging, routing & transformation. We use a scenario from the collaborative engineering space to illustrate the challenges and the solutions.
Defect-mediated resonance shift of silicon-on-insulator racetrack resonators.
Ackert, J J; Doylend, J K; Logan, D F; Jessop, P E; Vafaei, R; Chrostowski, L; Knights, A P
2011-06-20
We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin
2017-12-01
In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.
Cavity cooling of an optically levitated submicron particle
Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus
2013-01-01
The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352
NASA Astrophysics Data System (ADS)
Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.
We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.
Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA With LOD,SOI, etc
NASA Astrophysics Data System (ADS)
Liao, D. C.; Zhou, Y. H.; Liao, X. H.
2007-01-01
Interannual and decadal components of the length of day (LOD), Southern Oscillation Index (SOI) and Sea Surface Temperature anomaly (SSTA) in Nino regions are extracted by band-pass filtering, and used for research of the modulation of the SSTA on the ENSO events. Results show that besides the interannual components, the decadal components in SSTA have strong impacts on monitoring and representing of the ENSO events. When the ENSO events are strong, the modulation of the decadal components of the SSTA tends to prolong the life-time of the events and enlarge the extreme anomalies of the SST, while the ENSO events, which are so weak that they can not be detected by the interannual components of the SSTA, can also be detected with the help of the modulation of the SSTA decadal components. The study further draws attention to the relationships of the SSTA interannual and decadal components with those of LOD, SOI, both of the sea level pressure anomalies (SLPA) and the trade wind anomalies (TWA) in tropic Pacific, and also with those of the axial components of the atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). Results of the squared coherence and coherent phases among them reveal close connections with the SSTA and almost all of the parameters mentioned above on the interannual time scales, while on the decadal time scale significant connections are among the SSTA and SOI, SLPA, TWA, ?3w and ?3w+v as well, and slight weaker connections between the SSTA and LOD, ?3pib and ?3bp
An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.
Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin
2016-11-04
An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.
An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †
Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin
2016-01-01
An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904
SOI CMOS Imager with Suppression of Cross-Talk
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao
2009-01-01
A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.
Promwatee, N; Laopaiboon, B; Vongpralub, T; Phasuk, Y; Kunhareang, S; Boonkum, W; Duangjinda, M
2013-03-15
Four Thai synthetic chicken lines (Kaen Thong, Khai Mook Esarn, Soi Nin, and Soi Pet) originated from Thai native and exotic commercial chickens were evaluated for their growth and carcass traits with the purpose of developing a Thai broiler breeding program. Insulin-like growth factor I (IGF-I) gene is known to play an important role in growth, proliferation and differentiation. Consequently, we investigated the possibility of using the IGF-I gene for marker-assisted selection in Thai synthetic chickens. We looked for variations in the IGF-I gene and studied their association with growth and carcass traits; 1046 chickens were genotyped using PCR-RFLP methods. A general linear model was used to analyze associations of the IGF-I polymorphism with growth and carcass traits. Kaen Thong, Khai Mook Esarn, and Soi Nin chickens were found to carry similar frequencies of alleles A and C (0.40-0.60), while Soi Pet chickens had high frequencies of allele C (0.75). The IGF-I gene was significantly associated with some growth traits (body weight at hatching, and at 4, 8, 12, and 14 weeks of age; average daily gain during 0-12 and 0-14 weeks of age) in all synthetic chickens. Carcass traits (the percentage of dressing and pectoralis major) were significantly different only in Khai Mook Esarn chickens. We conclude that IGF-I can be used as a marker gene for the selection of growth and carcass traits of synthetic chickens in a marker-assisted selection program.
NASA Astrophysics Data System (ADS)
Meynecke, Jan-Olaf; Grubert, Mark; Arthur, James Michael; Boston, Ray; Lee, Shing Yip
2012-03-01
Mud crabs (Scylla spp.) are a high value commodity harvested in the Indo-West Pacific. Scylla species support important artisanal fisheries in south-east Asia and intensive commercial fisheries in Australia where the market demand and catch has increased markedly over the last decade. Over-fishing of Scylla spp. has been observed at varying levels throughout its distribution. Fluctuations in catch rates and abundance are thought to be driven by climate parameters. Here we analyse monthly, seasonal and annual patterns in catch and effort data (from 1990 to 2008) for the commercial giant mud crab (Scylla serrata) fishery in the Northern Territory, Australia, with corresponding climatic data (rainfall, freshwater runoff, sea surface temperature) and the Southern Oscillation Index (SOI) as an indicator of La Niña/El Niño events. Between 30 and 40% of the variation in catch per unit effort can be explained by rainfall and SOI alone. This result was supported by linear mixed models which identified SOI as the main contributor to the model. Spectral analyses showed that catch peaks coincided with a four year La Niña cycle. One- and two-year time lags (consistent with S. Serrata's life cycle) were also significantly correlated to SOI values and rainfall. These outcomes may assist fishery managers in planning fishing exposure period and duration. Furthermore, findings of this study provide information on the vulnerability of S. serrata to fluctuations in environmental conditions and can help to apply protective measures when and where necessary.
Single event effects on the APV25 front-end chip
NASA Astrophysics Data System (ADS)
Friedl, M.; Bauer, T.; Pernicka, M.
2003-03-01
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider at CERN will include a Silicon Strip Tracker covering a sensitive area of 206 m2. About ten million channels will be read out by APV25 front-end chips, fabricated in the 0.25 μm deep submicron process. Although permanent damage is not expected within CMS radiation levels, transient Single Event Upsets are inevitable. Moreover, localized ionization can also produce fake signals in the analog circuitry. Eight APV25 chips were exposed to a high-intensity pion beam at the Paul Scherrer Institute (Villigen/CH) to study the radiation induced effects in detail. The results, which are compatible to similar measurements performed with heavy ions, are used to predict the chip error rate at CMS.
Design, fabrication, and characterization of high density silicon photonic components
NASA Astrophysics Data System (ADS)
Jones, Adam Michael
Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.
Optical confinement and light guiding in high dielectric contrast materials systems
NASA Astrophysics Data System (ADS)
Foresi, James S.
A study of silicon photonic devices, including waveguides and microcavities, is presented in this thesis. The high index difference of Silicon-On-Insulator materials is used to design submicron devices capable of light localization and routing. Losses due to interface roughness between the high and low index materials are measured to be 40dB/cm. An analysis of lithographically induced interface roughness is performed and a method for evaluating nanometer-scale roughness is presented. High index differences lead to compact bends and power splitters. Bends of 2.0μm radius are measured to have losses less than 0.5dB. Splitting angles of 5o with losses less than 1.5dB are demonstrated. The bends and splitters are the most compact devices of their kind. The design, fabrication and analysis of two light confining devices in the SOI system are presented: photonic band gap (PBG) and microdisk microcavities. A PBG waveguide microcavity with minimum dimensions of 0.10μm is fabricated and transmission measurements reveal cavity Q's of 265, a resonant wavelength of 1564nm, and a modal volume of 0.27/mu m3. This is the first demonstration of PBG resonance at optical frequencies. The PBG microcavity volume is two orders of magnitude smaller than has been achieved in other microcavity devices. Microdisk and microring resonators are demonstrated. A waveguide-coupled microring is shown to operate as a channel dropping filter with Q's of 250 and a free spectral range of 25nm. The application of the microcavity devices to spontaneous emission control of erbium-doped silicon is analyzed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Design Fabrication and Characterization of High Density Silicon Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Adam
2015-02-01
Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling onmore » a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.« less
Characterization of ultrathin SOI film and application to short channel MOSFETs.
Tang, Xiaohui; Reckinger, Nicolas; Larrieu, Guilhem; Dubois, Emmanuel; Flandre, Denis; Raskin, Jean-Pierre; Nysten, Bernard; Jonas, Alain M; Bayot, Vincent
2008-04-23
In this study, a very dilute solution (NH(4)OH:H(2)O(2):H(2)O 1:8:64 mixture) was employed to reduce the thickness of commercially available SOI wafers down to 3 nm. The etch rate is precisely controlled at 0.11 Å s(-1) based on the self-limited etching speed of the solution. The thickness uniformity of the thin film, evaluated by spectroscopic ellipsometry and by high-resolution x-ray reflectivity, remains constant through the thinning process. Moreover, the film roughness, analyzed by atomic force microscopy, slightly improves during the thinning process. The residual stress in the thin film is much smaller than that obtained by sacrificial oxidation. Mobility, measured by means of a bridge-type Hall bar on 15 nm film, is not significantly reduced compared to the value of bulk silicon. Finally, the thinned SOI wafers were used to fabricate Schottky-barrier metal-oxide-semiconductor field-effect transistors with a gate length down to 30 nm, featuring state-of-the-art current drive performance.
Performance study of double SOI image sensors
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Hara, K.; Ikegami, Y.; Kurachi, I.; Nishimura, R.; Ono, S.; Tauchi, K.; Tsuboyama, T.; Yamada, M.
2018-02-01
Double silicon-on-insulator (DSOI) sensors composed of two thin silicon layers and one thick silicon layer have been developed since 2011. The thick substrate consists of high resistivity silicon with p-n junctions while the thin layers are used as SOI-CMOS circuitry and as shielding to reduce the back-gate effect and crosstalk between the sensor and the circuitry. In 2014, a high-resolution integration-type pixel sensor, INTPIX8, was developed based on the DSOI concept. This device is fabricated using a Czochralski p-type (Cz-p) substrate in contrast to a single SOI (SSOI) device having a single thin silicon layer and a Float Zone p-type (FZ-p) substrate. In the present work, X-ray spectra of both DSOI and SSOI sensors were obtained using an Am-241 radiation source at four gain settings. The gain of the DSOI sensor was found to be approximately three times that of the SSOI device because the coupling capacitance is reduced by the DSOI structure. An X-ray imaging demonstration was also performed and high spatial resolution X-ray images were obtained.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hang; Chu, Thi-Xuan; Nguyen, Long; Nguyen, Hai-Binh; Lee, Chun-Wei; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang
2016-11-01
Fabrication of three-dimensional (3D) SU-8 (an epoxy-based negative photoresist from MicroChem) prisms as low-loss couplers for interconnection between optical components, particularly optical fibers and silicon-on-isolator waveguides (SOI WGs), which have mismatched mode sizes, has been investigated. With an interfacial structure formed by a 3D SU-8 prism partly overlaying an SOI WG end with a portion of buried oxide (BOX) removed under the interface, low-loss coupling is ensured and the transmission efficiency can reach 70%. To fabricate these 3D SU-8 prisms, a simple method with two photolithography steps was used for SU-8 hinges and CYTOP (an amorphous fluoropolymer from AGC Chemicals) prism windows, with mild soft and hard bakes, to define the prism profiles with diluted SU-8 filled in the CYTOP prism windows. A buffered oxide etchant is used to remove BOX parts under the interfaces. Some of the fabricated structures were tested, demonstrating the contribution of overlaying SU-8 prisms to the transmission efficiency of optical interconnections between fibers and SOI WGs.
Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process
NASA Astrophysics Data System (ADS)
Hiti, B.; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.
2017-10-01
Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.
NASA Technical Reports Server (NTRS)
Tu, Juliana; Smith, Rosemary L.
1995-01-01
The objective of this project was to design, fabricate, and test single crystal silicon filaments as potential black body IR sources for a spectrophotometric CO2 sensing microsystem. The design and fabrication of the silicon-on-insulator (SOI) filaments are summarized and figures showing the composite layout of the filament die (which contains four filaments of different lengths -- 500 microns, 1 mm, 1.5 mm and 2 mm -- and equal widths of 15 microns) are presented. The composite includes four mask layers: (1) silicon - defines the filament dimensions and contact pads; (2) release pit - defines the oxide removed from under the filament and hence, the length of the released filament; (3) Pyrex pit - defines the pit etched in the Pyrex cap (not used); and (4) metal - defines a metal pattern on the contact pads or used as a contact hole etch. I/V characteristics testing of the fabricated SOI filaments is described along with the nitride-coating procedures carried out to prevent oxidation and resistance instability.
Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi
2014-09-08
Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.
Spin precession in spin-orbit coupled weak links: Coulomb repulsion and Pauli quenching
NASA Astrophysics Data System (ADS)
Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.
2017-12-01
A simple model for the transmission of pairs of electrons through a weak electric link in the form of a nanowire made of a material with strong electron spin-orbit interaction (SOI) is presented, with emphasis on the effects of Coulomb interactions and the Pauli exclusion principle. The constraints due to the Pauli principle are shown to "quench" the coherent SOI-induced precession of the spins when the spatial wave packets of the two electrons overlap significantly. The quenching, which results from the projection of the pair's spin states onto spin-up and spin-down states on the link, breaks up the coherent propagation in the link into a sequence of coherent hops that add incoherently. Applying the model to the transmission of Cooper pairs between two superconductors, we find that in spite of Pauli quenching, the Josephson current oscillates with the strength of the SOI, but may even change its sign (compared to the limit of the Coulomb blockade, when the quenching is absent). Conditions for an experimental detection of these features are discussed.
Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming
2015-07-01
Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.
Barnett, Gregory V; Perhacs, Julia M; Das, Tapan K; Kar, Sambit R
2018-02-08
Characterizing submicron protein particles (approximately 0.1-1μm) is challenging due to a limited number of suitable instruments capable of monitoring a relatively large continuum of particle size and concentration. In this work, we report for the first time the characterization of submicron protein particles using the high size resolution technique of resistive pulse sensing (RPS). Resistive pulse sensing, dynamic light scattering and size-exclusion chromatography with in-line multi-angle light scattering (SEC-MALS) are performed on protein and placebo formulations, polystyrene size standards, placebo formulations spiked with silicone oil, and protein formulations stressed via freeze-thaw cycling, thermal incubation, and acid treatment. A method is developed for monitoring submicron protein particles using RPS. The suitable particle concentration range for RPS is found to be approximately 4 × 10 7 -1 × 10 11 particles/mL using polystyrene size standards. Particle size distributions by RPS are consistent with hydrodynamic diameter distributions from batch DLS and to radius of gyration profiles from SEC-MALS. RPS particle size distributions provide an estimate of particle counts and better size resolution compared to light scattering. RPS is applicable for characterizing submicron particles in protein formulations with a high degree of size polydispersity. Data on submicron particle distributions provide insights into particles formation under different stresses encountered during biologics drug development.
Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.
Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D
2017-01-01
Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghosh, Indrajit; Michniak-Kohn, Bozena
2012-09-15
In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.
Srinivasan, Asha R; Shoyele, Sunday A
2013-03-01
The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.
The founder of the Friends Foundation--Tessie Soi.
Topurua, Ore
2013-01-01
Tessie Soi is well known in Papua New Guinea and beyond for her work with HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients, including through the Friends Foundation, an organization that focuses on helping families affected by HIV and AIDS. This article explores Tessie's early life and childhood, providing insight into some of the values she learned from her parents. Providing details about the Friends Foundation and the Orphan Buddy Systems program, a program Tessie established to support AIDS orphans, the article offers insight into Tessie's beliefs and compassion, simultaneously highlighting the value she places on her family.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic
2008-04-01
We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally
Magnetic and Optical Properties of Submicron-Size Hollow Spheres
Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio
2010-01-01
Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.
The National Submicron Facility.
ERIC Educational Resources Information Center
Wolf, Edward D.
1979-01-01
Describes the activities of the National Submicron Facility which was established at Cornell University in Ithaca, New York to serve as an information resource for the nation's research community in microstructure science and engineering. (HM)
Improving agar electrospinnability with choline-based deep eutectic solvents.
Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu
2015-09-01
Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. Published by Elsevier B.V.
Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas
2005-01-01
A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.
Xu, Erqi; Zhang, Hongqi; Li, Mengxian
2013-08-01
The processes of karst rocky desertification (KRD) have been found to cause the most severe environmental degradation in southwestern China. Understanding the driving forces that cause KRD is essential for managing and restoring the areas that it impacts. Studies of the human driving forces of KRD are limited to the county level, a specific administrative unit in China; census data are acquired at this scale, which can lead to scale biases. Changshun County is studied here as a representative area and anthropogenic influences in the county are accounted for by using Euclidean distances for the proximity to roads and settlements. We propose a standard coefficient of human influence (SOI) that standardizes the Euclidean distances for different KRD transformations to compare the effects of human activities in different areas. In Changshun County, the individual influences of roads and settlements share similar characteristics. The SOIs of improved KRD transformation types are almost negative, but the SOIs of deteriorated types are nearly positive except for one form of KRD turning to the extremely severe KRD. The results indicated that the distribution and evolution of the KRD areas from 2000 to 2010 in Changshun were affected positively by human activities (e.g., KRD restoration projects) and also negatively (e.g., by intense and irrational land use). Our results demonstrate that the spatial techniques and SOI used in this study can effectively incorporate information concerning human influences and internal KRD transformations. This provides a suitable approach for studying the relationships between human activities and KRD processes at fine scales. Copyright © 2013 Elsevier B.V. All rights reserved.
Historical Trends in Ground-Based Optical Space Surveillance System Design
NASA Astrophysics Data System (ADS)
Shoemaker, M.; Shroyer, L.
In the spirit of the 50th anniversary of the launch of the first man-made satellite, an historical overview of ground-based optical space surveillance systems is provided. Specific emphasis is given on gathering metrics to analyze design trends. The subject of space surveillance spans the history of spaceflight: from the early tracking cameras at missile ranges, the first observations of Sputnik, to the evolution towards highly capable commercial off-the-shelf (COTS) systems, and much in between. Whereas previous reviews in the literature have been limited in scope to specific time periods, operational programs, countries, etc., a broad overview of a wide range of sources is presented. This review is focused on systems whose primary design purpose can be classified as Space Object Identification (SOI) or Orbit Determination (OD). SOI systems are those that capture images or data to determine information about the satellite itself, such as attitude, features, and material composition. OD systems are those that produce estimates of the satellite position, usually in the form of orbital elements or a time history of tracking angles. Systems are also categorized based on the orbital regime in which their targets reside, which has been simplified in this study to either Low Earth Orbit (LEO) or Geosynchronous Earth Orbit (GEO). The systems are further classified depending on the industry segment (government/commercial or academic), and whether the program is foreign or domestic. In addition to gathering metrics on systems designed solely for man-made satellite observations, it is interesting to find examples of other systems being similarly used. Examples include large astronomical telescopes being used for GEO debris surveys and anomaly resolution for deep-space probes. Another interesting development is the increase in number and capability of COTS systems, some of which are specifically marketed to consumers as satellite trackers. After describing the results of the literature review and presenting further information on various systems, we gather specific metrics on the optical design. Technical specifications, such as aperture and field of view (FOV), are plotted with time to ascertain trends in ground system design. Aperture is a useful metric because it gives insight into the light-gathering capability, as well as the overall size and complexity of the system. The size of the FOV can indicate user priorities or system performance, such as tracking capability of the mount for SOI systems and star detection ability in OD systems that use celestial references for position measurements. The review is restricted to systems that use natural sunlight to illuminate targets, for the simple reason of having commonality between systems that span half a century, particularly recent COTS systems.
NASA Astrophysics Data System (ADS)
Schneider, J.; Freutel, F.; Zorn, S. R.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Martin, S. T.; Artaxo, P.; Wiedensohler, A.; Borrmann, S.
2011-07-01
The abundance of marker compounds for primary biological particles in submicron aerosol was investigated by means of aerosol mass spectrometry. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker peaks were identified. The identified marker peaks were compared with mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the Central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker peaks places upper limits of 7.5 % for amino acids and 5.6 % for carbohydrates on the contribution of primary biological aerosol particles (PBAPs) to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m-3. Carbohydrates and protein amino acids make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAPs mass fraction of about 20 % to the submicron organic aerosol.
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
Superlubrication by phonon confinement
NASA Astrophysics Data System (ADS)
Wada, Noriyuki; Ishikawa, Makoto; Shiga, Takuma; Shiomi, Junichiro; Suzuki, Masaru; Miura, Kouji
2018-04-01
The superlubrication described here, involving confined phonons, is easily achievable and very simple because it uses only submicron islands, smaller than the mean free path of the phonons, to confine phonons. We can achieve superlubrication with a friction force of piconewton order at the submicron island. We can call this phononic lubrication or self-lubrication because phonons induced by tip shearing are confined within the submicron islands and decrease the friction during the subsequent sliding. Phonon confinement should make it possible to directly develop applications for lubricants and ultimately to open a novel avenue of tribology.
CMOS-compatible batch processing of monolayer MoS2 MOSFETs
NASA Astrophysics Data System (ADS)
Xiong, Kuanchen; Kim, Hyun; Marstell, Roderick J.; Göritz, Alexander; Wipf, Christian; Li, Lei; Park, Ji-Hoon; Luo, Xi; Wietstruck, Matthias; Madjar, Asher; Strandwitz, Nicholas C.; Kaynak, Mehmet; Lee, Young Hee; Hwang, James C. M.
2018-04-01
Thousands of high-performance 2D metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on wafer-scale chemical vapor deposited MoS2 with fully-CMOS-compatible processes such as photolithography and aluminum metallurgy. The yield was greater than 50% in terms of effective gate control with less-than-10 V threshold voltage, even for MOSFETs having deep-submicron gate length. The large number of fabricated MOSFETs allowed statistics to be gathered and the main yield limiter to be attributed to the weak adhesion between the transferred MoS2 and the substrate. With cut-off frequencies approaching the gigahertz range, the performances of the MOSFETs were comparable to that of state-of-the-art MoS2 MOSFETs, whether the MoS2 was grown by a thin-film process or exfoliated from a bulk crystal.
Optical properties of new wide heterogeneous waveguides with thermo optical shifters.
De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M
2008-12-22
We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).
NASA Astrophysics Data System (ADS)
Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu
2014-06-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.
High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr
We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.
NASA Astrophysics Data System (ADS)
Cortés, I.; Toulon, G.; Morancho, F.; Flores, D.; Hugonnard-Bruyère, E.; Villard, B.
2012-04-01
This paper analyses the experimental results of voltage capability (VBR > 120 V) and output characteristics of a new lateral power P-channel MOS transistors manufactured on a 0.18 μm SOI CMOS technology by means of TCAD numerical simulations. The proposed LDPMOS structures have an N-type buried layer (NBL) inserted in the P-well drift region with the purpose of increasing the RESURF effectiveness and improving the static characteristics (Ron-sp/VBR trade-off) and the device switching performance. Some architecture modifications are also proposed in this paper to further improve the performance of fabricated transistors.
Illuminated to dark ratio improvement in lateral SOI PIN photodiodes at high temperatures
NASA Astrophysics Data System (ADS)
Novo, C.; Giacomini, R.; Doria, R.; Afzalian, A.; Flandre, D.
2014-07-01
This work presents a study of the illuminated to dark ratio (IDR) of lateral SOI PIN photodiodes. Measurements performed on fabricated devices show a fivefold improvement of the IDR when the devices are biased in accumulation mode and under high temperatures of operation, independently of the anode voltage. The obtained results show that the doping concentration of the intrinsic region has influence on the sensitivity of the diodes: the larger the doping concentration, the smaller the IDR. Furthermore, the photocurrent and dark current present lower values as the silicon film thickness is decreased, resulting in a further increase in the illuminated to dark ratio.
Area efficient layout design of CMOS circuit for high-density ICs
NASA Astrophysics Data System (ADS)
Mishra, Vimal Kumar; Chauhan, R. K.
2018-01-01
Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.
DeLecce, Tara L; Polheber, John P; Matchock, Robert L
2014-02-01
The current study examined whether men's ratings of women's desirability as a long-term pairbond, based on static photographs, were related to the women's second-to-fourth digit (2D:4D) ratio and their sexual attitudes and behavior. The 2D:4D ratio was measured in 164 women and facial photographs were taken of 55 of these women. All women completed the Sociosexual Orientation Inventory (SOI). Male participants (n = 89), masked to this information, rated the 55 female participants on their desirability as a long-term sexual partner, specifically along dimensions of faithfulness, youthfulness, and attractiveness. Ten independent judges rated women's photographed faces on masculinity. Results indicated a significant negative relationship between women's SOI scores and men's faithfulness ratings (more unrestricted sociosexuality was associated with lower faithfulness ratings). There was also a significant positive relationship between right (but not left) 2D:4D ratio and faithfulness ratings (women with female-like ratios were rated as being more faithful). The SOI scores of the women were not related to 2D:4D ratios. These results suggest that the potential for sexual infidelity can be gleaned from static facial cues.
Hot temperatures during the dry season reduce survival of a resident tropical bird.
Woodworth, Bradley K; Norris, D Ryan; Graham, Brendan A; Kahn, Zachary A; Mennill, Daniel J
2018-05-16
Understanding how climate change will shape species distributions in the future requires a functional understanding of the demographic responses of animals to their environment. For birds, most of our knowledge of how climate influences population vital rates stems from research in temperate environments, even though most of Earth's avian diversity is concentrated in the tropics. We evaluated effects of Southern Oscillation Index (SOI) and local temperature and rainfall at multiple temporal scales on sex-specific survival of a resident tropical bird, the rufous-and-white wren Thryophilus rufalbus , studied over 15 years in the dry forests of northwestern Costa Rica. We found that annual apparent survival of males was 8% higher than females, more variable over time, and responded more strongly to environmental variation than female survival, which did not vary strongly with SOI or local weather. For males, mean and maximum local temperatures were better predictors of survival than either rainfall or SOI, with high temperatures during the dry season and early wet season negatively influencing survival. These results suggest that, even for species adapted to hot environments, further temperature increases may threaten the persistence of local populations in the absence of distributional shifts. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734
Electrosprayed Polyvinylpyrrolidone (PVP) Submicron Particles Loaded by Green Tea Extracts
NASA Astrophysics Data System (ADS)
Kamaruddin; Sriyanti, I.; Edikresnha, D.; Munir, M. M.; Khairurrijal, K.
2018-05-01
Electrospraying technique has been successfully used to synthesize composite submicron particles of polyvinylpyrrolidone (PVP) and green tea extract (GTE). The precursor solutions were PVP in ethanol (15 wt%) and GTE in ethanol (10 wt%), which were then mixed at varying ratio. The mixed solution then underwent electrospraying process at an applied voltage of 15 kV, a distance of collector to the nozzle at 15 cm, and a flow rate of 3 µL/min. The composite submicron particles of PVP-GTE showed smooth and fine spherical morphology without fibers or beaded fibers. To a certain degree, the increase of GTE content in the PVP-GTE mixed solution decreased the average diameter of PVP-GTE composite particles. Moreover, the analysis of the FTIR spectra confirmed the existing molecular interaction between PVP and GTE in the composite submicron particles as shown by the shift of PVP wavenumber towards GTE, which has typically smaller wavenumber.
NASA Astrophysics Data System (ADS)
Choi, Eun Byeol; Lee, Jong-Hyun
2017-09-01
The fabrication and applied use of submicron Ag-coated Cu (Cu@Ag) particles as a filler material for epoxy-based conductive pastes having the advantages of a lower material cost and antioxidation behavior were studied. Submicron Cu@Ag particles were successfully prepared and surface-modified using palmitic acid. Diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric differential scanning calorimetry results indicated the formation of an organic layer by the chemical interaction between the Cu@Ag surface and palmitic acid and the survival of the organic layer after treatment at 160 °C for 3 h in air. The printed pastes containing both commercial micron Cu@Ag flakes and the fabricated submicron Cu@Ag particles showed a greatly reduced electrical resistivity (4.68 × 10-4 Ω cm) after surface modification compared to an initial value of 1.85 × 10-3 Ω cm when cured.
ORGANIC COMPOUNDS MEASURED IN PM2.5 DURING NEOPS
Secondary formation of submicron ambient particulate matter occurs when organic and inorganic constituents having sufficiently low volatility condense onto preexisting particles in the atmosphere. The presence of the resulting submicron particles has led to three important env...
NASA Astrophysics Data System (ADS)
Barros, G. P.; Marques, W. C.
2013-05-01
The aim of this study is to investigate the influence and importance of ENSO events on the control of the freshwater discharge pattern at Patos Lagoon, in timescales longer than one year. For this study it was used freshwater discharge, water levels and South Oscillation Index (SOI) data sets. The Southern Oscillation Index, or SOI, gives an indication of the development and intensity of El Niño or La Niña events in the Pacific Ocean. Sustained negative values of the SOI greater than -8 often indicate El Niño episodes. Sustained positive values of the SOI greater than +8 are typical of a La Niña episode. Cross wavelet technique is applied to examine the coherence and phase between interannual time-series (South Oscillation Index, freshwater discharge and water levels). Over synoptic time scales, wind action is the most effective forcing in Patos Lagoon's circulation. However, at longer time scales (over one year), freshwater discharge becomes the most important forcing, controling the water levels, circulation and other processes. At longer time scales, South America is affected by ENSO's influence. El Niño is the South Oscillation phase where the trade winds are weak, the pressure is low over the eastern Tropical Pacific and high on the west side. The south region of Brazil shows precipitation anomalies associated with the ENSO occurrence. The most significant ENSO events show a high temporal variability, which may occur in near biannual scales (1.5 - 3 years) or in lower frequencies (3 years - 7 years). The freshwater discharge of the main tributaries and water levels in Patos Lagoon are influenced by ENSO on interannual scales (cycles between 3.8 and 6 years). Therefore, El Niño events are associated with high mean values of freshwater discharge and water levels above the mean. On the other hand, La Niña events are associated with low mean values of freshwater discharge and water levels below the mean. These results are consistent with analysis related to the SOI and agree with previously results obtained by other authors in this region of South America. The cross wavelet analysis between the freshwater discharge and the SOI time series indicates the dominant length and period of the ENSO cycles that control the discharge. It can be observed that between the years of 1950 and 1965 the dominant period was from 4 to 6 years, while from 1970 and 2000 the dominant period was lower than 4 years, indicating a change on the ENSO influence pattern on the region. Further studies about the characteristics of the catchment (area, length, topography, vegetation, etc.) would be very important to identify the delay between an ENSO event, the precipitation anomaly associated to it and the consequent increase of freshwater discharge, producing valuable information that could help in proper coastal management and flood prediction.
The dynamics of submicron-sized dust particles lost from Phobos
NASA Technical Reports Server (NTRS)
Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.
1991-01-01
The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.
NASA Astrophysics Data System (ADS)
Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan
2018-06-01
We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.
Sub-micron particle sampler apparatus
Gay, Don D.; McMillan, William G.
1987-01-01
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.
Method for sampling sub-micron particles
Gay, Don D.; McMillan, William G.
1985-01-01
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.
Survival of Submicron Refractory Presolar Grains in Stardust and Stardust Analog Craters
NASA Astrophysics Data System (ADS)
Croat, T. K.; Floss, C.; Kearsley, A. T.; Burchell, M. J.
2013-09-01
FIB-TEM studies of Stardust analog craters demonstrate intact survival of refractory minerals (such as TiC, TiN and SiC). The Al craters resulting from submicron projectiles show physical properties somewhat different from those of larger projectiles.
NASA Technical Reports Server (NTRS)
Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.
2000-01-01
This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.
Operational characterization of CSFH MEMS technology based hinges
NASA Astrophysics Data System (ADS)
Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio
2018-05-01
Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
BRIEF COMMUNICATION: Electrothermal bistability tuning in a large displacement micro actuator
NASA Astrophysics Data System (ADS)
Gerson, Y.; Krylov, S.; Ilic, B.
2010-11-01
We report on an approach allowing simple yet efficient tuning of the bistability properties in large displacement micro actuators. The devices fabricated from silicon on insulator (SOI) wafers using a deep reactive ion etching (DRIE)-based process incorporate elastic suspension realized as a pair of beams initially curved in-plane and are operated electrostatically by a comb-drive transducer. The curvature of beam and therefore the stability characteristics of the suspension are controlled by passing a current through the suspension and resistive heating the beam material. Experimental results, which are in good agreement with the finite elements model predictions, demonstrate the feasibility of the suggested approach and show that the application of a small tuning current increases the device deflection from 42 to 56 µm, allows adjustment of the critical snap-through and snap-back voltages and makes it possible the control of latching without an additional electrode. The approach can be efficiently implemented in electrical and optical switches and threshold inertial and mass sensors where the use of long displacement actuators with an adjustable bistability range is beneficial.
Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria
2013-01-01
Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419
NASA Astrophysics Data System (ADS)
Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard
2018-07-01
This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.
Preface to the special issue of Solid State Electronics EUROSOI/ULIS 2017
NASA Astrophysics Data System (ADS)
Nassiopoulou, Androula G.
2018-05-01
This special issue is devoted to selected papers presented at the EuroSOI-ULIS2017 international conference, held in Athens on 3-5 April 2017. EuroSOI-ULIS2017 Conference was mainly devoted to Si devices, which constitute the basic building blocks of any microelectronic circuit. It included papers on advanced Si technologies, novel nanoscale devices, advanced electronic materials and device architectures, mechanisms involved, test structures, substrate materials and technologies, modeling/simulation and characterization. Both CMOS and beyond CMOS devices were presented, covering the More Moore domain, as well as new functionalities in silicon-compatible nanostructures and innovative devices, representing the More than Moore domain (on-chip sensors, biosensors, energy harvesting devices, RF passives, etc.).
Coupled resonator optical waveguides based on silicon-on-insulator photonic wires
NASA Astrophysics Data System (ADS)
Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii
2006-07-01
Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.
Special Issue: Planar Fully-Depleted SOI technology
NASA Astrophysics Data System (ADS)
Allibert, F.; Hiramoto, T.; Nguyen, B. Y.
2016-03-01
We are in the era of mobile computing with smart handheld devices and remote data storage "in the cloud," with devices that are almost always on and driven by needs of high data transmission rate, instant access/connection and long battery life. With all the ambitious requirements for better performance with lower power consumption, the SoC solution must also be cost-effective in order to capture the large, highly-competitive consumer mobile and wearable markets. The Fully-Depleted SOI device/circuit is a unique option that can satisfy all these requirements and has made tremendous progress in development for various applications and adoption by foundries, integrated device manufacturers (IDM), and fabless companies in the last 3 years.
Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides
NASA Astrophysics Data System (ADS)
Katz, Oded; Malka, Dror
2017-07-01
In this paper, we demonstrate a compact silicon on insulator (SOI) 1 × 4 optical power splitter using seven horizontal slotted waveguides. Aluminum nitride (AIN) surrounded by silicon (Si) was used to confine the optical field in the slot region. All of the power analysis has been done in transverse magnetic (TM) polarization mode and a compact optical power splitter as short as 14.5 μm was demonstrated. The splitter was designed by using full vectorial beam propagation method (FV-BPM) simulations. Numerical investigations show that this device can work across the whole C-band (1530-1565 nm) with excess loss better than 0.23 dB.
MEMS for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Li, Lin; Zhang, Yangjian; San, Haisheng; Guo, Yinbiao; Chen, Xuyuan
2008-03-01
In this paper, a capacitive vibration-to-electrical energy harvester was designed. An integrated process flow for fabricating the designed capacitive harvester is presented. For overcoming the disadvantage of depending on external power source in capacitive energy harvester, two parallel electrodes with different work functions are used as the two electrodes of the capacitor to generate a build-in voltage for initially charging the capacitor. The device is a sandwich structure of silicon layer in two glass layers with area of about 1 cm2. The silicon structure is fabricated by using silicon-on-insulator (SOI) wafer. The glass wafers are anodic bonded on to both sides of the SOI wafer to create a vacuum sealed package.
The design of radiation-hardened ICs for space - A compendium of approaches
NASA Technical Reports Server (NTRS)
Kerns, Sherra E.; Shafer, B. D; Rockett, L. R., Jr.; Pridmore, J. S.; Berndt, D. F.
1988-01-01
Several technologies, including bulk and epi CMOS, CMOS/SOI-SOS (silicon-on-insulator-silicon-on-sapphire), CML (current-mode logic), ECL (emitter-coupled logic), analog bipolar (JI, single-poly DI, and SOI) and GaAs E/D (enhancement/depletion) heterojunction MESFET, are discussed. The discussion includes the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D (analog/digital) converters, and the computer simulation of radiation effects on microelectronic ISs.
Fabrication of pullulan and pectin submicron fibers by electrospinning
USDA-ARS?s Scientific Manuscript database
Pullulan (PUL), a food grade polysaccharide, was fabricated into fibrous mats from fibers of submicron size by electrospinning. The effects of inorganic salts and polyanions present in the electrospinning solution on the properties of the resultant fibers was investigated. The inclusion of exogenous...
Nakashima, Takako; Sako, Nobutomo; Matsuda, Takakuni; Uematsu, Naoya; Sakurai, Kazushi; Ishida, Tatsuhiro
2014-01-01
This study aimed at developing a novel rebamipide liquid for an effective treatment of oral mucositis. The healing effects of a variety of liquids comprising submicronized rebamipide crystals were investigated using a rat cauterization-induced oral ulcer model. Whereas 2% rebamipide liquid comprising micro-crystals did not exhibit significant curative effect, 2% rebamipide liquids comprising submicronized crystals with moderate viscosities exhibited healing effects following intra-oral administration. The 2% and 4% optimized rebamipide liquids showed significant healing effects in the rat oral ulcer model (p<0.01). In addition, in the rat radiation-induced glossitis model, whereby the injury was caused to the tongue by exposing only around the rat's snout to a 15 Gy of X-irradiation, the 2% optimized rebamipide liquid significantly reduced the percent area of ulcerated injury (p<0.05). In conclusion, the submicronized rebamipide liquid with moderate viscosity following intra-oral administration showed better both healing effect in the rat oral ulcer model and preventive effect in the rat irradiation-induced glossitis model.
Singhavi, Dilesh J; Khan, Shagufta; Yeole, Pramod G
2013-04-01
The objective of this study was to develop submicron carriers of two drugs that are practically insoluble in water, i.e. meloxicam and aceclofenac, to improve their dissolution behavior. The phase solubility of the drugs was studied using different concentrations of sparingly methylated β-cyclodextrin, Kleptose(®) Crysmeβ (Crysmeb), in the presence and absence of 0.2 % w/v water-soluble chitosan. Drug-loaded submicron particles (SMPs) were prepared using chitosan chlorhydrate and Crysmeb by the ionotropic gelation method. The SMPs were characterized in terms of powder X-ray diffraction, Fourier transforms infrared spectroscopy, size determination, process yield, drug loading, encapsulation efficiency, surface morphology and in vitro release. The drug loading in the SMPs was enhanced in the presence of Crysmeb. The in vitro drug release was found to be enhanced with SMPs prepared using higher concentrations of Crysmeb. These results indicate that SMPs formed from chitosan chlorhydrate and Crysmeb are promising submicron carriers for enhancing the dissolution of meloxicam and aceclofenac.
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
NASA Astrophysics Data System (ADS)
Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie
2018-04-01
Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.
Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan
2017-02-24
In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.
A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure.
NASA Astrophysics Data System (ADS)
Allan, Robert J.; Nicholls, Neville; Jones, Phil D.; Butterworth, Ian J.
1991-07-01
An extension of the Tahiti minus Darwin Southern Oscillation Index (SOI) from 1882 back to 1876 is reported following the recovery of early Darwin mean sea-level pressure data spanning the period 1865-81. As a result, we are able to compare, for the first time, the major 1877-78 and 1982-83 ENSO events on the basis of this commonly used index. Early Darwin and Jakarta data are also examined in terms of a measure of the Australian response to documented El Niño and/or ENSO events in 1866, 1868, 1871, 1873, 1874 and 1875.The SOI during the 1877-78 ENSO event has a similar temporal response to that in 1982-83, but the index is slightly weaker than in the recent event. Examination of documentary evidence confirms the severity of the drought conditions that affected the Australian continent during the 1877-78 ENSO, and shows that this response is in line with the wider Indo-Pacific impacts reported in the literature. Earlier El Niño phases in 1868 and 1873 are not resolved distinctly in either the Darwin or Jakarta pressure data. This appears to illustrate that El Niño event histories do not always indicate wider ENSO influences in the Indo-Pacific basin, particularly during weak to moderate phases.
Gordon, G T; McCann, B P
2015-01-01
This paper describes the basis of a stakeholder-based sustainable optimisation indicator (SOI) system to be developed for small-to-medium sized activated sludge (AS) wastewater treatment plants (WwTPs) in the Republic of Ireland (ROI). Key technical publications relating to best practice plant operation, performance audits and optimisation, and indicator and benchmarking systems for wastewater services are identified. Optimisation studies were developed at a number of Irish AS WwTPs and key findings are presented. A national AS WwTP manager/operator survey was carried out to verify the applied operational findings and identify the key operator stakeholder requirements for this proposed SOI system. It was found that most plants require more consistent operational data-based decision-making, monitoring and communication structures to facilitate optimised, sustainable and continuous performance improvement. The applied optimisation and stakeholder consultation phases form the basis of the proposed stakeholder-based SOI system. This system will allow for continuous monitoring and rating of plant performance, facilitate optimised operation and encourage the prioritisation of performance improvement through tracking key operational metrics. Plant optimisation has become a major focus due to the transfer of all ROI water services to a national water utility from individual local authorities and the implementation of the EU Water Framework Directive.
Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme
Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael
2012-01-01
Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818
A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction
Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong
2016-01-01
Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426
Kvasnovsky, Charlotte L; Lumpkins, Kimberly; Diaz, Jose J; Chun, Jeannie Y
2018-05-01
The American College of Surgeons has developed a verification program for children's surgery centers. Highly specialized hospitals may be verified as Level I, while those with fewer dedicated resources as Level II or Level III, respectively. We hypothesized that more specialized children's centers would utilize more resources. We performed a retrospective study of the Maryland Health Services Cost Review Commission (HSCRC) database from 2009 to 2013. We assessed total charge, length of stay (LOS), and charge per day for all inpatients with an emergency pediatric surgery diagnosis, controlling for severity of illness (SOI). Using published resources, we assigned theoretical level designations to each hospital. Two hospitals would qualify as Level 1 hospitals, with 4593 total emergency pediatric surgery admissions (38.5%) over the five-year study period. Charges were significantly higher for children treated at Level I hospitals (all P<0.0001). Across all SOI, children at Level I hospitals had significantly longer LOS (all P<0.0001). Hospitals defined as Level II and Level III provided the majority of care and were able to do so with shorter hospitalizations and lower charges, regardless of SOI. As care shifts towards specialized centers, this charge differential may have significant impact on future health care costs. Level III Cost Effectiveness Study. Copyright © 2018 Elsevier Inc. All rights reserved.
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
NASA Astrophysics Data System (ADS)
Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.
2008-11-01
We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.
Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles
NASA Astrophysics Data System (ADS)
Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.
2017-12-01
Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.
Performance characteristics of a nanoscale double-gate reconfigurable array
NASA Astrophysics Data System (ADS)
Beckett, Paul
2008-12-01
The double gate transistor is a promising device applicable to deep sub-micron design due to its inherent resistance to short-channel effects and superior subthreshold performance. Using both TCAD and SPICE circuit simulation, it is shown that the characteristics of fully depleted dual-gate thin-body Schottky barrier silicon transistors will not only uncouple the conflicting requirements of high performance and low standby power in digital logic, but will also allow the development of a locally-connected reconfigurable computing mesh. The magnitude of the threshold shift effect will scale with device dimensions and will remain compatible with oxide reliability constraints. A field-programmable architecture based on the double gate transistor is described in which the operating point of the circuit is biased via one gate while the other gate is used to form the logic array, such that complex heterogeneous computing functions may be developed from this homogeneous, mesh-connected organization.
Watching stem cells at work with a flexible multiphoton tomograph
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Hoffmann, Robert; Weinigel, Martin; König, Karsten
2012-03-01
There is a high demand for non-invasive imaging techniques that allow observation of stem cells in their native environment without significant input on cell metabolism, reproduction, and behavior. Easy accessible hair follicle pluripotent stem cells in the bulge area and dermal papilla are potential sources for stem cell based therapy. It has been shown that these cells are able to generate hair, non-follicle skin cells, nerves, vessels, smooth muscles etc. and may participate in wound healing processes. We report on the finding of nestin-GFP expressing stem cells in their native niche in the bulge of the hair follicle of living mice by using high-resolution in-vivo multiphoton tomography. The 3D imaging with submicron resolution was based on two-photon induced fluorescence and second harmonic generation (SHG) of collagen. Migrating stem cells from the bulge to their microenvironment have been detected inside the skin during optical deep tissue sectioning.
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
Additive patterning of ion-beam-sputtered non-conformal Ni80Fe20 and Co70Fe30 magnetic films
NASA Astrophysics Data System (ADS)
Redondo, C.; Moralejo, S.; Castaño, F.; Lee, W.; Nielsch, K.; Ross, C. A.; Castaño, F. J.
2006-04-01
Additive patterning processes of magnetic films grown using an ion-beam sputter (IBS) system designed to produce non-conformal films are described. The effects of the ion-gun beam current and Ar pressure on the sputtering rates and roughness of Ni80Fe20 and Co70Fe30 magnetic thin films are investigated using atomic-force microscopy (AFM) and the films' magnetic properties are measured using spatially resolved magneto-optical magnetometry. By tailoring the plasma solid angle, non-conformal film growth allows for simple additive patterning down to lateral dimensions ranging from a few microns to the deep-submicron regime, using templates defined by photolithography or electron-beam lithography, and shadow masks created using templated self-assembly. The magnetization reversal exhibited by patterned sub-200 nm nanodisc arrays with different lateral edge-roughness will be discussed.
NASA Astrophysics Data System (ADS)
Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team
2014-11-01
In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.
Picosecond UV single photon detectors with lateral drift field: Concept and technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakimov, M.; Oktyabrsky, S.; Murat, P.
2015-09-01
Group III–V semiconductor materials are being considered as a Si replacement for advanced logic devices for quite some time. Advances in III–V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metal-oxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting modemore » in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging.« less
Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J
2018-02-01
Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r = .9), siganids ( r = .9), and mullids ( r = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.
Wafer-Level Membrane-Transfer Process for Fabricating MEMS
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wiberg, Dean
2003-01-01
A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.
Khatsilouskaya, Tatsiana; Haltmeier, Tobias; Cathomas, Marionna; Eberle, Barbara; Candinas, Daniel; Schnüriger, Beat
2017-05-01
Patients with blunt solid organ injuries (SOI) are at risk for venous thromboembolism (VTE), and VTE prophylaxis is crucial. However, little is known about the safety of early prophylactic administration of heparin in these patients. This is a retrospective study including adult trauma patients with SOI (liver, spleen, kidney) undergoing non-operative management (NOM) from 01/01/2009 to 31/12/2014. Three groups were distinguished: prophylactic heparin (low molecular weight heparin or low-dose unfractionated heparin) ≤72 h after admission ('early heparin group'), >72 h after admission ('late heparin group'), and no heparin ('no heparin group'). Patient and injury characteristics, transfusion requirements, and outcomes (failed NOM, VTE, and mortality) were compared between the three groups. Overall, 179 patients were included; 44.7% in the 'early heparin group,' 34.6% in the 'late heparin group,' and 20.8% in the 'no heparin group.' In the 'late heparin group,' the ISS was significantly higher than in the 'early' and 'no heparin groups' (median 29.0 vs. 17.0 vs. 19.0; p < 0.001). The overall NOM failure rate was 3.9%. Failed NOM was significantly more frequent in the 'no heparin group' compared to the 'early' and 'late heparin groups' (10.8 vs. 3.2 vs. 1.3%; p = 0.043). In the 'early heparin group' 27.5% patients suffered from a high-grade SOI; none of these patients failed NOM. Mortality did not differ significantly. Although not statistically significant, VTE were more frequent in the 'no heparin group' compared to the 'early' and 'late heparin groups' (10.8 vs. 4.8 vs. 1.3%; p = 0.066). In patients with SOI, heparin was administered early in a high percentage of patients and was not associated with an increased NOM failure rate or higher in-hospital mortality.
Large-scale quantum photonic circuits in silicon
NASA Astrophysics Data System (ADS)
Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk
2016-08-01
Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.
Customization of a Severity of Illness Score Using Local Electronic Medical Record Data.
Lee, Joon; Maslove, David M
2017-01-01
Severity of illness (SOI) scores are traditionally based on archival data collected from a wide range of clinical settings. Mortality prediction using SOI scores tends to underperform when applied to contemporary cases or those that differ from the case-mix of the original derivation cohorts. We investigated the use of local clinical data captured from hospital electronic medical records (EMRs) to improve the predictive performance of traditional severity of illness scoring. We conducted a retrospective analysis using data from the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database, which contains clinical data from the Beth Israel Deaconess Medical Center in Boston, Massachusetts. A total of 17 490 intensive care unit (ICU) admissions with complete data were included, from 4 different service types: medical ICU, surgical ICU, coronary care unit, and cardiac surgery recovery unit. We developed customized SOI scores trained on data from each service type, using the clinical variables employed in the Simplified Acute Physiology Score (SAPS). In-hospital, 30-day, and 2-year mortality predictions were compared with those obtained from using the original SAPS using the area under the receiver-operating characteristics curve (AUROC) as well as the area under the precision-recall curve (AUPRC). Test performance in different cohorts stratified by severity of organ injury was also evaluated. Most customized scores (30 of 39) significantly outperformed SAPS with respect to both AUROC and AUPRC. Enhancements over SAPS were greatest for patients undergoing cardiovascular surgery and for prediction of 2-year mortality. Custom models based on ICU-specific data provided better mortality prediction than traditional SAPS scoring using the same predictor variables. Our local data approach demonstrates the value of electronic data capture in the ICU, of secondary uses of EMR data, and of local customization of SOI scoring. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Schneider, J.; Freutel, F.; Zorn, S. R.; Chen, Q.; Farmer, D. K.; Jimenez, J. L.; Martin, S. T.; Artaxo, P.; Wiedensohler, A.; Borrmann, S.
2011-11-01
The detection of primary biological material in submicron aerosol by means of thermal desorption/electron impact ionization aerosol mass spectrometry was investigated. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker fragments were identified. The intensity of the marker signals relative to the total organic mass spectrum allows for an estimation of the content of primary biological material in ambient organic aerosol. The developed method was applied to mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker fragments places upper limits of 7.5% for amino acids and 5.6% for carbohydrates on the contribution of primary biological aerosol particles (PBAP) to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m-3. Carbohydrates and proteins (composed of amino acids) make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAP mass fraction of about 20% to the submicron organic aerosol measured in Amazonia during AMAZE-08.
Hwang, Sung Hoon; Shahsavari, Rouzbeh
2018-01-10
Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.
Probing the rhizosphere to define mineral organic relationships
NASA Astrophysics Data System (ADS)
Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.
2016-12-01
Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.
An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors
NASA Astrophysics Data System (ADS)
Shen, Yanfei; Cui, Jie; Mohammadi, Saeed
2017-05-01
A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
NASA Astrophysics Data System (ADS)
Mizutani, Akio; Eto, Yohei; Kikuta, Hisao
2017-12-01
A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.
Reconfigurable ultra-thin film GDNMOS device for ESD protection in 28 nm FD-SOI technology
NASA Astrophysics Data System (ADS)
Athanasiou, Sotirios; Legrand, Charles-Alexandre; Cristoloveanu, Sorin; Galy, Philippe
2017-02-01
We propose a novel ESD protection device (GDNMOS: Gated Diode merged NMOS) fabricated with 28 nm UTBB FD-SOI high-k metal gate technology. By modifying the combination of the diode and transistor gate stacks, the robustness of the device is optimized, achieving a maximum breakdown voltage (VBR) of 4.9 V. In addition, modifications of the gate length modulate the trigger voltage (Vt1) with a minimum value of 3.5 V. Variable electrostatic doping (gate-induced) in diode and transistor body enables reconfigurable operation. A lower doping of the base enhances the bipolar gain, leading to thyristor behavior. This innovative architecture demonstrates excellent capability for high-voltage protection while maintaining a latch-up free behavior.
Silicon-based Coulomb blockade thermometer with Schottky barriers
NASA Astrophysics Data System (ADS)
Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.
2014-04-01
A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.
NASA Astrophysics Data System (ADS)
Sokolov, Leonid V.
2010-08-01
There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.
NASA Astrophysics Data System (ADS)
Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu
2009-03-01
This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.
New insights on SOI Tunnel FETs with low-temperature process flow for CoolCube™ integration
NASA Astrophysics Data System (ADS)
Diaz Llorente, C.; Le Royer, C.; Batude, P.; Fenouillet-Beranger, C.; Martinie, S.; Lu, C.-M. V.; Allain, F.; Colinge, J.-P.; Cristoloveanu, S.; Ghibaudo, G.; Vinet, M.
2018-06-01
This paper reports the fabrication and electrical characterization of planar SOI Tunnel FETs (TFETs) made using a Low-Temperature (LT) process designed for 3D sequential integration. These proof-of-concept TFETs feature junctions obtained by Solid Phase Epitaxy Regrowth (SPER). Their electrical behavior is analyzed and compared to reference samples (regular process using High-Temperature junction formation, HT). Dual ID-VDS measurements verify that the TFET structures present Band-to-Band tunnelling (BTBT) carrier injection and not Schottky Barrier tunnelling. P-mode operating LT TFETs deliver an ON state current similar to that of the HT reference, opening the door towards optimized devices operating with very low threshold voltage VTH and low supply voltage VDD.
NASA Astrophysics Data System (ADS)
Perera, Asanga Hiran
The magnitude of the extrinsic parasitic MOSFET series resistance was experimentally evaluated in the deep -submicron domain and its consequence on device performance was determined. The series resistance of depletion mode MOSFET test structures were measured for source-drain sizes as small as 0.2 μm by 0.3 μm at room temperature and 100^ circK. To build the test structures a multilevel -full electron beam lithography fabrication process was developed with a pattern overlay accuracy of 75 nm. A new positive tone novalac resist, SYSTEM-9, was developed for electron beam application. The resist had moderate sensitivity, 19-30 muC/cm ^2, and a contrast up to 14. Interrupted development and reduced developer temperature resulted in contrast enhancements of up to 125%. SYSTEM-9 had a two or three times better dry etch resistance than PMMA. A shallow trench isolation technology capable of defining 0.2 μm wide active areas was developed. A rapid thermal annealing based silicidation scheme using TiSi_2 was established. MOSFET sidewall spacer formation using PECVD SiO_2 was calibrated. Antimony and gallium were investigated as possible alternatives to arsenic and boron, respectively, and well behaved substrate diodes were successfully fabricated. Two new patterning techniques for the metal bi-layer metalization of TiW and Al, based on liftoff and reactive ion etching, were developed. The source drain resistance of the test structures was measured at room temperature and at 100^ circK. An LN_2 flushed cold chuck for low temperature device probing was designed and constructed. The temperature dependence of the current voltage characteristics and the extracted series resistance proved that current flow in the contacts was tunneling dominated. The extrinsic source-drain resistance increased rapidly as the contact size decreased below 0.5 mum, and showed an almost two order of magnitude change, when the source-drain area was reduced from 2 x 1.7 mum^2 to 0.2 x 0.3 mum^2 . The effect of this resistance increase on a CMOS inverter switching speed was estimated. A first order empirical model to predict the series resistance was also formulated. Good correspondence was observed between results from the device simulator PISCES-2B and measured data for larger source-drain sizes.
Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...
Laboratory experiments were conducted to assess whether the presence of liquid water on pre-existing submicron ammonium sulfate aerosols affects yields of condensible organic compounds. Toluene/propylene/NOX/air mixtures were irradiated in the presence of submicron ammonium su...
Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils
Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu
2014-01-01
The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Harker, David E.; Woodward, Charles E.
2006-01-01
When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has a more diverse mineralogy. The lower spatial resolution, high sensitivity Spitzer IRS data reveal resonances of refractory minerals (those seen by GEMINI+Michelle plus ortho-pyroxene)) as well resonances that can be attributed to phillosilicates (layer lattice silicates such as Montmorillonite) (Lisse et al. 2006). Pre- and post-impact, micron to submicron grains were deciphered to be present in the coma by the modeling the high spatial resolution images to account for nucleus plus inner coma fluxes (Wooden et al. 2005, 2006; Harker et al. 2005, 2006a). Note also that crystalline silicates were released from the interior of 73P-B/SW-3 as it disintegrated (Harker et al. 2006b). From the Deep Impact and the disintegration of 73P-B, we are led to ask the questians: Why is the mineralogy of the dust released from a volatile-rich pocket beneath the surface different from the dust that is released from the nominally active areas? Could the most volatile pockets be exhausted quickly? Why would crystalline silicates be associated with more volatile materials? Perhaps the structure of the comet is so inhomogeneous, e.g., the layered pile mode2 of the nucleus (Belton et al. 2006), that a reservoir of crystalline silicate and submicron grains just happens to not be released by the nominally active areas of comet 9P? Perhaps comets lose matter through their mantles from below their surfaces, thus preserving ancient topographic structures and radiation damaged silicates and carbon? We will discuss and ponder different scenarios. We will discuss future directions for coordinated observations of JF comets.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, W. G.; Goad, H. S.
1987-01-01
Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied.
Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M
2008-10-01
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.
NASA Astrophysics Data System (ADS)
Aoki, Taisuke; Tanabe, Shin-ichi
This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.
Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M
2016-11-01
Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as, adjuvants for vaccines. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Excitation of the Earth's Chandler wobble by southern oscillation/El Nino, 1900-1979
NASA Technical Reports Server (NTRS)
Chao, B. F.
1985-01-01
The southern oscillation/El Nino (ENSO) is the single most prominent interannual signal in global atmospheric/oceanic fluctuations. The following question is addressed: how important is the angular momentum carried by ENSO in exciting the Earth's Chandler wobble? The question is attacked through a statistical analysis of the coherence spectra (correlation as a function of frequency) between two data sets spanning 1900 to 1979-the southern oscillation index (SOI) time series and the excitation function psi (with x-component psi sub x and y-component psi sub y) of the Chandler wobble derived from the homogeneous ILS (International Latitude Service) polar motion data. The coherence power and phase in the Chandler frequency band (approx. 0.79 to 0.89 cpy) are studied. It is found that, during 1900 to 1979 the coherence between SOI and psi sub x is significant well over the 95% confidence threshold whereas that between SOI and psi sub y is practically nil. Quantitatively, the coherence study shows that ENSO provides some 20% of the observed Chandler wobble excitation power. Since earlier investigations have shown that the total atmospheric/oceanic variation can account for the Chandler wobble excitation at about 20% level, the implication is that ENSO maybe an important (interannual) part of the atmospheric/oceanic variation that is responsible for the Chandler wobble excitation during 1900 to 1979.
NASA Astrophysics Data System (ADS)
Shilyaev, M. I.; Khromova, E. M.; Grigoriev, A. V.; Tumashova, A. V.
2011-09-01
A physical-mathematical model of the heat and mass exchange process and condensation capture of sub-micron dust particles on the droplets of dispersed liquid in a sprayer scrubber is proposed and analysed. A satisfactory agreement of computed results and experimental data on soot capturing from the cracking gases is obtained.
Method of producing non-agglomerating submicron size particles
Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.
1989-01-01
Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".
NASA Astrophysics Data System (ADS)
Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin
2015-01-01
Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).
Nguyen, Dung C; Ma, Dongsheng Brian; Roveda, Janet M W
2012-01-01
As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers.
Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.
Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V
2018-01-01
We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.
CCSDS Time-Critical Onboard Networking Service
NASA Technical Reports Server (NTRS)
Parkes, Steve; Schnurr, Rick; Marquart, Jane; Menke, Greg; Ciccone, Massimiliano
2006-01-01
The Consultative Committee for Space Data Systems (CCSDS) is developing recommendations for communication services onboard spacecraft. Today many different communication buses are used on spacecraft requiring software with the same basic functionality to be rewritten for each type of bus. This impacts on the application software resulting in custom software for almost every new mission. The Spacecraft Onboard Interface Services (SOIS) working group aims to provide a consistent interface to various onboard buses and sub-networks, enabling a common interface to the application software. The eventual goal is reusable software that can be easily ported to new missions and run on a range of onboard buses without substantial modification. The system engineer will then be able to select a bus based on its performance, power, etc and be confident that a particular choice of bus will not place excessive demands on software development. This paper describes the SOIS Intra-Networking Service which is designed to enable data transfer and multiplexing of a variety of internetworking protocols with a range of quality of service support, over underlying heterogeneous data links. The Intra-network service interface provides users with a common Quality of Service interface when transporting data across a variety of underlying data links. Supported Quality of Service (QoS) elements include: Priority, Resource Reservation and Retry/Redundancy. These three QoS elements combine and map into four TCONS services for onboard data communications: Best Effort, Assured, Reserved, and Guaranteed. Data to be transported is passed to the Intra-network service with a requested QoS. The requested QoS includes the type of service, priority and where appropriate, a channel identifier. The data is de-multiplexed, prioritized, and the required resources for transport are allocated. The data is then passed to the appropriate data link for transfer across the bus. The SOIS supported data links may inherently provide the quality of service support requested by the intra-network layer. In the case where the data link does not have the required level of support, the missing functionality is added by SOIS. As a result of this architecture, re-usable software applications can be designed and used across missions thereby promoting common mission operations. In addition, the protocol multiplexing function enables the blending of multiple onboard networks. This paper starts by giving an overview of the SOIS architecture in section 11, illustrating where the TCONS services fit into the overall architecture. It then describes the quality of service approach adopted, in section III. The prototyping efforts that have been going on are introduced in section JY. Finally, in section V the current status of the CCSDS recommendations is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; ...
2017-06-19
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
Method of producing submicron size particles and product produced thereby
Bourne, R.S.; Eichman, C.C.; Welbon, W.W.
1988-05-11
Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.
Preparation of 1,3,5-triamo-2,4,6-trinitrobenzene of submicron particle size
Rigdon, Lester P [Livermore, CA; Moody, Gordon L [Tracy, CA; McGuire, Raymond R [Brentwood, CA
2001-05-01
A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.
Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene of submicron particle size
Rigdon, Lester P.; Moody, Gordon L.; McGuire, Raymond R.
2001-01-01
A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.
Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat
2014-01-01
This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638
Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2017-04-01
Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.
Aerodynamics and deposition effects of inhaled submicron drug aerosol in airway diseases.
Faiyazuddin, Md; Mujahid, Md; Hussain, Talib; Siddiqui, Hefazat H; Bhatnagar, Aseem; Khar, Roop K; Ahmad, Farhan J
2013-01-01
Particle engineering is the prime focus to improve pulmonary drug targeting with the splendor of nanomedicines. In recent years, submicron particles have emerged as prettyful candidate for improved fludisation and deposition. For effective deposition, the particle size must be in the range of 0.5-5 μm. Inhalers design for the purpose of efficient delivery of powders to lungs is again a crucial task for pulmonary scientists. A huge number of DPI devices exist in the market, a significant number are awaiting FDA approval, some are under development and a large number have been patented or applied for patent. Even with superior design, the delivery competence is still deprived, mostly due to fluidisation problems which cause poor aerosol generation and deposition. Because of the cohesive nature and poor flow characteristics, they are difficult to redisperse upon aerosolization with breath. These problems are illustrious in aerosol research, much of which is vastly pertinent to pulmonary therapeutics. A technical review is presented here of advances that have been utilized in production of submicron drug particles, their in vitro/in vivo evaluations, aerosol effects and pulmonary fate of inhaled submicron powders.
NASA Astrophysics Data System (ADS)
Lee, Sang-Woo; Joo, Suk-Ho; Cho, Sung Lae; Son, Yoon-Ho; Lee, Kyu-Mann; Nam, Sang-Don; Park, Kun-Sang; Lee, Yong-Tak; Seo, Jung-Suk; Kim, Young-Dae; An, Hyeong-Geun; Kim, Hyoung-Joon; Jung, Yong-Ju; Heo, Jang-Eun; Lee, Moon-Sook; Park, Soon-Oh; Chung, U-In; Moon, Joo-Tae
2002-11-01
In the manufacturing of a 32M ferroelectric random access memory (FRAM) device on the basis of 0.25 design rule (D/R), one of the most difficult processes is to pattern a submicron capacitor module while retaining good ferroelectric properties. In this paper, we report the ferroelectric property of patterned submicron capacitor modules with a stack height of 380 nm, where the 100 nm-thick Pb(Zr, Ti)O3 (PZT) films were prepared by the sol-gel method. After patterning, overall sidewall slope was approximately 70° and cell-to-cell node separation was made to be 80 nm to prevent possible twin-bit failure in the device. Finally, several heat treatment conditions were investigated to retain the ferroelectric property of the patterned capacitor. It was found that rapid thermal processing (RTP) treatment yields better properties than conventional furnace annealing. This result is directly related to the near-surface chemistry of the PZT films, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The resultant switching polarization value of the submicron capacitor was approximately 30 μC/cm2 measured at 3 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Easter, Richard C.; Campuzano-Jost, Pedro
2015-08-20
The effect of wet scavenging on ambient aerosols in deep, continental convective clouds in the mid-latitudes is studied for a severe storm case in Oklahoma during the Deep Convective Clouds and Chemistry (DC3) field campaign. A new passive-tracer based transport analysis framework is developed to characterize the convective transport based on the vertical distribution of several slowly reacting and nearly insoluble trace gases. The passive gas concentration in the upper troposphere convective outflow results from a mixture of 47% from the lower level (0-3 km), 21% entrained from the upper troposphere, and 32% from mid-atmosphere based on observations. The transportmore » analysis framework is applied to aerosols to estimate aerosol transport and wet-scavenging efficiency. Observations yield high overall scavenging efficiencies of 81% and 68% for aerosol mass (Dp < 1μm) and aerosol number (0.03< Dp < 2.5μm), respectively. Little chemical selectivity to wet scavenging is seen among observed submicron sulfate (84%), organic (82%), and ammonium (80%) aerosols, while nitrate has a much lower scavenging efficiency of 57% likely due to the uptake of nitric acid. Observed larger size particles (0.15 - 2.5μm) are scavenged more efficiently (84%) than smaller particles (64%; 0.03 - 0.15μm). The storm is simulated using the chemistry version of the WRF model. Compared to the observation based analysis, the standard model underestimates the wet scavenging efficiency for both mass and number concentrations with low biases of 31% and 40%, respectively. Adding a new treatment of secondary activation significantly improves simulation results, so that the bias in scavenging efficiency in mass and number concentrations is reduced to <10%. This supports the hypothesis that secondary activation is an important process for wet removal of aerosols in deep convective storms.« less
NASA Astrophysics Data System (ADS)
Sear, D. A.; Hassall, J. D.; Langdon, P. G.; Croudace, I. W. C.; Maloney, A. E.; Sachs, J. P.
2015-12-01
El Niño-Southern Oscillation (ENSO) is the strongest source of interannual climate variability on the planet. Its behaviour leads to major hydro-climate impacts around the world, including flooding, drought, and altering cyclone frequency. Simulating ENSO behaviour is difficult using climate models, as it is a complex non-linear system, and hence predicting its future variability under changing climate is challenging. Using palaeoclimate data thus allows an insight into long-term ENSO behaviour against a range of different forcings throughout the Holocene. To date long, coherent, high resolution records from lake sediment archives have been limited to the Pacific Rim. We present new data from the closed crater Lake Lanoto'o, on Upolu Island, Samoa, located within the tropical South Pacific. The lake sediment record extends back into the early Holocene with an average sedimentation rate 0.4mm a-1. We demonstrate a strong correspondence between precipitation at the study site and measures of the Southern Oscillation Index (SOI)1. We compare geochemical proxies of precipitation to a long-term reconstruction of the SOI2. The resulting proxy SOI record extends over the last 9000 years, revealing scales of change in ENSO that match those recorded from sites located on the Pacific rim3,4. A major period of La-Nina dominance occurs around 4.5ka BP before abruptly switching to El-Nino dominance around 3.2ka. Thereafter, phases of El-Nino - La Nina dominance, alternate every c. 400yrs. The results point to prolonged phases of enhanced or reduced precipitation - conditions that may influence future population resilience to climate change, and may also have been triggers for the colonisation of more remote eastern Polynesia. 1. http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.annstd.ascii. 2. Yan, H. et al. (2011) Nature Geoscience, 4, p.611. 3. Conroy J. L. et al. (2008) Quaternary Science Reviews, 27, p.1166 4. Moy, C. M. et al. (2002) Nature, 420, p.162
Gauthier-Duchesne, Amélie; Hébert, Martine; Daspe, Marie-Ève
2017-01-01
Résumé Des études antérieures relèvent que le sentiment de culpabilité est un facteur associé aux répercussions de l’agression sexuelle (AS) chez les survivants adultes (Cantón-Cortés, Cantón, Justicia et Cortés, 2011). Toutefois, très peu d’études ont exploré le rôle potentiel du sentiment de culpabilité sur les symptômes chez les enfants victimes. L’objectif de cette recherche est d’étudier le rôle médiateur de l’évitement dans la relation entre le sentiment de culpabilité et les symptômes associés à l’AS (anxiété et estime de soi). L’échantillon est composé de 447 enfants victimes d'AS (319 filles et 128 garçons), âgés de 6 à 12 ans. Les résultats des analyses acheminatoires indiquent que les enfants révélant davantage de culpabilité par rapport à la situation d’AS présentent un niveau plus élevé d’anxiété et une plus faible estime d’eux-mêmes. Un effet indirect a également été observé et montre que le sentiment de culpabilité est lié à l’utilisation de stratégies d’évitement, qui en retour exacerbent les symptômes d’anxiété et contribuent à une plus faible estime de soi. Le modèle, qui s’ajuste aux données de manière équivalente pour les filles et les garçons, permet d’expliquer 24,4 % de la variance des symptômes d’anxiété et 11,2 % de la variance de l’estime de soi. Ces résultats laissent entendre que le sentiment de culpabilité pourrait constituer une cible d’intervention pertinente pour les enfants victimes d’AS. PMID:29445251
Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.
2009-01-01
Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.
Elastic properties of protein functionalized nanoporous polymer films
Charles T. Black; Wang, Haoyu; Akcora, Pinar
2015-12-16
Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less
Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate
NASA Astrophysics Data System (ADS)
Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.
We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.
Koutrelakos, James
2004-04-01
The study compares Greek Americans to Greeks and to third-generation white Americans in their endorsement of two cognitive schemas guiding intimate relationships. Greek Americans were more rejecting of low self-disclosure in intimate relationships than were Greeks but did not differ from them on how strongly they advocated sacrificing the self for one's partner. By contrast, Greek Americans did not differ from Americans in their rejection of low self-disclosure and more strongly endorsed self-sacrifice in intimate relationships than did Americans. These findings were interpreted as indicating that Greek Americans have acculturated to a more individualistic orientation in terms of self-disclosure while maintaining a collectivistic orientation regarding self-sacrifice in intimate relationships. Respondents' age, cultural group, and whether they were college students or professionals interacted with how strongly individuals rejected low self-disclosure and showed that age and status differences were more pronounced between rather than within the three cultural groups. It revealed that the initial finding, showing that Greeks and Americans differed, was based on the scores of students; professionals, with one exception, did not differ in their disagreement with low self-disclosure, regardless of their age and cultural group. The exception was the older Greek American professional subgroup, whose stronger disagreement with low self-disclosure may be an overreaction to the acculturation process. Age and status differences were not significant in the American group, while there was a pattern in Greece for professionals to reject low self-disclosure more strongly than did students. Women were more rejecting of both low self-disclosure and self-sacrifice in intimate relationships than were men. Older women most strongly disagreed with the self-sacrifice principle and older men adhered to it more strongly with increasing age. Cette étude compare des Américains grecs à des Grecs et à des Américains blancs de troisième génération relativement à leur adhésion à deux schémas cognitifs guidant les relations intimes. Les résultats indiquent que les Américains grecs se montrent plus rejetants d'une faible ouverture de soi dans les relations intimes comparativement aux Grecs, mais ils ne se différencient pas de ceux-ci quant à la force avec laquelle ils se disent prêts à se sacrifier pour leur partenaire. En contrepartie, Américain grecs ne se différencient pas des Américains sur le plan du rejet de la faible ouverture de soi, tout en se montrant davantage en accord avec le sacrifice de soi dans les relations intimes que ne le font les Américains. Ces résultats sont interprétés comme des indicateurs que les Américains grecs auraient adopté la culture américaine d'orientation plus individualiste en ce qui a trait à l'ouverture de soi, tandis qu'ils semblent avoir maintenu une orientation collectiviste en regard du sacrifice de soi dans les relations intimes. L'âge des répondants, leur groupe culturel et leur statut de collégien ou de professionnel montrent une interaction avec le degré de rejet de la faible ouverture de soi. Aussi, il appert que les différences d'âge et de statut sont plus prononcées entre les trois groupes culturels qu'à l'intérieur-même de ces groupes. Les résultats indiquent que les données initiales, montrant que les Grecs et les Américains sont différents, sont basées sur les scores des étudiants; de façon générale, en regard des professionnels uniquement, aucune différence n'est soulevée pour le degré d'accord face à la faible ouverture de soi, peu importe leur âge ou groupe culturel. Une exception apparaît toutefois pour le sous-groupe d'Américains grecs professionnels et plus âgés pour lequel le fort désaccord avec la faible ouverture de soi peut refléter une sur-réaction face au processus d'acculturation. Les différences d'âge et de statut n'apparaissent pas significatives pour le groupe d'Américains, tandis qu'il semble y avoir un patron chez les professionels grecs à rejeter plus fortement la faible ouverture de soi comparativement aux étudiants grecs. Enfin, les femmes se montrent plus rejetantes à la fois en ce qui concerne la faible ouverture de soi et le sacrifice de soi dans les relations intimes comparativement aux hommes. Les femmes plus âgées sont plus fortement en désaccord avec le principe de sacrifice de soi, tandis que les hommes plus âgés y adhèrent davantage à mesure qu'ils vieillissent. El estudio compara griegos estadounidenses con griegos y estadounidenses blancos de por lo menos tres generaciones respecto a qué tanto se sentían representados por dos esquemas cognitivos de las relaciones íntimas. Los griegos estadounidenses muestran mayor rechazo a revelar poco sobre sí mismos en las relaciones íntimas que los griegos, pero no difieren de éstos en cuanto a qué tanto se sacrificarían por la pareja. En contraste, los griegos estadounidenses no difirieron de los estadounidenses en su rechazo a revelar poco sobre sí mismos a la pareja y apoyaron más el auto sacrificio en las relaciones íntimas que los estadounidenses. Estos hallazgos se interpretaron como indicativos de que los griegos estadounidenses se han aculturado a una orientación más individualista en términos de qué tanto revelan sobre sí mismos, a la vez que han mantenido una orientación colectivista respecto al auto sacrificio en las relaciones íntimas. La edad, el grupo cultural, y la condición de estudiante o profesional interactuaron con el rechazo a revelar poco sobre sí mismo y mostró que la edad y la diferencia en la condición de estudiante o profesional eran más pronunciadas entre los tres grupos culturales que al interior de cada uno de éstos. Reveló que el hallazgo inicial sobre la diferencia entre griegos y estadounidenses se basaba en las calificaciones de los estudiantes; los profesionales, con una excepción, no diferían en cuanto a su desacuerdo con revelar poco sobre sí mismos, independientemente de su edad y grupo cultural. La excepción fue el subgrupo de profesionales griegos estadounidenses de mayor edad, cuyo mayor descuerdo con revelar poco sobre sí mismo podría ser una reacción exagerada al proceso de aculturación. Las diferencias en la edad y en la condición de estudiante o profesional no fueron significativas en el grupo de estadounidenses, en tanto que los profesionales griegos muestran una tendencia a rechazar con mayor fuerza el revelar poco sobre sí mismos, en comparación con los estudiantes. Las mujeres rechazan más que los hombres tanto revelar poco sobre sí mismas como el auto sacrificio en las relaciones íntimas. Las mujeres de mayor edad discrepan con mayor fuerza con el principio de auto sacrificio, y a mayor edad en los hombres mayor adhesión a éste.
Semiconductor Materials for High Frequency Solid State Sources.
1985-01-18
saturation on near and submicron-scale device performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or...basis of all FET scaling procedures; and is a major motivating factor for going to submicron structures. This scaling was tested with the 4 following...performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or rejected as candidate device materials based, in
Enhancement of coupling ratios in SOI based asymmetrical optical directional couplers
NASA Astrophysics Data System (ADS)
Pendam, Nagaraju; Vardhani, Chunduru Parvatha
2017-11-01
A novel design of slab structured asymmetrical optical directional coupler with S-bend waveguides on silicon-on-insulator (SOI) platform has been designed by using R-Soft CAD tool. Beam propagation method (BPM) is used for light propagation analysis. The simulation results of asymmetrical optical directional couplers are reported. We find that the asymmetrical directional coupler has lower coupling ratios and higher extinction ratios with waveguide parameters such as width, wavelength, waveguide spacing, and coupling length. Simulation results designate that the coupling efficiency for transverse electric (TE) and transverse magnetic (TM) modes can reach about more than 95% and extinction ratio about 6 dB when the coupling length is 6 mm for both the polarization modes and insertion loss is 17 dB with same coupling length 6 mm at central wavelength 1550 nm.
Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics
Henkel, C.; Abermann, S.; Bethge, O.; Pozzovivo, G.; Klang, P.; Stöger-Pollach, M.; Bertagnolli, E.
2011-01-01
Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained. PMID:21461054
Loss, Daniel; Pedrocchi, Fabio L; Leggett, Anthony J
2011-09-02
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically.
Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures
NASA Astrophysics Data System (ADS)
Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.
2015-07-01
We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.
A novel double gate MOSFET by symmetrical insulator packets with improved short channel effects
NASA Astrophysics Data System (ADS)
Ramezani, Zeinab; Orouji, Ali A.
2018-03-01
In this article, we study a novel double-gate SOI MOSFET structure incorporating insulator packets (IPs) at the junction between channel and source/drain (S/D) ends. The proposed MOSFET has great strength in inhibiting short channel effects and OFF-state current that are the main problems compared with conventional one due to the significant suppressed penetrations of both the lateral electric field and the carrier diffusion from the S/D into the channel. Improvement of the hot electron reliability, the ON to OFF drain current ratio, drain-induced barrier lowering, gate-induced drain leakage and threshold voltage over conventional double-gate SOI MOSFETs, i.e. without IPs, is displayed with the simulation results. This study is believed to improve the CMOS device reliability and is suitable for the low-power very-large-scale integration circuits.
Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi
2017-11-01
Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.
CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.
Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang
2015-01-14
In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.
Murakami, Takashi; Zhang, Yong; Wang, Xiaoen; Hiroshima, Yukihiko; Kasashima, Hiroaki; Yashiro, Masakazu; Hirakawa, Kosei; Miwa, Atsushi; Kiyuna, Tasuku; Matsuyama, Ryusei; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2016-05-01
Orthotopic (literally "correct place") implantation of cancer in nude mice has long been known to be superior to subcutaneous transplantation because the orthotopic tumor can metastasize. We reported previously on surgical orthotopic implantation (SOI) of gastric cancer tissue in nude mice resulting in the formation of metastases in 100% of the mice with extensive primary growth to the regional lymph nodes, liver, and lung. In contrast, when cell suspensions were used to inject gastric cancer cells orthotopically, metastases occurred in only 6.7% of the mice with local tumor formation, emphasizing the importance of orthotopically implanting intact tissue to allow full expression of metastatic potential. However, the different behavior of tumors implanted orthotopically by the two methods has not been visualized in real time. OCUM-2MD3 human gastric cancer cells labeled with the fluorescent protein Azami-Green were implanted orthotopically as cells or tissue in nude mice. Orthotopic implantation of cells resulted in local spread on the stomach. In contrast, SOI of tumor tissue of OCUM-2MD3 resulted in vessel spread of the Azami-Green-expressing cancer cells. Metastasis was also observed in the left lobe of the liver after SOI. These results demonstrate the physiological importance of intact cancer tissue for orthotopic implantation in order for tumors to properly grow and express their metastatic potential. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Astrophysics Data System (ADS)
Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo
2015-08-01
This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.
Spin-orbit tuned metal-insulator transitions in single-crystal Sr₂Ir 1–xRh xO₄ (0≤x≤1)
Qi, T. F.; Korneta, O. B.; Li, L.; ...
2012-09-06
Sr₂IrO₄ is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr₂RhO₄ is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic, and thermal properties reveals that substituting 4d Rh⁴⁺ (4d⁵) ions for 5d Ir⁴⁺ (5d⁵) ions in Sr₂IrO₄ directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr₂Ir 1–xRh xO₄ featuring two major effects: (1) Light Rh doping (0 ≤ x ≤ 0.16) prompts amore » simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x = 0. (2) However, with heavier Rh doping [0.24 < x < 0.85 (±0.05)] disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x = 1. The intricacy of Sr₂Ir 1–xRh xO₄ is further highlighted by comparison with Sr₂Ir 1–xRu xO₄ where Ru⁴⁺ (4d⁴) drives a direct crossover from the insulating to metallic states.« less
A global analysis of the asymmetric effect of ENSO on extreme precipitation
NASA Astrophysics Data System (ADS)
Sun, Xun; Renard, Benjamin; Thyer, Mark; Westra, Seth; Lang, Michel
2015-11-01
The global and regional influence of the El Niño-Southern Oscillation (ENSO) phenomenon on extreme precipitation was analyzed using a global database comprising over 7000 high quality observation sites. To better quantify possible changes in relatively rare design-relevant precipitation quantiles (e.g. the 1 in 10 year event), a Bayesian regional extreme value model was used, which employed the Southern Oscillation Index (SOI) - a measure of ENSO - as a covariate. Regions found to be influenced by ENSO include parts of North and South America, southern and eastern Asia, South Africa, Australia and Europe. The season experiencing the greatest ENSO effect varies regionally, but in most of the ENSO-affected regions the strongest effect happens in boreal winter, during which time the 10-year precipitation for |SOI| = 20 (corresponding to either a strong El Niño or La Niña episode) can be up to 50% higher or lower than for SOI = 0 (a neutral phase). Importantly, the effect of ENSO on extreme precipitation is asymmetric, with most parts of the world experiencing a significant effect only for a single ENSO phase. This finding has important implications on the current understanding of how ENSO influences extreme precipitation, and will enable a more rigorous theoretical foundation for providing quantitative extreme precipitation intensity predictions at seasonal timescales. We anticipate that incorporating asymmetric impacts of ENSO on extreme precipitation will help lead to better-informed climate-adaptive design of flood-sensitive infrastructure.
Zero-group-velocity acoustic waveguides for high-frequency resonators
NASA Astrophysics Data System (ADS)
Caliendo, C.; Hamidullah, M.
2017-11-01
The propagation of the Lamb-like modes along a silicon-on-insulator (SOI)/AlN thin supported structure was simulated in order to exploit the intrinsic zero group velocity (ZGV) features to design electroacoustic resonators that do not require metal strip gratings or suspended edges to confine the acoustic energy. The ZGV resonant conditions in the SOI/AlN composite plate, i.e. the frequencies where the mode group velocity vanishes while the phase velocity remains finite, were investigated in the frequency range from few hundreds of MHz up to 1900 MHz. Some ZGV points were found that show up mostly in low-order modes. The thermal behaviour of these points was studied in the -30 to 220 °C temperature range and the temperature coefficients of the ZGV resonant frequencies (TCF) were estimated. The behaviour of the ZGV resonators operating as gas sensors was studied under the hypothesis that the surface of the device is covered with a thin polyisobutylene (PIB) film able to selectively adsorb dichloromethane (CH2Cl2), trichloromethane (CHCl3), carbontetrachloride (CCl4), tetrachloroethylene (C2Cl4), and trichloroethylene (C2HCl3), at atmospheric pressure and room temperature. The sensor sensitivity to gas concentration in air was simulated for the first four ZGV points of the inhomogeneous plate. The feasibility of high-frequency, low TCF electroacoustic micro-resonator based on SOI and piezoelectric thin film technology was demonstrated by the present simulation study.
NASA Astrophysics Data System (ADS)
Yan-Hui, Zhang; Jie, Wei; Chao, Yin; Qiao, Tan; Jian-Ping, Liu; Peng-Cheng, Li; Xiao-Rong, Luo
2016-02-01
A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD > 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).
NASA Astrophysics Data System (ADS)
Yuan, Shoucai; Liu, Yamei
2016-08-01
This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.
NASA Astrophysics Data System (ADS)
Russell, L. M.; Leaitch, W. R.; Liu, J.; Desiree, T. S.; Huang, L.; Sharma, S.; Chivulescu, A.; Veber, D.; Zhang, W.
2016-12-01
Long-term measurements of submicron aerosol particle chemical composition and size distributions are essential for evaluating whether global climate models correctly transport particles from lower latitudes to polar regions, especially in the winter months when satellite retrieval of aerosol properties is limited. In collaboration with ongoing measurements by the Dr. Neil Trivett Global Atmospheric Watch observatory at Alert, Nunavut (82.5°N; elevation 185 m-ASL), we measured the organic functional group composition of submicron aerosol particles sampled from the 10-m inlet from April 2012 to October 2014. The sampling site is approximately 10 km from the Alert station, and vehicle traffic is restricted except when filter sampling is stopped, making the impact of local emissions on submicron particle mass concentrations small. The organic functional group (OFG) composition is measured by Fourier Transform Infrared spectroscopy of samples collected on pre-loaded Teflon filters and stored and shipped frozen to La Jolla, California, for analysis. Samples were collected weekly to complement the twice hourly online measurements of non-refractory organic and inorganic composition by an Aerodyne ACSM. Organic components are shown to contribute a substantial fraction of the measured aerosol submicron mass year round. These measurements illustrate the seasonal contributions to the aerosol size distribution from OFG and illustrate the potential sources of the OFG at this remote site. The three largest OFG sources are transported fossil fuel combustion emissions from lower latitudes, sea spray and other marine particles, and episodic contributions from wildfires, volcanoes, and other high-latitude events. These sources are similar to those identified from earlier OFG measurements at Barrow, Alaska, and during the ICEALOT cruise in the Arctic Ocean.
High-pressure minerals in shocked meteorites
NASA Astrophysics Data System (ADS)
Tomioka, Naotaka; Miyahara, Masaaki
2017-09-01
Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.
Modelling of the hole-initiated impact ionization current in the framework of hydrodynamic equations
NASA Astrophysics Data System (ADS)
Lorenzini, Martino; Van Houdt, Jan
2002-02-01
Several research papers have shown the feasibility of the hydrodynamic transport model to investigate impact ionization in semiconductor devices by means of mean-energy-dependent generation rates. However, the analysis has been usually carried out for the case of the electron-initiated impact ionization process and less attention has been paid to the modelling of the generation rate due to impact ionization events initiated by holes. This paper therefore presents an original model for the hole-initiated impact ionization in silicon and validates it by comparing simulation results with substrate currents taken from p-channel transistors manufactured in a 0.35 μm CMOS technology having three different channel lengths. The experimental data are successfully reproduced over a wide range of applied voltages using only one fitting parameter. Since the impact ionization of holes triggers the mechanism responsible for the back-bias enhanced gate current in deep submicron nMOS devices, the model can be exploited in the development of non-volatile memories programmed by secondary electron injection.
Height-selective etching for regrowth of self-aligned contacts using MBE
NASA Astrophysics Data System (ADS)
Burek, G. J.; Wistey, M. A.; Singisetti, U.; Nelson, A.; Thibeault, B. J.; Bank, S. R.; Rodwell, M. J. W.; Gossard, A. C.
2009-03-01
Advanced III-V transistors require unprecedented low-resistance contacts in order to simultaneously scale bandwidth, fmax and ft with the physical active region [M.J.W. Rodwell, M. Le, B. Brar, in: Proceedings of the IEEE, 96, 2008, p. 748]. Low-resistance contacts have been previously demonstrated using molecular beam epitaxy (MBE), which provides active doping above 4×10 19 cm -3 and permits in-situ metal deposition for the lowest resistances [U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett., submitted]. But MBE is a blanket deposition technique, and applying MBE regrowth to deep-submicron lateral device dimensions is difficult even with advanced lithography techniques. We present a simple method for selectively etching undesired regrowth from the gate or mesa of a III-V MOSFET or laser, resulting in self-aligned source/drain contacts regardless of the device dimensions. This turns MBE into an effectively selective area growth technique.
Probing the electrical switching of a memristive optical antenna by STEM EELS
Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.
2016-01-01
The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052
Development of scanning graphene Hall probes for magnetic microscopy
NASA Astrophysics Data System (ADS)
Schaefer, Brian T.; Wang, Lei; McEuen, Paul L.; Nowack, Katja C.
We discuss our progress on developing scanning Hall probes fabricated from hexagonal boron nitride (hBN)-encapsulated graphene, with the goal to image magnetic fields with submicron resolution. In contrast to scanning superconducting quantum interference device (SQUID) microscopy, this technique is compatible with a large applied magnetic field and not limited to cryogenic temperatures. The field sensitivity of a Hall probe depends inversely on carrier density, while the primary source of noise in the measurement is Johnson noise originating from the device resistance. hBN-encapsulated graphene demonstrates high carrier mobility at low carrier densities, therefore making it an ideal material for sensitive Hall probes. Furthermore, engineering the dielectric environment of graphene by encapsulating in hBN reduces low-frequency charge noise and disorder from the substrate. We outline our plans for adapting these devices for scanning, including characterization of the point spread function with a scanned current loop and fabrication of a deep-etched structure that enables positioning the sensitive area within 100 nanometers of the sample surface.
The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.
2015-02-28
Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less
Native backfill materials for mechanically stabilized earth walls.
DOT National Transportation Integrated Search
2005-01-01
Mechanically stabilized earth walls are an attractive alternative to conventional reinforced concrete retaining walls. The economy of these walls for non-critical applications might be improved by using alternative backfills consisting of on-site soi...
This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.
The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.
Synthesis of submicron CaZrO{sub 3} in combustion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, Sh. M., E-mail: khaliullin@ihim.uran.ru; Zhuravlev, V. D.; Bamburov, V. G.
Submicron CaZrO{sub 3} powder is obtained in combustion reactions (solution combustion synthesis—SCS) with glycine. It is found that SCS reduces the sintering temperature of CaZrO{sub 3} powders. The dielectric properties of calcium zirconate ceramics are studied by the electrochemical impedance method. It is shown that a ceramics of powders obtained by the SCS method has high dielectric characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianjun, E-mail: jjchern@pku.edu.cn; Sun, Chengwei; Gong, Qihuang
A submicron asymmetric dielectric-coated metal slit with a Fabry–Perot (FP) nano-resonator is experimentally fabricated to realize an ultra-small on-chip polarization splitter. In the hybrid plasmonic structure, both of the transverse-electric (TE) and transverse-magnetic (TM) modes can be efficiently generated on the front metal surface. Based on the quite different resonant conditions and the different field confinements of the two orthogonal polarization modes in the FP resonator, the TM and TE modes are generated to propagate in the opposite directions along the metal surface. In this device, there are no coupling waveguide regions, and the excitation and the splitting of themore » TE and TM modes are integrated into the same asymmetric nano-slit. This considerably shrinks the device dimension to only about 850 nm (about one wavelength). In such a submicron asymmetric slit, the measured extinction ratios for the two opposite directions can reach up to (η{sub L}/η{sub R}){sup TM} ≈ 1:14 and (η{sub L}/η{sub R}){sup TE} ≈ 11:1 at λ = 820 nm. This on-chip submicron polarization splitter is of importance in highly integrated photonic circuits.« less
Yang, You; Sun, Jing; Liu, Xiaolu; Guo, Zhenzhen; He, Yunhu; Wei, Dan; Zhong, Meiling; Guo, Likun; Zhang, Xingdong
2017-01-01
Abstract Native tissue is naturally comprised of highly-ordered cell-matrix assemblies in a multi-hierarchical way, and the nano/submicron alignment of fibrous matrix is found to be significant in supporting cellular functionalization. In this study, a self-designed wet-spinning device appended with a rotary receiving pool was used to continuously produce shear-patterned hydrogel microfibers with aligned submicron topography. The process that the flow-induced shear force reshapes the surface of hydrogel fiber into aligned submicron topography was systematically analysed. Afterwards, the effect of fiber topography on cellular longitudinal spread and elongation was investigated by culturing rat neuron-like PC12 cells and human osteosarcoma MG63 cells with the spun hydrogel microfibers, respectively. The results suggested that the stronger shear flow force would lead to more distinct aligned submicron topography on fiber surface, which could induce cell orientation along with fiber axis and therefore form the cell-matrix dual-alignment. Finally, a multi-hierarchical tissue-like structure constructed by dual-oriented cell-matrix assemblies was fabricated based on this wet-spinning method. This work is believed to be a potentially novel biofabrication scheme for bottom-up constructing of engineered linear tissue, such as nerve bundle, cortical bone, muscle and hepatic cord. PMID:29026644
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning
Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.
2016-01-01
Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011
The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion.
Yue, Peng-Fei; Lu, Xiu-Yun; Zhang, Zeng-Zhu; Yuan, Hai-Long; Zhu, Wei-Feng; Zheng, Qin; Yang, Ming
2009-01-01
The entrapment efficiency (EE) and release in vitro are very important physicochemical characteristics of puerarin submicron emulsion (SME). In this paper, the performance of ultrafiltration (UF), ultracentrifugation (UC), and microdialysis (MD) for determining the EE of SME were evaluated, respectively. The release study in vitro of puerarin from SME was studied by using MD and pressure UF technology. The EE of SME was 86.5%, 72.8%, and 55.8% as determined by MD, UF, and UC, respectively. MD was not suitable for EE measurements of puerarin submicron oil droplet, which could only determine the total EE of submicron oil droplet and liposomes micelles, but it could be applied to determine the amount of free drug in SMEs. Although UC was the fastest and simplest to use, its results were the least reliable. UF was still the relatively accurate method for EE determination of puerarin SME. The release of puerarin SME could be evaluated by using MD and pressure UF, but MD seemed to be more suitable for the release study of puerarin emulsion. The drug release from puerarin SME at three drug concentrations was initially rapid, but reached a plateau value within 30 min. Drug release of puerarin from the SME occurred via burst release.
Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies
NASA Astrophysics Data System (ADS)
Vishnoi, U.; Noll, T. G.
2012-09-01
The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit simulation of extracted netlist is 768 MHz under typical, and 463 MHz under worst case technology and application corner conditions, respectively. Simulated dynamic power dissipation is 0.24 uW MHz-1 at 0.9 V; static power is 38 uW in slow corner, 65 uW in typical corner and 518 uW in fast corner, respectively. The latter can be reduced by 43% in a 40-nm CMOS technology using 0.5 V reverse-backbias. These features are compared with the results from different design styles as well as with an implementation in 28-nm CMOS technology. It is interesting that in the latter case area scales as expected, but worst case performance and energy do not scale well anymore.
DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 4.4.4 Gain 4.5: CCD scales at various foci APPENDIX I: Filters for CCD Imaging II: Gain and Readout
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
A novel wavelength multiplexer/demutiplexer based on side-port multimode interference coupler
NASA Astrophysics Data System (ADS)
Wei, Shile; Jian, Wu; Zhao, Lingjuan; Qiu, Jifang; Yin, Zuoshan; Hui, Rongqing
2014-05-01
Based on side-port multimode interference coupler, a novel design of 1.31/1.55-μm wavelength multiplexer/demutiplexer on SOI platform with conventional channel waveguides is proposed and analyzed by using wide-angle beam propagation method. With a 25.9μm long ultra-short MMI section, nearly an order of magnitude shorter than that of the previously reported 1.31/1.55-μm wavelength MMI splitters on SOI, simulation results exhibit contrasts of 28dB and 25dB at wavelength 1.31 and 1.55 μm, respectively, and the insertion losses are both below 0.55dB. Meanwhile, the analysis shows that the proposed structure has larger fabrication tolerances than restricted MMI based structures and the present design methodology also applies to split other wavelengths and in different material platforms, such as InP, GaAs and PLC guides, etc.
NASA Astrophysics Data System (ADS)
Zhang, Kuiyuan; Umehara, Shigehiro; Yamaguchi, Junki; Furuta, Jun; Kobayashi, Kazutoshi
2016-08-01
This paper analyzes how body bias and BOX region thickness affect soft error rates in 65-nm SOTB (Silicon on Thin BOX) and 28-nm UTBB (Ultra Thin Body and BOX) FD-SOI processes. Soft errors are induced by alpha-particle and neutron irradiation and the results are then analyzed by Monte Carlo based simulation using PHITS-TCAD. The alpha-particle-induced single event upset (SEU) cross-section and neutron-induced soft error rate (SER) obtained by simulation are consistent with measurement results. We clarify that SERs decreased in response to an increase in the BOX thickness for SOTB while SERs in UTBB are independent of BOX thickness. We also discover SOTB develops a higher tolerance to soft errors when reverse body bias is applied while UTBB become more susceptible.
Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited].
Stojanović, Vladimir; Ram, Rajeev J; Popović, Milos; Lin, Sen; Moazeni, Sajjad; Wade, Mark; Sun, Chen; Alloatti, Luca; Atabaki, Amir; Pavanello, Fabio; Mehta, Nandish; Bhargava, Pavan
2018-05-14
Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.
2011-04-01
la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2011 DRDC Toronto TR... la gestion de la terreur, c’est parce que les êtres humains sont les seuls à posséder la capacité de comprendre la finitude de la vie qu’ils ont...entre autres l’adhésion à une vision du monde culturellement significative et un sentiment de sécurité basé sur l’estime de soi. À ce jour,
NASA Astrophysics Data System (ADS)
Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo
2018-04-01
We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.
Toward athermal silicon-on-insulator (de)multiplexers in the O-band.
Hassan, Karim; Sciancalepore, Corrado; Harduin, Julie; Ferrotti, Thomas; Menezo, Sylvie; Ben Bakir, Badhise
2015-06-01
We report on the design, fabrication, and characterization of a 1×4 silicon-on-insulator (SOI) demultiplexer exhibiting a significant reduction of its thermo-optical sensitivity in the O-band. The optical filtering is achieved by cascading several Mach-Zehnder interferometers (MZIs) fabricated on a 300-nm-thick SOI platform. Owing to an asymmetric design of the confinement for each MZIs, we found an athermal criterium that satisfies the spectral requirements. The thermal sensitivity of the structure is analyzed by a semi-analytical model in order to create an athermal multiplexer. Fiber-to-fiber thermo-optical testing reveals a thermal sensitivity of around 17 pm/°C reduced by 75% compared to the standard devices with promising performances for both the crosstalk (15 dB), the insertion losses (4 dB), and absolute lambda registration (<0.25 nm).
Single halo SDODEL n-MOSFET: an alternative low-cost pseudo-SOI with better analog performance
NASA Astrophysics Data System (ADS)
Sarkar, Partha; Mallik, Abhijit; Sarkar, Chandan Kumar
2009-03-01
In this paper, with the help of extensive TCAD simulations, we investigate the analog performance of source/drain on depletion layer (SDODEL) MOSFETs with a single-halo (SH) implant near the source side of the channel. We use the SH implant in such a structure for the first time. The analog performance parameters in SH SDODEL MOSFETs are compared to those in SH MOSFETs as well as in SH SOI MOSFETs. In addition to reduced junction capacitance for the SH SDODEL structure as compared to that in bulk SH devices, it has been shown that such devices lead to improved performance and lower power dissipation for sub-100 nm CMOS technologies. Our results show that, in SH SDODEL MOSFETs, there is significant improvement in the intrinsic device performance for analog applications (such as device gain, gm/ID, etc) for the sub-100 nm technologies.
Absence of magnetic order in low-dimensional (RKKY) systems
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio; Leggett, Anthony; Loss, Daniel
2012-02-01
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically. [4pt] References: D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011).
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Monolithic optical phased-array transceiver in a standard SOI CMOS process.
Abediasl, Hooman; Hashemi, Hossein
2015-03-09
Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.
Polarization beam splitter based on a photonic crystal heterostructure.
Schonbrun, E; Wu, Q; Park, W; Yamashita, T; Summers, C J
2006-11-01
The design and characterization of a photonic crystal (PC) polarization beam splitter (PBS) that operates with an extinction ratio of greater than 15 dB for both polarizations are presented. The PBS is fabricated on a silicon-on-insulator (SOI) wafer where the input and output ports consist of 5 mum wide ridge waveguides. A large spectral shift is observed in the dispersion plots of the lowest-order even (TE-like) and odd (TM-like) modes due to the SOI confinement. Because of this shift, the TE-like mode is close to a directional gap at the top of the band, and the TM-like mode is in a low-frequency regime where the dispersion surface is almost isotropic. We show that the TE-like mode has very high reflection at the interface between the two PCs, whereas the TM-like mode exhibits a very high transmission.
Yong, Zheng; Shopov, Stefan; Mikkelsen, Jared C; Mallard, Robert; Mak, Jason C C; Voinigescu, Sorin P; Poon, Joyce K S
2017-03-20
We present a silicon electro-optic transmitter consisting of a 28nm ultra-thin body and buried oxide fully depleted silicon-on-insulator (UTBB FD-SOI) CMOS driver flip-chip integrated onto a Mach-Zehnder modulator. The Mach-Zehnder silicon optical modulator was optimized to have a 3dB bandwidth of around 25 GHz at -1V bias and a 50 Ω impedance. The UTBB FD-SOI CMOS driver provided a large output voltage swing around 5 Vpp to enable a high dynamic extinction ratio and a low device insertion loss. At 44 Gbps, the transmitter achieved a high extinction ratio of 6.4 dB at the modulator quadrature operation point. This result shows open eye diagrams at the highest bit rates and with the largest extinction ratios for silicon electro-optic transmitter using a CMOS driver.
NASA Astrophysics Data System (ADS)
Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.
2017-05-01
The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.
NASA Astrophysics Data System (ADS)
Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan
2017-07-01
Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.
Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem
2009-05-01
We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
NASA Astrophysics Data System (ADS)
Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.
2018-04-01
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.
1987-02-01
7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February...RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA SUFFIELD MEMORANDUM NO. 1193 SUBMICRON AEROSOL CHARACTERIZATION OF WATER BY Accession For A DIFFERENTIAL
Formation of Titania Submicron-Scale Rod Arrays on Titanium Substrate and In Vitro Biocompatibility
2005-01-01
vitro bioactivity. INTRODUCTION Commercially available pure titanium (c.p. Ti) and its alloys are widely used for dental and orthopedic implants because...days. DISCUSSION The submicron-scale rod arrays of rutile can be obtained on titanium surfaces after the heat treatment when the alkali- borate glass ...modification of titanium implants have been already developed or proposed to provide them with the ability of direct bonding to bone tissues. Note
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanwei; Xie Huimin; Fang Daining
2007-03-15
In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp; Institute for Advanced Research, Nagoya University, Aichi 464-8602; Asada, T.
Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution.more » Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically.« less
Vortex states in a submicron Bi2212 crystal probed by intrinsic Josephson junctions
NASA Astrophysics Data System (ADS)
Ooi, S.; Tachiki, M.; Mochiku, T.; Wang, H. B.; Komori, K.; Hirata, K.; Arisawa, S.
2018-03-01
To study the pancake-vortex states confined in a submicron Bi2Sr2CaCu2O8+y (Bi2212) crystal, we have measured the c-axis resistance and I-V characteristics of a stack of intrinsic Josephson junctions with a lateral dimension less than 1 µm. Although the stack was accidentally shunted by a parallel resistance of 7.5 kΩ, the I-V characteristics show homogeneous multiple branches after the subtraction of the component. The penetrations of single vortices into the submicron stack were clearly observed in the resistance measurements. A vortex phase diagram was constructed by mapping the c-axis resistance on an H-T plane. Temperature dependence of the first-vortex penetration field is consistent with the theoretical estimation on the formation of a pancake-vortex stack in the center of a superconducting strip.
Contact ice nucleation by submicron atmospheric aerosols
NASA Technical Reports Server (NTRS)
Deshler, T.
1982-01-01
An apparatus designed to measure the concentrations of submicron contact ice nuclei is described. Here, natural forces transfer nuclei to supercooled sample drops suspended in an aerosol stream. Experimental measurements of the scavenging rate of the sample drops for several humidities and aerosol sizes are found to be in agreement with theory to within a factor of two. This fact, together with the statistical tests showing a difference between the data and control samples, is seen as indicating that a reliable measurement of the concentrations of submicron contact ice nuclei has been effected. A figure is included showing the ice nucleus concentrations as a function of temperature and assumed aerosol radius. For a 0.01 micron radius, the average is 1/liter at -15 C and 3/liter at -18 C. It is noted that the measurements are in fair agreement with ice crystal concentrations in stable winter clouds measured over Elk Mountain, WY (Vali et al., 1982).
Submicron x-ray diffraction and its applications to problems in materials and environmental science
NASA Astrophysics Data System (ADS)
Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.
2002-03-01
The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.
Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene
NASA Astrophysics Data System (ADS)
Tsubokawa, Y.; Ishikawa, M.
2017-12-01
Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of < 500 nm, respectively. Our experiments demonstrate future measurements of ultrafine-grained mineral aggregates on its physical properties of Earth's mantle.
NASA Astrophysics Data System (ADS)
Abbaspour, R.; Brown, D. K.; Bakir, M. S.
2017-02-01
This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.
Performance comparison AN/FRD-10 versus PUSHER
NASA Astrophysics Data System (ADS)
Vincent, Wilbur R.; Adler, Richard W.
1995-02-01
The possibility of replacing some of the AN/FRD-10 Circular Disposed Antenna Array (CDAA) facilities with lower cost PUSHER type of CDAA is an option available to planners. It is generally assumed that the ability of the PUSHER to receive signals of interest (SOI) is only slightly less than that of the larger AN/FRD-10 and AN/FLR-9 types of CDAA. However, no specific analysis of the actual difference in performance is known to exist. This report provides a preliminary performance analysis of the two types of facilities. Detailed performance-related measurements have been made at a number of AN/FRD-10 CDAA sites. These measurements were made as a part of the U.S. Navy's Signal-to-Noise-Enhancement Program (SNEP). The objective of the SNEP is to identify and mitigate all factors that degrade the ability of receiving sites to receive SOI and process data from them. Similar measurements have also been made at PUSHER sites, although complete data is available from only a single PUSHER site. This report uses data accumulated from the AN/FRD-10 sites and from one measured PUSHER site to examine the differences in their ability to receive SOI. The performance Evaluation Technique (PET) developed by the Naval Postgraduate School was used to evaluate the performance of each kind of CDAA. To simplify this initial analysis, the assumption was made that an AN/FRD-10 site containing an RFSS type of RF switch would be replaced with a PUSHER. Only the technical properties of the two types of CDAA were considered.
Experimental verification of layout physical verification of silicon photonics
NASA Astrophysics Data System (ADS)
El Shamy, Raghi S.; Swillam, Mohamed A.
2018-02-01
Silicon photonics have been approved as one of the best platforms for dense integration of photonic integrated circuits (PICs) due to the high refractive index contrast among its materials. Silicon on insulator (SOI) is a widespread photonics technology, which support a variety of devices for lots of applications. As the photonics market is growing, the number of components in the PICs increases which increase the need for an automated physical verification (PV) process. This PV process will assure reliable fabrication of the PICs as it will check both the manufacturability and the reliability of the circuit. However, PV process is challenging in the case of PICs as it requires running an exhaustive electromagnetic (EM) simulations. Our group have recently proposed an empirical closed form models for the directional coupler and the waveguide bends based on the SOI technology. The models have shown a very good agreement with both finite element method (FEM) and finite difference time domain (FDTD) solvers. These models save the huge time of the 3D EM simulations and can be easily included in any electronic design automation (EDA) flow as the equations parameters can be easily extracted from the layout. In this paper we present experimental verification for our previously proposed models. SOI directional couplers with different dimensions have been fabricated using electron beam lithography and measured. The results from the measurements of the fabricate devices have been compared to the derived models and show a very good agreement. Also the matching can reach 100% by calibrating certain parameter in the model.
Improving breakdown voltage performance of SOI power device with folded drift region
NASA Astrophysics Data System (ADS)
Qi, Li; Hai-Ou, Li; Ping-Jiang, Huang; Gong-Li, Xiao; Nian-Jiong, Yang
2016-07-01
A novel silicon-on-insulator (SOI) high breakdown voltage (BV) power device with interlaced dielectric trenches (IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer, which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges (holes) at the corner of IDT. The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V. Project supported by the Guangxi Natural Science Foundation of China (Grant Nos. 2013GXNSFAA019335 and 2015GXNSFAA139300), Guangxi Experiment Center of Information Science of China (Grant No. YB1406), Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China, Key Laboratory of Cognitive Radio and Information Processing (Grant No. GXKL061505), Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China (Grant No. 2014KFMS04), and the National Natural Science Foundation of China (Grant Nos. 61361011, 61274077, and 61464003).
Facteurs prédictifs du fonctionnement chez les patients bipolaires de type 1 en période de rémission
Fekih-Romdhane, Feten; Homri, Wided; Mrabet, Ali; Labbane, Raja
2016-01-01
Introduction Les études récentes indiquent que le trouble bipolaire est associé à une déficience profonde dans presque tous les domaines de fonctionnement. La présente étude vise à évaluer le fonctionnement au sein d'une population de patients bipolaires type I en rémission. Méthodes Il s'agit d'une étude transversale réalisée auprès des patients bipolaires type I euthymiques et suivis en ambulatoire. Ont été utilisés l'échelle de dépression de Hamilton, l'échelle de manie de Young, l'Echelle d'Estime de Soi de Rosenberg, et le Functioning Assessment Short Test. Résultats Plus de la moitié de la population (53,3%) avaient une déficience fonctionnelle globale. Le fonctionnement global était associé à l'âge, au niveau scolaire, à l'activité professionnelle, au nombre d'épisodes maniaques et dépressifs, au nombre d'hospitalisations, à un score HDRS plus élevé, ainsi qu'aux deux sous-scores d'estime de soi « confiance en soi » et « autodépréciation ». Conclusion Nos résultats suggèrent qu'un changement de paradigme dans le traitement des troubles bipolaires devrait se produire, et que les objectifs de la thérapie devraient être modifiés d'une rémission symptomatique à une rémission fonctionnelle. PMID:28292029
Coherence among climate signals, precipitation, and groundwater.
Ghanbari, Reza Namdar; Bravo, Hector R
2011-01-01
Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Impact of climate variability on various Rabi crops over Northwest India
NASA Astrophysics Data System (ADS)
Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.
2018-01-01
The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.
A study of Solar-Enso correlation with southern Brazil tree ring index (1955- 1991)
NASA Astrophysics Data System (ADS)
Rigozo, N.; Nordemann, D.; Vieira, L.; Echer, E.
The effects of solar activity and El Niño-Southern Oscillation on tree growth in Southern Brazil were studied by correlation analysis. Trees for this study were native Araucaria (Araucaria Angustifolia)from four locations in Rio Grande do Sul State, in Southern Brazil: Canela (29o18`S, 50o51`W, 790 m asl), Nova Petropolis (29o2`S, 51o10`W, 579 m asl), Sao Francisco de Paula (29o25`S, 50o24`W, 930 m asl) and Sao Martinho da Serra (29o30`S, 53o53`W, 484 m asl). From these four sites, an average tree ring Index for this region was derived, for the period 1955-1991. Linear correlations were made on annual and 10 year running averages of this tree ring Index, of sunspot number Rz and SOI. For annual averages, the correlation coefficients were low, and the multiple regression between tree ring and SOI and Rz indicates that 20% of the variance in tree rings was explained by solar activity and ENSO variability. However, when the 10 year running averages correlations were made, the coefficient correlations were much higher. A clear anticorrelation is observed between SOI and Index (r=-0.81) whereas Rz and Index show a positive correlation (r=0.67). The multiple regression of 10 year running averages indicates that 76% of the variance in tree ring INdex was explained by solar activity and ENSO. These results indicate that the effects of solar activity and ENSO on tree rings are better seen on long timescales.
O'Campo, Patricia; Hwang, Stephen W; Gozdzik, Agnes; Schuler, Andrée; Kaufman-Shriqui, Vered; Poremski, Daniel; Lazgare, Luis Ivan Palma; Distasio, Jino; Belbraouet, Slimane; Addorisio, Sindi
2017-08-01
Individuals experiencing homelessness are particularly vulnerable to food insecurity. The At Home/Chez Soi study provides a unique opportunity to first examine baseline levels of food security among homeless individuals with mental illness and second to evaluate the effect of a Housing First (HF) intervention on food security in this population. At Home/Chez Soi was a 2-year randomized controlled trial comparing the effectiveness of HF compared with usual care among homeless adults with mental illness, stratified by level of need for mental health services (high or moderate). Logistic regressions tested baseline associations between food security (US Food Security Survey Module), study site, sociodemographic variables, duration of homelessness, alcohol/substance use, physical health and service utilization. Negative binomial regression determined the impact of the HF intervention on achieving levels of high or marginal food security over an 18-month follow-up period (6 to 24 months). Community settings at five Canadian sites (Moncton, Montreal, Toronto, Winnipeg and Vancouver). Homeless adults with mental illness (n 2148). Approximately 41 % of our sample reported high or marginal food security at baseline, but this figure varied with gender, age, mental health issues and substance use problems. High need participants who received HF were more likely to achieve marginal or high food security than those receiving usual care, but only at the Toronto and Moncton sites. Our large multi-site study demonstrated low levels of food security among homeless experiencing mental illness. HF showed promise for improving food security among participants with high levels of need for mental health services, with notable site differences.
GSFC Technical Outreach: The Capitol College Model
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Wagner, David
2008-01-01
In February 2005, as part of the National Aeronautic and Space Administration (NASA) Technical Outreach Program, Goddard Space Flight Center (GSFC) awarded Capitol College of Laurel, Maryland an Educational Grant to establish a Space Operation academic curriculum to meet the future needs of mission operations engineers. This was in part due to the aerospace industry and GSFC concerns that a large number of professional engineers are projected to retire in the near term with evidence showing that current enrollment in engineering schools will not produce sufficient number of space operation trained engineers that will meet industry and government demands. Capitol College, under the agreement of the Educational Grant, established the Space Operations Institute (SOI) with a new curriculum in Space Operations that was approved and certified by the State of Maryland. The SO1 programs focuses on attracting, recruiting, and training a pipeline of highly qualified engineers with experience in mission operations, system engineering and development. The selected students are integrated as members of the engineering support team in any of the missions supported by the institute. The students are mentored by professional engineers from several aerospace companies that support GSFC. Initially, the institute was involved in providing console engineers and mission planning trainees for the Upper Atmosphere Research Satellite (UARS), the Earth Radiation Budget Satellite (ERBS) and the Total Ozone Mapping Spectrometer mission (TOMS). Subsequently, the students were also involved in the technology refresh of the TOMS ground system and other mission operations development. Further mission assignment by GSFC management included participation in the Tropical Rainfall Measuring Mission (TRMM) mission operations and ground system technology refresh. The SOI program has been very successful. Since October 2005, sixty-four students have been enrolled in the SOI program and twenty-five have already graduated from the program, nineteen of whom are employed by company's supporting GSFC. Due to the success of the program, the initial grant period was extended for another period of two years. This paper presents the process that established the SOI as a viable pipeline of mission operations engineers, the lessons learned in the process of dealing with grants, and experience gained in mentoring engineering students that are responsible for particular areas of expertise and functionality. This paper can also be considered a case study and model for integrating a student team with government and industry professionals in the real world of mission operations.