DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; McFarlane, Sally A.
2010-09-16
Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2009-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2010-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
NASA Technical Reports Server (NTRS)
Ramey, Holly S.; Robertson, Franklin R.
2009-01-01
Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.
NASA Technical Reports Server (NTRS)
Lin, Bing; Xu, Kuan-Man; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Chambers, Lin; Fan, Alice; Sun, Wenbo
2007-01-01
Measurements of cloud properties and atmospheric radiation taken between January and August 1998 by the Tropical Rainfall Measuring Mission (TRMM) satellite were used to investigate the effect of spatial and temporal scales on the coincident occurrences of tropical individual cirrus clouds (ICCs) and deep convective systems (DCSs). It is found that there is little or even negative correlation between instantaneous occurrences of ICC and DCS in small areas, in which both types of clouds cannot grow and expand simultaneously. When spatial and temporal domains are increased, ICCs become more dependent on DCSs due to the origination of many ICCs from DCSs and moisture supply from the DCS in the upper troposphere for the ICCs to grow, resulting in significant positive correlation between the two types of tropical high clouds in large spatial and long temporal scales. This result may suggest that the decrease of tropical high clouds with SST from model simulations is likely caused by restricted spatial domains and limited temporal periods. Finally, the radiative feedback due to the change in tropical high cloud area coverage with sea surface temperature appears small and about -0.14 W/sq m per degree Kelvin.
The relationships between precipitation, convective cloud and tropical cyclone intensity change
NASA Astrophysics Data System (ADS)
Ruan, Z.; Wu, Q.
2017-12-01
Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K
Shallow cloud statistics over Tropical Western Pacific: CAM5 versus ARM Comparison
NASA Astrophysics Data System (ADS)
Chandra, A.; Zhang, C.; Klein, S. A.; Ma, H. Y.; Kollias, P.; Xie, S.
2014-12-01
The role of shallow convection in the tropical convective cloud life cycle has received increasing interest because of its sensitivity to simulate large-scale tropical disturbances such as MJO. Though previous studies have proposed several hypotheses to explain the role of shallow clouds in the convective life cycle, our understanding on the role of shallow clouds is still premature. There are more questions needs to be addressed related to the role of different cloud population, conditions favorable for shallow to deep convection transitions, and their characteristics at different stages of the convective cloud life. The present study aims to improve the understanding of the shallow clouds by documenting the role of different shallow cloud population for the Year of Tropical Convection period using Atmospheric Radiation Measurement observations at the Tropical Western Pacific Manus site. The performance of the CAM5 model to simulate shallow clouds are tested using observed cloud statistics.
NASA Astrophysics Data System (ADS)
Ruan, Zhenxin; Wu, Qiaoyan
2018-01-01
In this paper, satellite-based precipitation, clouds with infrared (IR) brightness temperature (BT), and tropical cyclone (TC) data from 2000 to 2015 are used to explore the relationship between precipitation, convective cloud, and TC intensity change in the Western North Pacific Ocean. An IR BT of 208 K was chosen as a threshold for deep convection based on different diurnal cycles of IR BT. More precipitation and colder clouds with 208 K < IR BT < 240 K are found as storms intensify, while TC 24 h future intensity change is closely connected with very deep convective clouds with IR BT < 208 K. Intensifying TCs follow the occurrence of colder clouds with IR BT < 208 K with greater areal extents. As an indicator of very deep convective clouds, IR BT < 208 K is suggested to be a good predictor of TC intensity change. Based upon the 16 year analysis in the western North Pacific, TCs under the conditions that the mean temperature of very deep convective clouds is less than 201 K, and the coverage of this type of clouds is more than 27.4% within a radius of 300 km of the TC center, will more likely undergo rapid intensification after 24 h.
NASA Technical Reports Server (NTRS)
Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang
2005-01-01
This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.
NASA Astrophysics Data System (ADS)
Igel, M.
2015-12-01
The tropical atmosphere exhibits an abrupt statistical switch between non-raining and heavily raining states as column moisture increases across a wide range of length scales. Deep convection occurs at values of column humidity above the transition point and induces drying of moist columns. With a 1km resolution, large domain cloud resolving model run in RCE, what will be made clear here for the first time is how the entire tropical convective cloud population is affected by and feeds back to the pickup in heavy precipitation. Shallow convection can act to dry the low levels through weak precipitation or vertical redistribution of moisture, or to moisten toward a transition to deep convection. It is shown that not only can deep convection dehydrate the entire column, it can also dry just the lower layer through intense rain. In the latter case, deep stratiform cloud then forms to dry the upper layer through rain with anomalously high rates for its value of column humidity until both the total column moisture falls below the critical transition point and the upper levels are cloud free. Thus, all major tropical cloud types are shown to respond strongly to the same critical phase-transition point. This mutual response represents a potentially strong organizational mechanism for convection, and the frequency of and logical rules determining physical evolutions between these convective regimes will be discussed. The precise value of the point in total column moisture at which the transition to heavy precipitation occurs is shown to result from two independent thresholds in lower-layer and upper-layer integrated humidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Schumacher, Courtney; McFarlane, Sally A.
2013-01-31
Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.« less
NASA Technical Reports Server (NTRS)
Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.
NASA Astrophysics Data System (ADS)
Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.
1999-10-01
A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non
mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature is well reproduced by the model while simulation of the diurnal variation of the moisture field is poor. The implication of this comparison between model simulation and observations on cloud parameterization is discussed.
Response of deep and shallow tropical maritime cumuli to large-scale processes
NASA Technical Reports Server (NTRS)
Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.
1976-01-01
The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.
Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.
2004-01-01
The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms
NASA Technical Reports Server (NTRS)
DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)
2001-01-01
Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Zhou, Y. P.; Schmidt, Gavin A.; Lau, K. M.; Cahalan, R. F.
2008-01-01
A primary concern of CO2-induced warming is the associated rise of tropical (10S-10N) seasurface temperatures (SSTs). GISS Model-E was used to produce two sets of simulations-one with the present-day and one with doubled CO2 in the atmosphere. The intrinsic usefulness of model guidance in the tropics was confirmed when the model simulated realistic convective coupling between SSTs and atmospheric soundings and that the simulated-data correlations between SSTs and 300 hPa moiststatic energies were found to be similar to the observed. Model predicted SST limits: (i) one for the onset of deep convection and (ii) one for maximum SST, increased in the doubled C02 case. Changes in cloud heights, cloud frequencies, and cloud mass-fractions showed that convective-cloud changes increased the SSTs, while warmer mixed-layer of the doubled CO2 contained approximately 10% more water vapor; clearly that would be conducive to more intense storms and hurricanes.
Ubiquity and impact of thin mid-level clouds in the tropics
Bourgeois, Quentin; Ekman, Annica M. L.; Igel, Matthew R.; Krejci, Radovan
2016-01-01
Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TMLCs) are ubiquitous in the tropics. Supported by high-resolution regional model simulations, we find that TMLCs are formed by detrainment from convective clouds near the zero-degree isotherm. Calculations using a radiative transfer model indicate that tropical TMLCs have a cooling effect on climate that could be as large in magnitude as the warming effect of cirrus. We conclude that more effort has to be made to understand TMLCs, as their influence on cloud feedbacks, heat and moisture transport, and climate sensitivity could be substantial. PMID:27530236
Ubiquity and impact of thin mid-level clouds in the tropics.
Bourgeois, Quentin; Ekman, Annica M L; Igel, Matthew R; Krejci, Radovan
2016-08-17
Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TMLCs) are ubiquitous in the tropics. Supported by high-resolution regional model simulations, we find that TMLCs are formed by detrainment from convective clouds near the zero-degree isotherm. Calculations using a radiative transfer model indicate that tropical TMLCs have a cooling effect on climate that could be as large in magnitude as the warming effect of cirrus. We conclude that more effort has to be made to understand TMLCs, as their influence on cloud feedbacks, heat and moisture transport, and climate sensitivity could be substantial.
Yu, Sungduk; Pritchard, Michael S.
2015-12-17
The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sungduk; Pritchard, Michael S.
The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.
NASA Astrophysics Data System (ADS)
Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen
2017-05-01
The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.
Stochasticity of convection in Giga-LES data
NASA Astrophysics Data System (ADS)
De La Chevrotière, Michèle; Khouider, Boualem; Majda, Andrew J.
2016-09-01
The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
Convectively-driven cold layer and its influences on moisture in the UTLS
NASA Astrophysics Data System (ADS)
Kim, J.; Randel, W. J.; Birner, T.
2016-12-01
Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.
A cloud-ozone data product from Aura OMI and MLS satellite measurements
NASA Astrophysics Data System (ADS)
Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.
2017-11-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.
A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements.
Ziemke, Jerald R; Strode, Sarah A; Douglass, Anne R; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D; Liu, Junhua; Strahan, Susan E; Bhartia, Pawan K; Haffner, David P
2017-01-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H 2 O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.
Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations
NASA Technical Reports Server (NTRS)
Putman, William; Suarez, Max
2010-01-01
With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.
NASA Astrophysics Data System (ADS)
Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii
2017-06-01
Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.
NASA Astrophysics Data System (ADS)
Meenu, S.; Rajeev, K.; Parameswaran, K.; Suresh Raju, C.
2006-12-01
Quantitative estimates of the spatio-temporal variations in deep convective events over the Indian subcontinent, Arabian Sea, Bay of Bengal, and tropical Indian Ocean are carried out using the data obtained from Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-14 and NOAA-16 during the period 1996-2003. Pixels having thermal IR brightness temperature (BT) less than 245K are considered as high altitude clouds and those having BT<220 K are considered as very high altitude clouds. Very deep convective clouds are observed over north Bay of Bengal during the Asian summer monsoon season when the mean cloud top temperature reaches as low as 190K. Over the Head Bay of Bengal (HBoB) from June to September, more than 50% of the observed clouds are deep convective type and more than half of these deep convective clouds are very deep convective clouds. Histogram analysis of the cloud top temperatures during this period shows that over HBoB the most prominent cloud top temperature of the deep convective clouds is ~205K over the HBoB while that over southeast Arabian Sea (SEAS) is ~220K. This indicates that most probably the cloud top altitude over HBoB is ~2 km larger than that over SEAS during the Asian summer monsoon period. Another remarkable feature observed during the Asian summer monsoon period is the significantly low values of deep convective clouds observed over the south Bay of Bengal close to Srilanka, which appears as a large pool of reduced cloud amount surrounded by regions of large-scale deep convection. Over both SEAS and HBoB, the total, deep convective and very deep convective cloud amounts as well as their corresponding cloud top temperatures (or the altitude of the cloud top) undergo large seasonal variations, while such variations are less prominent over the eastern equatorial Indian Ocean.
Observations of aerosol-induced convective invigoration in the tropical east Atlantic
NASA Astrophysics Data System (ADS)
Storer, R. L.; van den Heever, S. C.; L'Ecuyer, T. S.
2014-04-01
Four years of CloudSat data have been analyzed over a region of the east Atlantic Ocean in order to examine the influence of aerosols on deep convection. The satellite data were combined with information about aerosols taken from the Global and Regional Earth-System Monitoring Using Satellite and In Situ Data model. Only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, and rain top were all found to increase with increased aerosol loading. These effects were largely independent of the environment, and the differences between the cleanest and most polluted clouds sampled were found to be statistically significant. When examining an even smaller subset of deep convective clouds likely to be part of the convective core, similar trends were seen. These observations suggest that convective invigoration occurs with increased aerosol loading, leading to deeper, stronger storms in polluted environments.
Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model.
NASA Astrophysics Data System (ADS)
Randall, David A.; Harshvardhan; Dazlich, Donald A.; Corsetti, Thomas G.
1989-07-01
We have analyzed the effects of radiatively active clouds on the climate simulated by the UCLA/GLA GCM, with particular attention to the effects of the upper tropospheric stratiform clouds associated with deep cumulus convection, and the interactions of these clouds with convection and the large-scale circulation.Several numerical experiments have been performed to investigate the mechanisms through which the clouds influence the large-scale circulation. In the `NODETLQ' experiment, no liquid water or ice was detrained from cumulus clouds into the environment; all of the condensate was rained out. Upper level supersaturation cloudiness was drastically reduced, the atmosphere dried, and tropical outgoing longwave radiation increased. In the `NOANVIL' experiment, the radiative effects of the optically thich upper-level cloud sheets associated with deep cumulus convection were neglected. The land surface received more solar radiation in regions of convection, leading to enhanced surface fluxes and a dramatic increase in precipitation. In the `NOCRF' experiment, the longwave atmospheric cloud radiative forcing (ACRF) was omitted, paralleling the recent experiment of Slingo and Slingo. The results suggest that the ACRF enhances deep penetrative convection and precipitation, while suppressing shallow convection. They also indicate that the ACRF warms and moistens the tropical troposphere. The results of this experiment are somewhat ambiguous, however; for example, the ACRF suppresses precipitation in some parts of the tropics, and enhances it in others.To isolate the effects of the ACRF in a simpler setting, we have analyzed the climate of an ocean-covered Earth, which we call Seaworld. The key simplicities of Seaworld are the fixed boundary temperature with no land points, the lack of mountains, and the zonal uniformity of the boundary conditions. Results are presented from two Seaworld simulations. The first includes a full suite of physical parameterizations, while the second omits all radiative effects of the clouds. The differences between the two runs are, therefore, entirely due to the direct and indirect and indirect effects of the ACRF. Results show that the ACRF in the cloudy run accurately represents the radiative heating perturbation relative to the cloud-free run. The cloudy run is warmer in the middle troposphere, contains much more precipitable water, and has about 15% more globally averaged precipitation. There is a double tropical rain band in the cloud-free run, and a single, more intense tropical rain band in the cloudy run. The cloud-free run produces relatively weak but frequent cumulus convection, while the cloudy run produces relatively intense but infrequent convection. The mean meridional circulation transport nearly twice as much mass in the cloudy run. The increased tropical rising motion in the cloudy run leads to a deeper boundary layer and also to more moisture in the troposphere above the boundary layer. This accounts for the increased precipitable water content of the atmosphere. The clouds lead to an increase in the intensity of the tropical easterlies, and cause the midlatitude westerly jets to shift equatorward.Taken together, our results show that upper tropospheric clouds associated with moist convection, whose importance has recently been emphasized in observational studies, play a very complex and powerful role in determining the model results. This points to a need to develop more realistic parameterizations of these clouds.
Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.
2011-01-01
Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat balance maintenance on these time scales. However, water vapor and hydrologic scaling relationships for this mode of variability cast doubt on the utility of ISO variations as proxies for climate sensitivity response to external radiatively forced (e.g. greenhouse gas-induced) climate change.
Cloud Microphysics Budget in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2001-01-01
Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.
NASA Astrophysics Data System (ADS)
Behrangi, A.; Kubar, T. L.; Lambrigtsen, B.
2011-12-01
Different cloud types have substantially different characteristics in terms of radiative forcing and microphysical properties, both important components of Earth's climate system. Relationships between tropical cloud type characteristics and sea surface temperature (SST) using two-years of A-train data are investigated in this presentation. Stratocumulus clouds are the dominant cloud type over SSTs less than 301K, and in fact their fraction is strongly inversely related to SST. This is physically logical as both static stability and large-scale subsidence scale well with decreasing SST. At SSTs greater than 301K, high clouds are the most abundant cloud type. All cloud types (except nimbostratus and stratocumulus) become sharply more abundant for SSTs greater than a window between 299K and 300.5K, depending on cloud type. The fraction of high, deep convective, altostratus, and altocumulus clouds peak at an SST close to 303K, while cumulus clouds have a broad cloud fraction peak centered near 301K. Deep convective and other high cloud types decrease sharply above SSTs of 303K. While overall early morning clouds are 10% (4%) more frequent than afternoon clouds as indicated by CloudSat (lidar-radar), certain cloud types occur more frequently in the early afternoon, such as high clouds. We also show that a large amount of warm precipitation mainly from stratocumulus clouds is missed or significantly underestimated by the current suite of satellite-based global precipitation measuring sensors. However, the operational sensitivity of Cloudsat cloud profiling radar permits to capture significant fraction of light drizzle and warm rain.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2016-01-01
During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.
NASA Technical Reports Server (NTRS)
Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.;
2011-01-01
A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.
Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Ackerman, A. S.
2006-01-01
Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.
On the existence of tropical anvil clouds
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.
2017-12-01
In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
Wang, Yong; Zhang, Guang J.
2016-09-29
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Zhang, Guang J.
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent; Gettelman, Andrew; Morrison, Hugh
In state-of-the-art climate models, each cloud type is treated using its own separate cloud parameterization and its own separate microphysics parameterization. This use of separate schemes for separate cloud regimes is undesirable because it is theoretically unfounded, it hampers interpretation of results, and it leads to the temptation to overtune parameters. In this grant, we are creating a climate model that contains a unified cloud parameterization and a unified microphysics parameterization. This model will be used to address the problems of excessive frequency of drizzle in climate models and excessively early onset of deep convection in the Tropics over land.more » The resulting model will be compared with ARM observations.« less
Scale Interactions in the Tropics from a Simple Multi-Cloud Model
NASA Astrophysics Data System (ADS)
Niu, X.; Biello, J. A.
2017-12-01
Our lack of a complete understanding of the interaction between the moisture convection and equatorial waves remains an impediment in the numerical simulation of large-scale organization, such as the Madden-Julian Oscillation (MJO). The aim of this project is to understand interactions across spatial scales in the tropics from a simplified framework for scale interactions while a using a simplified framework to describe the basic features of moist convection. Using multiple asymptotic scales, Biello and Majda[1] derived a multi-scale model of moist tropical dynamics (IMMD[1]), which separates three regimes: the planetary scale climatology, the synoptic scale waves, and the planetary scale anomalies regime. The scales and strength of the observed MJO would categorize it in the regime of planetary scale anomalies - which themselves are forced from non-linear upscale fluxes from the synoptic scales waves. In order to close this model and determine whether it provides a self-consistent theory of the MJO. A model for diabatic heating due to moist convection must be implemented along with the IMMD. The multi-cloud parameterization is a model proposed by Khouider and Majda[2] to describe the three basic cloud types (congestus, deep and stratiform) that are most responsible for tropical diabatic heating. We implement a simplified version of the multi-cloud model that is based on results derived from large eddy simulations of convection [3]. We present this simplified multi-cloud model and show results of numerical experiments beginning with a variety of convective forcing states. Preliminary results on upscale fluxes, from synoptic scales to planetary scale anomalies, will be presented. [1] Biello J A, Majda A J. Intraseasonal multi-scale moist dynamics of the tropical atmosphere[J]. Communications in Mathematical Sciences, 2010, 8(2): 519-540. [2] Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis[J]. Journal of the atmospheric sciences, 2006, 63(4): 1308-1323. [3] Dorrestijn J, Crommelin D T, Biello J A, et al. A data-driven multi-cloud model for stochastic parametrization of deep convection[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2013, 371(1991): 20120374.
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Pfister, Leonhard; Selkirk, Henry B.
1996-01-01
The extreme dryness of the lower stratosphere is believed to be caused by freeze-drying of air as it enters the stratosphere through the cold tropical tropopause. Previous investigations have been focused on dehydration occurring at the tops of deep convective cloud systems, However, recent observations of a ubiquitous stratiform cirrus cloud layer near the tropical tropopause suggest the possibility of dehydration as air is slowly lifted by large-scale motions, In this study, we have evaluated this possibility using a detailed ice cloud model. Simulations of ice cloud formation in the temperature minima of gravity waves (wave periods of 1 - 2 hours) indicate that large numbers of ice crystals will likely form due to the low temperatures and rapid cooling. As a result, the crystals do not grow larger than about 10 microns, fallspeeds are no greater than a few cm/s, and little or no precipitation or dehydration occurs. However, ice cloud's formed by large-scale vertical motions (with lifetimes of a day or more) should have,fever crystals and more time for crystal sedimentation to occur, resulting in water vapor depletions as large as 1 ppmv near the tropopause. We suggest that gradual lifting near the tropical tropopause, accompanied by formation of thin cirrus, may account for the dehydration.
Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign
NASA Astrophysics Data System (ADS)
Waddicor, D.; Vaughan, G.; Choularton, T.
2009-04-01
The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a much reduced aerosol number concentration in cloud. The high aerosol (cloud free) areas would appear after the cloud began to evaporate through the process of aerosol nucleation. The evaporating cloud particles and reduced cloud surface area would allow aerosol nucleation to occur - typically involving sulphuric acid and water, released from ice crystals. The time scales for the particle production have also been investigated using satellite and wind projections/ECMWF back trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan-Man; Cheng, Anning
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
Xu, Kuan-Man; Cheng, Anning
2016-11-15
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
NASA Technical Reports Server (NTRS)
Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio
2010-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation.
Final Technical Report for "Reducing tropical precipitation biases in CESM"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent
In state-of-the-art climate models, each cloud type is treated using its own separate cloud parameterization and its own separate microphysics parameterization. This use of separate schemes for separate cloud regimes is undesirable because it is theoretically unfounded, it hampers interpretation of results, and it leads to the temptation to overtune parameters. In this grant, we have created a climate model that contains a unified cloud parameterization (“CLUBB”) and a unified microphysics parameterization (“MG2”). In this model, all cloud types --- including marine stratocumulus, shallow cumulus, and deep cumulus --- are represented with a single equation set. This model improves themore » representation of convection in the Tropics. The model has been compared with ARM observations. The chief benefit of the project is to provide a climate model that is based on a more theoretically rigorous formulation.« less
Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...
2015-06-30
Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...
2015-12-01
Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Höft, J.; ...
2014-06-11
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Höft, J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Hoft, Jan
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...
2015-04-03
This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.« less
NASA Astrophysics Data System (ADS)
Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.
2017-12-01
A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.
Backscatter-depolarisation lidars on high-altitude research aircraft
NASA Astrophysics Data System (ADS)
Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav
2014-11-01
This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.
Entrainment vs. Dilution in Tropical Deep Convection
NASA Astrophysics Data System (ADS)
Hannah, W.
2017-12-01
The distinction between entrainment and dilution is investigated with cloud resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Entrainment contributes significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution, but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. The results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.
Stereoscopic, thermal, and true deep cumulus cloud top heights
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.
2004-05-01
We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.
Hurricane Irma's Cloud Structure as Seen by NASA's AIRS
2017-09-08
The large-scale structure of clouds in and around Hurricane Irma is seen in this animation and still image created with data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical cyclones. Observations were taken at 1 p.m. EDT (5 p.m. UTC) on Tuesday, Sept. 5, 2017, as Irma approached the Caribbean islands and was just becoming a powerful Category 5 storm. Each cylinder represents a volume of cloud detected by AIRS. The oval cylinder ends represent a region viewed by AIRS, with the oval sizes adjusted to reflect the proportion of clouds filling the area viewed. The largest ovals are about 30 miles (45 kilometers) across. The height of the cylinders indicates the cloud thickness, with thickest clouds reaching down to the surface. The vertical scale is exaggerated 15 times. Colors represent temperatures at the tops of the clouds. The perspective views the storm diagonally from above with an initial view toward the north-northwest, with the perspective rotating clockwise for a full circle. The area depicted is about 1,000 miles by 800 miles across (1,600 by 1,300 kilometers). At the start of the loop, North America is seen at the top of the image, and coastal Venezuela at the lower right. In the initial perspective, cirrus clouds (thin and blue), associated with flow outward from the top of the hurricane, overlie warmer (pink and red) shallow clouds. About five seconds into the loop, the deep clouds in the middle of Irma are easily seen. The most dangerous parts of Irma are within the region of high and cold (blue), thick clouds surrounding the central eye. The clouds are cold because they are carried to high, cold altitudes by vigorous thunderstorms within the hurricane. The eye itself is nearly cloud free, but the few clouds within it are low and warm. As the perspective shift toward the south-southeast around seven seconds into the loop, another storm system well north of Irma can be seen. It contains high, thick clouds, with more cirrus carried outward over shallow clouds. At about nine seconds, more outflow from Irma is seen, with high, thin clouds over shallow clouds once again apparent. Shortly afterward when the view is toward the southwest, yet more deep clouds and their outflowing cirrus clouds are apparent. This image depicts many of the clouds typical of the tropics even when cyclones are not present: high, cold thunderstorms pushing cirrus clouds over nearby regions containing many warm, shallow clouds. The animation also shows the structure typical of tropical cyclones around the world: very strong thunderstorms lifting clouds into cold parts of the atmosphere, with strong outflow at upper levels carrying cirrus clouds away from the storm center, and the storm organized symmetrically around a central eye. https://photojournal.jpl.nasa.gov/catalog/PIA21950
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark
2006-01-01
Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.
On the Use of Deep Convective Clouds to Calibrate AVHRR Data
NASA Technical Reports Server (NTRS)
Doelling, David R.; Nguyen, Louis; Minnis, Patrick
2004-01-01
Remote sensing of cloud and radiation properties from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) satellites requires constant monitoring of the visible sensors. NOAA satellites do not have onboard visible calibration and need to be calibrated vicariously in order to determine the calibration and the degradation rate. Deep convective clouds are extremely bright and cold, are at the tropopause, have nearly a Lambertian reflectance, and provide predictable albedos. The use of deep convective clouds as calibration targets is developed into a calibration technique and applied to NOAA-16 and NOAA-17. The technique computes the relative gain drift over the life-span of the satellite. This technique is validated by comparing the gain drifts derived from inter-calibration of coincident AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) radiances. A ray-matched technique, which uses collocated, coincident, and co-angled pixel satellite radiance pairs is used to intercalibrate MODIS and AVHRR. The deep convective cloud calibration technique was found to be independent of solar zenith angle, by using well calibrated Visible Infrared Scanner (VIRS) radiances onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, which precesses through all solar zenith angles in 23 days.
Lau, William K M; Kim, Kyu-Myong
2015-03-24
In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness (suppressed rainfall and reduced tropospheric relative humidity) under CO2 warming from Coupled Model Intercomparison Project Phase 5 (CMIP5) model projections. We find a strengthening of the HC manifested in a "deep-tropics squeeze" (DTS), i.e., a deepening and narrowing of the convective zone, enhanced ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hPa) of the deep tropics. The DTS induces atmospheric moisture divergence and reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among various water-cycle parameters examined, global dryness is found to have the highest signal-to-noise ratio. Our results provide a physical basis for inferring that greenhouse warming is likely to contribute to the observed prolonged droughts worldwide in recent decades.
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)
1996-01-01
Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the atmosphere to subsequently influence not only tropical but mid-latitude climate.
Effects of Overshooting Convection on the Tropical Tropopause Layer Temperature Structure and Trends
NASA Astrophysics Data System (ADS)
Ramsay, H.; Sherwood, S. C.; Singh, M.
2017-12-01
A series of idealised cloud-resolving simulations are performed to investigate the impact of spatial/and or temporal inhomogeneity of tropical deep convection (in particular, convective overshoots that penetrate well into the tropical tropopause layer) on upper tropospheric/lower stratospheric (UTLS) temperature structure and trends under surface warming. Two sets of simulations are studied: one in which the sea surface temperature (SST) is increased uniformly, and a second in which convective updrafts are intensified periodically by specifying a diurnally-varying skin temperature. All simulations are run to radiative-convective equilibrium so as to capture the mean-state response at time scales of weeks to months. We discuss the implications of our results for the interpretation of observed and modelled trends in the UTLS, as well as the diurnal cycle of tropical deep convection.
Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.
2012-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).
Entrainment versus Dilution in Tropical Deep Convection
Hannah, Walter M.
2017-11-01
In this paper, the distinction between entrainment and dilution is investigated with cloud-resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is presented and calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Dilution by entrainment also increases with increasing updraft velocity but only for sufficiently strong updrafts. Entrainment contributesmore » significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. Finally, the results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.« less
Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew
2004-01-01
Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.
Double-moment Cloud Microphysics Scheme for the Deep Convection Parameterization in the GFDL AM3
NASA Astrophysics Data System (ADS)
Belochitski, A.; Donner, L.
2013-12-01
A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) is being implemented in to the deep convection parameterization of Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and the roles of these effects in climate change. The scheme is implemented into the single column version of the GFDL AM3 and evaluated using large scale forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes and Tropical West Pacific sites. Sensitivity of the scheme to formulations for autoconversion of cloud water and its accretion by rain, self-collection of rain and self-collection of snow, as well as the formulation for heterogenous ice nucleation is investigated. In the future, tests with the full atmospheric GCM will be conducted.
An observational study of entrainment rate in deep convection
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...
2015-09-22
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
An observational study of entrainment rate in deep convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.
2013-01-01
The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.
Acceleration of tropical cyclogenesis by self-aggregation feedbacks
NASA Astrophysics Data System (ADS)
Muller, Caroline J.; Romps, David M.
2018-03-01
Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.
Climatology and Impact of Convection on the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Pittman, Jasna
2007-01-01
Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.
Deep convective clouds at the tropopause
NASA Astrophysics Data System (ADS)
Aumann, H. H.; Desouza-Machado, S. G.
2010-07-01
Data from the Advanced Infrared Sounder (AIRS) on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC). Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP), 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion") of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be interesting indicators of climate change.
Application of Deep Learning to Detect Precursors of Tropical Cyclone
NASA Astrophysics Data System (ADS)
Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S.
2017-12-01
Tropical cyclones (TCs) affect significant damage to human society. Predicting TC generation as soon as possible is important issue in both academic and social perspectives. In the present work, we investigate the probability of predicting TCs seven days prior using deep neural networks. The training data is produced from 30-year cloud resolving global atmospheric simulation (NICAM) with 14 km horizontal resolution (Kodama et al., 2015). We employed a TCs tracking algorithm (Sugi et al., 2002; Nakano et al., 2015) to NICAM simulation data in order to generate supervised cloud images (horizontal sizes are 800-1,000km). We generate approximately one million images of "TCs (include their precursors)" and "not TCs (low pressure clouds)". We generate ten types of image classifier based on 2-dimensional convolutional neural network, includes four convolutional layers, three pooling layers and two fully connected layers. The final predicted results are obtained by these ensemble mean values. Generated classifiers are applied to untrained global simulation data (four million test images). As a result, we succeeded in predicting the precursors of TCs seven and five days before their formation with a Recall of 88.6% and 89.6% (Precision is 11.4%), respectively.
Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture
NASA Astrophysics Data System (ADS)
Kim, Joowan; Randel, William J.; Birner, Thomas
2018-01-01
Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (>17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16-19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale ( 6,000 km in longitude) with minimum temperature anomaly of -2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL.
The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere
NASA Astrophysics Data System (ADS)
Lei, L.; McCormick, M. P.; Anderson, J.
2017-12-01
Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Christian, Hugh J.; Koshak, William J.; Goodman, Steven J.
2013-01-01
There is a need to monitor the on-orbit performance of the Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite R (GOES-R) for changes in instrument calibration that will affect GLM's lightning detection efficiency. GLM has no onboard calibration so GLM background radiance observations (available every 2.5 min) of Deep Convective Clouds (DCCs) are investigated as invariant targets to monitor GLM performance. Observations from the Lightning Imaging Sensor (LIS) and the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite are used as proxy datasets for GLM and ABI 11 m measurements.
NASA Astrophysics Data System (ADS)
Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.
2012-12-01
Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.
Impacts of a Fire Smoke Plume on Deep Convective Clouds Observed during DC3
NASA Astrophysics Data System (ADS)
Takeishi, A.; Storelvmo, T.; Zagar, M.
2014-12-01
While the ability of aerosols to act as cloud condensation nuclei (CCN) and ice nuclei (IN) is well recognized, the effects of changing aerosol number concentrations on convective clouds have only been studied extensively in recent years. As deep convective clouds can produce heavy precipitation and may sometimes bring severe damages, especially in the tropics, we need to understand the changes in the convective systems that could stem from aerosol perturbations. By perturbing convective clouds, it has also been proposed that aerosols can affect large-scale climate. According to the convective invigoration mechanism, an increase in the aerosol concentration could lead to a larger amount of rainfall and higher vertical velocities in convective clouds, due to an increase in the latent heat release aloft. With some of the satellite observations supporting this mechanism, it is necessary to understand how sensitive the model simulations actually are to aerosol perturbations. This study uses the Weather Research and Forecasting (WRF) model as a cloud-resolving model to reproduce deep convective clouds observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. The convective cloud of our interest was observed in northeastern Colorado on June 22nd in 2012, with a plume of forest fire smoke flowing into its core. Compared to other convective cells observed in the same area on different days, our aircraft data analysis shows that the convective cloud in question included more organic aerosols and more CCN. These indicate the influence of the biomass burning. We compare the results from simulations with different microphysics schemes and different cloud or ice number concentrations. These sensitivity tests tell us how different the amount and the pattern of precipitation would have been if the aerosol concentration had been higher or lower on that day. Both the sensitivity to aerosol perturbation and the reproducibility of the storm are shown to highly depend on the choice of the microphysics scheme.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne
2012-01-01
Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen
2008-01-01
This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.
Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations
NASA Astrophysics Data System (ADS)
Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.
2008-03-01
A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.
2015-12-01
The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed.
Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-01-01
Abstract For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three‐dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi‐uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation. PMID:27668295
A Conundrum of Tropical Cyclone Formation
NASA Astrophysics Data System (ADS)
Davis, C. A.
2014-12-01
This paper will address a conundrum that has emerged from recent research on tropical cyclone formation. Composite analyses and case studies suggest that prior to genesis, the atmosphere presents a mid-tropospheric vortex that is strong compared to the cyclonic circulation in the boundary layer. Accompanying this vortex is near saturation from the boundary layer through at least 5 km, sometimes more, and a nearly balanced weak negative temperature anomaly below the vortex and stronger positive temperature anomaly above. This thermodynamic state is one of high moisture but low buoyancy for lifted parcels (i.e. low convective available potential energy). However, observations also suggest that widespread deep convection accompanies genesis, with cloud top temperatures becoming colder near the time of genesis. This is seemingly at odds with in situ observations of thermodynamic characteristics prior to genesis. Progress toward understanding the apparent contradiction can be made by realizing that the existence of a moist, relatively stable vortex, and deep convective clouds are not necessarily coincident in space and time. This is demonstrated by a detailed analysis of the two days leading up to the formation of Atlantic tropical cyclone Karl on 14 September. Karl featured a relatively long gestation period characterized initially by a marked misalignment of mid-tropospheric and surface cyclonic circulations. The mid-tropospheric vortex strengthened due to a pulse of convection earlier on 13 September. Meanwhile, the near-surface vortex underwent a precession around the mid-tropospheric vortex as the separation between the two decreased. The eruption of convection around midnight on 14 September, 18 hours prior to declaration on a TC, occurred in the center of the nearly-aligned vortex, contained a mixture of shallow and deep convection and resulted in spin-up over a deep layer, but particularly at the surface. Prior to genesis, the most intense deep convection was located at least 200 km from the center.
Aerosol impacts on deep convective storms in the tropics: A combination of modeling and observations
NASA Astrophysics Data System (ADS)
Storer, Rachel Lynn
It is widely accepted that increasing the number of aerosols available to act as cloud condensation nuclei (CCN) will have significant effects on cloud properties, both microphysical and dynamical. This work focuses on the impacts of aerosols on deep convective clouds (DCCs), which experience more complicated responses than warm clouds due to their strong dynamical forcing and the presence of ice processes. Several previous studies have seen that DCCs may be invigorated by increasing aerosols, though this is not the case in all scenarios. The precipitation response to increased aerosol concentrations is also mixed. Often precipitation is thought to decrease due to a less efficient warm rain process in polluted clouds, yet convective invigoration would lead to an overall increase in surface precipitation. In this work, modeling and observations are both used in order to enhance our understanding regarding the effects of aerosols on DCCs. Specifically, the area investigated is the tropical East Atlantic, where dust from the coast of Africa frequently is available to interact with convective storms over the ocean. The first study investigates the effects of aerosols on tropical DCCs through the use of numerical modeling. A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as CCN. Polluted simulations contained more deep convective clouds, wider storms, higher cloud tops and more convective precipitation across the entire domain. Differences in the warm cloud microphysical processes were largely consistent with aerosol indirect theory, and the average precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in surface precipitation; however the production of rain through the melting of ice, though it also decreased, became more important as the aerosol concentration increased. The DCCs in polluted simulations contained more frequent, stronger updrafts and downdrafts, but the average updraft speed decreased with increasing aerosols in DCCs above 6 km. An examination of the buoyancy term of the vertical velocity equation demonstrates that the drag associated with condensate loading is an important factor in determining the average updraft strength. The largest contributions to latent heating in DCCs were cloud nucleation and vapor deposition onto water and ice, but changes in latent heating were, on average, an order of magnitude smaller than those in the condensate loading term. It is suggested that the average updraft is largely influenced by condensate loading in the more extensive stratiform regions of the polluted storms, while invigoration in the convective core leads to stronger updrafts and higher cloud tops. The goal of the second study was to examine observational data for evidence that would support the findings of the modeling work. In order to do this, four years of CloudSat data were analyzed over a region of the East Atlantic, chosen for the similarity (in meteorology and the presence of aerosols) to the modeling study. The satellite data were combined with information about aerosols taken from the output of a global transport model, and only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, rain top, and ice water path were all found to increase with increased aerosol loading. These findings are in agreement with what was found in the modeling work, and are suggestive of convective invigoration with increased aerosols. In order to separate environmental effects from that due to aerosols, the data were sorted by environmental convective available potential energy (CAPE) and lower tropospheric static stability (LTSS). The aerosol effects were found to be largely independent of the environment. A simple statistical test suggests that the difference between the cleanest and most polluted clouds sampled are significant, lending credence to the hypothesis of convective invigoration. This is the first time evidence of deep convective invigoration has been demonstrated within a large region and over a long time period, and it is quite promising that there are many similarities between the modeling and observational results.
Stochastic behaviour of tropical convection in observations and a multicloud model
NASA Astrophysics Data System (ADS)
Peters, K.; Jakob, C.; Davies, L.; Kumar, V.; Khouider, B.; Majda, A.
2012-12-01
The feasibility of using a stochastic multicloud model (SMCM, Khouider et al. (2010)) to represent observed tropical convection over a northern Australia coastal site is investigated. In the SMCM, area fractions of three cloud types associated with tropical convection (congestus, deep convection and stratiform) are derived employing a coarse grained birth-death process which is evolved in time using a Markov chain Monte Carlo method. Here, we force the SMCM with an observed large-scale atmospheric state to assess the feasibility of applying the model's underlying design concept to simulate observed tropical convection. The observational dataset we use here represents the best estimate of the atmospheric state for a 190x190 km2 area centered over Darwin, Australia (Jakob et al., 2011). Cloud area fractions are derived from CPOL radar following Steiner et al. (1995). We use different combinations of predictors derived from the observations (e.g. CAPE, low-level CAPE, moisture convergence, mid-tropospheric relative humidity) to obtain the evolution of the cloud ensemble as simulated by the SMCM. We find that the diagnostic performance of the SMCM depends strongly on the predictor choice and that it performs remarkably well when initiation and maintenance of convection are prescribed to depend on measures related to changes in low-level moisture. This is an encouraging result on the road towards a novel convection parameterization, aimed at overcoming the difficulties of current deterministic convection parameterizations in representing the high variability in simulated tropical convection.
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-26
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
NASA Technical Reports Server (NTRS)
Johnson, Daniel; Tao, Wei-Kuo; Simpson, Joanne
2004-01-01
The Goddard Cumulus Ensemble (GCE) model is used to examine the sensitivities of surface fluxes, explicit radiation, and ice microphysical processes on multi-day simulations of deep tropical convection over the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). The simulations incorporate large-scale advective temperature and moisture forcing, as well as large-scale momentum, that are updated every time step on a periodic lateral boundary grid. This study shows that when surface fluxes are eliminated, the mean atmosphere is much cooler and drier, convection and CAPE are much weaker, precipitation is less, and cloud coverage in stratiform regions much greater. Surface fluxes using the TOGA COARE flux algorithm are weaker than with the aerodynamic formulation, but closer to the observed fluxes. In addition, similar trends noted above for the case without surface fluxes are produced for the TOGA flux case, albeit to a much lesser extent. The elimination of explicit shortwave and longwave radiation is found to have only minimal effects on the mean thermodynamics, convection, and precipitation. However explicit radiation does have a significant impact on cloud temperatures and structure above 200 mb and on the overall mean vertical circulation. The removal of ice processes produces major changes in the structure of the cloud. Much of the liquid water is transported aloft and into anvils above the melting layer (600 mb), leaving narrow, but intense bands of rainfall in convective regions. The elimination of melting processes leads to greater hydrometeor mass below the melting layer, and produces a much warmer and moister boundary layer, leading to a greater mean CAPE. Finally, the elimination of the graupel species has only a small impact on mean total precipitation, thermodynamics, and dynamics of the simulation, but does produce much greater snow mass just above the melting layer. Some of these results differ from previous CRM studies of tropical systems, which is likely due to the type of simulated system, total time integration, and model setup.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2008-01-01
This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.
Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations
NASA Technical Reports Server (NTRS)
Ueyama, R.; Pfister, L.; Jensen, E.
2014-01-01
The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes in the winter and summer seasons. Implications of the TTL dehydration processes for the regulation of global stratospheric humidity will be discussed.
Frequency of Tropical Ocean Deep Convection and Global Warming
NASA Astrophysics Data System (ADS)
Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.
2017-12-01
The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
NASA Technical Reports Server (NTRS)
Doelling, David R.; Morstad, Daniel; Scarino, Benjamin R.; Bhatt, Rajendra; Gopalan, Arun
2012-01-01
Deep convective clouds (DCCs) are ideal visible calibration targets because they are bright nearly isotropic solar reflectors located over the tropics and they can be easily identified using a simple infrared threshold. Because all satellites view DCCs, DCCs provide the opportunity to uniformly monitor the stability of all operational sensors, both historical and present. A collective DCC anisotropically corrected radiance calibration approach is used to construct monthly probability distribution functions (PDFs) to monitor sensor stability. The DCC calibration targets were stable to within 0.5% and 0.3% per decade when the selection criteria were optimized based on Aqua MODerate Resolution Imaging Spectroradiometer 0.65-micrometer-band radiances. The Tropical Western Pacific (TWP), African, and South American regions were identified as the dominant DCC domains. For the 0.65-micrometer band, the PDF mode statistic is preferable, providing 0.3%regional consistency and 1%temporal uncertainty over land regions. It was found that the DCC within the TWP had the lowest radiometric response and DCC over land did not necessarily have the highest radiometric response. For wavelengths greater than 1 micrometer, the mean statistic is preferred, and land regions provided a regional variability of 0.7%with a temporal uncertainty of 1.1% where the DCC land response was higher than the response over ocean. Unlike stratus and cirrus clouds, the DCC spectra were not affected by water vapor absorption.
Yu, Haiyang; Zhang, Minghua; Lin, Wuyin; ...
2016-10-14
The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haiyang; Zhang, Minghua; Lin, Wuyin
The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, K. M.
2015-01-01
In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness under CO2 warming from CMIP-5 model projections. We find a strengthening of the ascending branch of the HC manifested in a deep-tropics squeeze (DTS), i.e., a deepening and narrowing of the convective zone, increased high clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hectopascals) of the deep tropics. The DTS induces atmospheric moisture divergence, reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among water cycle parameters examined, global dryness has the highest signal-to-noise ratio. Our results provide scientific bases for inferring that the observed tend of prolonged droughts in recent decades is likely attributable to greenhouse warming.
View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation
NASA Technical Reports Server (NTRS)
Gong, Jie; Wu, Dong L.
2013-01-01
Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-01-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna
2007-01-01
Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.
The effects of cloud radiative forcing on an ocean-covered planet
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.
Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar
NASA Astrophysics Data System (ADS)
Powell, Scott
2017-04-01
Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating composite radial velocity profiles within isolated convection is made. When the mean flow (determined from sounding data) is subtracted, a clear picture of radial velocities inside a composite representation of convection is obtained. As expected, Doppler radar data shows convergence in the lowest 1-2 km of isolated convective elements and divergence in the upper portions of the clouds. The composite velocity profiles can be used to compute crude profiles of horizontal divergence. Because the analysis uses data along radar rays (with gate size of 150 m) instead of data interpolated to a Cartesian grid, features in composited clouds can be observed at high vertical and horizontal resolution.
Relationships between outgoing longwave radiation and diabatic heating in reanalyses
NASA Astrophysics Data System (ADS)
Zhang, Kai; Randel, William J.; Fu, Rong
2017-10-01
This study investigates relationships between daily variability in National Oceanographic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR), as a proxy for deep convection, and the global diabatic heat budget derived from reanalysis data sets. Results are evaluated based on data from ECMWF Reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and Modern-Era Retrospective Analysis for Research and Applications (MERRA2). The diabatic heating is separated into components linked to `physics' (mainly latent heat fluxes), plus longwave (LW) and shortwave (SW) radiative tendencies. Transient variability in deep convection is highly correlated with diabatic heating throughout the troposphere and stratosphere. Correlation patterns and composite analyses show that enhanced deep convection (lower OLR) is linked to amplified heating in the tropical troposphere and in the mid-latitude storm tracks, tied to latent heat release. Enhanced convection is also linked to radiative cooling in the lower stratosphere, due to weaker upwelling LW from lower altitudes. Enhanced transient deep convection increases LW and decreases SW radiation in the lower troposphere, with opposite effects in the mid to upper troposphere. The compensating effects in LW and SW radiation are largely linked to variations in cloud fraction and water content (vapor, liquid and ice). These radiative balances in reanalyses are in agreement with idealized calculations using a column radiative transfer model. The overall relationships between OLR and diabatic heating are robust among the different reanalyses, although there are differences in radiative tendencies in the tropics due to large differences of cloud water and ice content among the reanalyses. These calculations provide a simple statistical method to quantify variations in diabatic heating linked to transient deep convection in the climate system.
Characterization of clouds in Titan's tropical atmosphere
Griffith, C.A.; Penteado, P.; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Buratti, B.; Clark, R.; Nicholson, P.; Jaumann, R.; Sotin, Christophe
2009-01-01
Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 ??m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8??-20?? S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape. ?? 2009. The American Astronomical Society.
MJO prediction skill of the subseasonal-to-seasonal (S2S) prediction models
NASA Astrophysics Data System (ADS)
Son, S. W.; Lim, Y.; Kim, D.
2017-12-01
The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides the primary source of tropical and extratropical predictability on subseasonal to seasonal timescales. To better understand its predictability, this study conducts quantitative evaluation of MJO prediction skill in the state-of-the-art operational models participating in the subseasonal-to-seasonal (S2S) prediction project. Based on bivariate correlation coefficient of 0.5, the S2S models exhibit MJO prediction skill ranging from 12 to 36 days. These prediction skills are affected by both the MJO amplitude and phase errors, the latter becoming more important with forecast lead times. Consistent with previous studies, the MJO events with stronger initial amplitude are typically better predicted. However, essentially no sensitivity to the initial MJO phase is observed. Overall MJO prediction skill and its inter-model spread are further related with the model mean biases in moisture fields and longwave cloud-radiation feedbacks. In most models, a dry bias quickly builds up in the deep tropics, especially across the Maritime Continent, weakening horizontal moisture gradient. This likely dampens the organization and propagation of MJO. Most S2S models also underestimate the longwave cloud-radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelop. In general, the models with a smaller bias in horizontal moisture gradient and longwave cloud-radiation feedbacks show a higher MJO prediction skill, suggesting that improving those processes would enhance MJO prediction skill.
Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface Fluxes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.
2004-01-01
Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean heating and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative heating and air/sea hear and moisture transfer, are warranted. This paper examines the current radiation and surface flux of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation fluxes from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation fluxes produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the flux parameterizations. The results suggest that the differences between the models are attributed more to the surface flux parameterizations than the radiation schemes.
NASA Astrophysics Data System (ADS)
Hong, Gang; Minnis, Patrick; Doelling, David; Ayers, J. Kirk; Sun-Mack, Szedung
2012-03-01
A method for estimating effective ice particle radius Re at the tops of tropical deep convective clouds (DCC) is developed on the basis of precomputed look-up tables (LUTs) of brightness temperature differences (BTDs) between the 3.7 and 11.0 μm bands. A combination of discrete ordinates radiative transfer and correlated k distribution programs, which account for the multiple scattering and monochromatic molecular absorption in the atmosphere, is utilized to compute the LUTs as functions of solar zenith angle, satellite zenith angle, relative azimuth angle, Re, cloud top temperature (CTT), and cloud visible optical thickness τ. The LUT-estimated DCC Re agrees well with the cloud retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for the NASA Clouds and Earth's Radiant Energy System with a correlation coefficient of 0.988 and differences of less than 10%. The LUTs are applied to 1 year of measurements taken from MODIS aboard Aqua in 2007 to estimate DCC Re and are compared to a similar quantity from CloudSat over the region bounded by 140°E, 180°E, 0°N, and 20°N in the Western Pacific Warm Pool. The estimated DCC Re values are mainly concentrated in the range of 25-45 μm and decrease with CTT. Matching the LUT-estimated Re with ice cloud Re retrieved by CloudSat, it is found that the ice cloud τ values from DCC top to the vertical location where LUT-estimated Re is located at the CloudSat-retrieved Re profile are mostly less than 2.5 with a mean value of about 1.3. Changes in the DCC τ can result in differences of less than 10% for Re estimated from LUTs. The LUTs of 0.65 μm bidirectional reflectance distribution function (BRDF) are built as functions of viewing geometry and column amount of ozone above upper troposphere. The 0.65 μm BRDF can eliminate some noncore portions of the DCCs detected using only 11 μm brightness temperature thresholds, which result in a mean difference of only 0.6 μm for DCC Re estimated from BTD LUTs.
On the controls of deep convection and lightning in the Amazon
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Giangrande, S. E.; Wang, D.; Morales, C. A.; Pereira, R. F. O.; Machado, L.; Silva Dias, M. A. F.
2017-12-01
Local observations and remote sensing have been extensively used to unravel cloud distribution and life cycle but yet their representativeness in cloud resolve models (CRMs) and global climate models (GCMs) are still very poor. In addition, the complex cloud-aerosol-precipitation interactions (CAPI), as well as thermodynamics, dynamics and large scale controls on convection have been the focus of many studies in the last two decades but still no final answer has been reached on the overall impacts of these interactions and controls on clouds, especially on deep convection. To understand the environmental and CAPI controls of deep convection, cloud electrification and lightning activity in the pristine region of Amazon basin, in this study we use long term satellite and field campaign measurements to depict the characteristics of deep convection and the relationships between lightning and convective fluxes in this region. Precipitation and lightning activity from the Tropical Rainfall Measuring Mission (TRMM) satellite are combined with estimates of aerosol concentrations and reanalysis data to delineate the overall controls on thunderstorms. A more detailed analysis is obtained studying these controls on the relationship between lightning activity and convective mass fluxes using radar wind profiler and 3D total lightning during GoAmazon 2014/15 field campaign. We find evidences that the large scale conditions control the distribution of the precipitation, with widespread and more frequent mass fluxes of moderate intensity during the wet season, resulting in less vigorous convection and lower lightning activity. Under higher convective available potential energy, lightning is enhanced in polluted and background aerosol conditions. The relationships found in this study can be used in model parameterizations and ensemble evaluations of both lightning activity and lightning NOx from seasonal forecasting to climate projections and in a broader sense to Earth Climate System Modeling.
NASA Astrophysics Data System (ADS)
Igel, Matthew R.
2017-06-01
This paper complements Part 1 in which cloud processes of aggregated convection are examined in a large-domain radiative convective equilibrium simulation in order to uncover those responsible for a consistently observed, abrupt increase in mean precipitation at a column relative humidity value of approximately 77%. In Part 2, the focus is on how the transition is affected independently by total moisture above and below the base of the melting layer. When mean precipitation rates are examined as simultaneous functions of these two moisture layers, four distinct behaviors are observed. These four behaviors suggest unique, yet familiar, physical regimes in which (i) little rain is produced by infrequent clouds, (ii) shallow convection produces increasing warm rain with increasing low-level moisture, (iii) deep convection produces progressively heavier rain above the transition point with increasing total moisture, and (iv) deep stratiform cloud produces increasingly intense precipitation from melting for increasing upper level moisture. The independent thresholds separating regimes in upper and lower layer humidity are shown to result in the value of total column humidity at which a transition between clear air and deep convection, and therefore a pickup in precipitation, is possible. All four regimes force atmospheric columns toward the pickup value at 77% column humidity, but each does so through a unique set of physical processes. Layer moisture and microphysical budgets are analyzed and contrasted with column budgets.
A Sample of What We Have Learned from A-Train Cloud Measurements
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve;
2008-01-01
The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.
NASA Astrophysics Data System (ADS)
Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan
2015-04-01
Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.
NASA Astrophysics Data System (ADS)
Kao, C.-Y. J.; Smith, W. S.
1999-05-01
A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.
Constraints on Cumulus Parameterization from Simulations of Observed MJO Events
NASA Technical Reports Server (NTRS)
Del Genio, Anthony; Wu, Jingbo; Wolf, Audrey B.; Chen, Yonghua; Yao, Mao-Sung; Kim, Daehyun
2015-01-01
Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden-Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2013-04-01
In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, which proposes to design a new infrastructure to integrate different atmospheric observation networks, we analyse moist deep convective processes responsible of intensive rainstorms in the tropics (making use of the Weather Research and Forecasting, WRF, numerical model) and compare the results with ground measurements of the CTBTO (Comprehensive nuclear-Test-Ban Treaty Organization) infra-sound stations in Ivory Coast. In this work, we investigate the life cycle of singlecell deep convective cloud trough a bi-dimensional, non-hydrostatic, limited-area simulation in simplified model configuration ("idealized case"), at high spatial and temporal resolution. In this way, we expect to resolve explicitly the convective cloud dynamics, avoiding the use of sometimes questionable parametrization (e.g. PBL and convective cumulus) schemes. We also perform a three-dimensional numerical experiment at coarser resolution, guided by real meteorological data of the tropical Ivory Coast region, to compare "real case" results with the infra-sounder measurements for the same area. Previous studies have shown that rain evaporation during intense precipitating events may cool the atmosphere and produce negative buoyancy that, together with falling rain, may give rise to particularly strong down-drafts (Betts, 1976, Tompkins, 2000). As the descending air column impacts the ground, it spreads out and creates a horizontal surface outflow (generally called "density current" or "cold pool") colder and denser than surrounding air. Results from the 2D idealized case show that temporal and horizontal resolution of 2 seconds and 250 meters is fine enough to produce a density current, that moves outward up to several kilometers from storm center. The increase in surface density (up to 2% higher than the base state) is followed by a sudden variation of surface temperature and an increase in horizontal wind speed (between 10 and 20 m/s), somewhat proportional to the density change. We note that if the surface density variation is strong and rapid enough, the surface pressure filed results strongly affected as well. We observe a surface pressure peak (with maximum amplitude of about ±40 Pa), that moves together with the density current leading edge. At cold pool boundaries, the outflow converges with warmer and moister surface inflow and create a curl. As a consequence, warmer air is lifted up and transported above the denser layer where it may trigger new convection and provide the vapor supply to new cloud formation. Results from the 3D real data case (that uses a horizontal resolution of 2 km and a convective cumulus parametrization scheme) show a very good agreement with ground measurements of pressure, wind speed and wind direction and confirm that this model configuration reliably reproduces the dynamical and thermodynamical evolution of a tropical deep convective storm. The simulated pressure peak (due to a strong density current that originates from a huge precipitating squall line) is very similar to that measured by the infra-sounders (with maximum amplitude of about ±50 Pa) and coherent with the idealized case. As in the 2D experiment, the development of tropical heavy rain events associated with strong density currents leads to a sub cloud layer which is not only denser and colder (as a consequence of rain evaporation, that works as a heat sink) but also sensibly dryer in correspondence of the gust front, sing that saturation mixing ration of subsiding air is lower than that of the boundary layer.
GCSS/WGNE Pacific Cross-section Intercomparison: Tropical and Subtropical Cloud Transitions
NASA Astrophysics Data System (ADS)
Teixeira, J.
2008-12-01
In this presentation I will discuss the role of the GEWEX Cloud Systems Study (GCSS) working groups in paving the way for substantial improvements in cloud parameterization in weather and climate models. The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is an extension of GCSS and is a different type of model evaluation where climate models are analyzed along a Pacific Ocean transect from California to the equator. This approach aims at complementing the more traditional efforts in GCSS by providing a simple framework for the evaluation of models that encompasses several fundamental cloud regimes such as stratocumulus, shallow cumulus and deep cumulus, as well as the transitions between them. Currently twenty four climate and weather prediction models are participating in GPCI. We will present results of the comparison between models and recent satellite data. In particular, we will explore in detail the potential of the Atmospheric Infrared Sounder (AIRS) and CloudSat data for the evaluation of the representation of clouds and convection in climate models.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Wielicki, Bruce A.; Xi, Baike; Hu, Yongxiang; Mace, Gerald G.; Benson, Sally; Rose, Fred; Kato, Seiji; Charlock, Thomas; Minnis, Patrick
2008-01-01
Atmospheric column absorption of solar radiation A(sub col) is a fundamental part of the Earth's energy cycle but is an extremely difficult quantity to measure directly. To investigate A(sub col), we have collocated satellite-surface observations for the optically thick Deep Convective Systems (DCS) at the Department of Energy Atmosphere Radiation Measurement (ARM) Tropical Western Pacific (TWP) and Southern Great Plains (SGP) sites during the period of March 2000 December 2004. The surface data were averaged over a 2-h interval centered at the time of the satellite overpass, and the satellite data were averaged within a 1 deg X 1 deg area centered on the ARM sites. In the DCS, cloud particle size is important for top-of-atmosphere (TOA) albedo and A(sub col) although the surface absorption is independent of cloud particle size. In this study, we find that the A(sub col) in the tropics is approximately 0.011 more than that in the middle latitudes. This difference, however, disappears, i.e., the A(sub col) values at both regions converge to the same value (approximately 0.27 of the total incoming solar radiation) in the optically thick limit (tau greater than 80). Comparing the observations with the NASA Langley modified Fu_Liou 2-stream radiative transfer model for optically thick cases, the difference between observed and model-calculated surface absorption, on average, is less than 0.01, but the model-calculated TOA albedo and A(sub col) differ by 0.01 to 0.04, depending primarily on the cloud particle size observation used. The model versus observation discrepancies found are smaller than many previous studies and are just within the estimated error bounds. We did not find evidence for a large cloud absorption anomaly for the optically thick limit of extensive ice cloud layers. A more modest cloud absorption difference of 0.01 to 0.04 cannot yet be ruled out. The remaining uncertainty could be reduced with additional cases, and by reducing the current uncertainty in cloud particle size.
NASA Astrophysics Data System (ADS)
Erfani, E.; Burls, N.
2017-12-01
The nature of local coupled ocean-atmosphere interactions within the tropics is determined by background conditions such as the depth of the equatorial thermocline, the water vapor content of the tropical atmosphere, and the radiative forcing of tropical clouds. These factors are set not only by the coupled tropical variability itself but also by extra-tropical conditions. For example, the strength of the cold tongue is ultimately controlled by the temperature of waters subducted in the extra-tropics and transported to the equator by the ocean subtropical cells (STCs). Similarly, inter-hemispheric asymmetries in extra-tropical atmospheric heating are communicated to the tropics affecting cross-equatorial heat transport and ITCZ position. Acknowledging from a fully coupled perspective the influence of both tropical and extra-tropical conditions, we are performing a suite of CESM experiments across which we systematically alter the strength of convective and stratus cloud feedbacks. By systematically exploring the sensitivity of the tropical coupled system to imposed changes in the strength of tropical and extra-tropical cloud feedbacks to CO2-induced warming this work aims to formalize our understanding of cloud controls on tropical climate.
Precipitation Efficiency in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
Accurate representation of organized convection in CFSv2 via a stochastic lattice model
NASA Astrophysics Data System (ADS)
Goswami, B. B.; Khouider, B.; Krishna, R. P. M. M.; Mukhopadhyay, P.; Majda, A.
2016-12-01
General circulation models (GCM) show limitations of various sorts in their representation of synoptic and intra-seasonal variability associated with tropical convective systems apart from the success of superparameterization and cloud system permitting global models. This systematic deficiency is believed to be due to the inadequate treatment of organized convection by the underlying cumulus parameterizations, which have the quasi-equilibrium assumption as a common denominator. By its nature, this assumption neglects the continuous interactions across scales between convection and the large scale dynamics. By design, the stochastic multicloud model (SMCM) mimics the interactions between the three cloud types, congestus, deep, and stratiform, that are observed to play a central role across multiple scales in the dynamics and physical structure of tropical convective systems. It is based on a stochastic lattice model, overlaid over each GCM grid box, where an order parameter taking the values 0,1,2,3 at each lattice site according to whether the site is clear sky or occupied by a congestus, deep, or stratiform cloud, respectively. As such the SMCM mimics the unresolved variability due to cumulus convection and the interactions across multiple scales of organized convective systems, following the philosophy of superparameterization. Here, we discuss the implementation of the SMCM in NCEP Climate Forecast System model (CFS), version-2, through the use of a simple parametrization of adiabatic heating and moisture sink due to cumulus clouds based on their observed vertical profiles (a.k.a Q1 and Q2). Much like the success of superparameterization but without the burden of high computational cost, a 20 year run showed tremendous improvements in the ability of the CFS-SMCM model to represent synoptic and intraseasonal variability associated with organized convection as well as a few minor improvements in the simulated climatology when compared to the control CFSv2 model which is based on the widely used simplified Arakawa-Shubert parameterization. This extra-ordinary improvement comes in despite the fact that CFSv2 is one of the best GCMs in terms of its representation of intra-seasonal oscillations in the tropical atmosphere.
Mechanisms Regulating Deep Moist Convection and Sea-Surface Temperatures of the Tropics
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Lau, K. M.
1998-01-01
Despite numerous previous studies, two relationships between deep convection and the sea-surface temperature (SST) of the tropics remain unclear. The first is the cause for the sudden emergence of deep convection at about 28 deg SST, and the second is its proximity to the highest observed SST of about 30 C. Our analysis provides a rational explanation for both by utilizing the Improved Meteorological (IMET) buoy data together with radar rainfall retrievals and atmospheric soundings provided by the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The explanation relies on the basic principles of moist convection as enunciated in the Arakawa-Schubert cumulus parameterization. Our analysis shows that an SST range of 28-29 C is necessary for "charging" the atmospheric boundary layer with sufficient moist static energy that can enable the towering convection to reach up to the 200 hPa level. In the IMET buoy data, the changes in surface energy fluxes associated with different rainfall amounts show that the deep convection not only reduces the solar flux into the ocean with a thick cloud cover, but it also generates downdrafts which bring significantly cooler and drier air into the boundary-layer thereby augmenting oceanic cooling by increased sensible and latent heat fluxes. In this way, the ocean seasaws between a net energy absorber for non-raining and a net energy supplier for deep-convective raining conditions. These processes produce a thermostat-like control of the SST. The data also shows that convection over the warm pool is modulated by dynamical influences of large-scale circulation embodying tropical easterly waves (with a 5-day period) and MJOs (with 40-day period); however, the quasi-permanent feature of the vertical profile of moist static energy, which is primarily maintained by the large-scale circulation and thermodynamical forcings, is vital for both the 28 C SST for deep convection and its upper limit at about 30 C.
Improvement of Representation of the Cloud-Aerosol Interaction in Large-Scale Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khain, Alexander; Phillips, Vaughan; Pinsky, Mark
The main achievements reached under the DOE award DE-SC0006788 are described. It is shown that the plan of the Project is completed. Unique results concerning cloud-aerosol interaction are obtained. It is shown that aerosols affect intensity of hurricanes. The effects of small aerosols on formation of ice in anvils of deep convective clouds are discovered, for the first time the mechanisms of drizzle formation are found and described quantitatively. Mechanisms of formation of warm rain are clarified and the dominating role of adiabatic processes and turbulence are stressed. Important results concerning the effects of sea spray on intensity of cloudsmore » and tropical cyclones are obtained. A novel methods of calculation of hail formation has been developed and implemented.« less
The Role of Intraseasonal Variability in Supporting the Shallow-to-Deep Transition in the Amazon
NASA Astrophysics Data System (ADS)
Serra, Y. L.; Rowe, A.; Adams, D. K.; Barbosa, H. M.; Kiladis, G. N.
2016-12-01
The shallow-to-deep convective transition over land typically refers to the growth of the convective boundary layer after sunrise, followed by the development of cumulus congestus clouds in the late morning/early afternoon and transitioning to deep convective clouds in the late afternoon and early evening. Under favorable conditions, this diurnal convection can result in organized mesoscale convective systems (MCSs) that last through the following morning. While many studies have focused on improving this process in models, the shallow-to-deep transition remains poorly represented especially over land. The recent DOE ARM mobile facility deployment in the Amazon, launched as part of GOAmazon, along with a dense GNSS network supported by Universidade do Estado do Amazonas (UEA)/Instituto Nacional de Pesquisas Espaciais (INPE) and co-located with the CHUVA Project sites for GOAmazon, are used here to examine land-based convective processes in the tropics. In particular, this aspect of a larger study of the shallow-to-deep transition explores the role of large-scale intraseasonal wave activity in supporting the growth of MCSs over the GoAmazon region. These results will be placed in the context of local forcing mechanisms for convective growth over the region in ongoing work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Burleyson, Casey D.; Ma, Po-Lun
We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean totalmore » cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our testbed approach can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional model simulations at high spatial resolutions.« less
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Kummerow, C. D.; Chandrasekar, V.; Padmanabhan, S.; Lim, B.; Brown, S. T.; van den Heever, S. C.; L'Ecuyer, T.; Ruf, C. S.; Luo, Z. J.; Munchak, S. J.; Haddad, Z. S.; Boukabara, S. A.
2015-12-01
The Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) is designed to demonstrate required technology to enable a constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition of clouds to precipitation using high-temporal resolution observations. TEMPEST millimeter-wave radiometers in the 90-GHz to 183-GHz frequency range penetrate into the cloud to observe key changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction since it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST-D provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture and fits well within the capabilities of NASA's CubeSat Launch Initiative (CSLI), for which TEMPEST-D was approved in 2015. For a potential future mission of one year of operations, five identical 6U-Class satellites deployed in the same orbital plane with 5-10 minute spacing at ~400 km altitude and 50°-65° inclination are expected to capture 3 million observations of precipitation, including 100,000 deep convective events. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation microphysics, yielding a first-order understanding of the behavior of assumptions in current cloud-model parameterizations in diverse climate regimes.
NASA Technical Reports Server (NTRS)
2007-01-01
Location: The Atlantic Ocean 210 miles south of Galveston, Texas Categorization: Tropical Storm Sustained Winds: 40 mph (60 km/hr) [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.The ENSO Effects on Tropical Clouds and Top-of-Atmosphere Cloud Radiative Effects in CMIP5 Models
NASA Technical Reports Server (NTRS)
Su, Wenying; Wang, Hailan
2015-01-01
The El Nino-Southern Oscillation (ENSO) effects on tropical clouds and top-of-atmosphere (TOA) cloud radiative effects (CREs) in Coupled Model Intercomparison Project Phase5 (CMIP5) models are evaluated using satellite-based observations and International Satellite Cloud Climatology Project satellite simulator output. Climatologically, most CMIP5 models produce considerably less total cloud amount with higher cloud top and notably larger reflectivity than observations in tropical Indo-Pacific (60 degrees East - 200 degrees East; 10 degrees South - 10 degrees North). During ENSO, most CMIP5 models considerably underestimate TOA CRE and cloud changes over western tropical Pacific. Over central tropical Pacific, while the multi-model mean resembles observations in TOA CRE and cloud amount anomalies, it notably overestimates cloud top pressure (CTP) decreases; there are also substantial inter-model variations. The relative effects of changes in cloud properties, temperature and humidity on TOA CRE anomalies during ENSO in the CMIP5 models are assessed using cloud radiative kernels. The CMIP5 models agree with observations in that their TOA shortwave CRE anomalies are primarily contributed by total cloud amount changes, and their TOA longwave CRE anomalies are mostly contributed by changes in both total cloud amount and CTP. The model biases in TOA CRE anomalies particularly the strong underestimations over western tropical Pacific are, however, mainly explained by model biases in CTP and cloud optical thickness (tau) changes. Despite the distinct model cloud biases particularly in tau regime, the TOA CRE anomalies from cloud amount changes are comparable between the CMIP5 models and observations, because of the strong compensations between model underestimation of TOA CRE anomalies from thin clouds and overestimation from medium and thick clouds.
Diagnosing the Ice Crystal Enhancement Factor in the Tropics
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Xie, Shaocheng; Lang, Stephen; Zhang, Minghua; Starr, David O'C; Li, Xiaowen; Simpson, Joanne
2009-01-01
Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is 10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing.
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Leppert, Kenneth D.; Cecil, Daniel J.
2018-01-01
Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745
The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.
2002-06-01
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.
Effect of Convection on the Tropical Tropopause Layer over the Tropical Americas
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Robertson, Franklin
2007-01-01
Water vapor and ozone are the most important gases that regulate the radiative balance of the Tropical Tropopause Layer (TTL). Their radiative contribution dictates the height within the TTL and the rate at which air either ascends into the tropical stratosphere or subsides back to the tropical troposphere. The details of the mechanisms that control their concentration, however, are poorly understood. One of such mechanisms is convection that reaches into the TTL. ill this study, we will present evidence from space-borne observations of the impact that convection has on water vapor, ozone, and temperature in the TTL over the Tropical Americas where deep and overshooting convection have the highest frequency of occurrence in the tropics. We explore the effect of convective systems such as hurricanes during the 2005 season using the Microwave Limb Sounder (MLS) on Aura version 1.5 data and more recent tropical systems using the newly released version 2 data with higher vertical resolution. ill order to provide the horizontal extent and the vertical structure of the convective systems, we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua, the Microwave Humidity Sensor (MHS) on NOAA18, and CloudSat when available.
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen
2010-01-01
This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.
NASA Astrophysics Data System (ADS)
Suresh Raju, C.; Rajeev, K.; Parameswaran, K.
The climatic impact of clouds and their role in energy and radiation budget of earth-atmosphere system largely depends on the cloud properties and its altitude of occurrence. The quantitative estimates of spatio-temporal variations of cloud fraction and cloud properties are limited over the tropical Indian Oceanic region. Cloudiness and its radiative properties over this region is significantly different from other tropical regions indicating the need for their detailed studies. This has an important role in the Indian summer monsoon which is also a part of the global climate system. Daily, monthly, seasonal and yearly mean frequency of occurrence of total and high altitude clouds are derived from the brightness temperature (TB) obtained from NOAA14-AVHRR data during the period of 1996-1999, and their spatio-temporal variations are investigated. The inversion algorithm used here is similar to the CLIVAR algorithm applied by ISCCP. All clouds with TB quad < 250 K are classified as high clouds, as their altitude of occurrence will be above ˜ 6 km. The clouds above ˜ 10 km (with TB<220K) are also classified separately to study the deep convective events. The geographical distribution of monthly, seasonal and annual mean frequency of occurrence of total cloud (Ftot) and high cloud (Fh) are remarkably consistent from year to year, though the absolute magnitude of the frequency of occurrence can vary by as much as 30%. The highest annual variations in Ftot and Fh are observed near the eastern parts of Bay of Bengal. The average amplitude of the annual cycle in Ftot in this region is ˜ 40%. During the south-west monsoon season, the monthly mean of Ftot shows very large spatial gradients in the western Arabian Sea. In July, the Ftot varies from less than 20% near Arabian coastal regions to more than 75% at a location 10 degrees east of the Arabian coast. Similar gradients in Ftot are also observed between the equator and 10 S. One of the very striking features in Ftot during this period is the minimum cloudiness observed around Srilanka during the Indian summer monsoon season, which is more discernable in high clouds. The cloud occurrence over the Indian subcontinent is less than 20% during the period of December to March. The presence of double inter tropical convergence zone (ITCZ), characterized by large cloud bands that are confined in latitude and elongated in longitude, are observed over Indian Ocean during November to March period, though the frequency of occurrence of such events is very small.
Life in the clouds: are tropical montane cloud forests responding to changes in climate?
Hu, Jia; Riveros-Iregui, Diego A
2016-04-01
The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.
Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes
NASA Technical Reports Server (NTRS)
Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.
2015-01-01
Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.
Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment
Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.
2011-01-01
Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112
The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Courtney
2015-08-31
During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students,more » many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to better quantify the transition between convective, stratiform, and anvil cloud types.« less
Small-scale variability in tropical tropopause layer humidity
NASA Astrophysics Data System (ADS)
Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.
2016-12-01
Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.
NASA Astrophysics Data System (ADS)
Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes
2015-04-01
Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an ultra-high sensitivity aerosol spectrometer (UHSAS). The absorption coefficient and thus a measure for the black carbon mass concentration is derived from the particle soot absorption photometer (PSAP). In the lower warm parts of the probed convective clouds during the ACRIDICON mission the mean charge of droplets was inferred by means of electrometer measurements. For the determination of the chemical properties of CDR and IPR, the Aircraft-based Laser Ablation Aerosol Mass Spec-trometer (ALABAMA) and a Compact-Time-of-Flight-Aerosol-Mass-Spectrometer (C-ToF-AMS) was operated during ML-CIRRUS and ACRIDICON, respectively, to obtain the mixing state and chemical composition of the cloud particle residues. During ML-CIRRUS, differences in IPR concentration, size distribution, and chemical composition between natural and aviation influenced cirrus clouds could be observed as well as between dif-ferent natural cirrus types and between young and aged contrail cirrus. During ACRIDICON, CDR concentration, size distribution, and chemical composition are found to be different for convective cloud systems evolving from more clean air masses compared to systems evolving from more polluted air masses. Droplet charges change from negative to positive values with height in all vertical cloud profiles. The measured IPR concentration strongly vary in the anvil outflow regions.
NASA Astrophysics Data System (ADS)
Meenu, S.; Rajeev, K.; Parameswaran, K.
2011-08-01
Monthly mean spatial and vertical distributions of the frequency of occurrence (FSTC) of semitransparent cirrus (STC) and their physical and optical properties over the Indian region are investigated using multiyear CALIPSO data. Over the Bay of Bengal (BoB), FSTC above the lapse-rate tropopause is >30% during the summer monsoon season, most of which has optical depth <0.03. Based on spatial variations of the observed STC properties away from deep convective regions, we propose that the presence of high-altitude clouds below STCs over the BoB and Indian regions during summer monsoon reduces dissipation of STCs, resulting in their longer lifetime (˜1-2 days).
A Heuristic Parameterization for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2017-10-01
The author developed a heuristic parameterization to handle the contrasting vertical overlap structures of cumulus and stratus in an integrated way. The parameterization assumes that cumulus is maximum-randomly overlapped with adjacent cumulus; stratus is maximum-randomly overlapped with adjacent stratus; and radiation and precipitation areas at each model interface are grouped into four categories, that is, convective, stratiform, mixed, and clear areas. For simplicity, thermodynamic scalars within individual portions of cloud, radiation, and precipitation areas are assumed to be internally homogeneous. The parameterization was implemented into the Seoul National University Atmosphere Model version 0 (SAM0) in an offline mode and tested over the globe. The offline control simulation reasonably reproduces the online surface precipitation flux and longwave cloud radiative forcing (LWCF). Although the cumulus fraction is much smaller than the stratus fraction, cumulus dominantly contributes to precipitation production in the tropics. For radiation, however, stratus is dominant. Compared with the maximum overlap, the random overlap of stratus produces stronger LWCF and, surprisingly, more precipitation flux due to less evaporation of convective precipitation. Compared with the maximum overlap, the random overlap of cumulus simulates stronger LWCF and weaker precipitation flux. Compared with the control simulation with separate cumulus and stratus, the simulation with a single-merged cloud substantially enhances the LWCF in the tropical deep convection and midlatitude storm track regions. The process-splitting treatment of convective and stratiform precipitation with an independent precipitation approximation (IPA) simulates weaker surface precipitation flux than the control simulation in the tropical region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Russell, Lynn M.; Xu, Li
The impacts of the El Niño–Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle ismore » found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western Pacific Ocean in El Niño (La Niña) events, increased (decreased) wet scavenging of natural aerosols dampens more than 4–6% of variations of cloud radiative effects averaged over the tropics. In contrast, increased surface winds cause feedbacks that increase sea spray emissions that enhance the variations by 3–4% averaged over the tropics.« less
Southern Ocean Convection and tropical telleconnections
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gnanadesikan, A.
2014-12-01
We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the tantalizing possibility that such large-scale changes in SO deep convection might have tropical and indeed global implications via atmospheric teleconnections. We advocate the collection of both paleo and modern proxies that can verify these model-derived mechanisms and global teleconnections.
Convective Formation of Pileus Cloud Near the Tropopause
NASA Technical Reports Server (NTRS)
Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick
2005-01-01
Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.
NASA Technical Reports Server (NTRS)
Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann
2003-01-01
NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.
Observations of Overshooting Convective Tops and Dynamical Implications
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald M.; Halverson, Jeffrey; Fitzgerald, Mike; Dominquez, Rose; Starr, David OC. (Technical Monitor)
2002-01-01
Convective tops overshooting the tropopause have been suggested in the literature to play an important role in modifying the tropical tropopause. The structure of thunderstorm tops overshooting the tropopause have been difficult to measure due to the intensity of the convection and aircraft safety. This paper presents remote observations of overshooting convective tops with the high-altitude ER-2 aircraft during several of the Tropical Rain Measuring Mission (TRMM) and (Convection and Moisture Experiment) CAMEX campaigns. The ER-2 was instrumented with the down-looking ER-2 Doppler Radar (EDOP), a new dropsonde system (ER-2 High Altitude Dropsonde, EHAD), and an IR radiometer (Modis Airborne Simulator, MAS). Measurements were collected in Florida and Amazonia (Brazil). In this study, we utilize the radar cloud top information and cloud top infrared temperatures to document the amount of overshoot and temperature difference relative to the soundings provided by dropsondes and conventional upsondes. The radar measurements provide the details of the updraft structure near cloud top, and it is found that tops of stronger convective cells can overshoot by 1-2 km and with temperatures 5C colder than the tropopause minimum temperature. The negatively buoyant cloud tops are also evidenced in the Doppler measurements by strong subsiding flow along the sides of the convective tops . These findings support some of the conceptual and modeling studies of deep convection penetrating the tropopause.
Trends and Periodic Variability in Tropical Wave Clouds
NASA Astrophysics Data System (ADS)
Burgwardt, Lester Charles, III
This dissertation describes the acquisition and analysis of tropical wave cloudiness. Tropical wave positions for the years 2003 through 2013 were extracted via text mining, from the National Hurricane Center's Tropical Weather Discussion, a bulletin released every six hours and published on-line. Tropical wave tracks were developed from these positions using the Multiple Hypothesis Tracking algorithm. Satellite data from the Atmospheric Infrared Sounder (AIRS) was downloaded from the NASA Mirador website based on time and position of tracked tropical waves. The AIRS data was mosaicked to provide complete coverage between satellite swaths. The AIRS Level 2 Cloud Fraction Standard product was used exclusively in the analysis. Cloud fraction data was divided into upper and lower levels as provided in the AIRS product. A cloud fraction ratio was also developed to provide some indication of the insulating quality of clouds. The analysis discovered secular trends of varying degrees and direction depending on location of tropical waves. The analysis also found significant periodic variability within cloud fraction values, much of which correlated to known global oscillations such as El Nino and the Madden-Julian Oscillation. However a number of periodic signals found within tropical wave cloudiness could not be correlated with any of the known global and non-earth oscillations tested against. Future research ideas in the conclusions include an examination of those uncorrelated periodic signals. Also included in the conclusions are theories about differences in correlations to periodic signals within a tropical wave core versus correlations that are seen in surrounding cloud patterns.
NASA Astrophysics Data System (ADS)
de Szoeke, S. P.
2017-12-01
Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Bansemer, Aaron; Field, Paul R.; Durden, Stephen L.; Stith, Jeffrey L.; Dye, James E.; Hall, William; Grainger, Cedric A.
2002-01-01
In this study, we report on the evolution of particle size distributions (PSDs) and habits as measured during slow, Lagrangian-type spiral descents through deep subtropical and tropical cloud layers in Florida, Brazil, and Kwajalein, Marshall Islands, most of which were precipitating. The objective of the flight patterns was to learn more about how the PSDs evolved in the vertical and to obtain information of the vertical structure of microphysical properties. New instrumentation yielding better information on the concentrations of particles in the size (D) range between 0.2 and 2 cm, as well as improved particle imagery, produced more comprehensive observations for tropical stratiform precipitation regions and anvils than have been available previously. Collocated radar observations provided additional information on the vertical structure of the cloud layers sampled. Most of the spirals began at cloud top, with temperatures (T) as low as -50 C, and ended at cloud base or below the melting layer (ML). The PSDs broadened from cloud top towards cloud base, with the largest particles increasing in size from several millimeters at cloud top to one centimeter or larger towards cloud base. Some continued growth was noted in the upper part of the ML. Concentrations of particles less than 1 mm in size decreased with decreasing height. The result was a consistent change in the PSDs in the vertical. Similarly, systematic changes in the size dependence of the particle cross-sectional area was noted with decreasing height. Aggregation-as ascertained from both the changes in the PSDs and evolution of particle habits as observed in high detail with the cloud particle imager (CPI) probe-was responsible for these trends. The PSDs were generally well-represented by gamma distributions of the form N = N0 gamma D microns e- lambda gamma D that were fitted to the PSDs over 1-km horizontal intervals throughout the spirals. The intercept (N0 gamma), slope (lambda gamma), and dispersion (microns) values were derived for each PSD. Exponential curves (N = N0e- lambdaD; micron = 0) were also fitted to the distributions. The lambda gamma values for given spirals varied systematically with temperature as did the values of lambda (exponential), and the data generally conformed to values found in previous studies involving exponential fits to size distributions in mid-latitude frontal and cirrus layers. Considerable variability often noted in the PSD properties during the loops of individual spirals was manifested primarily in large changes in N0 gamma and N0, but micron, lambda gamma and lambda remained fairly stable. Temperature is not found to be the sole factor controlling lambda gamma or lambda but is a primary one. Direct relationships were found between lambda gamma and N0 gamma or lambda gamma and micron for the gamma distributions and lambda and N0 for the exponential. The latter relationship was not found as distinctly in earlier studies; observed PSDs in this study had better fidelity with less scatter. The micron values changed monotonically with T over the range of temperatures and were directly related to N0 gamma or lambda gamma, thereby reducing the number of variables in the PSD functional equation to two. In the upper part of the ML, N0 and lambda continued to decrease, and in the lower part these values began to increase as the largest particles melted. We developed general expressions relating various bulk microphysical, radar, and radiative transfer-related variables to N0 gamma and lambda gamma, useful for both tropical and mid-latitude clouds. These relationships facilitate the specification of a number of bulk properties in cloud and climate models. The results presented in this paper apply best to temperatures between 0 and -40 C, for which the measured radar reflectivities fall in the range of 0 to 25 dBZe.
Hydrological control on Ozone greenhouse gas effect
NASA Astrophysics Data System (ADS)
Kuai, L.; Bowman, K. W.; Worden, H. M.; Herman, R. L.; Kulawik, S. S.
2016-12-01
Our study present a new concept to use a derived observation-based quantity: instantaneous radiative kernel (IRK), to access the hydrological control on the variation of ozone greenhouse gas effect with AURA TES satellite data. We attribute the spatiotemporal variation of the TES O3 longwave radiative effect (LWRE), which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3 absorption, to variations in relative humidity, surface temperature, and tropospheric O3 column. The maximum GHG effect for ozone, represented by LWRE, is found to be around 0.6 to 0.7 Wm-2 on zonal average in the subtropics. This maximum is related by low water vapor concentrations and suppression of clouds, which are driven by the downward branch of the Hadley cell over this region. Within the subtropics, the largest values of LWRE are over the Middle East (>1 W/m2) due to both large thermal contrast and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, a lower ozone GHG effect (about 0.4 Wm-2 or lower) is found in the deep tropics closely following the Inter-Tropical Convergence Zone, attributable to strong water vapor absorption and clouds over deep convective regions. These results show that changes in the hydrological cycle due to climate change could impact the magnitude and distribution of ozone radiative forcing.
NASA Astrophysics Data System (ADS)
Posselt, Derek J.
The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.
NASA Technical Reports Server (NTRS)
Lau, K-M.; Wu, H-T.
2010-01-01
This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
NASA Astrophysics Data System (ADS)
Satoh, M.; Noda, A. T.; Kodama, C.; Yamada, Y.; Hashino, T.
2012-12-01
Global cloud distributions and properties simulated by the global nonhydrostatic model, NICAM (Nonhydrostatic Icosahedral Atmospheric Model), are evaluated and their future changes are discussed. First, we evaluated the simulated cloud properties produced by a case study of the 3.5km mesh experiment of NICAM using the satellite simulator package (the Joint-simulator) with cloud microphysics oriented approach (Hashino et al. 2012). Then, we analyzed future cloud changes using various sets of simulations under the present and the future global warming conditions. The results show that the zonal averaged ice water path (IWP) generally decreases or marginally unchanged in the tropics, while IWP in the extra-tropics increases. The upper cloud fraction increases both in the tropics and in the extra-tropics in general. We further analyzed contributions of cloud systems such as cloud clusters, tropical cyclones (TCs), and storm-tracks to these changes. Probability distribution of the larger cloud clusters decreases, while that of the smaller ones increases, consistent with the decrease in the number of tropical cyclones in the future climate. Average liquid water path (LWP) and IWP associated with each tropical cyclone are diagnosed, and it is found that both the associated LWP and IWP increase under the warmer condition. Even though, since the number of the intensive cloud systems decrease, the average IWP decreases. It should be remarked that the change in TC tracks largely contribute to the change in the horizontal distribution of clouds. The NICAM simulations also show that the storm-tracks shift poleward, and the storms become less frequent and stronger in the extra-tropics, similar to the results of other general circulation models. Both LWP and IWP associated with the storms also increase in the warmer climate in the NICAM simulations. This results in increase in the upper clouds under the warmer climate condition, as described by Miura et al. (2005). References: Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., and Okamoto, H. (2012), Evaluating Global Cloud Distribution and Microphysics from the NICAM against CloudSat and CALIPSO, J. Geophys. Res., submitted. Miura, H., Tomita,H., Nasuno,T., Iga, S., Satoh,M., and Matsuno, T. (2005), A climate sensitivity test using a global cloud resolving model under an aqua planet condition, Geophys. Res. Lett., 32, L19717, doi:10.1029/2005GL023672.
TRMM Observations of Polarization Difference in 85 GHz: Information About Hydrometeors and Rain Rate
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
Observations made by the Precipitation Radar (PR) and the Microwave Imager (TMI) radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite help us to show the significance of the 85 GHz polarization difference, PD85, measured by TMI. Rain type, convective or stratiform, deduced from the PR allows us to infer that PD85 is generally positive in stratiform rain clouds, while PD85 can be markedly negative in deep convective rain clouds. Furthermore, PD85 increases in a gross manner as stratiform rain rate increases. On the contrary, in a crude fashion PD85 decreases as convective rain rate increases. From the observations of TMI and PR, we find that PD85 is a weak indicator of rain rate. Utilizing information from existing polarimetric radar studies, we infer that negative values of PD85 are likely associated with vertically-oriented small oblate or wet hail that are found in deep convective updrafts.
A New Framework for Cumulus Parametrization - A CPT in action
NASA Astrophysics Data System (ADS)
Jakob, C.; Peters, K.; Protat, A.; Kumar, V.
2016-12-01
The representation of convection in climate model remains a major Achilles Heel in our pursuit of better predictions of global and regional climate. The basic principle underpinning the parametrisation of tropical convection in global weather and climate models is that there exist discernible interactions between the resolved model scale and the parametrised cumulus scale. Furthermore, there must be at least some predictive power in the larger scales for the statistical behaviour on small scales for us to be able to formally close the parametrised equations. The presentation will discuss a new framework for cumulus parametrisation based on the idea of separating the prediction of cloud area from that of velocity. This idea is put into practice by combining an existing multi-scale stochastic cloud model with observations to arrive at the prediction of the area fraction for deep precipitating convection. Using mid-tropospheric humidity and vertical motion as predictors, the model is shown to reproduce the observed behaviour of both mean and variability of deep convective area fraction well. The framework allows for the inclusion of convective organisation and can - in principle - be made resolution-aware or resolution-independent. When combined with simple assumptions about cloud-base vertical motion the model can be used as a closure assumption in any existing cumulus parametrisation. Results of applying this idea in the the ECHAM model indicate significant improvements in the simulation of tropical variability, including but not limited to the MJO. This presentation will highlight how the close collaboration of the observational, theoretical and model development community in the spirit of the climate process teams can lead to significant progress in long-standing issues in climate modelling while preserving the freedom of individual groups in pursuing their specific implementation of an agreed framework.
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Wang, P. K.
2017-12-01
The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.
Chandra, Arunchandra S.; Zhang, Chidong; Klein, Stephen A.; ...
2015-09-10
Here, this study evaluates the ability of the Community Atmospheric Model version 5 (CAM5) to reproduce low clouds observed by the Atmospheric Radiation Measurement (ARM) cloud radar at Manus Island of the tropical western Pacific during the Years of Tropical Convection. Here low clouds are defined as clouds with their tops below the freezing level and bases within the boundary layer. Low-cloud statistics in CAM5 simulations and ARM observations are compared in terms of their general occurrence, mean vertical profiles, fraction of precipitating versus nonprecipitating events, diurnal cycle, and monthly time series. Other types of clouds are included to putmore » the comparison in a broader context. The comparison shows that the model overproduces total clouds and their precipitation fraction but underestimates low clouds in general. The model, however, produces excessive low clouds in a thin layer between 954 and 930 hPa, which coincides with excessive humidity near the top of the mixed layer. This suggests that the erroneously excessive low clouds stem from parameterization of both cloud and turbulence mixing. The model also fails to produce the observed diurnal cycle in low clouds, not exclusively due to the model coarse grid spacing that does not resolve Manus Island. Lastly, this study demonstrates the utility of ARM long-term cloud observations in the tropical western Pacific in verifying low clouds simulated by global climate models, illustrates issues of using ARM observations in model validation, and provides an example of severe model biases in producing observed low clouds in the tropical western Pacific.« less
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Machado, L.; Mertes, S.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Wang, J.; Weinzierl, B.; Wendisch, M.
2016-12-01
Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with aerosol number concentrations after normalization to STP often exceeding those in the boundary layer (BL) by one or two orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO. The campaign took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were consistently observed on all flights, using several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were depleted in aerosol particles, whereas dramatically enhanced small (<90 nm diameter) aerosol number concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. We also found elevated concentrations of larger (>90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest that aerosol production takes place in the UT from volatile material brought up by deep convection, which is converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed. We propose that this may have been the dominant process supplying secondary aerosols in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal
Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez
2007-01-01
Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...
NASA Astrophysics Data System (ADS)
Arias, P.; Fu, R.; Li, W.
2007-12-01
Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease of convective and total cloudiness over the Southern Amazon basin, due to an increase of LFC and atmospheric thermodynamic stability. Such an increase of surface SW radiation probably has contributed to the increasing in growth rate for the forests in the Amazon forests. Currently, the same analysis is being applied using radiosonde data from the Comprehensive Aerological Reference Data Set (CARDS) over the Amazon and Congo basins and the Southeast Asia. Our objective is to identify changes in cloudiness over tropical land and identify its underlying causes, especially the link to changes in surface temperature and humidity.
Systematic Differences between Satellite-Based Presipitation Climatologies over the Tropical Oceans
NASA Technical Reports Server (NTRS)
Robertson, Frankin R.; Fitzjarrald, Dan; McCaul, Eugene W.
1999-01-01
Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. It is clear however that there still remain significant uncertainties with satellite precipitation retrievals which limit their usefulness for many purposes. Systematic differences i'A tropical precipitation estimates have been brought to light in comparison activities such as the GPCP Algorithm Intercomparison Project and more recent Wetnet Precipitation Intercomparison Project 3. These uncertainties are assuming more importance because of the demands for validation associated with global climate modeling and data assimilation methodologies. The objective of the present study is to determine the physical basis for systematic differences in spatial structure of tropical precipitation as portrayed by several different satellite-based data sets. The study is limited to oceanic regions only and deals primarily with aspects of spatial variability. We are specifically interested in why MSU channel 1 and GPI precipitation differences are so striking over the Eastern Pacific ITCZ and why they both differ from other microwave emission-based precipitation estimates from SSM/I and a scattering-based deep convective ice index from MSU channel 2. Our results to date have shown that MSU channel I precipitation estimates are biased high over the Eastern Pacific ITCZ because of two factors: (1) the hypersensitivity of this frequency to cloud water in contrast to falling rain drops, and (2) unaccounted for scattering effects by precipitation-size ice which depresses the signal of the liquid water emission. Likewise, cold cloud top climatologies such as the GPI show an excess (a deficit) in estimated rainfall over the E. Pacific ITCZ (Warm Pool region). We show that these algorithms need to account for regionally varying heights (or temperatures) at which tropical convection detrains to form cirrus shields. A second objective we pursue is to identify variations in the macroscale cloud physical and thermodynamic properties of precipitation regimes" and relate these differences to tropical dynamical mechanisms of tropical heat and moisture balance. Finally, we interpret the algorithm differences and their associations with tropical dynamics in terms of WCRP GPCP goals for constructing precipitation climatologies.
Characteristics Associated with the Madden-Julian Oscillation at Manus Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liping; McFarlane, Sally A.; Flaherty, Julia E.
2013-05-15
Ground-based high temporal and vertical resolution datasets from 2002 to 2008 of observations at the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site on Manus Island, Papua New Guinea are used to examine the evolution of clouds and rainfall associated with the MJO life cycle. A composite MJO event is developed based on the NOAA MJO Index 4 using 13 events. The analysis shows that the cloud evolution during the composited MJO life cycle depicts a two-phase structure consisting of a development phase and a mature phase. During the development phase, congestus is the most important cloud type; duringmore » the mature phase, deep convection is the dominant cloud type. Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO life cycle. Light rainfall does not show a clear relation to the MJO life cycle, but shows variability on shorter time scales. From the development phase to the mature phase, the MJO structure shifts from the Type I to Type II structure, showing a different phase relationship between convection and dynamic fields (or wave motion) in the development and mature phases. During the shift, mid-level clouds play an important role in moving moisture to the mid-troposphere and preparing the atmosphere for the following deep convection. The discharge-recharge theory explains some of observed features of the MJO evolution at the ARM TWP Manus Island site.« less
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Hence, Deanna A.; Houze, Robert A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Tropical cloud buoyancy is the same in a world with or without ice
NASA Astrophysics Data System (ADS)
Seeley, Jacob T.; Romps, David M.
2016-04-01
When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.
Infrared radiative properties of tropical cirrus clouds inferred with aircraft measurements
NASA Technical Reports Server (NTRS)
Griffith, K. T.; Cox, S. K.; Knollenberg, R. G.
1980-01-01
Longwave emissivities and the vertical profile of cooling rates of tropical cirrus clouds are determined using broadband hemispheric irradiance data. Additionally, a broadband mass absorption coefficient is defined and used to relate emissivity to water content. The data used were collected by the National Center for Atmospheric Research (NCAR) Sabreliner during the GARP Atlantic Tropical Experiment (GATE) in the summer of 1974. Three case studies are analyzed showing that these tropical cirrus clouds approached an emissivity of 1.0 within a vertical distance of 1.0 km. Broadband mass absorption coefficients ranging from 0.076 to 0.096 sq m per g are derived. A comparison of these results with other work suggests that tropical cirrus cloud emissivities may be significantly larger than heretofore believed. Ice water content of the clouds were deduced from data collected by a one-dimensional particle spectrometer. Analyses of the ice water content and the observed particle size distributions are presented.
An Objective Classification of Saturn Cloud Features from Cassini ISS Images
NASA Technical Reports Server (NTRS)
Del Genio, Anthony D.; Barbara, John M.
2016-01-01
A k -means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible- infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baro-clinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.
Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review
Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...
2017-10-24
Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less
Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Stephen A.; Hall, Alex; Norris, Joel R.
Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less
NASA Technical Reports Server (NTRS)
Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas
2016-01-01
The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.
NASA Astrophysics Data System (ADS)
Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming
2017-04-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.
NASA Technical Reports Server (NTRS)
Poellot, Michael R.; Kucera, Paul A.
2004-01-01
This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative analyses of the recorded data and to deploy the NPOL radar to observe the characteristics of cirrus and parent convection.
Cloud types and the tropical Earth radiation budget, revised
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1989-01-01
Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.
Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl
2017-01-01
The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.
2017-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.
NASA Astrophysics Data System (ADS)
Anber, Usama; Wang, Shuguang; Sobel, Adam
2017-03-01
The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.
CloudSat Profiles Tropical Storm Andrea
2007-05-10
CloudSat's Cloud Profiling Radar captured a profile across Tropical Storm Andrea on Wednesday, May 9, 2007, near the South Carolina/Georgia/Florida Atlantic coast. The upper image shows an infrared view of Tropical Storm Andrea from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite, with CloudSat's ground track shown as a red line. The lower image is the vertical cross section of radar reflectivity along this path, where the colors indicate the intensity of the reflected radar energy. CloudSat orbits approximately one minute behind Aqua in a satellite formation known as the A-Train. http://photojournal.jpl.nasa.gov/catalog/PIA09379
NASA Astrophysics Data System (ADS)
Muhsin, M.; Sunilkumar, S. V.; Venkat Ratnam, M.; Parameswaran, K.; Krishna Murthy, B. V.; Emmanuel, Maria
2018-04-01
Influence of convection on the thermal structure of Troposphere and Lower Stratosphere (TLS) is investigated using radiosonde data, obtained from Trivandrum (8.5°N, 76.9°E), Gadanki (13.5°N, 79.2°E), Bhubaneswar (20.25°N, 85.83°E), Kolkata (22.65°N, 88.45°E) and Singapore (1.37°N, 103.98°E), collected during different convective categories classified based on the altitude of deep convective cloud tops (CT) in the period 2008-2014. During deep convective events, the temperature showed lower tropospheric cooling, an upper tropospheric warming and an anomalous cooling (warming) below (above) the cold point tropopause (CPT) with respect to the clear-sky value. While warming in the upper troposphere is strongest (∼2-4 K) around 10-12 km, anomalous cooling (warming) below (above) the CPT is maximum around 15.5 km (17.5 km) with values in the range of-2 to -4 K (3-6 K). These temperature perturbations are observed 5-6 days prior to the convective events. In response to deep convection, surface cooling up to ∼ -4 K is also observed. This study showed that the magnitude of cold and warm anomalies increases with strength of convection. During deep convection, the potential temperature (θ) shows a decrease (<5 K) in the tropical tropopause layer (TTL) from the TTL-base up to CPT compared to that on clear-sky days, confirming the vertical mixing of convective air from the lower atmosphere to the TTL-levels. Correlation analysis between different TTL parameters suggests that, as the cloud top altitude increases, along with the adiabatic process, diabatic process also plays a major role in the TTL. An interesting feature observed during deep convection is the ascent of TTL-base by ∼1.5 km and descent of CPT and TTL-top by 0.5 km, which effectively thins the TTL by ∼2 km.
NASA Astrophysics Data System (ADS)
Avery, M. A.; Rosenlof, K. H.; Vaughan, M.; Getzewich, B. J.; Thornberry, T. D.; Gao, R. S.; Rollins, A. W.; Woods, S.; Yorks, J. E.; Jensen, E. J.
2017-12-01
Recent aircraft missions sampling the tropical tropopause layer (TTL) in the tropical Western Pacific have provided a wealth of detailed cloud microphysical and associated aerosol, water vapor and temperature data for understanding processes that regulate stratospheric composition and hydration. This presentation seeks to provide a regional context for these measurements by comparing and contrasting active space-based observations from these time periods (Feb-Mar 2014 for ATTREX-III and Oct 2016 for POSIDON), primarily from the Clouds and Aerosol Lidar with Orthogonal Polarization (CALIOP), with the addition of Cloud Profiling Radar (CPR) and the Cloud-Aerosol Transport System (CATS) where these data sets are available. While the ATTREX III and POSIDON aircraft field missions both took place from Guam in the Western Pacific, there were striking differences between the amount, geographical distribution and properties of cirrus clouds and aerosols in the Tropical TTL. In addition to cloud and aerosol amount and location, we present geometric properties, including cloud top heights, transparent cloud and aerosol layer thicknesses and location of the 532 nm backscatter centroid, which is roughly equivalent to the layer vertical center of mass. We also present differences in the distribution of cirrus cloud extinction coefficients and ice water content, and aerosol optical depths, as detected from space, and compare these with in situ measurements and with temperature and water vapor distributions from the Microwave Limb Sounder (MLS). We find that there is more intense convection reaching the tropical tropopause during the POSIDON mission, and consequently more associated cloud ice observed during POSIDON than during ATTREX-III.
NASA Technical Reports Server (NTRS)
Elsaesser, Greg; Del Genio, Anthony
2015-01-01
The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.
NASA Astrophysics Data System (ADS)
Elsaesser, G.; Del Genio, A. D.
2015-12-01
The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high-latitude ice IWP that decreased by ~50% relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by ~15% in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (~200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of ~2. This was largely driven by IWC in deep-convecting regions of the tropics. Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter. GCM simulations with the improved convective parameterization yield a ~50% decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut
2018-01-01
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems
and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement)
, on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5-72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; ...
2018-01-25
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.
2018-03-01
Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.
Differences between nonprecipitating tropical and trade wind marine shallow cumuli
Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping
2015-11-13
In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s –1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less
Differences between nonprecipitating tropical and trade wind marine shallow cumuli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Miller, Mark A.; Zhu, Ping
In this study, marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scalemore » was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s –1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures« less
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2004-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.
350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies
NASA Astrophysics Data System (ADS)
Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.
2014-12-01
Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to reconstruct cloud cover conditions back to the year 1760 and thus determine historical cloud cover prior to the recent use of instrumental records. We will also discuss how our coral proxy record of cloud cover compares to paleo-climate model runs for the same time period.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay
2006-01-01
Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic variations of the strength of inversion with cloud object sizes, produced by large-scale subsidence. The differences in cloud macrophysical properties over small regions are significantly larger than those of cloud microphysical properties and TOA albedo, suggesting a greater control of (local) large-scale dynamics and other factors on cloud object properties. When the three cloud object types are combined, the relative population among the three types is the most important factor for determining the cloud object properties in a Pacific transect where the transition of boundary-layer cloud types takes place.
Medeiros, Brian; Nuijens, Louise
2016-05-31
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.
Nuijens, Louise
2016-01-01
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925
NASA Technical Reports Server (NTRS)
Robertson, Franklin
2008-01-01
Tropical rainfall as seen by the TRMM radar has multiple scales of organization, one prominent example of which is mesoscale deep convection that supports the production of strong, widespread anvil systems important to the planet's water and energy balance. TRMM PR precipitation retrievals (i.e. the 2A25 algorithm) are reliable down to rates below 1.0 mm/h which captures the majority of near-surface rainfall. However, much of the precipitating hydrometeor mass above the freezing level in these anvil systems may be associated with particles where TRMM PR s/n is low. In out analysis we are examining the question of 'What portions of the total hydrometeor spectrum can we see individually with TRMM, CloudSat, high frequency passive microwave (e.g. AMSU-B, MHS) and MODIS'. This will allow us to pursue fundamental issues of precipitation, efficiency, maintenance of upper-troposheric humidity, and cloud forcing variability in the tropical climate system. We do this by generating frequency distributions of ice water content (IWC), integrated IWC (IWP), and precipitation as appropriate for these sensors and relate these to TRMM near-surface rainfall. Joint frequency distributions are developed from more limited coincidence between TRMM and these sensors. We interpret these results in terms of a climate regime descriptor and as an index of precipitation efficiency for tropical rain systems.
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Pittman, Jasna; Atkinson, Robert
2008-01-01
Tropical rainfall as seen by the TRMM radar has multiple scales of organization, one prominent example of which is mesoscale deep convection that supports the production of strong, widespread anvil systems important to the planet's water and energy balance. TRMM PR precipitation retrievals (i.e. the 2A25 algorithm) are reliable down to rates below 1.0 mm/h which captures the majority of near-surface rainfall. However, much of the precipitating hydrometeor mass above the freezing level in these anvil systems may be associated with particles where TRMM PR s/n is low. In our analysis we are examining the question of "What portions of the total hydrometeor spectrum can we see individually with TRMM, CloudSat, high frequency passive microwave (e.g. AMSU-B, MHS) and MODIS". This will allow us to pursue fundamental issues of precipitation efficiency, maintenance of upper-tropospheric humidity, and cloud forcing variability in the tropical climate system. We do this by generating frequency distributions of ice water content (IWC), integrated IWC (IWP), and precipitation as appropriate for these sensors and relate these to TRMM near-surface rainfall. Joint frequency distributions are developed from more limited coincidence between TRMM and these sensors. We interpret these results in terms of a climate regime descriptor and as an index of precipitation efficiency for tropical rain systems.
Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Variability
NASA Technical Reports Server (NTRS)
Yuan, Tianle; Oraiopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry
2016-01-01
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.
2011-03-01
During a major sudden stratospheric warming event (21-27 January 2009), Mie-lidar observations at Gadanki (13.5°N, 79.2°E) show persistent occurrence of cirrus clouds. Outgoing long-wave radiation averaged for 70°E-90°E, decreases to a low value (170 W/m2) on 27 January 2009 over equator indicating deep convection. The zonal mean ERA-Interim data reveal large northward and upward circulation over equatorial upper troposphere. The latitude-longitude map of ERA-Interim zonal mean potential vorticity (PV) indicates two tongues of high PV emanating from polar latitudes and extending further down to equator. Radiosonde observations at Gadanki show the presence of ∼40% relative humidity at 11-13 km and lower tropopause temperature. It is inferred that the tropical circulation change due to PV intrusion leads to deep convection, which along with high humidity and low tropopause temperature leading to the formation of persistent cirrus clouds, the occurrence frequency of which is normally less during winter season over Gadanki.
NASA Astrophysics Data System (ADS)
Nicholls, M.; Pielke, R., Sr.; Smith, W. H.; Saleeby, S. M.; Wood, N.
2016-12-01
Several cloud-resolving numerical modeling results indicate that radiative forcing significantly accelerates tropical cyclogenesis. The primary mechanism appears to be differential radiative forcing between a relatively cloud-free environment and a developing tropical disturbance that generates circulations that influence convective activity in the core of the system, a mechanism first suggested by Gray and Jacobson. A dynamical perspective of this mechanism is taken by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations. Numerical model experiments indicate that as an expansive stratiform cloud layer forms aloft the long wave cooling is reduced at low and mid levels. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but it becomes significant at night when there is strong radiative clear sky cooling of the environment. Thermally driven circulations, are induced characterized by relatively weak subsidence in the environment but considerably stronger upward motion in the system core. This leads to a cooling tendency and increased relative humidity at night which appears to be a major factor in enhancing convective activity thereby leading in the mean to an increased rate of genesis. The increased upward motion and relative humidity that occurs throughout a deep layer is likely to aid in the triggering of convection, and provide a more favorable local environment at mid-levels for maintenance of buoyancy in convective cells due to a reduction of the detrimental effects of dry air entrainment. In order to clarify the effects of radiation the radiative forcing occurring in a fully physics simulation is imposed as a forcing term on the thermodynamic equation in a simulation without microphysics or radiation included to examine the induced circulations and the resultant thermodynamic changes that can influence convective development.
NASA Astrophysics Data System (ADS)
Khouider, B.; Majda, A.; Deng, Q.; Ravindran, A. M.
2015-12-01
Global climate models (GCMs) are large computer codes based on the discretization of the equations of atmospheric and oceanic motions coupled to various processes of transfer of heat, moisture and other constituents between land, atmosphere, and oceans. Because of computing power limitations, typical GCM grid resolution is on the order of 100 km and the effects of many physical processes, occurring on smaller scales, on the climate system are represented through various closure recipes known as parameterizations. The parameterization of convective motions and many processes associated with cumulus clouds such as the exchange of latent heat and cloud radiative forcing are believed to be behind much of uncertainty in GCMs. Based on a lattice particle interacting system, the stochastic multicloud model (SMCM) provide a novel and efficient representation of the unresolved variability in GCMs due to organized tropical convection and the cloud cover. It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Stratiform anvils forming in the wake of deep convection play a central role in the dynamics of tropical mesoscale convective systems. Here, aquaplanet simulations with a warm pool like surface forcing, based on a coarse-resolution GCM , of ˜170 km grid mesh, coupled with SMCM, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When some key model parameters are set to produce higher stratiform heating fractions, the model produces low-frequency and planetary-scale Madden Julian oscillation (MJO)-like wave disturbances while lower to moderate stratiform heating fractions yield mainly synoptic-scale convectively coupled Kelvin-like waves. Rooted from the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations perhaps with mechanisms that are in essence similar to those of mesoscale convective systems.
NASA Astrophysics Data System (ADS)
Peters, Karsten; Jakob, Christian; Möbis, Benjamin
2015-04-01
An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina
2017-10-01
The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen
2016-01-01
A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.
The Role of “Vortical” Hot Towers in the Formation of Tropical Cyclone Diana (1984).
NASA Astrophysics Data System (ADS)
Hendricks, Eric A.; Montgomery, Michael T.; Davis, Christopher A.
2004-06-01
A high-resolution (3-km horizontal grid spacing) near-cloud-resolving numerical simulation of the formation of Hurricane Diana (1984) is used to examine the contribution of deep convective processes to tropical cyclone formation. This study is focused on the 3-km horizontal grid spacing simulation because this simulation was previously found to furnish an accurate forecast of the later stages of the observed storm life cycle. The numerical simulation reveals the presence of vortical hot towers, or cores of deep cumulonimbus convection possessing strong vertical vorticity, that arise from buoyancy-induced stretching of local absolute vertical vorticity in a vorticity-rich prehurricane environment.At near-cloud-resolving scales, these vortical hot towers are the preferred mode of convection. They are demonstrated to be the most important influence to the formation of the tropical storm via a two-stage evolutionary process: (i) preconditioning of the local environment via diabatic production of multiple small-scale lower-tropospheric cyclonic potential vorticity (PV) anomalies, and (ii) multiple mergers and axisymmetrization of these low-level PV anomalies. The local warm-core formation and tangential momentum spinup are shown to be dominated by the organizational process of the diabatically generated PV anomalies; the former process being accomplished by the strong vertical vorticity in the hot tower cores, which effectively traps the latent heat from moist convection. In addition to the organizational process of the PV anomalies, the cyclogenesis is enhanced by the aggregate diabatic heating associated with the vortical hot towers, which produces a net influx of low-level mean angular momentum throughout the genesis.Simpler models are examined to elucidate the underlying dynamics of tropical cyclogenesis in this case study. Using the Sawyer Eliassen balanced vortex model to diagnose the macroscale evolution, the cyclogenesis of Diana is demonstrated to proceed in approximate gradient and hydrostatic balance at many instances, where local radial and vertical accelerations are small. Using a shallow water primitive equation model, a characteristic “moist” (diabatic) vortex merger in the cloud-resolving numerical simulation is captured in a large part by the barotropic model. Since a moist merger results in a stronger vortex and occurs twice as fast as a dry merger, it is inferred (consistent with related work) that a net low-level convergence can accelerate and intensify the merger process in the real atmosphere.Although the findings reported herein are based on a sole case study and thus cannot yet be generalized, it is believed the results are sufficiently interesting to warrant further idealized simulations of this nature.
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Hutchins, M. L.; Holzworth, R. H.
2016-10-01
We investigate lightning strokes and deep convection through the examination of cloud-to-ground (CG) lightning from the World Wide Lightning Location Network (WWLLN) and passive microwave radiometer data. Microwave channels at 37 to 183.3 GHz are provided by the Tropical Rainfall Measuring Mission satellite (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) satellite F16. The present study compares WWLLN stroke rates and minimum radiometer brightness temperatures (Tbs) for two Northern Hemisphere and Southern Hemisphere summers (2009-2011) in the broad tropics (35°S to 35°N). To identify deep convection, we use lightning data and Tbs derived from all channels and differences in the Tbs (ΔTbs) of the three water vapor channels near 183.3 GHz. We find that stroke probabilities increase with increasing Tb depressions for all frequencies examined. Moreover, we apply methods that use the 183.3 GHz channels to pinpoint deep convection associated with lightning. High lightning stroke probabilities are found over land regions for both intense and relatively weak convective systems, although the TMI 85 GHz results should be used with caution as they are affected by a 7 km gap between the conical scans. Over the ocean, lightning is associated mostly with larger Tb depressions. Generally, our results support the noninductive thundercloud charging mechanism but do not rule out the inductive mechanism during the mature stages of storms. Lastly, we present a case study in which lightning stroke rates are used to reconstruct microwave radiometer Tbs.
Life Cycle of Tropical Convection and Anvil in Observations and Models
NASA Astrophysics Data System (ADS)
McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.
2011-12-01
Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
Leading and Trailing Anvil Clouds of West African Squall Lines
NASA Technical Reports Server (NTRS)
Centrone, Jasmine; Houze, Robert A.
2011-01-01
The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.
Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson
2018-03-01
The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.
It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak
(i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.
NASA Technical Reports Server (NTRS)
Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)
2001-01-01
This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.
A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies
NASA Astrophysics Data System (ADS)
Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide
2015-04-01
Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of cloud cover and of reanalysis and climate simulations for the same time period.
The Community Climate System Model Version 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.
The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than themore » CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.« less
Tropical Storm Ernesto over Cuba
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Microwave Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Gravity wave momentum flux in the lower stratosphere over convection
NASA Technical Reports Server (NTRS)
Alexander, M. Joan; Pfister, Leonhard
1995-01-01
This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.
Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation
Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; ...
2016-02-04
The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropicalmore » trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.« less
Interannual variability of high ice cloud properties over the tropics
NASA Astrophysics Data System (ADS)
Tamura, S.; Iwabuchi, H.
2015-12-01
The El Niño/Southern Oscillation (ENSO) affects atmospheric conditions and cloud physical properties such as cloud fraction (CF) and cloud top height (CTH). However, an impact of the ENSO on physical properties in high-ice cloud is not well known. Therefore, this study attempts to reveal relationship between variability of ice cloud physical properties and ENSO. Ice clouds are inferred with the multiband IR method in this study. Ice clouds are categorized in terms of cloud optical thickness (COT) as thin (0.1< COT <0.3), opaque (0.3< COT <3.6), thick (3.6< COT <11), and deep convective (DC) (11< COT) clouds, and relationship between ENSO and interannual variability of cloud physical properties is investigated for each category during the period from January 2003 to December 2014. The deseasonalized anomalies of CF and CTH in all categories correlate well with Niño3.4 index, with positive anomaly over the eastern Pacific and negative anomaly over the western Pacific during El Niño condition. However, the global distribution of these correlation coefficients is different by cloud categories. For example, CF of DC correlates well with Niño3.4 index over the convergence zone, while, that of thin cloud shows high correlation extending to high latitude from convergence zone, suggesting a connection with cloud formation. The global distributions of average rate of change differ by cloud category, because the different associate with ENSO and gradual trend toward La Niña condition had occurred over the analysis period. In this conference, detailed results and relationship between variability of cloud physical properties and atmospheric conditions will be shown.
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.
2007-01-01
The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the observed outgoing longwave radiation and cloud top temperature between the two periods. Comparisons between the CRM results and the observations for most parameters in March 1998 consistently show that both the simulations and observations have larger differences between the large- and small-size categories than between the large- and medium-size, or between the medium- and small-size categories. However, the simulated cloud properties do not change as much with size as observed. These disagreements are likely related to the spatial averaging of the forcing data and the mismatch in time and in space between the numerical weather prediction model from which the forcing data are produced and the CERES observed cloud systems.
ARM Research in the Equatorial Western Pacific: A Decade and Counting
NASA Technical Reports Server (NTRS)
Long, C. N.; McFarlane, S. A.; DelGenio, A.; Minnis, P.; Ackerman, T. S.; Mather, J.; Comstock, J.; Mace, G. G.; Jensen, M.; Jakob, C.
2013-01-01
The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from short-term field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.
Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration
NASA Technical Reports Server (NTRS)
Jensen, Eric
2004-01-01
In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; ...
2017-06-19
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
NASA Astrophysics Data System (ADS)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat
2017-07-01
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.
2004-01-01
Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.
2004-01-01
Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen
1999-01-01
Two tropical squall lines from TOGA COARE and GATE were simulated using a two-dimensional cloud-resolving model to examine the impact of surface fluxes on tropical squall line development and associated precipitation processes. The important question of how CAPE in clear and cloudy areas is maintained in the tropics is also investigated. Although the cloud structure and precipitation intensity are different between the TOGA COARE and GATE squall line cases, the effects of the surface fluxes on the amount of rainfall and on the cloud development processes are quite similar. The simulated total surface rainfall amount in the runs without surface fluxes is about 67% of the rainfall simulated with surface fluxes. The area where surface fluxes originated was categorized into clear and cloudy regions according to whether there was cloud in the vertical column. The model results indicated that the surface fluxes from the large clear air environment are the dominant moisture source for tropical squall line development even though the surface fluxes in the cloud region display a large peak. The high-energy air from the boundary layer in the clear area is what feeds the convection while the CAPE is removed by the convection. The surface rainfall was only reduced 8 to 9% percent in the simulations without surface fluxes in the cloud region. Trajectory and water budget analysis also indicated that most moisture (92%) was from the boundary layer of the clear air environment.
Moisture structure of tropical cloud systems as inferred from SSM/I
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1989-01-01
The structure of tropical cloud systems was examined using data obtained by the Special Sensor Microwave/Imager on vertically-integrated vapor, ice, and liquid water (including precipitable water) in a cloud cluster associated with a Pacific easterly wave. The cloud cluster provided a sample of the varying signatures of bulk microphysical processes in organized tropical convection. Composition techniques were used to interpret this variability and its significance in terms of the response of convection to its thermodynamic environment. The relative intensities of the ice and liquid-water signatures should provide insight on the relative contribution of stratiform vs convective rain and the characteristics of the water budgets of mesoscale convective systems.
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Gregorich, David T.; Broberg, Steven E.; Elliott, Denis A.
2007-01-01
The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0 - 30 N and 0 - 30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Gregorich, David T.; Broberg, Steven E.; Elliott, Denis A.
2007-01-01
The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0-30 N and 0-30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.; Miller, Timothy L.
2005-01-01
Uncertainty remains as to what extent variability in mid to upper tropospheric moisture, especially over the tropics, behaves as constant relative humidity during interannual climate variations associated with ENSO. Systematic variations in HIRS 6.7 micron and MLS 205 GHz suggest that dry subtropical regions evolving during warm SST events depress relative humidity, but the interpretation of these events is still uncertain. Additional specific concerns have to do with regional signatures of convective processes: How does the origin of dry air in the eastern subtropical N. Pacific differ in ENSO warm versus cold years? The dynamics of Rossby wave forcing by convective heating, subtropical jet stream dynamics, and dynamics driven subsidence all come into play here. How variations in precipitating ice hydrometeors from tropical anvils relate to variations in UTH is also a subject of debate? Do variations in precipitating ice, cloud cover and water vapor behavior show any support for the Iris-hypothesis mechanism? Here we examine historical records of SSM/T-2 data to gain a better physical understanding of the effects of deep convective moisture sources and dynamically-induced vertical circulations on UTH. These high frequency microwave measurements (183.3 GHz) take advantage of far less sensitivity to cloud hydrometeors than the 6.7 micron data to yield a record of upper tropospheric relative humidity. Furthermore, signatures of precipitating ice from these channels facilitate comparisons to TRMM hydrometeors detected by radar. In analyzing these observations, we isolate water vapor and temperature change components that affect brightness temperatures and the inferred relative humidity. Trajectory modeling is also used to understand interannual humidity anomalies in terms of outflow fbm convective regions and history of diabatically-driven sinking which modifies relative humidity.
Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina
2016-04-01
The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud particles are nevertheless classified as spherical for all temperatures, possibly indicating columnar ice crystals (see Järvinen et al, submitted to JAS 2016).
Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case
NASA Technical Reports Server (NTRS)
Starr, David; Lin, Ruci-Fong; Demoz, Belay; Lare, Andrew
2004-01-01
A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud-system simulation with MM5 to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin. Meteorological conditions and observations for the 23 July case are described in this volume. The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.
ARM Research in the Equatorial Western Pacific: A Decade and Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Charles N.; McFarlane, Sally A.; Del Genio, Anthony D.
2013-05-22
The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures and the annual progression of the Intertropical Convergence Zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. To accurately represent tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region havemore » traditionally come primarily from short-term field experiments. While providing extremely useful information on physical processes, these datasets are limited in statistical and climatological information because of their short duration. To provide long-term measurements of the surface radiation budget in the tropics, and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets available from more than 10 years of operation in the equatorial western Pacific on Manus and Nauru. We present examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. We also note new instrumentation recently installed at the Manus site that will expand opportunities for tropical atmospheric science.« less
Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon
NASA Astrophysics Data System (ADS)
Wang, Yi; Wang, Chenghai
2016-02-01
The statistical characteristics of the vertical structure of clouds in the Asian summer monsoon region are investigated using two CloudSat standard products (Geometrical Profiling Product (GEOPROF) and GEOPROF-lidar) during the pre- and post-onset periods of the Asian summer monsoon, from April to August in 2007-2010. The characteristics of the vertical structure of clouds are analyzed and compared for different underlying surfaces in four subregions during this period. Also analyzed are the evolution of precipitation and hydrometeors with the northward advance of the Asian summer monsoon, and different hydrometeor characteristics attributed to the underlying surface features. The results indicate that the vertical cloud amounts increase significantly after the summer monsoon onset; this increase occurs first in the upper troposphere and then at lower altitudes over tropical regions (South Asian and tropical Northwest Pacific regions). The heights of the cloud top ascend, and the vertical height between the top and the base of the whole cloud increases. Single-layer (SL) and double-layer (DL) hydrometeors contribute over half and one third of the cloudiness in these 5 months (April to August), respectively. The multilayer frequencies increase in four different regions, and cloud layer depths (CLD) increase after the summer monsoon onset. These changes are stronger in tropical regions than in subtropical regions, while the vertical distance between cloud layers (VDCL) deceases in tropical regions and increases in subtropical regions.
Simulating Roll Clouds associated with Low-Level Convergence.
NASA Astrophysics Data System (ADS)
Prasad, A. A.; Sherwood, S. C.
2015-12-01
Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Qiang; Comstock, Jennifer
The overall objective of this ASR funded project is to investigate the role of cloud radiative effects, especially those associated with tropical thin cirrus clouds in the tropical tropopause layer, by analyzing the ARM observations combined with numerical models. In particular, we have processed and analyzed the observations from the Raman lidar at the ARM SGP and TWP sites. In the tenure of the project (8/15/2013 – 8/14/2016 and with a no-cost extension to 8/14/2017), we have been concentrating on (i) developing an automated feature detection scheme of clouds and aerosols for the ARM Raman lidar; (ii) developing an automatedmore » retrieval of cloud and aerosol extinctions for the ARM Raman lidar; (iii) investigating cloud radiative effects based on the observations on the simulated temperatures in the tropical tropopause layer using a radiative-convective model; and (iv) examining the effect of changes of atmospheric composition on the tropical lower-stratospheric temperatures. In addition, we have examined the biases in the CALIPSO-inferred aerosol direct radiative effects using ground-based Raman lidars at the ARM SGP and TWP sites, and estimated the impact of lidar detection sensitivity on assessing global aerosol direct radiative effects. We have also investigated the diurnal cycle of clouds and precipitation at the ARM site using the cloud radar observations along with simulations from the multiscale modeling framework. The main results of our research efforts are reported in the six referred journal publications that acknowledge the DOE Grant DE-SC0010557.« less
Idealized Cloud-System Resolving Modeling for Tropical Convection Studies
NASA Astrophysics Data System (ADS)
Anber, Usama M.
A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.
The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones
NASA Technical Reports Server (NTRS)
Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart
2012-01-01
NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.
Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate
Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.
2017-01-01
The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940
NASA Astrophysics Data System (ADS)
Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.
2016-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to achieve relative positioning in a constellation of 6U-Class nanosatellites. The TEMPEST-D 6U-Class satellite is planned to be delivered in July 2017 for launch through NASA CSLI no later than March 2018.
Statistical thermodynamics and the size distributions of tropical convective clouds.
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.
2017-12-01
Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.
CloudSat Image of Tropical Thunderstorms Over Africa
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.Clouds, surface temperature, and the tropical and subtropical radiation budget
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1980-01-01
Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.
Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.
2015-06-01
Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations andmore » subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.« less
Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions
NASA Astrophysics Data System (ADS)
Nair, U. S.; Wu, Y.; Reid, J. S.
2017-12-01
In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.
Weather Avoidance Guidelines for NASA Global Hawk High-Altitude Unmanned Aircraft Systems (UAS)
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris S.; Monette, Sarah A.; Heymsfield, Gerald M.; Braun, Scott A.; Newman, Paul A.; Black, Peter G.; Black, Michael L.; Dunion, Jason P.
2014-01-01
The current Global Hawk flight rules would probably not have been effective in the single event of greatest concern (the Emily encounter). The cloud top had not reached 50,000 ft until minutes before the encounter. The TOT and lightning data would not have been available until near the overflight time since this was a rapidly growing cell. This case would have required a last-minute diversion when lightning became frequent. Avoiding such a cell probably requires continual monitoring of the forward camera and storm scope, whether or not cloud tops have been exceeding specific limits. However, the current overflight rules as strictly interpreted would have prohibited significant fractions of the successful Global Hawk overpasses of Karl and Matthew that proved not to be hazardous. Many other high altitude aircraft (ER-2 and Global Hawk) flights in NASA tropical cyclone field programs have successfully overflown deep convective clouds without incident.The convective cell that caused serious concern about the safety of the ER-2 in Emily was especially strong for a tropical cyclone environment, probably as strong or stronger than any that was overflown by the ER-2 in 20 previous flights over tropical cyclones. Specifically, what made that cell a safety concern was the magnitude of the vertical velocity of the updraft, at least 20 m/s (4000 ft/minute) at the time the ER-2 overflew it. Such a strong updraft can generate strong gravity waves at and above the tropopause, posing a potential danger to aircraft far above the maximum altitude of the updraft itself or its associated cloud top. Indeed, the ER-2 was probably at least 9000 ft above that cloud top. Cloud-top height, by itself, is not an especially good indicator of the intensity of convection and the likelihood of turbulence. Nor is overflying high cloud tops (i.e. > 50,000 ft) of particular concern unless there is other evidence of very strong convective updrafts beneath those tops in the path of the aircraft. center dot Lightning, especially lightning with a high flash rate, is well correlated with convective intensity. Lightning with a minimal flash rate (say 1-3 flashes per minute) is indicative of updraft speeds of about 10 m/s in the mixed phase region where charge is being separated, generally at altitudes about 20-25 kft in a hurricane. That is still stronger than typical updrafts (more like 5 m/s). An unresolved issue is whether there is a high and instantaneous correlation between vertical velocity in the middle troposphere (necessary for lightning generation) and near cloud top (more direct concern for overflights).
New Concepts for Refinement of Cumulus Parameterization in GCM's the Arakawa-Schubert Framework
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Lau, William (Technical Monitor)
2002-01-01
Several state-of-the-art models including the one employed in this study use the Arakawa-Schubert framework for moist convection, and Sundqvist formulation of stratiform. clouds, for moist physics, in-cloud condensation, and precipitation. Despite a variety of cloud parameterization methodologies developed by several modelers including the authors, most of the parameterized cloud-models have similar deficiencies. These consist of: (a) not enough shallow clouds, (b) too many deep clouds; (c) several layers of clouds in a vertically demoralized model as opposed to only a few levels of observed clouds, and (d) higher than normal incidence of double ITCZ (Inter-tropical Convergence Zone). Even after several upgrades consisting of a sophisticated cloud-microphysics and sub-grid scale orographic precipitation into the Data Assimilation Office (DAO)'s atmospheric model (called GEOS-2 GCM) at two different resolutions, we found that the above deficiencies remained persistent. The two empirical solutions often used to counter the aforestated deficiencies consist of a) diffusion of moisture and heat within the lower troposphere to artificially force the shallow clouds; and b) arbitrarily invoke evaporation of in-cloud water for low-level clouds. Even though helpful, these implementations lack a strong physical rationale. Our research shows that two missing physical conditions can ameliorate the aforestated cloud-parameterization deficiencies. First, requiring an ascending cloud airmass to be saturated at its starting point will not only make the cloud instantly buoyant all through its ascent, but also provide the essential work function (buoyancy energy) that would promote more shallow clouds. Second, we argue that training clouds that are unstable to a finite vertical displacement, even if neutrally buoyant in their ambient environment, must continue to rise and entrain causing evaporation of in-cloud water. These concepts have not been invoked in any of the cloud parameterization schemes so far. We introduced them into the DAO-GEOS-2 GCM with McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme).
Measurements of Ice Particles in Tropical Cirrus Anvils: Importance in Radiation Balance
NASA Technical Reports Server (NTRS)
Foster, Theodore; Arnott, William P.; Hallett, John; Pueschel, Rudi; Strawn, Anthony W. (Technical Monitor)
1994-01-01
Cirrus is important in the radiation balance of the global atmosphere, both at solar and thermal infrared (IR) wavelengths. In particular cirrus produced by deep convection over the oceans in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the tropical atmosphere to subsequently influence not only tropical but mid latitude climate. Details of the cloud composition may differentiate between a net cooling or warming at these levels. The cloud composition may change depending on the input of nuclei from volcanic or other sources. Observations of cirrus during the FIRE-2 Project over Coffeyville, Kansas and by satellite demonstrate that cirrus, on occasion, is composed not only of larger particles with significant fall velocity (few hundred micrometers, 0.5 m/s) but much more numerous small particles, size 10-20 micrometers, with small fall velocity (cm/s), which may sometimes dominate the radiation field. This is consistent with emissivity measurements. In the thermal IR, ice absorption is strong, so that ice particles only 10 micrometers thick are opaque, at some wavelengths; on the other hand at other wavelengths and in the visible, ice is only moderately to weakly absorbing. It follows that for strongly absorbing wavelengths the average projected area of the ice particles is the important parameter, in weakly absorbing regions it is the volume (mass) of ice which is important. The shape of particles and also their internal structure may also have significant effect on their radiative properties. In order to access the role of cirrus in the radiation budget it is necessary to measure the distribution of ice particles sizes, shapes and concentrations in the regions of interest. A casual observation of any cirrus cloud shows that there is variability down to a scale of at least a few 100 m; this is confirmed by radar and lidar remote sensing. Thus aircraft measurements designed to give insight into the spatial distribution of radiation properties of ice crystals must be capable of examination of concentration, size and shape over a distance ideally of 100 m or less and to detect particles down to a size below which radiative effects are no longer significant.
Tropical Storm Ernesto over Cuba
2006-08-28
This infrared image shows Tropical Storm Ernesto over Cuba, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00510
Storms in the tropics of Titan.
Schaller, E L; Roe, H G; Schneider, T; Brown, M E
2009-08-13
Methane clouds, lakes and most fluvial features on Saturn's moon Titan have been observed in the moist high latitudes, while the tropics have been nearly devoid of convective clouds and have shown an abundance of wind-carved surface features like dunes. The presence of small-scale channels and dry riverbeds near the equator observed by the Huygens probe at latitudes thought incapable of supporting convection (and thus strong rain) has been suggested to be due to geological seepage or other mechanisms not related to precipitation. Here we report the presence of bright, transient, tropospheric clouds in tropical latitudes. We find that the initial pulse of cloud activity generated planetary waves that instigated cloud activity at other latitudes across Titan that had been cloud-free for at least several years. These observations show that convective pulses at one latitude can trigger short-term convection at other latitudes, even those not generally considered capable of supporting convection, and may also explain the presence of methane-carved rivers and channels near the Huygens landing site.
NASA Astrophysics Data System (ADS)
Protat, A.; Delanoë, J.; May, P. T.; Haynes, J.; Jakob, C.; O'Connor, E.; Pope, M.; Wheeler, M. C.
2011-08-01
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.
Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less
Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data
NASA Astrophysics Data System (ADS)
Jing, Xianwen; Zhang, Hua; Satoh, Masaki; Zhao, Shuyun
2018-04-01
The decorrelation length ( L cf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate L cf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between L cf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. L cf tends to increase with vertical velocity in the mid-troposphere ( w 500) at locations of ascent, but shows little or no dependency on w 500 at locations of descent. A representation of L cf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of L cf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.
Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon
NASA Technical Reports Server (NTRS)
Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne
2015-01-01
Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.
NASA Technical Reports Server (NTRS)
Koren, Ilan; Feingold, Graham; Remer, Lorraine A.
2010-01-01
Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
NASA Technical Reports Server (NTRS)
Williams, E.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D.
2004-01-01
Satellite observations of lightning flash rate have been merged with proximal surface station thermodynamic observations toward improving the understanding of the response of the updraft and lightning activity in the tropical atmosphere to temperature. The tropical results have led in turn to an examination of thermodynamic climatology over the continental United States in summertime and its comparison with exceptional electrical conditions documented in earlier studies. The tropical and mid-latitude results taken together support an important role for cloud base height in regulating the transfer of Convective Available Potential Energy (CAPE) to updraft kinetic energy in thunderstorms. In the tropics, cloud base height is dominated by the dry bulb temperature over the wet bulb temperature as the lightning-regulating temperature in regions characterized by moist convection. In the extratropics, an elevated cloud base height may enable larger cloud water concentrations in the mixed phase region, a favorable condition for the positive charging of large ice particles that may result in thunderclouds with a reversed polarity of the main cloud dipole. The combined requirements of instability and cloud base height serve to confine the region of superlative electrification to the vicinity of the ridge in moist entropy in the western Great Plains.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.
2013-05-01
Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and recharge result in a largely groundwater driven system whereby streamflow dynamics is uncoupled from plant water uptake, and water storage and buffering capacity are exceptionally high. These factors, combined with the soil properties, resulted in reduced dry season flows due to land use conversion to pasture only being detected towards the end of the dry season. Projected lifting of the cloud base associated with regional climate change combined with declining rainfall may significantly alter ecohydrological functions of these TMCFs.
NASA Astrophysics Data System (ADS)
Endo, S.; Lin, W.; Jackson, R. C.; Collis, S. M.; Vogelmann, A. M.; Wang, D.; Oue, M.; Kollias, P.
2017-12-01
Tropical convection is one of the main drivers of the climate system and recognized as a major source of uncertainty in climate models. High-resolution modeling is performed with a focus on the deep convection cases during the active monsoon period of the TWP-ICE field campaign to explore ways to improve the fidelity of convection permitting tropical simulations. Cloud resolving model (CRM) simulations are performed with WRF modified to apply flexible configurations for LES/CRM simulations. We have enhanced the capability of the forcing module to test different implementations of large-scale vertical advective forcing, including a function for optional use of large-scale thermodynamic profiles and a function for the condensate advection. The baseline 3D CRM configurations are, following Fridlind et al. (2012), driven by observationally-constrained ARM forcing and tested with diagnosed surface fluxes and fixed sea-surface temperature and prescribed aerosol size distributions. After the spin-up period, the simulations follow the observed precipitation peaks associated with the passages of precipitation systems. Preliminary analysis shows that the simulation is generally not sensitive to the treatment of the large-scale vertical advection of heat and moisture, while more noticeable changes in the peak precipitation rate are produced when thermodynamic profiles above the boundary layer were nudged to the reference profiles from the forcing dataset. The presentation will explore comparisons with observationally-based metrics associated with convective characteristics and examine the model performance with a focus on model physics, doubly-periodic vs. nested configurations, and different forcing procedures/sources. A radar simulator will be used to understand possible uncertainties in radar-based retrievals of convection properties. Fridlind, A. M., et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
Meteorological Drivers of Cold Temperatures in the Western Pacific TTL
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.
2017-01-01
During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.
Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2009-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Minghua
1. Understanding of the observed variability of ITCZ in the equatorial eastern Pacific. The annual mean precipitation in the eastern Pacific has a maximum zonal band north of the equator in the ITCZ where the maximum SST is located. During the boreal spring (referring to February, March, and April throughout the present paper), because of the accumulated solar radiation heating and oceanic heat transport, a secondary maximum of SST exists in the southeastern equatorial Pacific. Associated with this warm SST is also a seasonal transitional maximum of precipitation in the same region in boreal spring, exhibited as a weak doublemore » ITCZ pattern in the equatorial eastern Pacific. This climatological seasonal variation, however, varies greatly from year to year: double ITCZ in the boreal spring occurs in some years but not in other years; when there a single ITCZ, it can appear either north, south or at the equator. Understanding this observed variability is critical to find the ultimate cause of the double ITCZ in climate models. Seasonal variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have found that in the region where spurious ITCZ in models occurs, there is a “seasonal cloud transition” — from stratocumulus to shallow cumulus and eventually to deep convection —in the South Equatorial Pacific (SEP) from September to April that is similar to the spatial cloud transition from the California coast to the equator. This seasonal transition is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence. This finding of seasonal cloud transition points to the same source of model errors in the ITCZ simulations as in simulation of stratocumulus-cumulus-deep convection transition. It provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double Inter-tropical Convergence Zone (ITCZ) in most models. This work is recently published in Yu et al. (2016). Interannual variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have characterized the interannual variation of boreal spring precipitation in the eastern tropical Pacific and found the cause of the observed interannual variability. We have shown that ITCZ in this region can occur as a single ITCZ along the Equator, single ITCZ north of the Equator, single ITCZ south of the Equator, and double ITCZ on both sides of the Equator. We have found that convective instability only plays a secondary role in the ITCZ interannual variability. Instead, the remote impact of the Pacific basin-wide SST on the horizontal gradient of surface pressure and wind convergence is the primary driver of this interannual variability. Results point to the need to include moisture convergence in convection schemes to improve the simulation of precipitation in the eastern tropical Pacific. This result has been recently submitted for publication (Yu and Zhang 2016). 2. Improvement of model parameterizations to reduce the double ITCZ bias We analyzed the current status of climate model performance in simulating precipitation in the equatorial Pacific. We have found that the double ITCZ bias has not been reduced in CMIP5 models relative to CMIP4 models. We have characterized the dynamic structure of the common bias by using precipitation, sea surface temperature, surface winds and sea-level. Results are published in Zhang et al. (2015): Since cumulus convection plays a significant role in the double ITCZ behavior in models, we have used measurements from ARM and other sources to carry out a systematic analysis of the roles of shallow and deep convection in the CAM. We found that in both CAM4 and CAM5, when the intensity of deep convection decreases as a result of parameterization change, the intensity of shallow convection increases, leading to very different changes in precipitation partitions but little change in the total precipitation. The different precipitation partition however can manifest themselves in other measures of model performances including temperature and humidity. This study points to the need to treat model physical parameterizations as integrated system rather than individual components. Results from this study are published in Wang and Zhang (2013). Since shallow convection interacts with the deep convection scheme and surface turbulence to trigger the double ITCZ, we studied methods to improve the shallow convection scheme in climate models. We investigated the bulk budgets of the vertical velocity and its parameterization in convective cores, convective updrafts, and clouds by using large-eddy simulation (LES) of four shallow convection cases including one from ARM. We proposed optimal forms of the Simpson and Wiggert equation to calculate the vertical velocity in bulk mass flux convection schemes for convective cores, convective updrafts, and convective clouds as parameterization schemes. The new scheme is published in Wang and Zhang (2014). By using long-term radar-based ground measurements from ARM, we derived a scale-aware inhomogeneity parameterization of cloud liquid water in climate models. We found a relationship between the inhomogeneity parameter and the model grid size as well as atmospheric stability. This relationship is implemented in the CESM to describe the subgrid-scale cloud inhomogeneity. Relative to the default CESM with the finite-volume dynamic core at 2-degree resolution, the new parameterization leads to smaller cloud inhomogeneity and larger cloud liquid-water path in high latitudes, and the opposite effect in low latitudes, with the regional impact on shortwave cloud radiation effect of up to 10 W/m 2. This is due to both the smaller (larger) grid size in high (low) latitudes in the longitude-latitude grid setting of CESM and the more stable (unstable) atmosphere. This parameterization is expected lead to more realistic simulation of tropical precipitation in high-resolution models. Results from this study are reported in Xie and Zhang (2015).« less
NASA Technical Reports Server (NTRS)
Norris, Joel R.
2005-01-01
This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.
NASA Astrophysics Data System (ADS)
Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish
Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed increase of 0.41 km and 0.56 km, respectively. These results are discussed in relation with the recent increase in the tropical tropopause altitude.
Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.
Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart
2007-10-16
Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change.
A Model Evaluation Data Set for the Tropical ARM Sites
Jakob, Christian
2008-01-15
This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).
Tropical Depression 6 Florence in the Atlantic
2006-09-03
This infrared image shows Tropical Depression 6 Florence in the Atlantic, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in September, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00512
NASA Astrophysics Data System (ADS)
Sobel, A. H.; Wang, S.; Bellon, G.; Sessions, S. L.; Woolnough, S.
2013-12-01
Parameterizations of large-scale dynamics have been developed in the past decade for studying the interaction between tropical convection and large-scale dynamics, based on our physical understanding of the tropical atmosphere. A principal advantage of these methods is that they offer a pathway to attack the key question of what controls large-scale variations of tropical deep convection. These methods have been used with both single column models (SCMs) and cloud-resolving models (CRMs) to study the interaction of deep convection with several kinds of environmental forcings. While much has been learned from these efforts, different groups' efforts are somewhat hard to compare. Different models, different versions of the large-scale parameterization methods, and experimental designs that differ in other ways are used. It is not obvious which choices are consequential to the scientific conclusions drawn and which are not. The methods have matured to the point that there is value in an intercomparison project. In this context, the Global Atmospheric Systems Study - Weak Temperature Gradient (GASS-WTG) project was proposed at the Pan-GASS meeting in September 2012. The weak temperature gradient approximation is one method to parameterize large-scale dynamics, and is used in the project name for historical reasons and simplicity, but another method, the damped gravity wave (DGW) method, will also be used in the project. The goal of the GASS-WTG project is to develop community understanding of the parameterization methods currently in use. Their strengths, weaknesses, and functionality in models with different physics and numerics will be explored in detail, and their utility to improve our understanding of tropical weather and climate phenomena will be further evaluated. This presentation will introduce the intercomparison project, including background, goals, and overview of the proposed experimental design. Interested groups will be invited to join (it will not be too late), and preliminary results will be presented.
NASA Technical Reports Server (NTRS)
Jiang, Jonathan H.; Su, Hui; Pawson, Steven; Liu, Hui-Chun; Read, William; Waters, Joe W.; Santee, Michelle; Wu, Dong L.; Schwartz, Michael; Lambert, Alyn;
2009-01-01
This paper gives an overview of August 2004 through July 2009 upper tropospheric (UT) water vapor (H2O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H2O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within approximately 15%) agreement in IWC at these altitudes, but GEOS-5 H2O is approximately 50% (215 hPa) to approximately 30% (147 hPa) larger than MLS, possibility due to its higher temperatures at these altitudes. GOES-5 produces a weaker intertropical convergence zone than MLS, while a seasonally-migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H2O and IWC. MLS and GEOS-5 both show spatial anti-correlation between IWC and H2O at 100 hPa, where less H2O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H2O in the tropics, and approximately 20% more H2O in the extra-tropics, than does MLS. Behavior of the 100 hPa H2O, which exhibits a quasi-biennial oscillation, appears consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H2O from approximately 147 hPa to approximately 10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H2O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Nino-Southern Oscillation.
Heating rates in tropical anvils
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.; Valero, Francisco P. J.; Pfister, Leonhard; Liou, Kuo-Nan
1988-01-01
The interaction of infrared and solar radiation with tropical cirrus anvils is addressed. Optical properties of the anvils are inferred from satellite observations and from high-altitude aircraft measurements. An infrared multiple-scattering model is used to compute heating rates in tropical anvils. Layer-average heating rates in 2 km thick anvils were found to be on the order of 20 to 30 K/day. The difference between heating rates at cloud bottom and cloud top ranges from 30 to 200 K/day, leading to convective instability in the anvil. The calculations are most sensitive to the assumed ice water content, but also are affected by the vertical distribution of ice water content and by the anvil thickness. Solar heating in anvils is shown to be less important than infrared heating but not negligible. The dynamical implications of the computed heating rates are also explored and it is concluded that the heating may have important consequences for upward mass transport in the tropics. The potential impact of tropical cirrus on the tropical energy balance and cloud forcing are discussed.
New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.
2002-01-01
In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.
NASA Technical Reports Server (NTRS)
Churchill, Dean D.; Houze, Robert A., Jr.
1991-01-01
A twi-dimensional kinematic model has been used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds associated with a mesoscale tropical cloud cluster. The model incorporates ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment. It is intended to determine the relative contributions of radiation, mycrophysics, and turbulence to diabatic heating, and the effects that radiation has on the water budget of the cluster in the absence of dynamical interactions. The model has been initialized with thermodynamic fields and wind velocities diagnosed from a GATE tropical squall line. It is found that radiation does not directly affect the water budget of the stratiform region, and any radiative effect on hydrometeors must involve interaction with dynamics.
CRYSTAL: The Cirrus Regional Study of Tropical Anvils and Layers
NASA Technical Reports Server (NTRS)
Delnore, Victor E.; Cox, Stephen K.; Curran, Robert J.
1999-01-01
CRYSTAL the Cirrus Regional Study of Tropical Anvils and Layers is part of the ongoing series of field experiments to study clouds and their impact on world weather and climate, and will attempt to improve the application of cloud effects in global climate models. CRYSTAL is being planned as two parts: a limited CRYSTAL field campaign in 2001 to examine towering clouds and anvil genesis over the Everglades of Florida, and the main CRYSTAL field campaign in the summer of 2003 in the Tropical Western Pacific. The latter is timed to take advantage of several cloud measurement satellites that will be operational at that time. This paper discusses some of the issues to be addressed in CRYSTAL, gives a brief description of the research plan, and describes its relationship to other important field experiments.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
Where is the level of neutral buoyancy for deep convection?
NASA Astrophysics Data System (ADS)
Takahashi, Hanii; Luo, Zhengzhao
2012-08-01
This study revisits an old concept in meteorology - level of neutral buoyancy (LNB). The classic definition of LNB is derived from the parcel theory and can be estimated from the ambient sounding (LNB_sounding) without having to observe any actual convective cloud development. In reality, however, convection interacts with the environment in complicated ways; it will eventually manage to find its own effective LNB and manifests it through detraining masses and developing anvils (LNB_observation). This study conducts a near-global survey of LNB_observation for tropical deep convection using CloudSat data and makes comparison with the corresponding LNB_sounding. The principal findings are as follows: First, although LNB_sounding provides a reasonable upper bound for convective development, correlation between LNB_sounding and LNB_observation is low suggesting that ambient sounding contains limited information for accurately predicting the actual LNB. Second, maximum mass outflow is located more than 3 km lower than LNB_sounding. Hence, from convective transport perspective, LNB_sounding is a significant overestimate of the “destination” height level of the detrained mass. Third, LNB_observation is consistently higher over land than over ocean, although LNB_sounding is similar between land and ocean. This difference is likely related to the contrasts in convective strength and environment between land and ocean. Finally, we estimate the bulk entrainment rates associated with the observed deep convection, which can serve as an observational basis for adjusting GCM cumulus parameterization.
STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël
2014-05-20
Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotationmore » rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.« less
NASA Astrophysics Data System (ADS)
Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.
2017-08-01
This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.
Microwave Imager Measures Sea Surface Temperature Through Clouds
NASA Technical Reports Server (NTRS)
2002-01-01
This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Anderson, James G.; DeSouza-Machado, Sergio; Strow, L. Larrabee
2002-01-01
Research supported under this grant was aimed at attacking unanswered scientific questions that lie at the intersection of radiation, dynamics, chemistry, and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these issues. Specific questions include water vapor distribution in the tropical troposphere, atmospheric radiation, thin cirrus clouds, stratosphere-troposphere exchange, and correlative science with satellite observations.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
NASA Technical Reports Server (NTRS)
2007-01-01
Location: The coast of Mexico from Manzanillo to Mazatlan Categorization: Tropical Depression Sustained Winds: 35 mph (56 km/hr) [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image [figure removed for brevity, see original site] Click on the image to access AIRS Weather Snapshot for Hurricane Dean Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark
2017-01-01
Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.
Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling
NASA Astrophysics Data System (ADS)
Hong, Yulan
Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud optical depth is shown to be an important factor in determining the sign and magnitude of the net radiative effect. On a global average, ice clouds with tau ≤ 4.6 display a warming effect with the largest contributions from those with tau ˜ 1.0. Optically thin and high ice clouds cause strong heating in the tropical upper troposphere, while outside the tropics, mixed-phase clouds cause strong cooling at lower altitudes (> 5 km). In addition, ice clouds occurring with liquid clouds in the same profile account for about 30%$of all observations. These liquid clouds reduce longwave heating rates in ice cloud layers by 0-1 K/day depending on the values of ice cloud optical depth and regions. This research for the first time provides a clear picture on the global distribution of ice clouds with a wide range of optical depth. Through radiative transfer modeling, we have gained better knowledge on ice cloud radiative effects and their dependence on ice cloud properties. These results not only improve our understanding of the interaction between clouds and climate, but also provide observational basis to evaluate climate models.
Rayleigh convective instability in a cloud medium
NASA Astrophysics Data System (ADS)
Shmerlin, B. Ya.; Shmerlin, M. B.
2017-09-01
The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.
Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model
NASA Astrophysics Data System (ADS)
Benedict, J. J.; Maloney, E. D.; Sobel, A. H.; Frierson, D. M.; Donner, L.
2012-12-01
Tropical intraseasonal variability is examined in version 3 of the Geophysical Fluid Dynamics Laboratory Atmosphere Model (AM3). Compared to its predecessor AM2, AM3 uses a new treatment of deep and shallow cumulus convection and mesoscale clouds. The AM3 cumulus parameterization is a mass flux-based scheme but also, unlike that in AM2, incorporates subgrid-scale vertical velocities; these play a key role in cumulus microphysical processes. The AM3 convection scheme allows multi-phase water substance produced in deep cumuli to be transported directly into mesoscale clouds, which strongly influence large-scale moisture and radiation fields. We examine four AM3 simulations, using a control model and three versions with different modifications to the deep convection scheme. In the control AM3, using a convective closure based on CAPE relaxation, both the MJO and Kelvin waves are weak compared to those in observations. By modifying the convective closure and trigger assumptions to inhibit deep cumuli, AM3 produces reasonable intraseasonal variability but a degraded mean state. MJO-like disturbances in the modified AM3 propagate eastward at roughly the observed speed in the Indian Ocean but up to twice the observed speed in the West Pacific. Distinct differences in intraseasonal convective organization and propagation exist among the modified AM3 versions. Differences in vertical diabatic heating profiles associated with the MJO are also found. The two AM3 versions with the strongest intraseasonal signals have a more prominent "bottom-heavy" heating profile leading the disturbance center and "top-heavy" heating profile following the disturbance. The more realistic heating structures are associated with an improved depiction of moisture convergence and intraseasonal convective organization in AM3.ag correlations of 850 hPa zonal wind with precipitation at (left column) 90°E and (right column) 150°E. Both fields are bandpass filtered (20-100 days) and averaged between 15°S-15°N. Solid (dashed) contours represent positive (negative) correlations that are shaded dark (light) gray if they exceed the 95% statistical significance level. We use ERAI and TRMM for the observed wind and rainfall fields. In the left panels, index reference longitudes and the 5 m/s phase speed are marked by vertical and slanted thick lines, respectively. Right panels also contain the 10 m/s phase speed line.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji
2016-01-01
A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.
Tropical Storm Bonnie as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
2004-01-01
This image of tropical storm Bonnie was captured on August 11 at 1:30am CDT. Located in the Gulf of Mexico, the center of the storm is positioned about 280 miles south-southwest of the mouth of the Mississippi River. Bonnie is a small tropical storm with wind speeds sustained at 45 mph and extending 30 miles from the storm center. It is moving northward at 5 mph. About the Movies The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses. Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles. We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 11, 2004 Infrared image. [figure removed for brevity, see original site] August 10, 2004 Daylight snapshot from AIRS visible/near-infrared sensor. [figure removed for brevity, see original site] August 11, 2004 At this time, Bonnie is a small tropical storm with wind speeds sustained at 50 mph (85 km/h), and it moving northward at 6 mph. August 10, 2004 Infrared image. (Larger image not currently available.) Movies Slice down the atmosphere with the AIRS infrared sensor. [figure removed for brevity, see original site] August 10, 2004, 1:30pm ET (Movie not currently available.) [figure removed for brevity, see original site] August 10, 2004, 1:30am ET [figure removed for brevity, see original site] August 9, 2004, 1:30pm ET The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)
2002-01-01
The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.
Large-scale effects on the regulation of tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Hartmann, Dennis L.; Michelsen, Marc L.
1993-01-01
The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.
Observations of cloud cluster hierarchies over the tropical western Pacific
NASA Technical Reports Server (NTRS)
Lau, K. M.; Nakazawa, T.; Sui, C. H.
1991-01-01
The structure and propagation of tropical-cloud clusters are investigated during two contrasting periods over the tropical western Pacific in order to determine possible similarities or differences and to compare with previous studies. Three fundamental periodicities are found in tropical convection in the region: 1 day, 2-3 days, and 10-15 days. It is noted that the 10-15-day time scale is closely related to the intraseasonal oscillations propagating from the Indian Ocean to the western Pacific. Large convective complexes, supercloud clusters (SSC) are found to organize in this time scale. The SCC is made up from several cloud clusters generated at 2-3-day intervals. The diurnal variation is found to be most pronounced over the maritime continent, and the amplitude of the diurnal cycle is shown to be modulated by the 2-3-day and 10-15-day oscillations.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Vonder Haar, Thomas H.
1992-01-01
Results of tropical thin cirrus cloud retrievals using International Satellite Cloud Climatology Project (ISCCP) and Stratospheric Aerosol and Gaseous Experiment (SAGE-II) data from January 1985 are presented. A preliminary analysis of the results shows that thin cirrus increases with increasing height in both data sets, and SAGE-II exhibits a high frequency of occurrence. The thin cirrus extinction coefficient shows maxima around the convective regions of South America and the western Pacific Ocean.
The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations
NASA Technical Reports Server (NTRS)
DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung
2013-01-01
The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.
Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model
Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.
2017-05-08
A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less
Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.
A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less
Human amplification of drought-driven fire in tropical regions
NASA Astrophysics Data System (ADS)
Tosca, Michael
2015-04-01
The change in globally-measured radiative forcing from the pre-industrial to the present due to interactions between aerosol particles and cloud cover has the largest uncertainty of all anthropogenic factors. Uncertainties are largest in the tropics, where total cloud amount and incoming solar radiation are highest, and where 50% of all aerosol emissions originate from anthropogenic fire. It is well understood that interactions between smoke particles and cloud droplets modify cloud cover , which in turn affects climate, however, few studies have observed the temporal nature of aerosol-cloud interactions without the use of a model. Here we apply a novel approach to measure the effect of fire aerosols on convective clouds in tropical regions (Brazil, Africa and Indonesia) through a combination of remote sensing and meteorological data. We attribute a reduction in cloud fraction during periods of high aerosol optical depths to a smoke-driven inhibition of convection. We find that higher smoke burdens limit vertical updrafts, increase surface pressure, and increase low- level divergence-meteorological indicators of convective suppression. These results are corroborated by climate model simulations that show a smoke-driven increase in regionally averaged shortwave tropospheric heating and boundary layer stratification, and a decrease in vertical velocity and precipitation during the fire season (December-February). We then quantify the human response to decreased cloud cover using a combination of socioeconomic and climate data Our results suggest that, in tropical regions, anthropogenic fire initiates a positive feedback loop where increased aerosol emissions limit convection, dry the surface and enable increased fire activity via human ignition. This result has far-reaching implications for fire management and climate policy in emerging countries along the equator that utilize fire.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
NASA Astrophysics Data System (ADS)
Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara
2014-12-01
In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.
Cloud layer thicknesses from a combination of surface and upper-air observations
NASA Technical Reports Server (NTRS)
Poore, Kirk D.; Wang, Junhong; Rossow, William B.
1995-01-01
Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W. C.
1975-01-01
Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.
NASA Astrophysics Data System (ADS)
Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.
2012-12-01
Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical scheme to study impacts of aerosol concentrations on precipitation and radiation fields. Observations available from the ARM microbase data, the SURFRAD network, GOES imagery, and other reanalysis and measurements will be used to analyze the impacts of a cloud microphysical scheme and aerosol concentrations on parameterized convection.
A Earth Outgoing Longwave Radiation Climate Model
NASA Astrophysics Data System (ADS)
Yang, Shi-Keng
An Earth outgoing longwave radiation (OLWR) climate model has been constructed for radiation budget study. The model consists of the upward radiative transfer parameterization of Thompson and Warren (1982), the cloud cover model of Sherr et al. (1968) and a monthly average climatology defined by the data from Crutcher and Meserve (1971) and Taljaard et al. (1969). Additional required information is provided by the empirical 100mb water vapor mixing ratio equation of Harries (1976), and the mixing ratio interpolation scheme of Briegleb and Ramanathan (1982). Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesia and the Congo. There are regions in the tropics such that their OLWR is as large as that of the subtropics. In the high latitudes, where cold air contains less water vapor, OLWR is basically modulated by the surface temperature. Thus, the topographical heat capacity becomes a dominant factor in determining the distribution. Clouds enhance water vapor modulation of OLWR. Tropical clouds have the coldest cloud top temperatures. This again increases the longitudinal variation in the region. However, in the polar region, where temperature inversion is prominent, cloud top temperature is warmer than the surface. Hence, cloud has the effect of increasing OLWR. The implication of this cloud mechanism is that the latitudinal gradient of net radiation is thus further increased, and the forcing of the general atmospheric circulation is substantially different due to the increased additional available energy. The analysis of the results also suggests that to improve the performance of the Budyko-Sellers type energy balance climate model in the tropical region, the parameterization of the longwave cooling should include a water vapor absorbing term.
NASA Technical Reports Server (NTRS)
Houze, Robert A., Jr.
2001-01-01
Steiner and Houze showed from ground validation data that the Tropical Rain Measuring Mission (TRMM) satellite Precipitation Radar's (PR's) twice daily only sampling should lead to an uncertainty of approximately 20% in rain estimates. They further showed that the uncertainties are smallest at the 5-7.5 km level. Schumacher and Houze used Kwajalein ground validation data to show that the TRMM PR misses only 2.3% of the near surface rainfall but does not see 46% of the area where rain occurs, because of the 17 dBZ PR reflectivity threshold. Houze discusses how the TRMM data extend earlier tropical convective studies to global coverage of the vertical profile of latent heating via the TRMM PR''s ability to distinguish and globally map convective and stratiform precipitation. Process studies carried out under this TRMM grant Yuter and Houze and Yuter et al. studied ship-based radar observations in the tropical eastern Pacific ITCZ. The eastern Pacific precipitation process is different from the western Pacific (the COARE area); rain is heavier but the clouds are not as deep. These process differences may affect the ability to remotely sense precipitation accurately in the two regions. Satellite microwave data were able to detect the precipitation as long as the rain areas exceeded 10 km in dimension. However, the microwave algorithms had difficulty distinguishing light and heavy rain. Satellite IR algorithms only partially detected the rain because the tops of the smaller and more short-lived rain clouds were sometimes not cold enough for the IR algorithms to detect them. Houze et al. focused on the west Pacific precipitating mesoscale convective systems and showed how their precipitation and internal dynamics vary in relation to the slowly varying large-scale heating-driven circulation, which has a structure described by a combination of Kelvin and Rossby wave response to the near-equatorial convective heating constituted by the mesoscale convective systems. Ship and aircraft radar data were used in this study.
NASA Technical Reports Server (NTRS)
Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.
2010-01-01
This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's warm core, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a warm-core tropical cyclone from an initially cold-core, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis location of a tropical storm is largely controlled by the parent wave's critical layer, whereas the genesis time and intensity of the protovortex depend on the details of the mesoscale organization, which is less predictable. Some implications of the findings are discussed.
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.
2016-12-01
We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Yoo, J.-M.; Dalu, G.; Kratz, P.
1991-01-01
Over the convectively active tropical ocean regions, the measurement made from space in the IR and visible spectrum have revealed the presence of optically thin cirrus clouds, which are quite transparent in the visible and nearly opaque in the IR. The Nimbus-4 IR Interferometer Spectrometer (IRIS), which has a field of view (FOV) of approximately 100 km, was utilized to examine the IR optical characteristics of these cirrus clouds. From the IRIS data, it was observed that these optically thin cirrus clouds prevail extensively over the warm pool region of the equatorial western Pacific, surrounding Indonesia. It is found that the seasonal cloud cover caused by these thin cirrus clouds exceeds 50 percent near the central regions of the warm pool. For most of these clouds, the optical thickness in the IR is less than or = 2. It is deduced that the dense cold anvil clouds associated with deep convection spread extensively and are responsible for the formation of the thin cirrus clouds. This is supported by the observation that the coverage of the dense anvil clouds is an order of magnitude less than that of the thin cirrus clouds. From these observations, together with a simple radiative-convective model, it is inferred that the optically thin cirrus can provide a greenhouse effect, which can be a significant factor in maintaining the warm pool. In the absence of fluid transports, it is found that these cirrus clouds could lead to a runaway greenhouse effect. The presence of fluid transport processes, however, act to moderate this effect. Thus, if a modest 20 W/sq m energy input is considered to be available to warm the ocean, then it is found that the ocean mixed-layer of a 50-m depth will be heated by approximately 1 C in 100 days.
Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)
NASA Technical Reports Server (NTRS)
Buseck, Peter R.
2004-01-01
The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.
Relationship between clouds and sea surface temperatures in the western tropical Pacific
NASA Technical Reports Server (NTRS)
Arking, Albert; Ziskin, Daniel
1994-01-01
Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Ackerman, A. S.; Allen, G.; Beringer, J.; Comstock, J. M.; Field, P. R.; Gallagher, M.; Hacker, J. M.; Hume, T.; Jakob, C.; Liu, G.; Long, C. N.; Mather, J. H.; May, P. T.; McCoy, R. F.; McFarlane, S. A.; McFarquhar, G. M.; Minnis, P.; Petch, J. C.; Schumacher, C.; Turner, D. D.; Whiteway, J. A.; Williams, C. R.; Williams, P. I.; Xie, S.; Zhang, M.
2008-12-01
The 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is 'the first field program in the tropics that attempted to describe the evolution of tropical convection, including the large-scale heat, moisture, and momentum budgets at 3-hourly time resolution, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment' [May et al., 2008]. A cloud- resolving model (CRM) intercomparison based on TWP-ICE is now being undertaken by the Atmospheric Radiation Measurement (ARM), GEWEX Cloud Systems Study (GCSS), and Stratospheric Processes And their Role in Climate (SPARC) programs. We summarize the 16-day case study and the wealth of data being used to provide initial and boundary conditions, and evaluate some preliminary findings in the context of existing theories of moisture evolution in the tropical tropopause layer (TTL). Overall, simulated cloud fields evolve realistically by many measures. Budgets indicate that simulated convective flux convergence of water vapor is always positive or near zero at TTL elevations, except locally at lower levels during the driest suppressed monsoon conditions, while simulated water vapor deposition to hydrometeors always exceeds sublimation on average at all TTL elevations over 24-hour timescales. The next largest water vapor budget term is generally the nudging required to keep domain averages consistent with observations, which is at least partly attributable to large-scale forcing terms that cannot be derived from measurements. We discuss the primary uncertainties.
NASA Technical Reports Server (NTRS)
Yanai, M.; Esbensen, S.; Chu, J.
1972-01-01
The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)
2001-01-01
The Goddard Cumulus Ensemble (GCE) model was utilized in two and three dimensions in order to examine the behavior and response of simulated deep tropical cloud systems occurred in west Pacific warm pool region and Atlantic ocean. The periods chosen for simulation were convectively active period over the TOGA-COARE IFA (19-27 December 1992) and GATE (September 1 to 7, 1974). The TOGA COARE IFA period was also in the framework of the GEWEX Cloud System Study (GCSS) WG4 case 2. We will examine the differences between the microphysics (warm rain and ice processes, evaporation/sublimation and condensation/deposition), Q1 (Temperature) and Q2 (Water vapor) budgets between these two convective events occurred in different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. The results from GCSS model intercomparsion will be presented. The new improvements (i.e., microphysics, cloud radiation interaction, surface processes and numerical advection scheme) of the GCE model as well as their sensitivity to the model results will be discussed.
Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON)
Martin,Scot; Mei,Fan; Alexander,Lizabeth; Artaxo,Paulo; Barbosa,Henrique; Bartholomew,Mary Jane; Biscaro,Thiago; Buseck,Peter; Chand,Duli; Comstock,Jennifer; Dubey,Manvendra; Godstein,Allen; Guenther,Alex; Hubbe,John; Jardine,Kolby; Jimenez,Jose-Luis; Kim,Saewung; Kuang,Chongai; Laskin,Alexander; Long,Chuck; Paralovo,Sarah; Petaja,Tuukka; Powers,Heath; Schumacher,Courtney; Sedlacek,Arthur; Senum,Gunnar; Smith,James; Shilling,John; Springston,Stephen; Thayer,Mitchell; Tomlinson,Jason; Wang,Jian; Xie,Shaocheng
2016-05-30
The hydrologic cycle of the Amazon Basin is one of the primary heat engines of the Southern Hemisphere. Any accurate climate model must succeed in a good description of the Basin, both in its natural state and in states perturbed by regional and global human activities. At the present time, however, tropical deep convection in a natural state is poorly understood and modeled, with insufficient observational data sets for model constraint. Furthermore, future climate scenarios resulting from human activities globally show the possible drying and the eventual possible conversion of rain forest to savanna in response to global climate change. Based on our current state of knowledge, the governing conditions of this catastrophic change are not defined. Human activities locally, including the economic development activities that are growing the population and the industry within the Basin, also have the potential to shift regional climate, most immediately by an increment in aerosol number and mass concentrations, and the shift is across the range of values to which cloud properties are most sensitive. The ARM Climate Research Facility in the Amazon Basin seeks to understand aerosol and cloud life cycles, particularly the susceptibility to cloud aerosol precipitation interactions, within the Amazon Basin.
Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends
NASA Astrophysics Data System (ADS)
Gettelman, A.; Hegglin, M. I.; Son, S.-W.; Kim, J.; Fujiwara, M.; Birner, T.; Kremser, S.; Rex, M.; AñEl, J. A.; Akiyoshi, H.; Austin, J.; Bekki, S.; Braesike, P.; Brühl, C.; Butchart, N.; Chipperfield, M.; Dameris, M.; Dhomse, S.; Garny, H.; Hardiman, S. C.; JöCkel, P.; Kinnison, D. E.; Lamarque, J. F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Pawson, S.; Pitari, G.; Plummer, D.; Pyle, J. A.; Rozanov, E.; Scinocca, J.; Shepherd, T. G.; Shibata, K.; Smale, D.; TeyssèDre, H.; Tian, W.
2010-01-01
The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ˜1K increases per century in cold point tropopause temperature and 0.5-1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.
An overview of the HIBISCUS campaign
NASA Astrophysics Data System (ADS)
Pommereau, J.-P.; Garnier, A.; Held, G.; Gomes, A. M.; Goutail, F.; Durry, G.; Borchi, F.; Hauchecorne, A.; Montoux, N.; Cocquerez, P.; Letrenne, G.; Vial, F.; Hertzog, A.; Legras, B.; Pisso, I.; Pyle, J. A.; Harris, N. R. P.; Jones, R. L.; Robinson, A. D.; Hansford, G.; Eden, L.; Gardiner, T.; Swann, N.; Knudsen, B.; Larsen, N.; Nielsen, J. K.; Christensen, T.; Cairo, F.; Fierli, F.; Pirre, M.; Marécal, V.; Huret, N.; Rivière, E. D.; Coe, H.; Grosvenor, D.; Edvarsen, K.; di Donfrancesco, G.; Ricaud, P.; Berthelier, J.-J.; Godefroy, M.; Seran, E.; Longo, K.; Freitas, S.
2011-03-01
The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s-1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.
NASA Astrophysics Data System (ADS)
Kerns, B. W.; Chen, S. S.
2017-12-01
The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.
NASA Astrophysics Data System (ADS)
Wang, Fang; Yang, Song
2018-02-01
Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which may be crucial to reduce the CRF biases in current climate models.
Cirrus Simulations of CRYSTAL-FACE 23 July 2002 Case
NASA Technical Reports Server (NTRS)
Starr, David; Lin, Ruei-Fong; Demoz, Belay; Lare, Andrew
2004-01-01
A key objective of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is to understand relationships between the properties of tropical convective cloud systems and the properties and lifecycle of the extended cirrus anvils they produce. We report here on a case study of 23 July 2002 where a sequence of convective storms over central Florida produced an extensive anvil outflow. Our approach is to use a suitably-initialized cloud- system simulation with MM5 (Starr et al., companion paper in this volume) to define initial conditions and time-dependent forcing for a simulation of anvil evolution using a two-dimensional fine-resolution (100 m) cirrus cloud model that explicitly accounts for details of cirrus microphysical development (bin or spectra model) and fully interactive radiative processes. The cirrus model follows Lin (1997). The microphysical components are described in Lin et al. (2004) - see Lin et a1 (this volume). Meteorological conditions and observations for the 23 July case are described in Starr et al. (this volume). The goals of the present study are to evaluate how well we can simulate a cirrus anvil lifecycle, to evaluate the importance of various physical processes that operate within the anvil, and to evaluate the importance of environmental conditions in regulating anvil lifecycle. CRYSTAL-FACE produced a number of excellent case studies of anvil systems that will allow environmental factors, such as static stability or wind shear in the upper troposphere, to be examined. In the present study, we strive to assess the importance of propagating gravity waves, likely produced by the deep convection itself, and radiative processes, to anvil lifecycle and characteristics.
Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.
NASA Astrophysics Data System (ADS)
Yue, Qing
Cirrus clouds have a unique influence on the climate system through their effects on the radiation budget of the earth and the atmosphere. To better understand the radiative effect of cirrus clouds, the microphysical and radiative properties of these clouds, especially tropical thin cirrus clouds, are studied based on both insitu cirrus measurements and satellite remote sensing observations. We perform a correlation analysis involving ice water content (IWC) and mean effective diameter (De) for applications to radiative transfer calculations and climate models using insitu measurements obtained from numerous field campaigns in the tropics, midlatitude, and Arctic regions. In conjunction with the study of cirrus clouds, we develop a high-resolution spectral infrared radiative transfer model for thin cirrus cloudy atmosphere, which is employed to retrieve De and cirrus optical depth from the Atmospheric Infrared Sounder (AIRS) infrared spectra. Numerical simulations show that cirrus cloudy radiances in the 800-1130 cm-1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth, and ice crystal size and habit. A number of nighttime thin cirrus scenes over the Atmospheric Radiation Measurement (ARM) program's Tropical Western Pacific sites have been selected from AIRS datasets for this study. The radiative transfer model is applied to these selected cases to determine cirrus optical depth, De and habit factors. Solar and infrared radiative forcings and heating rates produced by thin cirrus in the tropical atmosphere have been calculated using the retrieved cirrus optical and microphysical properties along with a modified Fu and Liou broadband radiative transfer scheme to analyze their dependence on cirrus cloud properties. Generally, larger TOA warming and smaller surface warming are associated with higher cirrus clouds. To cross-check the validity of our model, the collocated and coincident surface radiation measurements taken by ARM pyrgeometers have been compared with the calculated surface fluxes. Using the method developed in this study, regional radiation budget analyses can be carried out in the future study to quantitatively understand the role of thin cirrus clouds on solar and thermal infrared radiative forcings at the top of the atmosphere, the tropopause, and the surface.
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.
2016-12-01
A new CALIPSO infrared retrieval method sensitive to small ice crystals has been developed to measure the temperature dependence of the layer-average number concentration N, effective diameter De and ice water content in single-layer cirrus clouds (one cloud layer in the atmospheric column) that have optical depths between 0.3 and 3.0 and cloud base temperature T < 235 K. While retrievals of low N are not accurate, mid-to-high N can be retrieved with much lower uncertainty. This enables the retrieval to estimate the dominant ice nucleation mechanism (homo- or heterogeneous, henceforth hom and het) though which the cirrus formed. Based on N, hom or het cirrus can be estimated as a function of temperature, season, latitude and surface type. The retrieved properties noted above compare favorably with spatial-temporal coincident cirrus cloud in situ measurements from SPARTICUS case studies as well as the extensive in situ cirrus data set of Krämer et al. (2009, ACP). For our cirrus cloud selection, these retrievals show a pronounced seasonal cycle in the N. Hemisphere over land north of 30°N latitude in terms of both cloud amount and microphysics, with greater cloud cover, higher N and smaller De during the winter season. We postulate that this is partially due to the seasonal cycle of deep convection that replenishes the supply of ice nuclei (IN) at cirrus levels, with hom more likely when deep convection is absent. Over oceans, heterogeneous ice nucleation appears to prevail based on the lower N and higher De observed. Due to the relatively smooth ocean surface, lower amplitude atmospheric waves at cirrus cloud levels are expected. Over land outside the tropics during winter, hom cirrus tend to occur over mountainous terrain, possibly due to lower IN concentrations and stronger, more sustained updrafts in mountain-induced waves. Over pristine Antarctica, IN concentrations are minimal and the terrain near the coast is often high and rugged, allowing hom to dominate. Accordingly, over Antarctica cirrus clouds exhibit relatively high N and small De throughout the year. These retrievals allow us to parameterize De and the ice fall speed in CAM5 as a function of T, season, latitude and surface-type. Our goal is to estimate the radiative impact of hom cirrus north of 30°N latitude in winter relative to het cirrus before the AGU Fall Meeting.
Bandala, Victor Manuel; Ryoo, Rhim; Montoya, Leticia; Ka, Kang-Hyeon
2012-01-01
Crinipellis brunneoaurantiaca, C. pallidibrunnea and C. rubella are described as new species and their taxonomic position is discussed. The two former were collected in subdeciduous tropical forest and the latter in the montane cloud forest, all from the east coast of Mexico (central Veracruz). Crinipellis podocarpi, C. pseudostipitaria var. mesites, C. setipes, recorded in montane cloud forest, and C. tucumanensis, collected in subdeciduous tropical forest, also are discussed. Detailed macro- and microscopic descriptions, illustrations of distinctive microscopic characters and plates are presented for each species.
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...
2018-02-28
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
NASA Astrophysics Data System (ADS)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.
2018-04-01
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.
NASA Technical Reports Server (NTRS)
Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.;
2007-01-01
This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, Adam; Zipser, Edward J.; Fridlind, Ann M.
2014-12-18
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Making snow mass more realistically proportional to D2 rather than D3 eliminates unrealistically large snow reflectivities over 40 dBZ in some simulations. Graupel, unlike snow, produces high biased reflectivity in all simulations, which is partly a result of parameterized microphysics, but also partly a result of overly intense simulated updrafts. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of liquid condensate, often rain, lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. The strongest simulated updraft cores are nearly undiluted, with some of the strongest showing supercell characteristics during the multicellular (pre-squall) stage of the event. Decreasing horizontal grid spacing from 900 to 100 meters slightly weakens deep updraft vertical velocity and moderately decreases the amount of condensate aloft, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may additionally be a product of unrealistic interactions between convective dynamics, parameterized microphysics, and the large-scale model forcing that promote different convective strengths than observed.« less
NASA Astrophysics Data System (ADS)
Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.
2017-12-01
As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also consider possible machine learning applications to inform on (statistical) proxy convective relationships between observed convective core dynamics and radar microphysical properties that are otherwise not easily related by clear physical process paths using existing radar networks.
NASA Astrophysics Data System (ADS)
Varma, S.; Voulgarakis, A.; Liu, H.; Crawford, J. H.
2016-12-01
What drives the variability of trace gases and aerosols in the troposphere is not well understood, as is the role of clouds in modulating this variability via radiative, transport, deposition, and lightning effects that are associated with them. Such uncertainties are expected to be of particular importance in the tropical troposphere, a region that receives significant surface emissions and moisture via deep convection and upwelling, and experiences large amounts of lightning production of nitrogen oxides (NOx). Accurately simulating tropospheric composition and its variability is of utmost importance as both could have a significant effect on the region's temperature and circulation, as well as on surface climate and the amount of UV radiation in the troposphere. In this presentation, we will examine the key cloud processes which are expected to have an influence on tropospheric composition with a specific focus on their roles in modifying solar radiation and photolysis rates of trace gases through the backscattering of shortwave radiation. We will pay particular attention to the UT/LS which is less well understood and where clouds could have a significant impact due to backscattering. We will also utilize CCCM (a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center to evaluate the cloud fields and their vertical distribution in the HadGEM3-UKCA model and to adjust the cloud fields where appropriate. This evaluation will initially involve the comparison of effective cloud optical depth (ECOD) as calculated from CCCM and HadGEM3-UKCA using the approximate random overlap approximation followed by the application of 3-D scaling factors to the model's ECOD. We will then examine the impacts of the cloud field adjustment on tropospheric chemistry, with a focus on oxidants in the UT/LS.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud
NASA Technical Reports Server (NTRS)
Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.;
2007-01-01
In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.
A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.
Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contributemore » 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.« less
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.
2008-12-01
Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Wu, Xue; Alexander, M. Joan
2018-02-01
Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.
An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2018-03-01
By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.
What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?
NASA Astrophysics Data System (ADS)
Wu, D. L.; Gong, J.; Tsai, V.
2016-12-01
Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.
Water isotope tracers of tropical hydroclimate in a warming world
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Noone, D.; Nusbaumer, J. M.; Cobb, K. M.; Di Nezio, P. N.; Otto-Bliesner, B. L.
2016-12-01
The tropical water cycle is projected to undergo substantial changes under a warming climate, but direct meteorological observations to contextualize these changes are rare prior to the 20th century. Stable oxygen and hydrogen isotope ratios (δ18O, δD) of environmental waters preserved in geologic archives are increasingly being used to reconstruct terrestrial rainfall over many decades to millions of years. However, a rising number of new, modern-day observations and model simulations have challenged previous interpretations of these isotopic signatures. This presentation systematically evaluates the three main influences on the δ18O and δD of modern precipitation - rainfall amount, cloud type, and moisture transport - from terrestrial stations throughout the tropics, and uses this interpretive framework to understand past changes in terrestrial tropical rainfall. Results indicate that cloud type and moisture transport have a larger influence on modern δ18O and δD of tropical precipitation than previously believed, indicating that isotope records track changes in cloud characteristics and circulation that accompany warmer and cooler climate states. We use our framework to investigate isotopic records of the land-based tropical rain belt during the Last Glacial Maximum, the period of warming following the Little Ice Age, and the 21st century. Proxy and observational data are compared with water isotope-enabled simulations with the Community Earth System Model in order to discuss how global warming and cooling may influence tropical terrestrial hydroclimate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Mallen, Kevin
2009-01-01
Several hypotheses have been put forward for the how tropical cyclones (tropical storms and hurricanes in the Atlantic) first develop circulation at the surface, a key event that needs to occur before a storm can begin to draw energy from the warm ocean. One hypothesis suggests that the surface circulation forms from a "top-down" approach in which a storm s rotating circulation begins at middle levels of the atmosphere and builds down to the surface through processes related to light "stratiform" (horizontally extensive) precipitation. Another hypothesis suggests a bottom-up approach in which deep thunderstorm towers (convection) play the major role in spinning up the flow at the surface. These "hot towers" form in the area of the mid-level circulation and strongly concentrate this rotation at low levels within their updrafts. Merger of several of these hot towers then intensifies the surface circulation to the point in which a storm forms. This paper examines computer simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during the National Aeronautics and Space Administration s (NASA) Tropical Cloud Systems and Processes (TCSP) Experiment, to investigate the development of low-level circulation and, in particular, whether stratiform or hot tower processes were responsible for the storm s formation. Data from NASA satellites and from aircraft were used to show that the model did a good job of reproducing the formation and evolution of Gert. The simulation shows that a mix of both stratiform and convective rainfall occurred within Gert. While the stratiform rainfall clearly acted to increase rotation at middle levels, the diverging outflow beneath the stratiform rain worked against spinning up the low-level winds. The hot towers appeared to dominate the low-level flow, producing intense rotation within their cores and often being associated with significant pressure falls at the surface. Over time, many of these hot towers merged, with each merger adding to the rotation of the storm and the pressure falls at the surface. This process continued to increase the strength of the storm until the storm made landfall on the east coast of Mexico. These results support the bottom-up hypothesis for development.
NASA Technical Reports Server (NTRS)
Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven
2008-01-01
Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.
Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors
Qu, Xin; Hall, Alex; Klein, Stephen A.; ...
2015-09-28
Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.
2013-08-27
Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while themore » MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.« less
NASA Technical Reports Server (NTRS)
Cheng, Anning; Xu, Kuan-Man
2006-01-01
The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools produced by the evaporation of the precipitation are not favorable to the formation of shallow cumuli.
Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection
NASA Astrophysics Data System (ADS)
Rapp, A. D.; Sun, L.; Smalley, K.
2017-12-01
The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.
2003-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.
NASA Astrophysics Data System (ADS)
Dodson, Jason B.
Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable water (TPW), surface air temperature (SAT), and 500hPa vertical velocity (W500), representing the dynamical and thermodynamical environment in which the clouds form. The sorted CloudSat profiles are then compared with NICAM and SP-CAM profiles simulated with the Quickbeam CloudSat simulator. Both models have considerable difficulty representing the relationship of SAT and clouds over CONUS. For TPW and W500, shallow clouds transition to DCCs at higher values than observed. This may be an indication of the models' inability to represent the formation of DCCs in marginal convective environments. NICAM develops tall DCCs in highly favorable environments, but SP-CAM appears to be incapable of developing tall DCCs in almost any environment. The use of double moment microphysics in SP-CAM improves the frequency of deep clouds and their relationship with TPW, but not SAT. Both models underpredict radar reflectivity in the upper cloud of mature DCCs. SP-CAM with single moment microphysics has a particularly unrealistic DCC reflectivity profile, but with double moment microphysics it improves substantially. SP-CAM with double-moment microphysics unexpectedly appears to weaken DCC updraft strength as TPW increases, but otherwise both NICAM and SP-CAM represent the environment-versus-DCC relationships fairly realistically.
Characteristics of tropical cyclones and overshooting from GPS radio occultation data
NASA Astrophysics Data System (ADS)
Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried
2014-05-01
Tropical cyclones (TCs) are extreme weather events causing every year huge damages and several deaths. In some countries they are the natural catastrophes accounting for the major economic damages. The thermal structure of TCs gives important information on the cloud top height allowing for a better understanding of the troposphere-stratosphere transport, which is still poorly understood. The measurement of atmospheric parameters (such as temperature, pressure and humidity) with high vertical resolution and accuracy in the upper troposphere and lower stratosphere (UTLS) is difficult especially during severe weather events (e.g TCs). Satellite remote sensing has improved the TC forecast and monitoring accuracy. In the last decade the Global Positioning Systems (GPS) Radio Occultation (RO) technique contributed to improve our knowledge especially at high troposphere altitudes and in remote regions of the globe thanks to the high vertical resolution, avoiding temperature smoothing issues (given by microwave and infrared instruments) in the UTLS and improving the poor temporal resolution and global coverage given by lidars and radars. We selected more than twenty-thousand GPS RO profiles co-located with TC best tracks for the period 2001 to 2012 and computed temperature anomaly profiles relative to a RO background climatology in order to detect TC cloud tops. We characterized the thermal structure for different ocean basins and for different TC intensities, distinguishing between tropical and extra-tropical cases. The analysis shows that all investigated storms have a common feature: they warm the troposphere and cool the UTLS near the cloud top. This behavior is amplified in the extra-tropical areas. Results reveal that the storms' cloud tops in the southern hemisphere basins reach higher altitudes and lower temperatures than in the northern hemisphere basins. We furthermore compared the cloud top height of each profile with the mean tropopause altitude (from the RO archive) in order to detect overshooting. We present a map of TC overshooting events indicating tropical areas which contribute most to UTLS transport and the large-scale atmospheric circulation.
Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds
NASA Astrophysics Data System (ADS)
Tseng, Hsiu-Hui; Fu, Qiang
2017-10-01
This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.
Atmospheric Science Data Center
2015-03-16
Deep Convective Clouds and Chemistry (DC3) Data and Information The Deep Convective Clouds and Chemistry ( DC3 ) field campaign is investigating the impact of deep, ... processes, on upper tropospheric (UT) composition and chemistry. The primary science objectives are: To quantify and ...
Using ISCCP Weather States to Decompose Cloud Radiative Effects
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Rossow, W. B.
2012-01-01
The presentation will examine the shortwave (SW) and longwave (LW) cloud radiative effect CRE (aka "cloud radiative forcing") at the top-of-the-atmosphere and surface of ISCCP weather states (aka "cloud regimes") in three distinct geographical zones, one tropical and two mid-latitude. Our goal is to understand and quantify the contribution of the different cloud regimes to the planetary radiation budget. In the tropics we find that the three most convectively active states are the ones with largest SW, LW and net TOA CRE contributions to the overall daytime tropical CRE budget. They account for 59%, 71% and 55% of the total CRE, respectively. The boundary layer-dominated weather states account for only 34% of the total SW CRE and 41% of the total net CRE, so to focus only on them in cloud feedback studies may be imprudent. We also find that in both the northern and southern midlatitude zones only two weather states, the first and third most convectively active with large amounts of nimbostratus-type clouds, contribute ",40% to both the SW and net TOA CRE budgets, highlighting the fact that cloud regimes associated with frontal systems are not only important for weather (precipitation) but also for climate (radiation budget). While all cloud regimes in all geographical zones have a slightly larger SFC than TOA SW CRE, implying cooling of the surface and slight warming of the atmosphere, their LW radiative effects are more subtle: in the tropics the weather states with plentiful high clouds warm the atmosphere while those with copious amounts of low clouds cool the atmosphere. In both midlatitude zones only the weather states with peak cloud fractions at levels above 440 mbar warm the atmosphere while all the rest cool it. These results make the connection of the contrasting CRE effects to the atmospheric dynamics more explicit - "storms" tend to warm the atmosphere whereas fair weather clouds cool it, suggesting a positive feedback of clouds on weather systems. The breakdown of CRE by cloud regime are however not entirely similar between the two midlatitude zones. Despite the existence of an additional state in the nort!lern midlatitudes, only four weather states have net daytime CREs with absolute values above 100 Watts per square meter compared to six in the south. This reminds us that the environment where clouds occur also has a crucial role in determining their radiative effects. All the above make evident that reproducing grand averages of current CRE by climate models in only part of the challenge. If existing cloud regimes and shifts in their distributions and frequency of occurrence in a changed climate are not properly simulated, the radiative role of clouds will not be adequately predicted.
NASA Astrophysics Data System (ADS)
Lang, S. E.; Tao, W. K.; Iguchi, T.
2017-12-01
The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are presented and show distinct differences from those in the Tropics.
NASA Astrophysics Data System (ADS)
Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen
2018-01-01
The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.;
2016-01-01
The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.
NASA Technical Reports Server (NTRS)
Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.
2011-01-01
Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.
NASA Astrophysics Data System (ADS)
Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.
2018-04-01
The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.
Cloud feedback mechanisms and their representation in global climate models
Ceppi, Paulo; Brient, Florent; Zelinka, Mark D.; ...
2017-05-11
Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO 2 forcing simulated by global climate models (GCMs). In this paper, we review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising free-tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). Thesemore » cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High-latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. Finally, the causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection.« less
Cloud feedback mechanisms and their representation in global climate models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceppi, Paulo; Brient, Florent; Zelinka, Mark D.
Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO 2 forcing simulated by global climate models (GCMs). In this paper, we review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising free-tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). Thesemore » cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High-latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. Finally, the causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection.« less
DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites
NASA Astrophysics Data System (ADS)
Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.
2017-12-01
Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.
Loope, Lloyd L.; Giambelluca, Thomas W.
1998-01-01
Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.
Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms
NASA Technical Reports Server (NTRS)
Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.;
2014-01-01
The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements than to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from -0.8 kilometers to 0.6 kilometers. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SEVIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate the performance of the SEVIRI retrievals for boundary layer clouds. While the CTH retrieval for this cloud type is relatively accurate, there are still considerable differences between the algorithms. These are related to the uncertainties and limited vertical resolution of the assumed temperature profiles in combination with the presence of temperature inversions, which lead to ambiguities in the CTH retrieval. Alternative approaches for the CTH retrieval of low clouds are discussed.
Earth observations taken from shuttle orbiter Columbia
1995-10-27
STS073-702-051 (27 October 1995) --- Photographed by the crew aboard the Space Shuttle Columbia, this detailed scene of East Caicos Island highlights the shallow tropical waters typical of the Bahamas region. The contrast between the light blue shallow water and dark blue deep water marks a sharp difference (hundreds of meters) in water depth. The shallow marine regions include sandbars and tidal channels (just right of center). The coastline of the island is low and swampy, and is also greatly influenced by the tides. Further offshore, the darker regions in the slightly deeper watermark sea grass and algae beds. This sensitive submarine environment can be mapped from space because the waters are so clear. Chains of clouds forming off islands and headlands, mark the downwind direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, A. C.; Zipser, Edward J.; Fridlind, Ann
2014-12-27
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less
NASA Astrophysics Data System (ADS)
Doelling, David R.; Bhatt, Rajendra; Haney, Conor O.; Gopalan, Arun; Scarino, Benjamin R.
2017-09-01
The new 3rd generation geostationary (GEO) imagers will have many of the same NPP-VIIRS imager spectral bands, thereby offering the opportunity to apply the VIIRS cloud, aerosol, and land use retrieval algorithms on the new GEO imager measurements. Climate quality retrievals require multi-channel calibrated radiances that are stable over time. The deep convective cloud calibration technique (DCCT) is a large ensemble statistical technique that assumes that the DCC reflectance is stable over time. Because DCC are found in sufficient numbers across all GEO domains, they provide a uniform calibration stability evaluation across the GEO constellation. The baseline DCCT has been successful in calibrating visible and near-infrared channels. However, for shortwave infrared (SWIR) channels the DCCT is not as effective to monitor radiometric stability. The DCCT was optimized as a function wavelength in this paper. For SWIR bands, the greatest reduction of the DCC response trend standard error was achieved through deseasonalization. This is effective because the DCC reflectance exhibits small regional seasonal cycles that can be characterized on a monthly basis. On the other hand, the inter-annually variability in DCC response was found to be extremely small. The Met-9 0.65-μm channel DCC response was found to have a 3% seasonal cycle. Deseasonalization reduced the trend standard error from 1% to 0.4%. For the NPP-VIIRS SWIR bands, deseasonalization reduced the trend standard error by more than half. All VIIRS SWIR band trend standard errors were less than 1%. The DCCT should be able to monitor the stability of all GEO imager solar reflective bands across the tropical domain with the same uniform accuracy.
CRYSTAL-FACE Analysis and Simulations of the July 23rd Extended Anvil Case
NASA Technical Reports Server (NTRS)
Starr, David
2003-01-01
A key focus of CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers - Florida Area Cirrus Experiment) was the generation and subsequent evolution of cirrus outflow from deep convective cloud systems. Present theoretical background and motivations will be discussed. An integrated look at the observations of an extended cirrus anvil cloud system observed on 23 July 2002 will be presented, including lidar and millimeter radar observation; from NASA s ER-2 and in-situ observations from NASA s WB-57 and University of North Dakota Citation. The observations will be compared to results of simulations using 1-D and 2-D high-resolution (100 meter) cloud resolving models. The CRMs explicitly account for cirrus microphysical development by resolving the evolving ice crystal size distribution (bin model) in time and space. Both homogeneous and heterogeneous nucleation are allowed in the model. The CRM simulations are driven using the output of regional simulations using MM5 that produces deep convection similar to what was observed. The MM5 model employs a 2 km inner grid (32 layers) over a 360 km domain, nested within a 6-km grid over a 600-km domain. Initial and boundary conditions for the 36-hour MM5 simulation are taken from NCEP Eta model analysis at 32 km resolution. Key issues to be explored are the settling of the observed anvil versus the model simulations, and comparisons of dynamical properties, such as vertical motions, occurring in the observations and models. The former provides an integrated measure of the validity of the model microphysics (fallspeed) while the latter is the key factor in forcing continued ice generation.
NASA Astrophysics Data System (ADS)
Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo
2017-03-01
Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for subvisible cirrus clouds a bimodal distribution with a secondary peak at about 44 sr was found suggesting a mixed composition. A dependence of the lidar ratio with cloud temperature (altitude) was not found, indicating that the clouds are vertically well mixed. The frequency of occurrence of cirrus clouds classified as subvisible (τ < 0. 03) were 41.6 %, whilst 37.8 % were thin cirrus (0. 03 < τ < 0. 3) and 20.5 % opaque cirrus (τ > 0. 3). Hence, in central Amazonia not only a high frequency of cirrus clouds occurs, but also a large fraction of subvisible cirrus clouds. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun photometers and satellite sensors to an unknown extent.
Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason
2014-01-01
NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The key changes have to do with overflight of high convective cloud tops and those producing lightning. Experience shows that most tropical oceanic convection (including that in tropical cyclones) is relatively gentle even if the cloud tops are quite high, and can be safely overflown. Exceptions are convective elements producing elevated lightning flash rates (more than just the occasional flash, which would trigger avoidance under the previous rules) and significant overshooting cloud tops.
NASA Technical Reports Server (NTRS)
Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal;
2005-01-01
Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.
NASA Astrophysics Data System (ADS)
Possner, A.; Wang, H.; Caldeira, K.; Wood, R.; Ackerman, T. P.
2017-12-01
Aerosol-cloud interactions (ACIs) in marine stratocumulus remain a significant source of uncertainty in constraining the cloud-radiative effect in a changing climate. Ship tracks are undoubted manifestations of ACIs embedded within stratocumulus cloud decks and have proven to be a useful framework to study the effect of aerosol perturbations on cloud morphology, macrophysical, microphyiscal and cloud-radiative properties. However, so far most observational (Christensen et al. 2012, Chen et al. 2015) and numerical studies (Wang et al. 2011, Possner et al. 2015, Berner et al. 2015) have concentrated on ship tracks in shallow boundary layers of depths between 300 - 800 m, while most stratocumulus decks form in significantly deeper boundary layers (Muhlbauer et al. 2014). In this study we investigate the efficacy of aerosol perturbations in deep open and closed cell stratocumulus. Multi-day idealised cloud-resolving simulations are performed for the RF06 flight of the VOCALS-Rex field campaign (Wood et al. 2011). During this flight pockets of deep open and closed cells were observed in a 1410 m deep boundary layer. The efficacy of aerosol perturbations of varied concentration and spatial gradients in altering the cloud micro- and macrophysical state and cloud-radiative effect is determined in both cloud regimes. Our simulations show that a continued point source emission flux of 1.16*1011 particles m-2 s-1 applied within a 300x300 m2 gridbox induces pronounced cloud cover changes in approximately a third of the simulated 80x80 km2 domain, a weakening of the diurnal cycle in the open-cell regime and a resulting increase in domain-mean cloud albedo of 0.2. Furthermore, we contrast the efficacy of equal strength near-surface or above-cloud aerosol perturbations in altering the cloud state.
Constraining the models' response of tropical low clouds to SST forcings using CALIPSO observations
NASA Astrophysics Data System (ADS)
Cesana, G.; Del Genio, A. D.; Ackerman, A. S.; Brient, F.; Fridlind, A. M.; Kelley, M.; Elsaesser, G.
2017-12-01
Low-cloud response to a warmer climate is still pointed out as being the largest source of uncertainty in the last generation of climate models. To date there is no consensus among the models on whether the tropical low cloudiness would increase or decrease in a warmer climate. In addition, it has been shown that - depending on their climate sensitivity - the models either predict deeper or shallower low clouds. Recently, several relationships between inter-model characteristics of the present-day climate and future climate changes have been highlighted. These so-called emergent constraints aim to target relevant model improvements and to constrain models' projections based on current climate observations. Here we propose to use - for the first time - 10 years of CALIPSO cloud statistics to assess the ability of the models to represent the vertical structure of tropical low clouds for abnormally warm SST. We use a simulator approach to compare observations and simulations and focus on the low-layered clouds (i.e. z < 3.2km) as well the more detailed level perspective of clouds (40 levels from 0 to 19km). Results show that in most models an increase of the SST leads to a decrease of the low-layer cloud fraction. Vertically, the clouds deepen namely by decreasing the cloud fraction in the lowest levels and increasing it around the top of the boundary-layer. This feature is coincident with an increase of the high-level cloud fraction (z > 6.5km). Although the models' spread is large, the multi-model mean captures the observed variations but with a smaller amplitude. We then employ the GISS model to investigate how changes in cloud parameterizations affect the response of low clouds to warmer SSTs on the one hand; and how they affect the variations of the model's cloud profiles with respect to environmental parameters on the other hand. Finally, we use CALIPSO observations to constrain the model by determining i) what set of parameters allows reproducing the observed relationships and ii) what are the consequences on the cloud feedbacks. These results point toward process-oriented constraints of low-cloud responses to surface warming and environmental parameters.
NASA Astrophysics Data System (ADS)
Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.
2017-12-01
Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation and the number of cold pools, the largest cold pools exist over the Eastern Pacific basin, where the most stratiform rain is produced from oceanic MCSs. It is anticipated that improved understanding of cold pools, which are a primary triggering mechanism of oceanic shallow and deep convection, will improve prediction of this important component of the climate system.
Physics Parameterization for Seasonal Prediction
2012-09-30
comparison Project, a joint effort between the Year of Tropical Convection (YOTC) Program and the Global Energy and Water Cycle Experiment (GEWEX) Cloud...unified” representation of the water cycle in the model. One such area is the correspondence between diagnosed cloud cover and prognostic cloud
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
Atlantic Multidecadal Oscillation footprint on global high cloud cover
NASA Astrophysics Data System (ADS)
Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela
2017-12-01
Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Voemel, Holger; Avery, Melody; Rosenlof, Karen; Davis, Sean; Hurst, Dale; Schoeberl, Mark; Diaz, Jorge Andres; Morris, Gary
2014-01-01
Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.
NASA Astrophysics Data System (ADS)
Foley, M.; Nottingham, A.; Turner, B. L.
2017-12-01
Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.
Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan
2002-01-01
This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.
Observational evidence of fire-driven changes to tropical cloudiness
NASA Astrophysics Data System (ADS)
Tosca, Michael; Diner, David; Garay, Michael; Kalashnikova, Olga
2014-05-01
Anthropogenic fires in the tropics emit smoke aerosols that affect cloud dynamics, meteorology and climate (Tosca et al., 2013). We developed a new technique to observationally quantify the cloud response to biomass burning aerosols using aerosol retrievals from the Multi-angle Imaging SpectroRadiometer (MISR) and non-coincident cloud retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) from collocated morning and afternoon overpasses. The Global Fire Emissions Database, version 3 and Level 2 data from scenes acquired between 2006 and 2010 were used to quantify changes in cloud fraction from morning (10:30am local time) to afternoon (1:30pm local time) in the presence of varying fire-aerosol burdens. This temporal offset allowed for analysis of the evolution of clouds in the presence of aerosols, something that previous methods using coincident observations could not produce. We controlled for large-scale meteorological differences between scenes using reanalysis data from the ERA-interim product and matching scenes with fire smoke to those with no smoke and similar initial (morning) meteorological conditions. Elevated aerosol optical depths (AODs) reduced cloud fraction from morning to afternoon in the Southeast Asia, Central America and northern Africa burning regions. In mostly cloudy conditions, aerosols significantly reduced cloud fraction, but in clear skies, cloud fraction increased. These results support the general hypothesis of a positive feedback loop between anthropogenic burning and cloudiness in tropical regions, and are consistent with previous studies linking smoke aerosols to convective cloud reduction. Tosca, M.G., J.T. Randerson and C.S. Zender (2013), Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys., 13, 5227-5241, doi: 10.5194/acp-13-5227-2013.
Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.
2014-01-01
This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.
Microwave Limb Sounder/El Nino Watch - Water Vapor Measurement, October, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
This image shows atmospheric water vapor in Earth's upper troposphere, about 10 kilometers (6 miles) above the surface, as measured by the Microwave Limb Sounder (MLS) instrument flying aboard the Upper Atmosphere Research Satellite. These data collected in early October 1997 indicate the presence of El Nino by showing a shift of humidity from west to east (blue and red areas) along the equatorial Pacific Ocean. El Nino is the term used when the warmest equatorial Pacific Ocean water is displaced toward the east. The areas of high atmospheric moisture correspond to areas of very warm ocean water. Warmer water evaporates at a higher rate and the resulting warm moist air then rises, forming tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. The MLS instrument, developed at NASA's Jet Propulsion Laboratory, measures humidity at the top of these clouds, which are very moist. This rain is now occurring in the eastern Pacific Ocean and has left Indonesia (deep blue region) unusually dry, resulting in the current drought in that region. This image also shows moisture moving north into Mexico, an effect of several hurricanes spawned by the warm waters of El Nino.
NASA Astrophysics Data System (ADS)
Van Beusekom, A.; Gonzalez, G.; Scholl, M. A.
2016-12-01
The degree to which cloud immersion sustains tropical montane cloud forests (TMCFs) during rainless periods and the amount these clouds are affected by urban areas is not well understood, as cloud base is rarely quantified near mountains. We found that a healthy small-mountain TMCF in Puerto Rico had lowest cloud base during the mid-summer dry season. In addition, we observed that cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons, based on 2.5 years of direct and 16 years of indirect observations. The low clouds during dry season appear to be explained by proximity to the oceanic cloud system where lower clouds are seasonally invariant in altitude and cover; along with orographic lifting and trade-wind control over cloud formation. These results suggest that climate change impacts on small-mountain TMCFs may not be limited to the dry season; changes in regional-scale patterns that cause drought periods during the wet seasons will likely have higher cloud base, and thus may threaten cloud water support to sensitive mountain ecosystems. Strong El Niño's can cause drought in Puerto Rico; we will report results from the summer of 2015 that examined El Niño effects on cloud base altitudes. Looking at regionally collected airport cloud data, we see indicators that diurnal urban effects may already be raising the low cloud bases.
Atmospheric Science Data Center
2014-05-15
... Cloud Spirals and Outflow in Tropical Storm Katrina View Larger Image ... time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such ...
Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)
2000-01-01
A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.
Tropical Depression Debbie in the Atlantic
2006-08-22
These images show Tropical Depression Debbie in the Atlantic, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 22, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made the eye had not yet opened but the storm is now well organized. The location of the future eye appears as a circle at 275 K brightness temperature in the microwave image just to the SE of the Azores. http://photojournal.jpl.nasa.gov/catalog/PIA00508
Impact of decadal cloud variations on the Earth’s energy budget
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
2016-10-31
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less
Impact of decadal cloud variations on the Earth’s energy budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less
Impact of decadal cloud variations on the Earth's energy budget
NASA Astrophysics Data System (ADS)
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
2016-12-01
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.
Verification of NWP Cloud Properties using A-Train Satellite Observations
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Weeks, C.; Wolff, C.; Bullock, R.; Brown, B.
2011-12-01
Recently, the NCAR Model Evaluation Tools (MET) has been enhanced to incorporate satellite observations for the verification of Numerical Weather Prediction (NWP) cloud products. We have developed tools that match fields spatially (both in the vertical and horizontal dimensions) to compare NWP products with satellite observations. These matched fields provide diagnostic evaluation of cloud macro attributes such as vertical distribution of clouds, cloud top height, and the spatial and seasonal distribution of cloud fields. For this research study, we have focused on using CloudSat, CALIPSO, and MODIS observations to evaluate cloud fields for a variety of NWP fields and derived products. We have selected cases ranging from large, mid-latitude synoptic systems to well-organized tropical cyclones. For each case, we matched the observed cloud field with gridded model and/or derived product fields. CloudSat and CALIPSO observations and model fields were matched and compared in the vertical along the orbit track. MODIS data and model fields were matched and compared in the horizontal. We then use MET to compute the verification statistics to quantify the performance of the models in representing the cloud fields. In this presentation we will give a summary of our comparison and show verification results for both synoptic and tropical cyclone cases.
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett
2017-12-01
The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-05-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.
Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...
2015-04-10
We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less
Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery
NASA Astrophysics Data System (ADS)
Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.
2007-04-01
This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.
NASA Technical Reports Server (NTRS)
Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.
2017-01-01
Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.
2017-08-01
Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar
2017-04-01
Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the speed of the temperature increase. Most importantly, the decline of photosynthesis was accompanied by a rapid and complete depletion of leaf starch reserves followed by the prompt death of the plants. We therefore conclude, that temperature increases to 29 - 33°C lead to carbon starvation in epiphytic orchids of tropical cloud forests that is driven by the break-down of photosynthesis. The physiological reason for the observed dysfunction of photosynthesis at only moderately warm temperatures are currently not well understood. Within an ongoing phytotron study, we thus are aiming to confirm and deepen the findings in the genus Dracula in Masdevallia, another orchid genera native and endemic to tropical cloud forests.
Moisture status during a strong El Niño explains a tropical montane cloud forest's upper limit.
Crausbay, Shelley D; Frazier, Abby G; Giambelluca, Thomas W; Longman, Ryan J; Hotchkiss, Sara C
2014-05-01
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest's upper limit and composition in Hawai'i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models explained species composition within the cloud forest with non-El Niño rainfall; however, the ecotone at the cloud forest's upper limit was modeled with relative humidity during a strong El Niño drought and secondarily with non-El Niño rainfall. This forest ecotone may be particularly responsive to strong, short-duration climate variability because taxa here, particularly the isohydric dominant Metrosideros polymorpha, are near their physiological limits. Overall, this study demonstrates moisture's overarching influence on a tropical montane ecosystem, and suggests that short-term climate events affecting moisture status are particularly relevant at tropical ecotones. This study further suggests that predicting the consequences of climate change here, and perhaps in other tropical montane settings, will rely on the skill and certainty around future climate models of regional rainfall, relative humidity, and El Niño.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chidong
Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuablemore » information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.« less
A New Method for Detecting and Monitoring Atmospheric Natural Hazards with GPS RO
NASA Astrophysics Data System (ADS)
Biondi, R.; Steiner, A. K.; Rieckh, T. M.; Kirchengast, G.
2014-12-01
Global Positioning System (GPS) Radio Occultation (RO) allows measurements in any meteorological condition, with global coverage, high vertical resolution, and high accuracy. With more than 13 years of data availability, RO also became a fundamental tool for studying climate change. We present here the application of RO for detecting and monitoring tropical cyclones (TCs), deep convective systems (CSs) and volcanic ash clouds (ACs).Deep CSs and TCs play a fundamental role in atmospheric circulation producing vertical transport, redistributing water vapor and trace gases, changing the thermal structure of the Upper Troposphere and Lower Stratosphere (UTLS) and affecting climate through overshooting into the stratosphere. Explosive volcanic eruptions produce large ACs dangerous for the aviation and they can impact climate when the ash is injected into the UTLS.The detection of cloud top height, the determination of cloud extent, the discrimination of ACs from CSs clouds and the detection of overshooting are main challenges for atmospheric natural hazards study. We created a reference atmosphere with a resolution of 5° in latitude and longitude, sampled on a 1° x 1° grid, and a vertical sampling of 100 m. We then compared RO profiles acquired during TCs, CSs and ACs to the reference atmosphere and computed anomaly profiles.CSs, TCs and the ACs leave a clear signature in the atmosphere which can be detected by RO. Using RO temperature and bending angle profiles we gain insight into the vertical thermal structure and developed a new method for detecting the cloud top altitude with high accuracy.We have characterized the TCs by ocean basins and intensities, showing that they have a different thermal structure and reach to different altitudes according to the basin. We provide statistics on overshooting frequency, achieving results consistent with patterns found in the literature and demonstrating that RO is well suited for this kind of study. We have analyzed the Nabro 2010 eruption determining the AC top height and analyzing the long term impact of the eruption in the zonal UTLS thermal structure. The results show that there is a signature allowing the discrimination of ACs from CSs clouds. The comparison of AC top height with the tropopause altitude shows that during Nabro eruption the ash reached the UTLS.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Rodgers, E. B.
1977-01-01
An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.
The Atmospheric Infrared Sounder Version 6 Cloud Products
NASA Technical Reports Server (NTRS)
Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.;
2014-01-01
The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.
Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables
NASA Technical Reports Server (NTRS)
Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin
2003-01-01
The primary goal of the Tropical Rainfall Measuring Mission (TRMM) is to use the information about distributions of precipitation to determine the four dimensional (i.e., temporal and spatial) patterns of latent heating over the whole tropical region. The Spectral Latent Heating (SLH) algorithm has been developed to estimate latent heating profiles for the TRMM Precipitation Radar (PR) with a cloud- resolving model (CRM). The method uses CRM- generated heating profile look-up tables for the three rain types; convective, shallow stratiform, and anvil rain (deep stratiform with a melting level). For convective and shallow stratiform regions, the look-up table refers to the precipitation top height (PTH). For anvil region, on the other hand, the look- up table refers to the precipitation rate at the melting level instead of PTH. For global applications, it is necessary to examine the universality of the look-up table. In this paper, we compare the look-up tables produced from the numerical simulations of cloud ensembles forced with the Tropical Ocean Global Atmosphere (TOGA) Coupled Atmosphere-Ocean Response Experiment (COARE) data and the GARP Atlantic Tropical Experiment (GATE) data. There are some notable differences between the TOGA-COARE table and the GATE table, especially for the convective heating. First, there is larger number of deepest convective profiles in the TOGA-COARE table than in the GATE table, mainly due to the differences in SST. Second, shallow convective heating is stronger in the TOGA COARE table than in the GATE table. This might be attributable to the difference in the strength of the low-level inversions. Third, altitudes of convective heating maxima are larger in the TOGA COARE table than in the GATE table. Levels of convective heating maxima are located just below the melting level, because warm-rain processes are prevalent in tropical oceanic convective systems. Differences in levels of convective heating maxima probably reflect differences in melting layer heights. We are now extending our study to simulations of other field experiments (e.g. SCSMEX and ARM) in order to examine the universality of the look-up table. The impact of look-up tables on the retrieved latent heating profiles will also be assessed.
The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds
NASA Astrophysics Data System (ADS)
Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy
2017-04-01
The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.
The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Matsui, T.
2012-01-01
Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.
Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere
NASA Astrophysics Data System (ADS)
Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos
2017-02-01
Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.
NASA Technical Reports Server (NTRS)
Strode, Sarah A.; Douglass, Anne R.; Ziemke, Jerald R.; Manyin, Michael; Nielsen, J. Eric; Oman, Luke D.
2017-01-01
Satellite observations of in-cloud ozone concentrations from the Ozone Monitoring Instrument and Microwave Limb Sounder instruments show substantial differences from background ozone concentrations. We develop a method for comparing a free-running chemistry-climate model (CCM) to in-cloud and background ozone observations using a simple criterion based on cloud fraction to separate cloudy and clear-sky days. We demonstrate that the CCM simulates key features of the in-cloud versus background ozone differences and of the geographic distribution of in-cloud ozone. Since the agreement is not dependent on matching the meteorological conditions of a specific day, this is a promising method for diagnosing how accurately CCMs represent the relationships between ozone and clouds, including the lower ozone concentrations shown by in-cloud satellite observations. Since clouds are associated with convection as well as changes in chemistry, we diagnose the tendency of tropical ozone at 400 hPa due to chemistry, convection and turbulence, and large-scale dynamics. While convection acts to reduce ozone concentrations at 400 hPa throughout much of the tropics, it has the opposite effect over highly polluted regions of South and East Asia.
Parameterizations of Cloud Microphysics and Indirect Aerosol Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Wei-Kuo
1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e.,more » Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain suppression, however, only occurs during the first hour of simulation. This result suggests that microphysical processes dominate the impact of aerosols on precipitation in the early stage of precipitation development. • During the mature stage of the simulations, the effect of increasing aerosol concentration ranges from rain suppression in the PRESTORM case to little effect on surface rainfall in the CRYSTAL-FACE case to rain enhancement in the TOGA COARE case. • The model results suggest that evaporative cooling is a key process in determining whether higher CCN reduces or enhances precipitation. Cold pool strength can be enhanced by stronger evaporation. When cold pool interacts with the near surface wind shear, the low-level convergence can be stronger, facilitating secondary cloud formation and more vigorous precipitation processes. Evaporative cooling is more than two times stronger at low levels with higher CCN for the TOGA COARE case during the early stages of precipitation development. However, evaporative cooling is slightly stronger at lower levels with lower CCN for the PRESTORM case. The early formation of rain in the clean environment could allow for the formation of an earlier and stronger cold pool compared to a dirty environment. PRESTORM has a very dry environment and both large and small rain droplets can evaporate. Consequently, the cold pool is relatively weaker, and the system is relatively less intense with higher CCN. • Sensitivity tests are conducted to determine the impact of ice processes on aerosol-precipitation interaction. The results suggested that ice processes are crucial for suppressing precipitation due to high CCN for the PRESTORM case. More and smaller ice particles are generated in the dirty case and transported to the trailing stratiform region. This reduces the heavy convective rain and contributes to the weakening of the cold pool. Warm rain processes dominate the TOGA COARE case. Therefore, ice processes only play a secondary role in terms of aerosol-precipitation interaction. • Two of the three cloud systems presented in this paper formed a line structure (squall system). A 2D simulation, therefore, gives a good approximation to such a line of convective clouds. Since the real atmosphere is 3D, further 3D cloud-resolving simulations are needed to address aerosol-precipitation interactions. 4. REFERENCES Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., 112, D24S18, doi:10.1029/2007JD008728. All other references can be found in above paper. 5. Acknowledgements The GCE model is mainly supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The research was also supported by the Office of Science (BER), U. S. Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency. The authors acknowledge NASA Goddard Space Flight Center for computer time used in this research.« less
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.;
2017-01-01
The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.
Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction
NASA Astrophysics Data System (ADS)
Su, X.
2017-12-01
A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
Tropical Cloud Properties and Radiative Heating Profiles
Mather, James
2008-01-15
We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.
NASA Astrophysics Data System (ADS)
Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina
2015-04-01
An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.
Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
2015-01-01
To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.
Qian, Yun; Yan, Huiping; Berg, Larry K.; ...
2016-10-28
Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less
Simulation of the Genesis of Hurricane Javier (2004) in the Eastern Pacific
NASA Technical Reports Server (NTRS)
Braun, Scott
2005-01-01
NASA is preparing for the Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005, a joint effort with NOAA to study tropical cloud systems and tropical cyclone genesis in the Eastern Pacific. A major thrust of the TCSP program is the improvement of the understanding and prediction of tropical cyclone genesis, intensity, motion, rainfall potential, and landfall impacts using remote sensing and in-situ data, as well as numerical modeling, particularly as they relate to the three phases of water. The Eastern Pacific has the highest frequency of genesis events per unit area of any region worldwide. African easterly waves, mesoscale convective systems (MCSs), and orographic effects are thought to play roles in the genesis of tropical cyclones there. The general consensus is that tropical depressions form in association with one or more mid-level, mesoscale cyclonic vortices that are generated within the stratiform region of the MCS precursors. To create the warm core tropical depression vortex, however, the midlevel cyclonic circulation must somehow extend down to the surface and the tangential winds must attain sufficient strength (-10 m s- ) to enable the wind-induced surface heat exchange to increase the potential energy of the boundary layer air.
Peering Deep into Jupiter Atmosphere
2013-03-14
The dark hot spot in this false-color image from NASA Cassini spacecraft is a window deep into Jupiter atmosphere. All around it are layers of higher clouds, with colors indicating which layer of the atmosphere the clouds are in.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel; ...
2016-06-10
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
NASA Astrophysics Data System (ADS)
Gottschalk, Matthias; Lauermann, Felix; Ehrlich, André; Siebert, Holger; Wendisch, Manfred
2017-04-01
Stratocumulus covers approximately 20 % (annually averaged) of the Earth's surface and thus strongly influences the atmospheric and surface radiative energy budget resulting in radiative cooling and heating effects. Globally, the solar cooling effect of the widespread sub-tropical stratocumulus dominates. However, in the Arctic the solar cloud albedo effect (cooling) is often smaller than the thermal-infrared greenhouse effect (warming), which is a result of the lower incoming solar radiation and the low cloud base height. Therefore, Arctic stratocumulus mostly warms the atmosphere and surface below the cloud. Additionally, different environmental conditions lead to differences between sub-tropical and Arctic stratocumulus. Broadband pyranometers and pyrgeometers will be used to measure heating and cooling rate profiles in and above stratocumulus. For this purpose two slowly moving platforms are used (helicopter and tethered balloon) in order to consider for the long response times of both broadband radiation sensors. Two new instrument packages are developed for the applied tethered balloon and helicopter platforms, which will be operated within Arctic and sub-tropical stratocumulus, respectively. In June 2017, the balloon will be launched from a sea ice floe north of 80 °N during the Arctic Balloon-borne profiling Experiment (ABEX) as part of (AC)3 (Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms) Transregional Collaborative Research Center. The helicopter will sample sub-tropical stratocumulus over the Azores in July 2017.
NASA Astrophysics Data System (ADS)
Takasuka, Daisuke; Satoh, Masaki; Miyakawa, Tomoki; Miura, Hiroaki
2018-04-01
To understand the intrinsic onset mechanism of the Madden-Julian Oscillation (MJO), we simulated a set of initiation processes of MJO-like disturbances in 10 year aqua-planet experiments using a global atmospheric model with a 56 km horizontal mesh and an explicit cloud scheme. Under a condition with a zonally nonuniform sea surface temperature (SST) in the tropics, we reproduced MJO-like disturbances over the western warm pool region. The lagged-composite analysis of detected MJO-like disturbances clarifies the time sequence of three-dimensional dynamic and moisture fields prior to the onset. We found that midtropospheric moistening, a condition that is favorable for deep convection, is particularly obvious in the initiation region 5-9 days before onset. The moistening is caused by two-dimensional horizontal advection due to cross-equatorial shallow circulations associated with mixed Rossby-gravity waves, as well as anomalous poleward flows of a negative Rossby response to suppressed convection. When the midtroposphere is sufficiently moistened, lower tropospheric signals of circumnavigating Kelvin waves trigger active convection. The surface latent heat flux (LHF) feedback contributes to the initial stages of convective organization, while the cloud-radiation feedback contributes to later stages. Sensitivity experiments suggest that circumnavigating Kelvin waves regulate the period of MJO-like disturbances because of efficient convective triggering and that the LHF feedback contributes to rapid convective organization. However, the experiments also reveal that both conditions are not necessary for the existence of MJO-like disturbances. Implications for the relevance of these mechanisms for MJO onset are also discussed.
Evaluating rainfall errors in global climate models through cloud regimes
NASA Astrophysics Data System (ADS)
Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho
2017-07-01
Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.
Observations over Hurricanes from the Ozone Monitoring Instrument
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.
2006-01-01
There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, O.; Mayol-Bracero, O. L.; Sepulveda-Vallejo, P.; Heymsfield, A.
2013-12-01
Cloud formation in the tropical atmosphere is difficult to characterize when factors such as the Saharan Air Layer (SAL) play a role influencing the dynamic and thermodynamic processes. In order to characterize particle number size distribution across the Eastern Caribbean with the possible influence of African dust at low and mid levels, data collected during July 2011 from ground-based instruments and an aircraft platform were analyzed. Aerosol measurements from the ocean surface to ~8 km were performed below and in and around clouds by the National Center for Atmospheric Research (NCAR) C130 aircraft during the Ice in Clouds Experiment-Tropical (ICE-T) using the Passive Cavity Aerosol Spectrometer Probe (PCASP), while low-level measurements of aerosols were performed at the University of Puerto Rico-Rio Piedras Campus (UPRRP) during the Puerto Rican African Dust and Cloud Study (PRADACS) using an Optical Particle Counter (OPC) and a Scanning Mobility Particle Sizer (SMPS). Preliminary results using HYSPLIT back trajectories, flight tracks, SAL images and OPC/SMPS/PCASP time series all indicate peaks and troughs in aerosol concentrations at both low and mid levels over time, but the concentration was influenced by how strong the dust outbreak was as well as its horizontal travel speed. These and additional results regarding correlations between wind directions, cloud cover and atmospheric inversions will be presented.
NASA Astrophysics Data System (ADS)
Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.
2014-09-01
Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular in the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During one measurement flight the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low-ozone air from the boundary layer to the outflow region. Entrainment of ozone-rich air is estimated to account for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on model calculations using observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range reported previously.
Evaluation of WRF Performance Driven by GISS-E2-R Global Model for the 2014 Rainy Season in Mexico
NASA Astrophysics Data System (ADS)
Almanza, V.; Zavala, M. A.; Lei, W.; Shindell, D. T.; Molina, L. T.
2017-12-01
Precipitation and cloud fields as well as the spatial distribution of emissions are important during the estimation of the radiative effects of atmospheric pollutants in future climate applications. In particular, landfalling hurricanes and tropical storms greatly affect the amount and distribution of annual precipitation, and thus have a direct impact on the wet deposition of pollutants and aerosol-cloud interactions. Therefore, long-term simulations in chemistry mode driven by the outputs of a global model need to consider the influence of these phenomena on the radiative effects, particularly for countries such as Mexico that have high number of landfalling hurricanes and tropical storms. In this work the NASA earth system GISS-E2-R global model is downscaled with the WRF model over a domain encompassing Mexico. We use the North American Regional Reanalysis (NARR) and Era-Interim reanalysis, along with available surface observations and data from the Tropical Rainfall Measuring Mission (TRMM) products to evaluate the contribution of spectral nudging, domain size and resolution in resolving the precipitation and cloud fraction fields for the rainy season in 2014. We focus on this year since 10 tropical cyclones made landfall in central Mexico. The results of the evaluation are useful to assess the performance of the model in representing the present conditions of precipitation and cloud fraction in Mexico. In addition, it provides guidelines for conducting the operational runs in chemistry mode for the future years.
The potential of using Landsat time-series to extract tropical dry forest phenology
NASA Astrophysics Data System (ADS)
Zhu, X.; Helmer, E.
2016-12-01
Vegetation phenology is the timing of seasonal developmental stages in plant life cycles. Due to the persistent cloud cover in tropical regions, current studies often use satellite data with high frequency, such as AVHRR and MODIS, to detect vegetation phenology. However, the spatial resolution of these data is from 250 m to 1 km, which does not have enough spatial details and it is difficult to relate to field observations. To produce maps of phenology at a finer spatial resolution, this study explores the feasibility of using Landsat images to detect tropical forest phenology through reconstructing a high-quality, seasonal time-series of images, and tested it in Mona Island, Puerto Rico. First, an automatic method was applied to detect cloud and cloud shadow, and a spatial interpolator was use to retrieve pixels covered by clouds, shadows, and SLC-off gaps. Second, enhanced vegetation index time-series derived from the reconstructed Landsat images were used to detect 11 phenology variables. Detected phenology is consistent with field investigations, and its spatial pattern is consistent with the rainfall distribution on this island. In addition, we may expect that phenology should correlate with forest biophysical attributes, so 47 plots with field measurement of biophysical attributes were used to indirectly validate the phenology product. Results show that phenology variables can explain a lot of variations in biophysical attributes. This study suggests that Landsat time-series has great potential to detect phenology in tropical areas.
Optical Algorithm for Cloud Shadow Detection Over Water
2013-02-01
REPORT DATE (DD-MM-YYYY) 05-02-2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From ■ To) 4. TITLE AND SUBTITLE Optical Algorithm for Cloud...particularly over humid tropical regions. Throughout the year, about two-thirds of the Earth’s surface is always covered by clouds [1]. The problem...V. Khlopenkov and A. P. Trishchenko, "SPARC: New cloud, snow , cloud shadow detection scheme for historical I-km AVHHR data over Canada," / Atmos
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)
2001-01-01
A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.
Comprehensive inventory of true flies (Diptera) at a tropical site
Brian V. Brown; Art Borkent; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado
2018-01-01
Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first...
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.
Precipitation Characteristics of ISCCP Cloud Regimes for Improving Model Hydrological Budgets
NASA Technical Reports Server (NTRS)
Lee, D.; Oreopoulos, L.
2011-01-01
The key in unraveling relationships between precipitation and atmospheric circulations is their common linkage to clouds. Clouds can be described in a variety of ways and several approaches can be adopted to examine their connections to precipitation. We claim that when cloud regimes (aka weather states) from the International Satellite Cloud Climatology Project (ISCCP) are used to conditionally sample/sort and average precipitation data, useful insight and GCM-appropriate diagnostics on the origins and distribution of precipitation can be obtained. The ISCCP cloud regimes are mesoscale (2.5 ) cloud mixtures determined by cluster analysis on joint histograms of cloud optical thickness and cloud top pressure inferred from geostationary and polar orbiter satellite passive retrievals. The ISCCP cloud regime data are combined with GPCP IDD merged surface precipitation data and/or higher temporal and spatial resolution TRMM Multi-Satellite Precipitation Analysis (TMPA) data. The analysis is performed separately for three geographical zones, tropics, and northern/southern midlatitudes (for GPCP; only the tropics can be examined with TMPA data). Our presentation aspires to provide answers to the following questions: (l) What is the mean and variability of surface precipitation produced by each cloud regime at the time of regime occurrence? (2) What is the relative contribution of each cloud regime to the total precipitation within its geographical zone? (3) What is the geographical distribution of precipitation corresponding to particular cloud regime? (4) To what extent are the cloud regimes distinct in terms of their precipitation characteristics and is the regime ordering in terms of convective strength consistent with the observed precipitation intensity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Miller, Mark
The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1992-01-01
This report investigates the impact of differential net radiative heating on 2D energy transports within the atmosphere ocean system and the role of clouds on this process. The 2D mean energy transports, in answer to zonal and meridional gradients in the net radiation field, show an east-west coupled dipole structure in which the Pacific acts as the major energy source and North Africa as the major energy sink. It is demonstrated that the dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30 percent of the tropical north-south (meridional) transports.
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
Mapping the Distribution of Cloud Forests Using MODIS Imagery
NASA Astrophysics Data System (ADS)
Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.
2007-05-01
Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable accuracy for its intended purposes. Even periods as short as one month are sufficient for depicting the location of most cloud forest environments. However, we are proceeding to distinguish different characteristics of cloud forests, depending on the overall frequency of cloudiness, the seasonality of cloudiness, and the interannual variability of cloudiness. These results should be useful to those seeking to describe relationships between the physical characteristics of the cloud forests and their biological environment.
Microphysical Characteristics of Tropical Clouds
NASA Technical Reports Server (NTRS)
Grainger, Cedric A.; Anderson, Nicholas
2004-01-01
This report summarizes the analysis of data collected by the University of North Dakota Citation II measurement platform during three TRMM Field measurement campaigns. The Citation II made cloud measurements during TEFLUN B in Florida, the LBA program in Brazil, and KWAJEX in Kwajalein. The work performed can be divided into two parts. The first part consisted of reformatting the Citation data into a form more easily used to compare to the satellite information. The second part consisted of examination of the cloud data in order to characterize the properties of the tropical clouds. The reformatting of the Citation data was quite labor intensive and, due to the fact that the aircraft was involved in three of the field campaigns, it required a substantial number of person-hours to complete. Much of the analysis done on the second part was done in conjunction with the thesis work of Nicholas Anderson, then a graduate student at the University of North Dakota.
Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model
NASA Astrophysics Data System (ADS)
Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua
2018-03-01
Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.
NASA Astrophysics Data System (ADS)
Moore, G. W.; Aparecido, L. M. T.; Jaimes, A.
2017-12-01
High tree species and functional diversity, complex age and stand structure, deeper active sapwood, and potential factors that reduce transpiration, such as frequent cloud cover and wet leaves are inherent in wet tropical forests. In face of these unique challenges, advancements are needed for optimizing in situ measurement strategies to reduce uncertainties, in particular, within-tree and among-tree variation. Over a five-year period, we instrumented 44 trees with heat dissipation sap flow sensors within a premontane wet tropical rainforest in Costa Rica (5000 mm MAP). Sensors were systematically apportioned among overstory, midstory, and suppressed trees. In a subset of dominant trees, radial profiles across the full range of active xylem were fitted as deep as 16 cm. Given high diversity, few instrumented trees belonged to the same species, genus, or even family. Leaf surfaces were wet 20-80% of daylight hours from the top to bottom of the canopy, respectively. As a result, transpiration was suppressed, even after accounting for lower vapor pressure deficit (<0.5 kPa) and reduced solar radiation (<500 W m-1). To the contrary, the driest month on record resulted in higher, not lower transpiration. We identified multiple functional types according to patterns in dry season water use for the period February to April, 2016 using Random Forest analysis to discriminate groups with unique temporal responses. These efforts are critical for improving global land surface models that increasingly partition canopy components within complex heterogeneous systems, and for improved accuracy of transpiration estimates in tropical forests.
Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests
NASA Astrophysics Data System (ADS)
Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.
2007-05-01
Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.
NASA Astrophysics Data System (ADS)
Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.
2015-06-01
16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1992-01-01
This paper focuses on the role of cloud- and surface-atmosphere forcing on the net radiation balance and their potential impact on the general circulation at climate time scales. The globally averaged cloud-forcing estimates and cloud sensitivity values taken from various recent studies are summarized. It is shown that the net radiative heating over the tropics is principally due to high clouds, while the net cooling in mid- and high latitudes is dominated by low and middle clouds.
Potential New Lidar Observations for Cloud Studies
NASA Technical Reports Server (NTRS)
Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia
2015-01-01
The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelmann, A. M.
OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.
Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.
2014-12-01
TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one-year mission. TEMPEST provides critical information on the time evolution of cloud and precipitation microphysics, thereby yielding a first-order understanding of how assumptions in current cloud-model parameterizations behave in diverse climate regimes.
From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors
Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.
2008-01-01
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569
Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds
NASA Technical Reports Server (NTRS)
Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.;
2014-01-01
How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.
NASA Astrophysics Data System (ADS)
Fink, A. H.; Pohle, S.
2009-04-01
Tropical Extra-tropical Interactions (TEIs) are often observed in association with an upper-level subtropical trough that penetrates into the tropics and, therefore, interacts with the tropical circulation. As a visible sign, a mid- to upper-level cloud band at the eastern flank of the trough and its related Subtropical Jet, named Tropical Plume (TP), is identifiable in infrared satellite imagery. McGuirk et al. (1987) gave a definition of Tropical Plumes and described the cloud bands as a northern hemisphere winter time phenomena. Previous studies identified TPs throughout the year with being rare in the June-mid- September period. Results of convection dynamics influenced/caused by TEIs during a pre-monsoon season event between 19 and 30 May 2006 will be presented. This case is characterized by two different investigation regions affected by TEI: During the first half of the event high precipitation amounts south-east of the cloud band over Burkina Faso, Benin, Togo, and Ivory Coast are observed caused by thermal forcing and dynamical maintenance by trough related good upper-level outflow conditions due to ageostrophic acceleration towards the trough and low inertial stability, or even inertial instability. This presentation is focused on the second half of this TEI event, which is characterized by the development of a pronounced heat low (HL) south-east of the upper-level trough over tropical West Africa, followed by convection south-east of the low pressure centre. A modified form of the pressure tendency equation (PTE) used by Knippertz and Fink (2008) is a diagnostic tool to investigate, which processes cause pressure drop near the Mali-Burkina Faso border by using both, the operational ECMWF Analysis and the AMMA EU re-analysis. The latter contains additionally the diabatic heating tendencies. Therefore, all terms of the PTE were calculated and will be discussed.
Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.
2003-01-01
In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.
Climatology and Formation of Tropical Midlevel Clouds at the Darwin ARM Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; McFarlane, Sally A.; Comstock, Jennifer M.
A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0°C) and also a second peak around -12.5°C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variationmore » caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at -30°C, ~50% of clouds at -20°C, and ~65% of clouds at -10°C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0°C. In the break monsoon, a distinct peak in the frequency of stable layers at 0°C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.« less
The impact of parametrized convection on cloud feedback.
Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming
2015-11-13
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. © 2015 The Authors.
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. PMID:26438278
The confounding recent behaviour of the Quasi-Biennial Oscillation
NASA Astrophysics Data System (ADS)
Osprey, Scott; Butchart, Neal; Knight, Jeff; Scaife, Adam; Hamilton, Kevin; Anstey, James; Schenzinger, Verena; Zhang, Chunxi
2017-04-01
High above the equator winds slowly change from blowing eastward to westward and back again roughly every 28 months in a natural climate rhythm known as the quasibiennial oscillation (QBO). These regular winds have been recorded since the 1950s and emerge from natural processes within the tropics e.g. clouds, convection, rainfall and the wave disturbances arising from these. The latter break down high up in the stratosphere, analogous to waves on a beach. Although a little tricky to capture in climate models, our understanding of the basic processes underpinning this climate rhythm was thought to be relatively complete. However, early in 2016 the stratospheric heart skipped a beat, confounding our present understanding of it. The disruption was seen as a thin and rapidly growing westward wind jet at 25km within a deep background of eastward winds. The position of the thin jet could not be explained by waves percolating up through underlying winds from the turbulent lower atmosphere. Rather clues to the origin of the disruption pointed to agents outside the tropics - large scale waves usually found at mid-latitudes made their way to the tropics, causing the disruption. Clear links are found between the winds occurring in the tropical stratosphere and the sorts of seasonal weather experienced in the tropics (e.g. MJO) and Northern/Southern Europe. Because these tropical stratosphere winds are predictable out to years, weather centres are keen to exploit them for seasonal forecasting. The 2016 disruption was not anticipated by weather centres and this has clear implications for the limiting skill of future seasonal forecasts. The results from this study raise many questions. How will the disrupted QBO impact future seasonal forecasting? Will similar events recur more often in the future, and if so what role did anthropogenic climate change play in the 2016 event? Finally, what conditions ultimately resulted in the disruption? Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science. 353, 1424-1427 (2016).
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.
2010-12-01
Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how contemporary changes in fire activity and land use are changing the global carbon cycle.
Variations in Upper-Tropospheric Humidity and Convective Processes as Seen from SSM/T-2
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.
2007-01-01
Water vapor feedback, particularly involving water vapor in the upper troposphere (UTH), is widely regarded as the process with the most potential to amplify anthropogenic greenhouse forcing. Yet, our ability to quantify observationally water vapor variations in the current climate and the relationships to convective processes remains rather crude. Remote sensing from polar orbiting instruments has played a major role in documenting UTH variability, supplementing highly undersampled and poorly calibrated rawinsonde measurements. Most of our observational understanding of UTH has come from the 6.7 micrometer channel measurements which are subject to cloud contamination uncertainties. In this work we examine UTH variations present in the Special Sensor Microwave Temperature Sounder 2 (SSM/T-2) sensors flying aboard Defense Military Satellite Program (DMSP) polar orbiting satellites during the period 1993 through 2001. We employ data from the the 183.3 +/- 1 GHz channel which is far less sensitive to cirrus than IR methods. Our primary focus is on obtaining more reliable statistics of interannual behavior; i.e. How close to constant RH are interannual variations in T2 UTH over the tropics? How do temperature and moisture variations contribute regionally? The 1997/1998 strong ENS0 warming event and adjacent cool periods provide a strong signal to study, albeit a perturbation of natural climate variability. Modeling the 183.3 GHz channel using reanalysis temperature data, but with climatological water vapor, allows us to infer the separate contribution by water vapor in the observations. In addition, frozen hydrometeors produced by deep convection are also captured in the 150 GHz oxygen channel, providing an opportUnity to relate the incidence of deep convection to water vapor variability. Our results indicate a much larger variation of 183.3 GHz brightness temperatures would be observed were it not for water vapor variations positively correlated with tropical SSTs. Comparisons are made with previous studies using both IR and microwave observations to characterize UTH response to tropical SSTs.
Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.
Stott, Lowell; Timmermann, Axel; Thunell, Robert
2007-10-19
Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Christian, H. J.; Koshak, W. J.; Goodman, S. J.
2011-01-01
The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth s Tropics for 13 years. This study examines the performance of the LIS throughout its time in orbit. Application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) was performed on the LIS background pixels to assess the stability of the LIS instrument. The DCCT analysis indicates that the maximum deviation of the monthly mean radiance is within 2% of the overall mean, indicating stable performance over the period. In addition, an examination of the number of flashes detected over time similarly shows no significant trend (after adjusting for the orbit boost that occurred in August 2001). These and other results indicate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of the Geostationary Lightning Mapper (GLM) onboard the next generation Geostationary Operational Environmental Satellite-R (GOES-R). Since GLM is based on LIS design heritage, the LIS results indicate that GLM may also experience stable performance over its lifetime.
NASA Technical Reports Server (NTRS)
Ginger, Kathryn M.
1993-01-01
Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. The relationships between cloud properties and cloud fraction are studied in order to supplement grid scale parameterizations. The satellite data used is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.5 deg x 2.5 deg latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution, and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakley's theory of reflection for uniform and broken layered cloud and to Kedem, et al.'s findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 m) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al's theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.
NASA Technical Reports Server (NTRS)
Ginger, Kathryn M.
1993-01-01
Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. This study examines the relationships between cloud properties and cloud fraction in order to supplement grid scale parameterizations. The satellite data used in this study is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.50 x 2.50 latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakleys (1991) theory of reflection for uniform and broken layered cloud and to Kedem, et al.(1990) findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 in) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al. theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.
NASA Technical Reports Server (NTRS)
Ye, B.; DelGenio, A. D.
1999-01-01
Areally extensive, optically thick anvil clouds associated with mesoscale convective clusters dominate the shortwave cloud forcing in the tropics and provide longwave forcing comparable to that of thin cirrus. Changes in the cover and optical thickness of tropical anvils as climate warms can regulate the sign of cloud feedback. As a prelude to the study of MMCR data from the ARM TWP sites, we analyze ISCCP-derived radiative characteristics of anvils observed in the tropical west Pacific during the TOGA-COARE IOP. Anvils with radius greater than 100 km were identified and tracked from inception to decay using the Machado-Rossow algorithm. Corresponding environmental conditions just prior to the start of the convectove event were diagnosed using the Lin-Johnson objective analysis product. Small clusters (100-200 km radius) are observed to have a broad range of optical thicknesses (10-50), while intermediate optical thickness clusters are observed to range in size from 100 km to almost 1000 km. Large-size clusters appear to be favored by strong pre-storm large scale upward motion throughout the troposphere, moist low-to-midlevel relative humidities, environments with slightly higher CAPE than those for smaller clusters, and strong front-to-rear flow. Optically thick anvils are favored in situations of strong low-level moisture convergence and strong upper-level shear.
Modeling of Cloud/Radiation Processes for Tropical Anvils
1992-11-30
absorption assumption. The band 800-980 cm-l is located in the atmospheric window, where the greenhouse effect of clouds is most pronounced. It can be...9a) is always positive, corresponding to the heating of the earth-atmosphere system due to the greenhouse effect of clouds, while the solar cloud...observed midlatitude cirrus cases, the IR greenhouse effect outweighs the solar albedo effect. The degree of the greenhouse effect involving cirrus
Atmospheric Science Data Center
2018-06-20
... V1 Level: L2 Platform: DEEP SPACE CLIMATE OBSERVATORY Instrument: Enhanced Polychromatic ... assuming ice phase Cloud Optical Thickness – assuming liquid phase EPIC Cloud Mask Oxygen A-band Cloud Effective Height (in ...
Microphysical Characteristics of Tropical Updrafts in Clean Conditions.
NASA Astrophysics Data System (ADS)
Stith, Jeffrey L.; Haggerty, Julie A.; Heymsfield, Andrew; Grainger, Cedric A.
2004-05-01
The distributions of ice particles, precipitation embryos, and supercooled water are examined within updrafts in convective clouds in the Amazon and at Kwajalein, Marshall Islands, based on in situ measurements during two Tropical Rainfall Measuring Mission field campaigns. Composite vertical profiles of liquid water, small particle concentration, and updraft/downdraft magnitudes exhibit similar peak values for the two tropical regions. Updrafts were found to be favored locations for precipitation embryos in the form of liquid or frozen drizzle-sized droplets. Most updrafts glaciated rapidly, removing most of the liquid water between -5° and -17°C. However, occasional encounters with liquid water occurred in much colder updraft regions. The updraft magnitudes where liquid water was observed at cold (e.g., -16° to -19°C) temperatures do not appear to be stronger than updrafts without liquid water at similar temperatures, however. The concentrations of small spherical frozen particles in glaciated regions without liquid water are approximately one-half of the concentrations in regions containing liquid cloud droplets, suggesting that a substantial portion of the cloud droplets may be freezing at relatively warm temperatures. Further evidence for a possible new type of aggregate ice particle, a chain aggregate found at cloud midlevels, is given.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne
2008-01-01
Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.
How do changes in warm-phase microphysics affect deep convective clouds?
NASA Astrophysics Data System (ADS)
Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital
2017-08-01
Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems?
To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.
A preliminary study of the tropical water cycle and its sensitivity to surface warming
NASA Technical Reports Server (NTRS)
Lau, K. M.; Sui, C. H.; Tao, W. K.
1993-01-01
The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.
Cloudsat tropical cyclone database
NASA Astrophysics Data System (ADS)
Tourville, Natalie D.
CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.
NASA Technical Reports Server (NTRS)
Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason;
2008-01-01
LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.
Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.
NASA Astrophysics Data System (ADS)
Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.
2000-12-01
The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.
Investigation of tropical cirrus cloud properties using ground based lidar measurements
NASA Astrophysics Data System (ADS)
Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.
2016-05-01
Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.
Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests
NASA Technical Reports Server (NTRS)
Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.
2010-01-01
Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney
2014-05-16
To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective cloudsmore » and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, S. T.; Artaxo, P.; Machado, L.
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less
Transport across the tropical tropopause layer and convection
NASA Astrophysics Data System (ADS)
Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra
2015-04-01
We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.
Estimation of the global climate effect of brown carbon
NASA Astrophysics Data System (ADS)
Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.
2017-12-01
Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.
Analysis of in situ measurements of cirrus anvil outflow dynamics
NASA Astrophysics Data System (ADS)
Lederman, J. I.; Whiteway, J. A.
2012-12-01
The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Nakagawa, Katsuhiro; Kawano, Tetsuya; Mori, Shuichi; Katsumata, Masaki; Yoneyama, Kunio
2017-04-01
During November-December 2015, as a pilot study of the Years of the Maritime and Continent (YMC), a campaign observation over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia was carried out to examine land-ocean coupling processes in mechanisms of coastal heavy rain. Our videosonde observations were conducted as a part of this campaign for the better understandings of microphysical features in tropical precipitating clouds developed over the Sumatera Island. Videosonde is one of strong tools to measure hydrometeors in clouds directly. It is a balloon-borne radiosonde that acquires images of precipitation particles via a CCD camera. The system has a stroboscopic illumination that provides information on particle size and shape. One of the advantages for the videosonde is to capture images of precipitation particles as they are in the air because the videosonde can obtain particle images without contact. Recorded precipitation particles are classified as raindrops, frozen drops (hail), graupel, ice crystals, or snowflakes on the basis of transparency and shape. Videosondes were launched from BMKG Bengkulu weather station (3.86°S,102.3°E). After the launch of a videosonde, the Range Height Indicator (RHI) scans by a C-band dual-polarimetric radar installed on R/V Mirai, which was approximately 50 km off Sumatera Island, were continuously performed, targeting the videosonde in the precipitating cloud. Eighteen videosondes were launched into various types of tropical precipitating clouds during the Pre-YMC campaign.
Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest.
Werner Eugster; Reto Burkard; Friso Holwerda; Frederick N. Scatena; L.A.(Sampurno) Bruijnzeel
2006-01-01
The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes shape and influence these ecosystems. Our study focuses on the physical...
Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption
NASA Technical Reports Server (NTRS)
Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.
2012-01-01
We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.
Liquid Water Oceans in Ice Giants
NASA Technical Reports Server (NTRS)
Wiktorowicz, Sloane J.; Ingersoll, Andrew P.
2007-01-01
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.
NASA Technical Reports Server (NTRS)
Endlich, R. M.; Wolf, D. E.
1980-01-01
The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2010-01-01
A strong equatorial SST cooling occurred from 160E westward to 120W during the period of September 2002 through August 2010, surrounded by a weaker warming ring to the west. This is the result of a transition from a strong El Nino in late 2002 to a strong La Nina in 2008. Late 2009 is characterized by the beginning of another El Nino. Average rates of change (ARC's) in 500mb specific humidity and cloud cover are in phase with those in the Sea surface temperature (SST). In the El Nino and surrounding region causing outgoing longwave radiation (OLR), to decrease significantly near the dateline and increase in the vicinity of Indonesia. Tropical OLR ARC's in these two areas cancel each other to first order. The negative zonal mean tropical OLR ARC from a drop in equatorial OLR in region 1 from 140W to 40E. This results from increasing water vapor and cloud cover in this area during La Nina with the reverse holding during El Nino.
Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.
1999-01-01
Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.
NASA Technical Reports Server (NTRS)
Shaffer, William A.; Samuelson, Robert E.; Conrath, Barney J.
1986-01-01
An average of 51 Voyager 1 IRIS spectra of Jupiter's North Tropical Zone was analyzed to infer the abundance, vertical extent, and size distribution of the particles making up the ammonia cloud in this region. It is assumed that the cloud base coincides with the level at which 100% saturation of ammonia vapor occurs. The vertical distribution of particulates above this level is determined by assuming a constant total ammonia mixing ratio and adjusting the two phases so that the vapor is saturated throughout the cloud. A constant scaling factor then adjusts the base number density. A radiative transfer program is used that includes the effects of absorption and emission of all relevant gases as well as anisotropic scattering by cloud particles. Mie scattering from a gaussian particle size distribution is assumed. The vertical thermal structure is inferred from a temperature retrieval program that utilizes the collision induced S(0) and S(1) molecular hydrogen lines between 300 and 700.cm, and the 1304.cm methane band.
Radiative-convective equilibrium model intercomparison project
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki
2018-03-01
RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.
NASA Astrophysics Data System (ADS)
Reising, Steven C.; Gaier, Todd C.; Kummerow, Christian D.; Padmanabhan, Sharmila; Lim, Boon H.; Brown, Shannon T.; Heneghan, Cate; Chandra, Chandrasekar V.; Olson, Jon; Berg, Wesley
2016-04-01
TEMPEST-D will reduce the risk, cost and development time of a future constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition from non-precipitating to precipitating clouds using high-temporal resolution observations. TEMPEST-D provides passive millimeter-wave observations using a compact instrument that fits well within the size, weight and power (SWaP) requirements of the 6U-Class satellite architecture. TEMPEST-D is suitable for launch through NASA's CubeSat Launch Initiative (CSLI), for which it was selected in February 2015. By measuring the temporal evolution of clouds from the moment of the onset of precipitation, a TEMPEST constellation mission would improve our understanding of cloud processes and help to constrain one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change. Uncertainties in the representation of key processes that govern the formation and dissipation of clouds and, in turn, control the global water and energy budgets lead to substantially different predictions of future climate in current models. TEMPEST millimeter-wave radiometers with five frequencies from 89 GHz to 182 GHz penetrate into the cloud to observe key changes as precipitation begins or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction and a key factor in Earth's radiation budget. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation, yielding a first-order understanding of assumptions and uncertainties in current cloud parameterizations in general circulation models in diverse climate regimes. For a potential future one-year operational mission, five identical 6U-Class satellites would be deployed in the same orbital plane with 5- to 10-minute spacing deployed in an orbit similar to the International Space Station resupply missions, i.e. at ~400 km altitude and ~51° inclination. A one-year mission would capture 3 million observations of precipitation greater than 1 mm/hour rain rate, including at least 100,000 deep convective events. Passive drag-adjusting maneuvers would separate the five CubeSats in the same orbital plane by 5-10 minutes each, similar to deployment techniques to be used by NASA's Cyclone Global Navigation Satellite Systems (CYGNSS) mission.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
A comparison of radiometric normalization methods when filling cloud gaps in Lansat imagery.
E. H. Helmer
2007-01-01
Mapping persistently cloudy tropical landscapes with optical satellite imagenery usually requires assembling the clear imagery from several dates. this study compares methods for normalizing image data when filling cloud gaps in Landsat imagery with imagery from other dates.
A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia
Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller
2009-01-01
The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon
2013-01-01
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon
2013-12-17
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting
NASA Astrophysics Data System (ADS)
Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas
2016-04-01
As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared channels. For example, those information have been directly assimilated by modifying the water vapour profile in the initial conditions of the WRF model in California using GOES satellite imagery. In Europe, the assimilation of cloud-top height and relative humidity has been performed in an indirect approach using an ensemble Kalman filter. In this case Meteosat SEVIRI cloud information has been assimilated in the COSMO model. Although such methods generally provide improved cloud cover forecasts in mid-latitudes, the major limitation is that only clear-sky or completely cloudy cases can be considered. Indeed, fractional clouds cause a measured signal mixing cold clouds and warmer Earth surface. If the model's initial state is directly forced by cloud properties observed by satellite, the changed model fields have to be smoothed in order to avoid numerical instability. Other crucial aspects which influence forecast quality in the case of satellite radiance assimilation are channel selection, bias and error treatment. The overall promising satellite data assimilation methods in regional NWP have not yet been explicitly applied and tested under tropical conditions. Therefore, a deeper understanding on the benefits of such methods is necessary to improve irradiance forecast schemes.
Global Troposphere Experiment Project
NASA Technical Reports Server (NTRS)
Bandy, Alan R.; Thornton, Donald C.
1997-01-01
For the Global Troposphere Experiment project Pacific Exploratory Measurements West B (PEM West B), we made determinations of sulfur dioxide (SO2) and dimethyl sulfide (DMS) using gas chromatography-mass spectrometry with isotopically labelled internal standards. This technique provides measurements with precision of 1 part-per-trillion by volume below 20 pptv and 1% above 20 pptv. Measurement of DMS and SO2 were performed with a time cycle of 5-6 minutes with intermittent zero checks. The detection limits were about 1 pptv for SO2 and 2 pptv for DMS. Over 700 measurements of each compound were made in flight. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2, contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region. During both phases of PEM-West, dimethyl sulfide did not appear to be a major source of sulfur dioxide in the upper free troposphere over the western Pacific Ocean. In 1991 the sources Of SO2 at high altitude appeared to be both anthropogenic and volcanic with an estimated 1% being solely from DMS. The primary difference for the increase in the DMS source was the very low concentration of SO2 at high altitude. In the midlatitude region near the Asian land masses, DMS in the mixed layer was lower than in the tropical region of the western Pacific. Convective cloud systems near volcanoes in the tropical convergence in the western Pacific troposphere were a major source of SO2 at high altitudes during PEM-West B. High levels of SO2 were observed in several instances with large number concentrations of ultrafine CN above 9 km in the tropical convergence zone. Conversion of SO2, by OH to SO3 and subsequently to sulfuric acid may have been enhanced by lightning-produced NO levels exceeding 1 part per billion. Coupling of strong convection and volcanic sources of SO2 apparently is an important source of new particle formation at high altitude in the tropical convergence zone.
Direct Observations of Excess Solar Absorption by Clouds
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Valero, Francisco P. J.
1995-01-01
Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.
Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.
NASA Astrophysics Data System (ADS)
Miller, Shawn William
The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.
Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results
NASA Astrophysics Data System (ADS)
Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.
2016-03-01
Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.
NASA Astrophysics Data System (ADS)
Cornet, C.; Davies, R.
2008-02-01
Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.
NASA Astrophysics Data System (ADS)
Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.
2008-06-01
Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the Caribbean.