Science.gov

Sample records for deep underground high

  1. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  2. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  3. Three-Dimensional Geologic Modeling of a Prospective Deep Underground Laboratory Site for High-Level Radioactive Waste Disposal in Korea

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Lee, S.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of three-dimensional geologic modeling was performed using a geostatistical geologic model GOCAD (ASGA and Paradigm) to characterize quantitatively and to visualize realistically a prospective deep underground laboratory site for high-level radioactive waste disposal in Korea. The necessity of a deep underground laboratory arises from its in-situ conditions for related deep scientific experiments. However, the construction and operation of such a deep underground laboratory take great efforts and expenses owing to its larger depth and thus higher geologic uncertainty. For these reasons, quantitative characterization and realistic visualization of geologic formations and structures of a deep underground laboratory site is crucial before its construction and operation. The study area for the prospective deep underground laboratory site is mainly consists of Precambrian metamorphic rocks as a complex. First, various topographic and geologic data of the study area were collected from literature and boreholes and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations and structures, was established, and a three-dimensional grid model, which consists of hexahedral grid blocks, was produced. Three-dimensional geologic formation model was then established by polymerizing these two models. Finally, a series of three-dimensional lithofacies modeling was performed using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The volume fractions of metamorphic rocks predicted using the TGS are more similar to the actual data observed in boreholes than those predicted using the SIS. These three-dimensional geologic modeling results can improve a quantitative and realistic understanding of geologic characteristics of the prospective deep underground laboratory site for high-level radioactive waste disposal and thus can provide

  4. The world deep underground laboratories

    NASA Astrophysics Data System (ADS)

    Bettini, A.

    2012-09-01

    This paper is an introduction to a series of coordinated articles of an EPJ Plus Focus Point on underground physics laboratories, written by the directors of the larger ones and by the coordinators of the principal new projects. The paper is largely based on the text of my lecture Perspectives of underground physics, given at the Enrico Fermi Varenna International School, Course CLXXXII (2011), Neutrino physics and astrophysics, reproduced here by permission of the Italian Physical Society. Underground laboratories provide the low radioactive background environment necessary to explore the highest energy scales that cannot be reached with accelerators, by searching for extremely rare phenomena. Experiments range from the direct search of the dark-matter particles that constitute the largest fraction of matter in the Universe, to the exploration of the properties of the neutrinos, the most elusive of the known particles and which might be particle and antiparticle at the same time, to the investigation on why our universe contains only matter and almost no antimatter, and much more.

  5. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  6. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  7. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2016-07-12

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  8. Embedding Materials and Economy for a Deep Underground Reactor

    SciTech Connect

    Hiroshi Takahashi

    2002-07-01

    I proposed embedding the high-conversion LWR, studied in the NERI program, about 500-1000 meters deep underground. At such depths, the earth's gravity force passively removes heat using the natural circulation of the reactor coolant; then, even a nuclear-power plant with very tight-lattice fuel assembly can be operated safely. Safety is ensured by embedding the reactor vessel and other components, such as coolant ducts, in casing containers and filling the space between the container and the vessel with embedding material. I describe suitable embedding materials that can be easily removed to allow access to the reactor and coolant components. Finally, I discuss the key economic aspects of building a reactor deep underground. (author)

  9. Sidereal variations deep underground in Tasmania

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies.

  10. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  11. DIANA: nuclear astrophysics with a deep underground accelerator facility

    NASA Astrophysics Data System (ADS)

    Lemut, Alberto

    2013-10-01

    Current stellar model simulations are at a level of precision such that nuclear reaction rates represent a major source of uncertainty for theoretical predictions and for the analysis of observational signatures. To address several open questions in cosmology, astrophysics, and non-Standard-Model neutrino physics, new high precision measurements of direct-capture nuclear fusion cross sections are essential. Experimental studies of nuclear reaction of astrophysical interest are hampered by the exponential drop of the cross-section. The extremely low value of σ (E) within the Gamow peak prevents measurement in a laboratory at the earth surface. The signal to noise ratio would be too small, even with the highest beam intensities presently available from industrial accelerators, because of the cosmic ray interactions with the detectors and surrounding materials. An excellent solution is to install an accelerator facility deep underground where the cosmic rays background into detectors is reduced by several order of magnitude, allowing the measurements to be pushed to far lower energies than presently possible. This has been clearly demonstrated at the Laboratory for Underground Nuclear Astrophysics (LUNA) by the successful studies of critical reactions in the pp-chains and first reaction studies in the CNO cycles. However many critical reactions still need high precision measurements, and next generation facilities, capable of very high beam currents over a wide energy range and state of the art target and detection technology, are highly desirable. The DIANA accelerator facility is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density (up to 1018 atoms/cm2), super-sonic jet-gas target as well as to a solid target. DIANA will consist of two accelerators, 50-400 kV and 0.4-3 MV, that will cover a wide range of ion beam intensities, with sufficient energy overlap to consistently connect the

  12. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  13. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  14. Sudden stratospheric warmings seen in MINOS deep underground muon data

    SciTech Connect

    Osprey, S.; Barnett, J.; Smith, J.; Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Baller, B.; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

    2009-01-01

    The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

  15. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  16. Siting, Constructing, and Maintaining a Deep Underground Science Laboratory

    NASA Astrophysics Data System (ADS)

    Sharp, Robert R.

    1983-03-01

    Experience from a recent site selection study has shown that the important considerations in siting a deep underground science facility are numerous, complicated, and most often based in economics. Even so, there are natural constraints on the maximum depth, size of openings, and construction techniques that can be attained or utilized at any particular site. In general, these are set by the local geothermal gradient, hydrologic regime, and properties of the rock mass or substance that are pertinent to geological, mining, and drilling engineering. At the same time, economics control the type of access, means of dewatering, and methods of sustaining the openings that are most feasible. If major faults can be avoided, sites offering acceptable temperature, a low water table, no outstanding aquifers or badly broken ground above the main openings, and strong, massive, largely impermeable rocks surrounding them at depth are best. Upon completion of a facility, the investment and safety of the occupants demand it rigorous maintenance.

  17. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  18. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    NASA Astrophysics Data System (ADS)

    Verstricht, J.; Areias, L.; Bastiaens, W.; Li, X. L.

    2010-06-01

    Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure), or it can be an indirect technique, deriving the stress from related quantities such as strain (changes) in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter). Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  19. Heat exhaustion in a deep underground metalliferous mine

    PubMed Central

    Donoghue, A; Sinclair, M.; Bates, G.

    2000-01-01

    OBJECTIVES—To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion.
METHODS—A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (V̇O2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data.
RESULTS—106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases / million man-hours. In February it was 147 cases / million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p<0.001, 36%), anion gap (p<0.001, 63%), urea (p<0.001, 21%), creatinine (p<0.001, 30%), glucose (p<0.001, 15%), serum osmolality (p=0.030, 71%), creatine kinase (p=0.002, 45%), aspartate transaminase (p<0.001, 14%), lactate dehydrogenase (p<0.001, 9.5%), and ferritin (p<0.001, 26%). The following data were depressed in acute presentation compared with recovery (p value, % of acute cases below the normal clinical range): eosinophils (p=0.003, 38%) and bicarbonate (p=0.011, 32%). Urea and

  20. Big Bang 6Li nucleosynthesis studied deep underground (LUNA collaboration)

    NASA Astrophysics Data System (ADS)

    Trezzi, D.; Anders, M.; Aliotta, M.; Bellini, A.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Corvisiero, P.; Costantini, H.; Davinson, T.; Depalo, R.; Elekes, Z.; Erhard, M.; Ferraro, F.; Formicola, A.; Fülop, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Mossa, V.; Pantaleo, F.; Prati, P.; Rossi Alvarez, C.; Scott, D. A.; Somorjai, E.; Straniero, O.; Szücs, T.; Takacs, M.

    2017-03-01

    The correct prediction of the abundances of the light nuclides produced during the epoch of Big Bang Nucleosynthesis (BBN) is one of the main topics of modern cosmology. For many of the nuclear reactions that are relevant for this epoch, direct experimental cross section data are available, ushering the so-called "age of precision". The present work addresses an exception to this current status: the 2H(α,γ)6Li reaction that controls 6Li production in the Big Bang. Recent controversial observations of 6Li in metal-poor stars have heightened the interest in understanding primordial 6Li production. If confirmed, these observations would lead to a second cosmological lithium problem, in addition to the well-known 7Li problem. In the present work, the direct experimental cross section data on 2H(α,γ)6Li in the BBN energy range are reported. The measurement has been performed deep underground at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator in the Laboratori Nazionali del Gran Sasso, Italy. The cross section has been directly measured at the energies of interest for Big Bang Nucleosynthesis for the first time, at Ecm = 80, 93, 120, and 133 keV. Based on the new data, the 2H(α,γ)6Li thermonuclear reaction rate has been derived. Our rate is even lower than previously reported, thus increasing the discrepancy between predicted Big Bang 6Li abundance and the amount of primordial 6Li inferred from observations.

  1. Large extra dimensions at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Peres, O. L. G.; Tabrizi, Zahra

    2016-08-01

    We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a (3 +3 N )-neutrino framework for modest values of N ; N =1 is usually a very good approximation. Nonetheless, there are no new sources of C P -invariance violation other than one C P -odd phase that can be easily mapped onto the C P -odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic (3 +1 )-neutrino model.

  2. Going Deep: Putting the Underground Dimension to Use

    SciTech Connect

    Laughton, Chris

    2007-05-02

    Underground construction can offer durable and environmentally-sound solutions to many of societies more pressing needs. The talk will identify some common uses for underground space and discuss current construction techniques used to mine in soils and rock. Examples of successful underground construction projects will demonstrate the advantages that the underground site can offer. In addition, insight will be provided into the nature of the risks run when working with a construction material (the ground) that cannot be made to order, nor precisely defined by the investigative processes currently at our disposal.

  3. A Subsurface Explorer for Deep Underground Exploration on Mars

    NASA Technical Reports Server (NTRS)

    Wilcox, B. H.; Morgan, A. R.

    2000-01-01

    A subsurface explorer (SSX) is being developed at the Jet Propulsion Laboratory which is suitable for exploration of the deep underground environments on Mars. The device is a self-contained piledriver which uses a novel 'spinning hammer' technology to convert a small continuous power feed from the surface over a two-wire tether into a large rotational energy of a spinning mass. The rotational energy is converted to translational energy by a novel mechanism described here. The hammer blows propagate as shock waves through a nosepiece, pulverizing the medium ahead of the SSX. A small portion of the pulverized medium is returned to the surface through a hole liner extending behind the SSX. This tube is 'cast in place' from two chemical feedstocks which come down from the surface through passages in the hole liner and which are reacted together to produce new material with which to produce the hole liner. The lined hole does not need to be the full diameter of the SSX: approximately 100 kilograms of liner material can create a tunnel liner with a three millimeter inside diameter and a six millimeter outside diameter with at total length of four kilometers. Thus it is expected that core samples representing an overlapping set of three-millimeter diameter cores extending the entire length of the SSX traverse could be returned to the surface. A pneumatic prototype has been built which penetrated easily to the bottom of an eight meter vertical test facility. An electric prototype is now under construction. It is expected that the SSX will be able to penetrate through sand or mixed regolith, ice, permafrost, or solid rock, such as basalt. For pure or nearly pure ice applications, the device may be augmented with hot water jets to melt the ice and stir any sediment which may build up ahead of the vehicle. It is expected that an SSX approximately one meter long, three to four centimeters in diameter, and with a power budget of approximately 200 Watts will be able to explore

  4. A Subsurface Explorer for Deep Underground Exploration on Mars

    NASA Astrophysics Data System (ADS)

    Wilcox, B. H.; Morgan, A. R.

    2000-08-01

    A subsurface explorer (SSX) is being developed at the Jet Propulsion Laboratory which is suitable for exploration of the deep underground environments on Mars. The device is a self-contained piledriver which uses a novel 'spinning hammer' technology to convert a small continuous power feed from the surface over a two-wire tether into a large rotational energy of a spinning mass. The rotational energy is converted to translational energy by a novel mechanism described here. The hammer blows propagate as shock waves through a nosepiece, pulverizing the medium ahead of the SSX. A small portion of the pulverized medium is returned to the surface through a hole liner extending behind the SSX. This tube is 'cast in place' from two chemical feedstocks which come down from the surface through passages in the hole liner and which are reacted together to produce new material with which to produce the hole liner. The lined hole does not need to be the full diameter of the SSX: approximately 100 kilograms of liner material can create a tunnel liner with a three millimeter inside diameter and a six millimeter outside diameter with at total length of four kilometers. Thus it is expected that core samples representing an overlapping set of three-millimeter diameter cores extending the entire length of the SSX traverse could be returned to the surface. A pneumatic prototype has been built which penetrated easily to the bottom of an eight meter vertical test facility. An electric prototype is now under construction. It is expected that the SSX will be able to penetrate through sand or mixed regolith, ice, permafrost, or solid rock, such as basalt. For pure or nearly pure ice applications, the device may be augmented with hot water jets to melt the ice and stir any sediment which may build up ahead of the vehicle. It is expected that an SSX approximately one meter long, three to four centimeters in diameter, and with a power budget of approximately 200 Watts will be able to explore

  5. How to Start a High School Underground Newspaper. Fifth Edition.

    ERIC Educational Resources Information Center

    Greenberg, Cory

    Stressing the diversity which characterizes the high school underground press movement, the pamphlet presents case histories of several papers, an overview of the first ten years of the high school underground press, and technical information necessary for starting a paper. The first wave of high school underground newspapers appeared in major…

  6. Underground Pumped Storage Hydroelectricity using Abandoned Works (open pits and deep mines)

    NASA Astrophysics Data System (ADS)

    Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A.

    2015-12-01

    Pumped Storage Hydroelectricity (PSH) is a good alternative to increase the efficiency of power plants, which cannot regulate the amount of electricity generated according to the demand (wind, solar or even nuclear power plants). PSH plants, which consist in two reservoirs located at different heights (upper and lower), can store energy during low demand periods (pumping water from the lower to the upper reservoir) and generate electricity during the high demand peaks (falling water from the upper to the lower reservoir). Given that the two reservoirs must be located at different heights, PSH plants cannot be constructed in flat regions. Nevertheless, in these regions, an alternative could be to use abandoned underground works (open pits or deep mines) as lower reservoirs to construct Underground Pumped Storage Hydroelectricity (UPSH) plants. To select the best place to construct a plant, two considerations must be taken into account regarding the interaction between UPSH plants and groundwater: 1) the alteration of the natural conditions of aquifers and 2), the efficiency of the plant since the electricity generated depends on the hydraulic head inside the underground reservoir. Obviously, a detailed numerical model must be necessary before to select a location. However, a screening methodology to reject the most disadvantageous sites in a short period of time would be useful. Groundwater flow impacts caused by UPSH plants are analyzed numerically and the main variables involved in the groundwater evolution are identified. The most noticeable effect consists in an oscillation of the groundwater. The hydraulic head around which groundwater oscillates, the magnitude of the oscillations and the time to achieve a "dynamic steady state" depend on the boundaries, the parameters of the aquifer and the characteristics of the underground reservoir. A screening methodology is proposed to assess the main impacts caused in aquifers by UPSH plants. Finally, the efficiency

  7. Underground mining and deep geologic disposal - Two compatible and complementary activities

    SciTech Connect

    Rempe, N.T.

    1995-12-31

    Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

  8. Groundwater Management During Intermediate-to-Deep Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Lavis, Shaun; Stanley, Edward; Mostade, Marc; Turner, Matthew

    2010-05-01

    Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and so the risks to groundwater have to be evaluated on a case-by-case basis. Site selection plays a fundamental role in managing these risks and it is possible to identify the general characteristics that will minimise risks of environmental impacts. However, large volumes of water, much of which will come from groundwater, are consumed during UCG projects, leading to possible significant groundwater depletion at such settings. Insufficient water supplies will impact the quality of the syngas produced by UCG because coal conversion efficiencies will decrease. Furthermore, depletion of groundwater levels may extend beyond the UCG site boundary, with consequent implications for regulatory regimes and any off-site groundwater users. Additional artificial water supplies may therefore be required, although the manner in which the water is delivered to the UCG system will also likely have an impact on syngas quality. Large volumes of water delivered via the injection well will likely impact gasification efficiency because 1) large amounts of heat will be used to vaporise the water leading to suppression of the reactor temperature and inhibition of (endothermic) gasification reactions; and 2) the "steam jacket" originally present around the UCG reactor will be absent, which will lead to further heat loss from the system. Additional water may therefore have to be supplied via the surrounding strata and/or coal seam, thus mimicking the natural conditions prior to groundwater depletion. Much of the hydrogeological modelling to date has focussed on a single

  9. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  10. Underground

    ERIC Educational Resources Information Center

    Vrchota, Janet

    1974-01-01

    At a time when the future of New York's subway system looked bleak, new underground zoning legislation (the first ever) has been enacted. This new law requires buildings constructed near a subway station to provide transit easement space to allow public access to the subway through the building property. (MA)

  11. Monitoring underground water quality based on high-density resistivity method

    NASA Astrophysics Data System (ADS)

    Xu, Yanyan

    2015-12-01

    Underground water is different from surface water. Once contaminated, underground water is difficult to recover, so it is necessary to give priority to the prevention of the quality of underground water. High-density resistivity method is very important in the environmental engineering geophysical prospecting and it is widely used in mineral resources as well as monitoring the underground-water quality. In the experiment, multi-tools joint inversion is applied to build the model in order to increase the accuracy. In contrast with the pollution-free water model which is owned by the RES2DMOD, the inversion result of underground water quality with the high density resistivity method is useful to monitor the underground water quality, showing that different degree of water pollution depends on the position of abnormal and there is a more significant abnormal value in the vertical direction of the deep abnormal than that of the shallow abnormal, and high and low resistance pollution depends on the different value and forms of abnormal resistance. In conclusion, monitoring the underground water quality by the high density resistivity method is efficient. In the future research, it is necessary to accomplish more precise inversion models combining with field measurements to find out the optimal solution to monitor underwater quality.

  12. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    NASA Astrophysics Data System (ADS)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  13. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more ground conductors having a total cross sectional area of not less than one-half the power conductor,...

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    SciTech Connect

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  15. Deep and Ultra-deep Underground Observatory for In Situ Stress, Fluids, and Life

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Wang, H.; Kieft, T. L.

    2008-12-01

    The question 'How deeply does life extend into the Earth?' forms a single, compelling vision for multidisciplinary science opportunities associated with physical and biological processes occurring naturally or in response to construction in the deep and ultra-deep subsurface environment of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine. The scientific opportunity is to understand the interaction between the physical environment and microbial life, specifically, the coupling among (1) stress state and deformation; (2) flow and transport and origin of fluids; and (3) energy and nutrient sources for microbial life; and (4) microbial identity, diversity and activities. DUSEL-Homestake offers the environment in which these questions can be addressed unencumbered by competing human activities. Associated with the interaction among these variables are a number of questions that will be addressed at variety of depths and scales in the facility: What factors control the distribution of life as a function of depth and temperature? What patterns in microbial diversity, microbial activity and nutrients are found along this gradient? How do state variables (stress, strain, temperature, and pore pressure) and constitutive properties (permeability, porosity, modulus, etc.) vary with scale (space, depth, time) in a large 4D heterogeneous system: core - borehole - drift - whole mine - regional? How are fluid flow and stress coupled in a low-permeability, crystalline environment dominated by preferential flow paths? How does this interaction influence the distribution of fluids, solutes, gases, colloids, and biological resources (e.g. energy and nutritive substrates) in the deep continental subsurface? What is the interaction between geomechanics/geohydrology and microbiology (microbial abundance, diversity, distribution, and activities)? Can relationships elucidated within the mechanically and hydrologically altered subsurface habitat

  16. A Deep Underground Science and Engineering Laboratory (DUSEL) at Kimballton

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2004-11-01

    The National Academy of Science, as well as several long-range plans from the physics communities, have endorsed the need to create a large, multi-disciplinary underground laboratory in the US. Several potential sites have been identified, and the National Science Foundation has begun a solicitation process to help formulate the science program as well as to identify and develop candidate sites. The only site on the East Coast is at Kimballton, near Blacksburg, in western Virginia. Of all the sites, it is the only one located in sedimentary rocks. This makes it an IDEAL and unique location for both physics, geoscience, and engineering studies. Kimballton is also only half an hour from Virginia Tech, the largest university in the state of Virginia. A multi-institution group has been developing this possibility, and will be competing on the national scale to have DUSEL located at Kimballton. One of the assets of this location is a large limestone mine, already at a depth of 2300 ft (1850 mwe), with true drive-in access and extremely large caverns. The DUSEL facility at this location will try to take advantage of the existing infrastructure, while at the same time develop complementary and adjacent facilities down to 7000 ft (6000 mwe) to allow independent operation of the future facility. Since 2003, Virginia Tech and the Naval Research Laboratory have been working to also develop a general low-level facility at this location. The initial program is to help develop extremely low-background germanium and gas proportional counters, and a single super-module of the Low-Energy Neutrino Spectroscopy (LENS) detector -- designed to measure the real-time low-energy neutrino spectrum from the Sun, including the pp-flux. Progress in this program (including seismic imaging), and the proposed overall extensive science program (Phys, Geo, Eng, Bio) which can be addressed at Kimballton will be presented. For further information, see our webpage http://www.phys.vt.edu/ kimballton

  17. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  18. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    NASA Astrophysics Data System (ADS)

    Alekseenko, V. V.; Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Dzhappuev, D. D.; Kazalov, V. V.; Kudzhaev, A. U.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2017-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5% of total neutron flux.

  19. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  20. Life in Inner Space: Subsurface Microbiology Investigations in Underground Research Laboratories and Deep Mines

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Onstott, T. C.; van Heerden, E.; Kieft, T. L.; Ballentine, C. J.

    2012-12-01

    Chemolithotrophic communities, or microbes drawing their energy for life from geologically produced chemical species rather than from photosynthesis, were discovered in the late 1970's at the mid-ocean ridge hydrothermal vents. This discovery sparked a revolution in our understanding of the range of possible mechanisms for sustaining life and hence in our concept of where on this planet life could be found. Since that time, our understanding that life is not simply a thin veneer on the earth's surface but may permeate deep into the subsurface of this planet has evolved rapidly. Serpentinization of ultramafic rocks and alteration of basaltic ocean floor have been invoked as key mechanisms by which geochemical processes of water-rock interaction may provide energy and reducing power for chemoautotrophic microbial communities on the seafloor. In continental settings, H2-utilizing chemoautotrophic microbial communities have been identified in volcanic hot springs, and research in groundwater aquifers suggests that H2-fueled autotrophic microbial ecosystems might be widespread in continental flood basalts. A major gap remains in our understanding of life in the deep, but not so hot, biosphere. Investigations, particularly in the continental or terrestrial deep subsurface, are recognizing that chemosynthetic communities are not restricted to the high temperature hydrothermal vents and springs, but can be sustained under lower temperature regimes by similar types of water-rock reactions, albeit at slower rates. Dissolved H2 produced via radiolysis and/or serpentinization accumulates in hydrogeologically isolated fractures to concentrations up to 7mM - making these terrestrial environments, like the hydrothermal vents, some of the most H2-rich environments on the planet. The implications of this are profound, as it suggests much larger volumes of the Earth's subsurface may be habitable than previously recognized. These finding have impact on exploration for extant or

  1. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  2. DUSEL CO2: A deep underground laboratory for geologic carbon sequestration studies

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Dobson, P. F.; Oldenburg, C. M.; Scherer, G.; Onstott, T. C.; Birkholzer, J. T.; Freifeld, B. M.; Celia, M. A.; Wang, J. S.; Prevost, J.

    2009-12-01

    The objective of geologic sequestration of carbon dioxide as a greenhouse gas mitigation strategy is the long-term containment of CO2 in deep underground formations. To develop a sound understanding of geologic carbon sequestration, we will build a deep underground laboratory to study the processes of storing and trapping CO2, including the risks of unintended leakage. The laboratory will be part of the new DUSEL facility at the Homestake mine in South Dakota. In this presentation, we will highlight the features and capabilities of the planned facility, to be called “DUSEL CO2”. The experimental design exploits the nearly half-kilometer vertical extent of existing “sandline” borings at Homestake. Pipes will be installed within the sandlines to serve as long flow columns. These columns will contain the CO2 and allow experimentation at the same pressure and temperature conditions as in deep subsurface reservoirs. Fill materials will mimic sedimentary layering, as well as cements in plugged wells. Instrumentation will enable detailed monitoring of flow, pressure, temperature, brine composition, geomechanics, and microbial activity. As part of the initial suite of experiments, we plan to simulate a leak in which CO2 changes from a supercritical fluid to a subcritical gas as the pressure drops during upflow over tens to hundreds of meters. We will test for possible acceleration in CO2 flow due to increasing buoyancy. Also, we will examine the interactions of CO2 with caprocks and well cements, and determine whether CO2 will enlarge flow pathways or cause self-sealing. Finally, we will investigate the effects of anaerobic, thermophilic bacteria on CO2 conversion to methane and carbonate. The findings from these unique experiments will advance carbon management technology worldwide and help reduce global greenhouse gas emissions.

  3. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    PubMed

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  4. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar

    2016-03-01

    We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ɛ ˜ {O} (0.05 - 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  5. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    SciTech Connect

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~ $ \\mathcal{O} $ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  6. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGES

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  7. The ANDES Deep Underground Laboratory in South America: status and prospects

    NASA Astrophysics Data System (ADS)

    Bertou, Xavier

    2017-01-01

    The construction of the Agua Negra tunnel through the Andes between Argentina and Chile is a unique opportunity to build a world class deep underground laboratory in the southern hemisphere, with 1750 m of rock overburden. At 30 degrees latitude south, far from nuclear power plants, it provides a unique site for Dark Matter searches and Neutrino experiments, and can host multidisciplinary experiments with a specific focus on Earth sciences given its location in a peculiar geoactive region. Its operation is foreseen to be coordinated by an international consortium and to start in 2026. In this presentation the current status of the Agua Negra tunnel and the ANDES initiative will be reviewed, and the scientific programme of the planned laboratory will be discussed.

  8. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

    PubMed Central

    Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.

    2014-01-01

    The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly

  9. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  10. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except...

  11. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  12. Advances in technology for the construction of deep-underground facilities

    SciTech Connect

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  13. High resolution seismic reflection, an exploration tool within an underground environment (example from Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Mutyorauta, J. J.

    Metallurgical grade chromite ore in Zimbabwe is mined from two underground mines, Peak Mine and Railway Block Mine, in Shurugwi. Peak Mine is at present just over 800 m deep. In the search for new chromite ore bodies, such a depth limits the application of the conventional geophysical exploration tools. Exploration diamond drilling is becoming more and more an expensive resort. Alternative and effective geophysical techniques are therefore being actively sought after. The high resolution seismic reflection technique, carried out right within Peak Mine, has the potential to become a useful exploration tool.

  14. Experiments in a Deep Underground Science and Engineering Laboratory (DUSEL) Hosted in Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Kimballton, M. O.; Science Team

    2004-12-01

    Sedimentary-rock environments, particularly those dominated by carbonate rock, provide unique opportunities for geoscientists, geobiologists, and geophysicists, to perform revolutionary experiments aimed at answering fundamental science questions and satisfying our societal demands for resources and environmental stewardship. As part of the National Science Foundation's DUSEL initiative, the selected site should offer structurally and biologically diverse environments. At the same time, the site should offer host rock capable of providing safely engineered hallways and laboratories at depths as great as 2,200 m for numerous deep underground physics, engineering, and earth science experiments. An ideal sedimentary-rock environment offers the prospect of highly folded, thrusted, and fractured rocks that allow opportunities to study the 3-D behavior of thrusts that propagate parallel to bedding as well as those that ramp across bedding. Flow dynamics along and across deeply buried faults is poorly understood. Experiments will be developed at various scales to assess flow and transport processes to better quantify hydrogeological mechanisms influencing flow and possible aquifer compartmentalization. Seismic reflection images, vertical seismic profiles, and tomograms will provide details of the fault properties and geometry, which can be verified in-situ. Repeated overthrusted sequences provide opportunities for geobiologists to investigate how microbes in rocks of similar age are affected by differences in pressure, temperature, and depth. Carbonate rocks provide opportunities to study energy sources and adaptations for nutrient acquisition, reproduction, stability, survival, and repair under extreme conditions. Results from these investigations will permit comparisons with other foreland fold-thrust belts worldwide. Fossil fuels remain the world's main energy resource and the large majority of these are hosted in sedimentary rocks. Improved methods for reservoir

  15. High temperature underground thermal energy storage system for solar energy

    NASA Astrophysics Data System (ADS)

    Collins, R. E.

    1980-08-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  16. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  17. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were

  18. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group

    SciTech Connect

    Akerib, Daniel S.; Aprile, E.; Baltz, E.A.; Dragowsky, M.R.; Gaitskell, R.J.; Gondolo, P.; Hime, A.; Martoff, C.J.; Mei, D.-M.; Nelson, H.; Sadoulet, B.; Schnee, R.W.; Sonnenschein, A.H.; Strigari, L.E.; /UC, Irvine

    2006-06-09

    In this report we have described the broad and compelling range of astrophysical and cosmological evidence that defines the dark matter problem, and the WIMP hypothesis, which offers a solution rooted in applying fundamental physics to the dynamics of the early universe. The WIMP hypothesis is being vigorously pursued, with a steady march of sensitivity improvements coming both from astrophysical searches and laboratory efforts. The connections between these approaches are profound and will reveal new information from physics at the smallest scales to the origin and workings of the entire universe. Direct searches for WIMP dark matter require sensitive detectors that have immunity to electromagnetic backgrounds, and are located in deep underground laboratories to reduce the flux from fast cosmic-ray-muon-induced neutrons which is a common background to all detection methods. With US leadership in dark matter searches and detector R&D, a new national laboratory will lay the foundation of technical support and facilities for the next generation of scientists and experiments in this field, and act as magnet for international cooperation and continued US leadership. The requirements of depth, space and technical support for the laboratory are fairly generic, regardless of the approach. Current experiments and upgraded versions that run within the next few years will probe cross sections on the 10{sup -45}-10{sup -44} cm{sup 2} scale, where depths of 3000-4000 m.w.e. are sufficient to suppress the neutron background. On the longer term, greater depths on the 5000-6000 level are desirable as cross sections down to 10{sup -46} cm{sup 2} are probed, and of course, if WIMPs are discovered then building up a statistical sample free of neutron backgrounds will be essential to extracting model parameters and providing a robust solution to the dark matter problem. While most of the detector technologies are of comparable physical scale, i.e., the various liquid and solid

  19. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  20. Opportunities for Multidisciplinary Research in Partnership with Rock Engineers at the Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Laughton, C.

    2008-12-01

    For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.

  1. Seismic Response of a Deep Underground Geologic Repository for Nuclear Waste at the Waste Isolation Pilot Plant in New Mexico

    SciTech Connect

    Sanchez, P.E.

    1998-11-02

    The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.

  2. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    SciTech Connect

    Chen, Yu

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  3. A search for cosmic sources of high energy neutrinos with small underground detectors

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.; Castagnoli, C.; Galeotti, P.

    1985-01-01

    On the basis of standard source calculations of high energy neutrino fluxes, some models of astrophysical object (single stars and binary systems) are discussed from which a detectable muon flux is expected in small underground detectors.

  4. Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso

    NASA Astrophysics Data System (ADS)

    Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Carelli, Giorgio; Cuccato, Davide; De Luca, Gaetano; Di Virgilio, Angela; Gebauer, André; Maccioni, Enrico; Ortolan, Antonello; Porzio, Alberto; Saccorotti, Gilberto; Simonelli, Andreino; Terreni, Giuseppe

    2017-03-01

    GINGERino is a large frame laser gyroscope investigating the ground motion in the most inner part of the underground international laboratory of the Gran Sasso, in central Italy. It consists of a square ring laser with a 3.6 m side. Several days of continuous measurements have been collected, with the apparatus running unattended. The power spectral density in the seismic bandwidth is at the level of 10-10 (rad/s) /√{Hz} . A maximum resolution of 30 prad/s is obtained with an integration time of few hundred seconds. The ring laser routinely detects seismic rotations induced by both regional earthquakes and teleseisms. A broadband seismic station is installed on the same structure of the gyroscope. First analysis of the correlation between the rotational and the translational signal is presented.

  5. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Willems, Thibault; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-09-01

    Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is essential to consider the interaction between UPSH plants and the surrounding geological media. There has been little work on the assessment of associated groundwater flow impacts. The impacts on groundwater flow are determined numerically using a simplified numerical model which is assumed to be representative of open-pit and deep mines. The main impact consists of oscillation of the piezometric head, and its magnitude depends on the characteristics of the aquifer/geological medium, the mine and the pumping and injection intervals. If an average piezometric head is considered, it drops at early times after the start of the UPSH plant activity and then recovers progressively. The most favorable hydrogeological conditions to minimize impacts are evaluated by comparing several scenarios. The impact magnitude will be lower in geological media with low hydraulic diffusivity; however, the parameter that plays the more important role is the volume of water stored in the mine. Its variation modifies considerably the groundwater flow impacts. Finally, the problem is studied analytically and some solutions are proposed to approximate the impacts, allowing a quick screening of favorable locations for future UPSH plants.

  6. Hydrogeological Investigations in Deep Wells at the Meuse/Haute Marne Underground Research Laboratory

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Distinguin, Marc

    ANDRA (Agence Nationale pour la Gestion de Déchets Radioactifs) has developed an integrated approach to characterizing the hydrogeology of the carbonate strata that encase the Callovo-Oxfordian argillite at the Meuse/Haute-Marne Laboratory site. The argillites are difficult to characterize due to their low permeability. The barrier properties of the argillites can be inferred from the flow and chemistry properties of the encasing Oxfordian and Dogger carbonates. Andras deep hole approach uses reverse air circulation drilling, geophysical logging, flow meter logging, geochemical sampling, and analyses of the pumping responses during sampling. The data support numerical simulations that evaluate the argillites hydraulic behaviour.

  7. From the Cosmos to the Geosphere: the quest of four European Deep Underground Laboratories originally built for Astroparticle Physics to understand Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Agrafioti, I.

    2014-12-01

    A number of deep underground laboratories exist around the world, all originally developed to advance our understanding of the Universe. They were built to host 'low-background' Astroparticle Physics experiments, needing to be shielded from interference produced by cosmic radiation. These unique infrastructures show great diversity in terms of depth, size, and geological and environmental characteristics. Over the last decade, the four European deep underground laboratories - LSM in France, LSC in Spain, LNGS in Italy and Boulby in the UK - supported by their funding agencies, have been making great efforts to get integrated into a single distributed research infrastructure. At the same time, they have been asking "how can our facilities, primarily built for Astroparticle Physics, be used to tackle global challenges?". Astroparticle Physicists have wide experience in forming long-term large international collaborations, developing innovative technologies, building unique facilities and organising data handling, reduction, storage and analysis: all of these were put to the disposal of scientists from other disciplines. As a result, a number of very interesting multidisciplinary projects have been hosted in the labs with excellent scientific results: geologists, climatologists, environmental scientists and biologists from academia and public authorities have all used these deep underground environments. Even more recently, the four European labs have decided to go one step further: in order to treat global challenges, global cooperation is necessary, so they are trying to unite the global deep underground science community around these multidisciplinary synergies. The objective of this talk is to present the bottom-up policy adopted by these world-leading European research infrastructures related to global environmental change, including some of the most interesting scientific results received so far (e.g. muon tide detector for continuous, passive monitoring of

  8. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    SciTech Connect

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

  9. First Dark Matter Search Results from a 4-kg CF$_3$I Bubble Chamber Operated in a Deep Underground Site

    SciTech Connect

    Behnke, E.; Behnke, J.; Brice, S.J.; Broemmelsiek, D.; Collar, J.I.; Conner, A.; Cooper, P.S.; Crisler, M.; Dahl, C.E.; Fustin, D.; Grace, E.; /Indiana U., South Bend /Fermilab

    2012-04-01

    New data are reported from the operation of a 4.0 kg CF{sub 3}I bubble chamber in the 6800 foot deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha decay background events from single nuclear recoils has been confirmed, with a lower bound of >99.3% rejection of alpha decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. This observation provides world best direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses >20 GeV/c{sup 2} and demonstrates significant sensitivity for spin-independent interactions.

  10. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  11. Strong ground motion generated by controlled blasting experiments and mining induced seismic events recorded underground at deep level mines in South Africa

    NASA Astrophysics Data System (ADS)

    Milev, A.; Selllers, E.; Skorpen, L.; Scheepers, L.; Murphy, S.; Spottiswoode, S. M.

    2011-12-01

    A number of simulated rockbursts were conducted underground at deep level gold mines in South Africa in order to estimate the rock mass response when subjected to strong ground motion. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The simulated rockbursts involved the design of the seismic source, seismic observations in the near and far field, high-speed video filming, a study of rock mass conditions such as fractures, joints, rock strength etc. Knowledge of the site conditions before and after the simulated rockbursts was also gained. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of peak particle velocities, was found to be proportional to R^-1.7. Special investigations were carried out to evaluate the mechanism and the magnitude of damage, as well as the support behaviour under excessive dynamic loading. The strong ground motion generated by mining induced seismic events was studied, as part of this work, not only to characterize the rock mass response, but also to estimate the site effect on the surface of the underground excavations. A stand-alone instrument especially designed for recording strong ground motions was used to create a large database of peak particle velocities measured on stope hangingwalls. A total number of 58 sites located in stopes where the Carbon Leader Reef, Ventersdorp Contact Reef, Vaal Reef and Basal Reef are mined, were monitored. The peak particle velocities were measured at the surface of the excavations to identify the effect of the free surface and the fractures surrounding the underground mining. Based on these measurements the generally accepted velocity criterion of 3 m

  12. Analysis of Social Sciences High School Students' Remarks on Underground Resources--Kütahya Sample

    ERIC Educational Resources Information Center

    Hilmi, Sahin Suleyman

    2016-01-01

    The purpose of this study is to explain secondary school students' perceptions of underground resources through metaphors. 154 students studying at Social Sciences High School of Kütahya during 2014-2015 educational year are included in this study. Questions asked in this study are (1) Which metaphors did the secondary school students use in order…

  13. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page...

  14. Mechanisms of high-pH and near-neutral-pH SCC of underground pipelines

    SciTech Connect

    Beavers, J.A.; Harle, B.A.

    1996-12-31

    This paper provides an overview of mechanisms for high-pH and near-neutral-pH stress corrosion cracking of underground pipelines. Characteristics and historical information on both forms of cracking are discussed. This information is then used to support proposed mechanisms for crack initiation and growth.

  15. In situ corrosion studies on candidate container materials for the underground disposal of high level radioactive waste in Boom Clay

    SciTech Connect

    Kursten, B.; Iseghem, P. Van

    1999-07-01

    SCK{center{underscore}dot}CEN has developed in the early 1980's, with the support of NIRAS/ONDRAF and EC, an extensive in situ corrosion program to evaluate the long-term corrosion behavior of various candidate container materials for the disposal of conditioned high-level radioactive waste and spent fuel. The in situ corrosion experiments were performed in the underground research facility, HADES, situated in the Boom Clay formation at a depth of 225 meters below ground level. These experiments place the samples either in direct contact with clay (type I), in a humid clay atmosphere (type 2), or in a concrete saturated clay atmosphere (type 3). During the period 1985--1994, twelve in situ corrosion experiments were installed in the underground laboratory. The exploitation of these experiments ended in 1996. All samples were recuperated and analyzed. The purpose of this paper is to summarize and discuss the results from the type 1 corrosion experiments (samples in direct contact with Boom Clay). Surface analyses tend to indicate that the so-called corrosion-resistant materials, e.g. stainless steels, Ni- and Ti-alloys, remain intact after exposure to Boom Clay between 16 and 170 C, whereas carbon steel presents significant pitting corrosion. Carbon steel seems to be unsuitable for the Belgian repository concept (pits up to 240{micro}m deep are detected after direct exposure to the argillaceous environment for 2 years at 90 C). The stainless steels look very promising candidate container materials.

  16. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  17. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  18. Harriet Tubman and the Underground Railroad: A Drama Workshop for Junior High and High School Students.

    ERIC Educational Resources Information Center

    Tabone, Carmine; Albrecht, Robert

    2000-01-01

    Claims drama in the classroom offers teachers an opportunity to "bring to life" the challenges and triumphs of African Americans. Describes a drama workshop based on the story of Harriet Tubman and the Underground Railroad. (NH)

  19. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    NASA Astrophysics Data System (ADS)

    Tueros, Matías; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of

  20. Numerical survey of pressure wave propagation around and inside an underground cavity with high order FEM

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Schneider, Felix; Schöberl, Joachim; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    The research on purely numerical methods for modeling seismic waves has been more and more intensified over last decades. This development is mainly driven by the fact that on the one hand for subsurface models of interest in exploration and global seismology exact analytic solutions do not exist, but, on the other hand, retrieving full seismic waveforms is important to get insides into spectral characteristics and for the interpretation of seismic phases and amplitudes. Furthermore, the computational potential has dramatically increased in the recent past such that it became worthwhile to perform computations for large-scale problems as those arising in the field of computational seismology. Algorithms based on the Finite Element Method (FEM) are becoming increasingly popular for the propagation of acoustic and elastic waves in geophysical models as they provide more geometrical flexibility in terms of complexity as well as heterogeneity of the materials. In particular, we want to demonstrate the benefit of high-order FEMs as they also provide a better control on the accuracy. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Further we are interested in the generation of synthetic seismograms including direct, refracted and converted waves in correlation to the presence of an underground cavity and the detailed simulation of the comprehensive wave field inside and around such a cavity that would have been created by a nuclear explosion. The motivation of this application comes from the need to find evidence of a nuclear test as they are forbidden by the Comprehensive Nuclear-Test Ban Treaty (CTBT). With this approach it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This again will help to provide a better understanding on the characteristic signatures of an underground cavity, improve the protocols for

  1. Observation of high-energy neutrinos with Cerenkov detectors embedded deep in Antarctic ice

    SciTech Connect

    2001-03-22

    Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water or ice. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations.

  2. Structural Stability Monitoring of a Physical Model Test on an Underground Cavern Group during Deep Excavations Using FBG Sensors.

    PubMed

    Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian

    2015-08-31

    Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.

  3. Structural Stability Monitoring of a Physical Model Test on an Underground Cavern Group during Deep Excavations Using FBG Sensors

    PubMed Central

    Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian

    2015-01-01

    Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287

  4. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  5. High resolution studies of deep earth structure

    NASA Astrophysics Data System (ADS)

    Ding, Xiaoming

    1998-11-01

    Recent advances in seismic tomography has imaged major deep structure in the lower mantle. The ring of fast velocities originally derived from global long-period inversions has been resolved into interspersed sheet-like structure which appears to be old slabs. Beneath some of the structure, there are high velocity zones (HVZ) with variable thickness approaching the core mantle boundary (CMB). Seismic data recorded on TERRAscope and Berkeley Digital Seismic Network are used to study the HVZ beneath Central America. Modeling these waveforms (P, SV and SH) constitutes a major portion of this thesis. Two modeling strategies were employed in the thesis: (1) Assume a "Lay type" D ″ with a sharp velocity discontinuity; (2) Assume an upper transition zone approaching D″, and a lower transition zone approaching the CMB (old slabs). Our preferred model following strategy (1) (Chapter 2) has an S discontinuity 200 km above the CMB with 3% jump and a negative gradient in the D″ layer. In Chapter 4 the ULVZ beneath Iceland and Africa are addressed. The major phases used to study the ULVZ are SKS and SPdiffKS which travels along the CMB as P at both the core entry (SPdiffKS) and exit (SKPdiffS) locations. A major structure beneath Iceland (SKPdiffS) as identified from data recorded on stations in Northern Europe appears to be shaped like a dome, 80 km high, 200 km wide with a 10% drop in P and S velocities. The data for Africa is less complete but highly anomalous. Shear wave record sections across Africa and Europe containing the cross-over from S to SKS and extended core-phases (75° to 120°) are presented from deep South American events. By studying the various branches of the core phases PKP, it has become quite clear that North-South paths in the inner-core appear faster than East-West paths Moreover, the broadband seismograms associated with these paths are distinct. The reason for this difference is not known but suggests a lower (anisotropic) inner-core with an

  6. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  7. DOE Grant to organize "International Symposium on Opportunities in Underground Physics", Asilomar, CA, May 24-27, 2013

    SciTech Connect

    Babu, Kaladi S.

    2015-03-16

    The International Symposium in Opportunities in Underground Physics (ISOUP) was held in Asilomar, CA during May 24-27, 2013. The Symposium brought together scientists from the US and abroad for an open discussion on science opportunities provided by the possibility of a new generation of large underground detectors associated with long baseline neutrino beams. The Symposium was highly successful. The main focus of the Symposium was the science goals that could be achieved by placing such a detector deep underground.

  8. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  9. Observation of high-energy neutrinos with Cerenkov detectors embedded deep in Antarctic ice

    SciTech Connect

    2001-03-02

    Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations.

  10. Underground Libraries.

    ERIC Educational Resources Information Center

    Fuhlrott, Rolf

    1986-01-01

    Discussion of underground buildings constructed primarily during last two decades for various reasons (energy conservation, density of environment, preservation of landscape and historic buildings) notes advantages, disadvantages, and psychological and design considerations. Examples of underground libraries, built mainly in United States, are…

  11. Underground storage of carbon dioxide

    SciTech Connect

    Tanaka, Shoichi

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  12. Underground physics with DUNE

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  13. Underground physics with DUNE

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this study, we will focus on the underground physics with DUNE.

  14. Underground physics with DUNE

    DOE PAGES

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  15. Thermoluminescence response of calcic bentonite subjected to conditions of high nuclear waste underground storage.

    PubMed

    Dies, J; Miralles, L; Tarrasa, F; Pueyo, J J; de las Cuevas, C

    2002-01-01

    Bentonite is regarded as a backfilling material for underground storage facilities of highly radioactive nuclear waste built on granite formations. In these facilities, bentonite will be subjected to a gradient of temperature and dose rate, achieving a very high integrated dose and, therefore, changes in its structure and physical properties may take place. Two experiments to discriminate between the thermal and the irradiation effect were performed. In the first (named BIC 2A), samples were subjected to temperature while in the second (named BIC-2B) the combined effect of temperature and irradiation was studied. The experimental conditions were: a thermal gradient between 130 degrees C and 90 degrees C, a maximum dose rate of 3.5 kGy.h(-1) and a gradient of the integrated dose between 1.75 MGy and 10 MGy. Both experiments lasted a total of 124 days. An irradiation source of 60Co with an activity close to 300,000 Ci, and bentonite samples of 200 mm in length and 50 mm in diameter were used. After the experiment, the samples were ground and two fractions were obtained: a fine fraction (<2 microm) enriched in montmorillonite clay mineral and a coarse fraction (>80 microm). The results are described of thermoluminescence analyses on the two fractions obtained which showed that the coarse fraction can be 100 times more sensitive to radiation than the fine fraction. On the other hand, the heated and irradiated samples showed a thermoluminescence response around 50 times greater than the samples that were only heated. In addition to this, the temperature and dose rate conditions are relevant parameters in the generation and stabilisation of radiation induced defects. Finally, the response of samples heated and irradiated for two months was quite similar to that obtained on samples heated and irradiated for four months, indicating a saturation phenomenon.

  16. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  17. The use of novel DNA nanotracers to determine groundwater flow paths - a test study at the Grimsel Deep Underground Geothermal (DUG) Laboratory in Switzerland

    NASA Astrophysics Data System (ADS)

    Kittilä, Anniina; Evans, Keith; Puddu, Michela; Mikutis, Gediminas; Grass, Robert N.; Deuber, Claudia; Saar, Martin O.

    2016-04-01

    earlier test. In this study, we present the results of tests of applying novel DNA nanotracers to characterize groundwater flow properties and the flow pathways in a fracture-dominated reservoir in the Deep Underground Geothermal (DUG) Laboratory at the Grimsel Test Site in the Swiss Alps. This study is motivated by subsequent comparisons of similar characterizations of fractured rock masses after hydraulic stimulation. These will take place at the DUG Lab at the end of 2016. The results of the flow-path characterization are also compared with those obtained from classical solute tracer tests.

  18. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  19. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  20. Spatial heterogeneity of high-resolution Chalk groundwater geochemistry - Underground quarry at Saint Martin-le-Noeud, France

    NASA Astrophysics Data System (ADS)

    Barhoum, S.; Valdès, D.; Guérin, R.; Marlin, C.; Vitale, Q.; Benmamar, J.; Gombert, P.

    2014-11-01

    Chalk groundwater is an important aquifer resource in France because it accounts for a production of 12 million m3 y-1 with a large proportion reserved for drinking water. Processes occurring in the unsaturated zone (UZ) and the overlying superficial formations have a high impact on Chalk groundwater geochemistry and require better understanding. The study site is a former underground Chalk quarry located near Beauvais (France) that extends over 1200 m in length, at a depth ranging from 20 to 30 m. The water table intersects the cavity creating 15 underground “lake” that give access to the Chalk groundwater. Lakes geochemistry has been studied: water samples were collected in July 2013 and major ion concentrations were analyzed. UZ and clay-with-flints thickness above each lake were estimated qualitatively using an electromagnetic sensor (EM31) and Underground GPS. The results unexpectedly showed that groundwater quality varied widely in spatial terms for both allochthonous and autochthonous ions (e.g., HCO3- ranged from 2.03 to 4.43 meq L-1, NO3- ranged from 0.21 to 1.33 meq L-1). Principal component analysis indicated the impact of agricultural land use on water quality, with the intake of NO3- as well as SO42-, Cl- and Ca2+. Chalk groundwater geochemistry is compared with the nature and structure of the UZ. We highlight correlations (1) between thick clay-with-flints layers and the ions Mg2+ and K+, and (2) between UZ thickness and Na+. In conclusion, this paper identifies various ion sources (agriculture, clay-with-flints and Chalk) and demonstrates different processes in the UZ: dissolution, ionic exchange and solute storage.

  1. High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E{sub {mu}}{ge} 1.3 TeV in atmosphere). The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4{times}10{sup 6} muon events, of which {approximately} 263000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N{sub {mu}}=35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution (decoherence), are also included. The physical interpretation of the results presented here is reported in the following companion paper. {copyright} {ital 1997} {ital The American Physical Society}

  2. An Economic Comparison of Passively Conditioned Underground Houses.

    DTIC Science & Technology

    1981-05-01

    15 Heat Transfer ........ ..................... ... 34 Energy Balance and Human Thermal Comfort . ...... ... 41 Conclusion...114 29. Thermal Comfort --Passive Underground House ... ........... .. 117 30. Stable Soil Temperature Depths...121 31. Thermal Comfort --Deep Earth Underground House .. ......... .. 124 32. Life Cycle Cash Flow Diagram--Base Underground House

  3. Underground neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  4. Development of an underground low background instrument for high sensitivity measurements

    NASA Astrophysics Data System (ADS)

    Sala, E.; Hahn, I. S.; Kang, W. G.; Kim, G. W.; Kim, Y. D.; Lee, M. H.; Leonard, D. S.; Park, Su Yeon

    2016-05-01

    The Center for Underground Physics has developed in collaboration with CANBERRA a low background instrument composed of 14 HPGe detectors divided in two arrays facing each other. The performance and the background of a single detector of the array have been studied in order to improve the array final configuration. An accurate material selection, through the measurements of building material samples and Monte Carlo simulations based on Geant4, has been performed to reach the lowest possible intrinsic background. Alternative materials and configurations have been considered for the final design of the array simulating the expected intrinsic background of the instrument considering the needed changes. The expected sensitivity of the improved array configuration, concerning the low background material selection for rare events physics experiments, has been evaluated through Monte Carlo simulations considering 232Th concentration in a Copper sample. Since the array can also be used for rare decays searches, the expected sensitivity on the 156Dy resonant double electron capture has thus been calculated.

  5. High efficiency deep-blue and white phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Xue, Jiangeng; Eom, Sang-Hyun; Zheng, Ying; Wrzesniewski, Edward; Chopra, Neetu; Lee, Jaewon; So, Franky

    2009-08-01

    We report studies on blue and white organic light-emitting devices (OLEDs) based on the deep-blue electrophosphorescent dye iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6). Using high triplet energy charge transport layers and a dual-emissive-layer structure as well as the p-i-n device structure, we have achieved external quantum efficiencies of 20% and maximum power efficiency of 36 lm/W in these deep-blue OLEDs. White OLEDs with a CRI of 79 and a maximum power efficiency of 40 lm/W were also demonstrated by incorporating red and green phosphorescent dopants together with FIr6.

  6. Application of seismic tomography in underground mining

    SciTech Connect

    Scott, D.F.; Williams, T.J.; Friedel, M.J.

    1996-12-01

    Seismic tomography, as used in mining, is based on the principle that highly stressed rock will demonstrate relatively higher P-wave velocities than rock under less stress. A decrease or increase in stress over time can be verified by comparing successive tomograms. Personnel at the Spokane Research Center have been investigating the use of seismic tomography to identify stress in remnant ore pillars in deep (greater than 1220 in) underground mines. In this process, three-dimensional seismic surveys are conducted in a pillar between mine levels. A sledgehammer is used to generate P-waves, which are recorded by geophones connected to a stacking signal seismograph capable of collecting and storing the P-wave data. Travel times are input into a spreadsheet, and apparent velocities are then generated and merged into imaging software. Mine workings are superimposed over apparent P-wave velocity contours to generate a final tomographic image. Results of a seismic tomographic survey at the Sunshine Mine, Kellogg, ED, indicate that low-velocity areas (low stress) are associated with mine workings and high-velocity areas (higher stress) are associated with areas where no mining has taken place. A high stress gradient was identified in an area where ground failed. From this tomographic survey, as well, as four earlier surveys at other deep underground mines, a method was developed to identify relative stress in remnant ore pillars. This information is useful in making decisions about miner safety when mining such ore pillars.

  7. The Archveyor{trademark} mining system: Automated high wall mining, a precursor to improved safety, productivity, and cost underground

    SciTech Connect

    Sawarynski, T.J.

    1996-12-31

    Arch Mineral Corporation has an automated high wall miner called the Archveyor {trademark}. In production since 1992, it uses just two employees to operate the system. They consistently produce 91 metric tons per eight-hour employer-shift with peaks nearing 226 metric tons. The system uses a modified Joy 12CM miner cutting 3.7 meters. That loads into a 219 meter long continuous haulage Archveyor{trademark}. It discharges into a loadout vehicle that elevates the coal to load haul trucks. This technology can be adapted to mine over 305 meters into the high wall. Any continuous miner can be used to suit conditions. It is programmed to sump, shear down, sump, and shear up in a continuous cycle. It advances a set distance before the Archveyor{trademark} moves up behind it. The Archveyor{trademark} has a flight conveyor 838 mm wide used to tram and convey. Lift cylinders raise it off the ground to convey. To tram, the cylinders retract, dropping the Archveyor{trademark} to the ground. That places the full length of the return side or bottom of the flight conveyor in contract with the floor to tram in either direction. Programmable logic controllers are used with a gyroscope, gamma detectors, and inclinometers to keep on-heading and in-seam. Critical system functions are monitored and displayed for the operator. Safety, lower costs, and higher productivity drive the effort to use the Archveyor{trademark} technology underground. Arch Technology is assembling and preparing to install an underground system in the third quarter of 1996.

  8. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  9. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  10. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with

  11. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  12. Springback in Deep Drawn High Purity Niobium for Superconductor Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-09-01

    Superconducting radio frequency (SRF) cavities made from deep drawn high-purity niobium have become a popular approach for the design of particle accelerators. A number of current accelerators use this technology and it is a leading candidate for future designs. The development of this technology has required significant advances in many scientific fields including metallurgy, high vacuum physics, surface science, and forming. Recently proposed modifications to the current process for fabrication of these cavities has resulted in increased concern about the distribution of deformation, residual stress patterns, and springback. This presentation will report on the findings of a recently initiated program to study plastic flow and springback in the fabrication of these cavities and the influence of metallurgical variables including grain size and impurity content.

  13. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, Steven Derek

    2014-03-01

    The Kimballton Underground Research Facility (KURF) is an operating deep underground research facility with six active projects, and greater than 50 trained researchers. KURF is 30 minutes from the Virginia Tech (VT) campus in an operating limestone mine with drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' × 20 +' the current lab is 35' × 22' × 100'), and 1700' of overburden (1450m.w.e.). The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ~0.004 muons per square meter, per second, per steradian. The current users are funded by NSF, DOE, and NNSA. Current user group: 1) mini-LENS (VT, Louisiana State University, BNL); 2) Double Beta Decay to Excited States (Duke University); 3) HPGe Low-Background Screening (University of North Carolina (UNC), VT); 4) MALBEK (UNC); 5&6) Watchman - 5) Radionuclide Detector and 6) MARS detector (LLNL, SNL, UC-Davis, UC-Berkeley, UH, Hawaii Pacific, UC-Irvine, VT).

  14. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  15. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  16. Transient - Photoresistance Spectroscopy of Deep Levels in High Resistivity Semiconductors

    NASA Astrophysics Data System (ADS)

    Seabaugh, Alan Carter

    A new photoinduced transient-resistance technique is proposed and examined for use in characterizing high -resistivity, short-lifetime semiconductors. In this technique, termed photoresistance deep-level transient spectroscopy (PR-DLTS), an optical pulse is used to generate excess carriers which are trapped by deep levels in the material. The ac resistance of the specimen is monitored, and the resistance transient which occurs after the illumination ends is signal processed in the same way as the capacitance transient in DLTS. A phenomenological model of the phototransient is used to derive an expression for the decay transient. Two limiting forms for the transient are predicted depending upon whether the emitted carriers are collected at the device contacts, or recombine in the bulk before being collected. In order to test this model, several methods for distinguishing between the predicted decays of the form exp(-(lamda)t) and (lamda)exp(-(lamda)t) were developed ((lamda) is the reciprocal time constant for the decay). The measured results are consistent with the predictions of the model, but an 'ideal' sample has not been found to fully test the predictions. On Au-doped Si, excellent agreement between published emission rates for the Au-acceptor and the apparent emission rates measured by PR-DLTS is found. In addition, PR-DLTS data for the Cr-related deep level in semi-insulating GaAs is consistent with published DLTS results on conducting GaAs. Comparison of the PR-DLTS technique with the dc current-transient technique, photoinduced transient spectroscopy (PITS), shows that the two techniques are sensitive to the same trapping/detrapping phenomena. Finally, the results of a comparative study of commercial semi-insulating GaAs are reported. Nineteen specimens from ten suppliers were examined using the PR -DLTS technique, including material grown by the horizontal Bridgman (HB) and liquid-encapsulated Czochralski (LEC) technique, both with and without Cr

  17. High archaeal diversity in Antarctic circumpolar deep waters.

    PubMed

    Alonso-Sáez, Laura; Andersson, Anders; Heinrich, Friederike; Bertilsson, Stefan

    2011-12-01

    Archaea are abundant in polar oceans but important ecological aspects of this group remain enigmatic, such as patterns of diversity and biogeography. Here, we provide the first high-throughput sequencing population study of Antarctic archaea based on 198 bp fragments of the 16S rRNA gene, targeting different water masses across the Amundsen and Ross Seas. Our results suggest that archaeal community composition is strongly shaped by hydrography and significantly influenced by environmental parameters. Archaeal communities from cold continental shelf waters (SW) of the Ross Sea were similar over depth with a single thaumarchaeal phylotype dominating Antarctic surface waters (AASW) and deeper SW (contributing up to 80% of reads). However, this phylotype contributed less than 8% of reads in circumpolar deep waters (CDW). A related thaumarchaeon (98% identity) was almost absent in AASW, but contributed up to 30% of reads in CDW, suggesting ecological differentiation of closely related phylotypes. Significantly higher archaeal richness and evenness were observed in CDW, with Shannon indices (c. 2.5) twice as high as for AASW, and high contributions of Group II Euryarchaeota. Based on these results, we suggest that CDW is a hotspot of archaeal diversity and may play an important role in the dispersal of archaeal phylotypes to other oceanic water masses.

  18. Results of study of deep underground structure of mud volcanoes in North-Western Caucasus by means of geological and geophysical methods

    NASA Astrophysics Data System (ADS)

    Sobissevitch, A. L.; Gorbatikov, A. V.; Ovsuychenko, A. N.; Sobissevitch, L. E.; Stepanova, M. Yu.; Morev, B. A.

    2009-04-01

    Results of complementary geological and geophysical studies of mud volcanic phenomena in North-Western Caucasus (Taman mud volcanic province) are presented. New technology for passive subsurface sounding of the Earth's crust has been originally developed at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. Patented since 2005, this technology represents the new kind of seismic survey based on specific features of propagation of the Rayleigh waves. It uses natural background microseismic noise as a sounding signal. By using the method of low-frequency microseismic sounding in the course of field works carried out in 2006 - 2008, there have been obtained three vertical cross-sections for the two mud volcanoes down to the depth of 25 km. For the two different mud volcanoes their deep subsurface structure has been revealed and discussed. The Gora Karabetova mud volcano is one of the most active mud volcanoes in the Taman peninsula with primarily explosive behaviour while the Shugo mud volcano's activity pattern is different, explosive events are rare and both types of phenomena may be explained by the configuration of their feeding systems, tectonic position and deep pathways of migration of fluids. Complementary interpretation of raw data sets delivered form geophysical and geological surveys allows considering principal differences of origin and mechanisms of mud volcanic activity for the Shugo and the Gora Karabetova mud volcanoes.

  19. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  20. Sinkhole development induced by underground quarrying, and the related hazard

    NASA Astrophysics Data System (ADS)

    Parise, M.; Delle Rose, M.

    2009-04-01

    Sinkholes are extremely widespread in Apulia, a very flat and carbonate region, that acted as the foreland during the phases of building up of the Southern Apenninic Chain in Miocene time. This is due to the presence of soluble rocks throughout the region, that highly predispose the area to this very subtle natural hazard. In addition to the natural setting, which favours their development, sinkholes may also be induced by anthropogenic activities. In the latter sense, underground quarrying represents one of the most dangerous activities in karst areas. Apulia has a long history of quarrying. Since the roman time, the local rocks, from the Cretaceous micritic limestones to the Quaternary calcarenites, have been intensely quarried and used as building and ornamental materials. In several settings of the region, the rocks with the best petrographic characteristics are located at depths ranging from a few to some tens of meters. This caused the opening of many underground quarries, and the development of a complex network of subterranean galleries. Underground quarrying had a great impulse at the turn between the XIX and the XX century, when a large number of quarries was opened. Later on, after the Second World War, most of the quarries were progressively abandoned, even because of the first signs of instability, both underground and at the ground surface. With time, the memory of the presence and development of the underground quarries was progressively lost, with severe repercussions on the safety of the land above the excavated areas. Lack of knowledge of the subterranean pattern of galleries, combined with the expansion of the built-up areas at the surface, resulted in increasing significantly the vulnerability of exposed elements at risk. Events such as the 29 March, 2007, at Gallipoli only by chance did not result in any casualties, when a 15-mt wide and 5-mt deep sinkhole opened in a few hours at a road crossing, above the site of an old underground quarry

  1. Vitrified underground structures

    DOEpatents

    Murphy, Mark T.; Buelt, James L.; Stottlemyre, James A.; Tixier, Jr., John S.

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  2. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  3. A Web-Based GIS for Reporting Water Usage in the High Plains Underground Water Conservation District

    NASA Astrophysics Data System (ADS)

    Jia, M.; Deeds, N.; Winckler, M.

    2012-12-01

    The High Plains Underground Water Conservation District (HPWD) is the largest and oldest of the Texas water conservation districts, and oversees approximately 1.7 million irrigated acres. Recent rule changes have motivated HPWD to develop a more automated system to allow owners and operators to report well locations, meter locations, meter readings, the association between meters and wells, and contiguous acres. INTERA, Inc. has developed a web-based interactive system for HPWD water users to report water usage and for the district to better manage its water resources. The HPWD web management system utilizes state-of-the-art GIS techniques, including cloud-based Amazon EC2 virtual machine, ArcGIS Server, ArcSDE and ArcGIS Viewer for Flex, to support web-based water use management. The system enables users to navigate to their area of interest using a well-established base-map and perform a variety of operations and inquiries against their spatial features. The application currently has six components: user privilege management, property management, water meter registration, area registration, meter-well association and water use report. The system is composed of two main databases: spatial database and non-spatial database. With the help of Adobe Flex application at the front end and ArcGIS Server as the middle-ware, the spatial feature geometry and attributes update will be reflected immediately in the back end. As a result, property owners, along with the HPWD staff, collaborate together to weave the fabric of the spatial database. Interactions between the spatial and non-spatial databases are established by Windows Communication Foundation (WCF) services to record water-use report, user-property associations, owner-area associations, as well as meter-well associations. Mobile capabilities will be enabled in the near future for field workers to collect data and synchronize them to the spatial database. The entire solution is built on a highly scalable cloud

  4. Underground Explosions

    DTIC Science & Technology

    2015-09-09

    examples of the new equipment include developing high-speed optical recording systems capable of recording 2-3 millions frames per second, heat , light...created by faster heat and visible light radiation (Sadovskii and Adushkin, 1988). This effect allowed development of a new scaling theory of gas...chemical processes taking place in the atmosphere/ionosphere/magnetosphere system . These observations stimulated fundamental research that continues

  5. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    SciTech Connect

    Kana, D.D.; Vanzant, B.W.; Nair, P.K.; Brady, B.H.G.

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  6. Multinational underground nuclear parks

    SciTech Connect

    Myers, C.W.; Giraud, K.M.

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  7. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

  8. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; Vogelaar, R. Bruce

    2012-03-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

  9. Underground technology benefits surface operations

    SciTech Connect

    Swaim, M.

    2008-09-15

    Sensitive ground fault relays (GFRs) on high voltage underground electrical equipment have been in used for a number of years to improve mine safety. Advanced GFRs do more than just interrupt fault current flow. They can also reveal linkages as they develop so ground faults are detected before they become critical. 3 figs.

  10. Underground physics in Japan - Present and future

    NASA Astrophysics Data System (ADS)

    Kitamura, T.

    1986-04-01

    Japanese underground-physics projects and Japanese participation in international programs are reviewed. Consideration is given to the large-solid-angle 30-100-m-deep underground-detector/surface-EAS-array installation at Ohya-cho; the Kamioka-mine Cerenkov detector; the DUMAND project near Hawaii; development of Super-Mutrons A and B at Ohya-cho; the results obtained in the JACEE project regarding quark-gluon-plasma muon pairs, muon bundles, and muon point sources; and a pair calorimeter and a proton-decay experiment for Gran Sasso Laboratory in Italy. Diagrams, graphs, and drawings are provided.

  11. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    SciTech Connect

    Van Cotthem, Alain; Van Humbeeck, Hughes

    2012-07-01

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The size and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)

  12. A Facility Goes Underground.

    ERIC Educational Resources Information Center

    Grant, Norman

    1980-01-01

    Ohio's Sinclair Community College met the challenge of building a campus in an urban area with limited space by connecting the system with underground tunnels. This underground complex has made a comprehensive physical education, recreation, and intercollegiate program available to students and the community. (CJ)

  13. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, July 1--September 30, 1997

    SciTech Connect

    1997-12-31

    During this quarter, the majority of activity focused on grout emplacement at the Lodestar Energy Inc. (formerly Costain Coal Co.) surface mine auger holes described in the previous report. Specifically, two different types of grout pumps were investigated: a piston pump used in previous demonstrations, and a progressive cavity pump. The latter is currently utilized for grouting in underground coal mines, is relatively small and portable, and is capable of receiving dry material (e.g., fly ash) and water, mixing it to produce a grout, and pumping the grout at high pressure. It is therefore worthwhile to investigate it`s potential use in auger mine filling. Several field demonstrations were conducted using the different pumps. Numerous problems were encountered when using the progressive cavity pump, all of which were related to its inability to handle the highly reactive and heterogeneous FBC fly ash. Even relatively small ash agglomerates (<1 in. in diameter), which were not a problem for the larger piston pump, caused blockages in the progressive cavity pump which not only proved extremely difficult to clear, but also resulted in significant mechanical failures. Furthermore, mixing of dry fly ash with water within the progressive cavity pump was inconsistent and difficult to control. Consequently, the pump was unable to completely fill even a single auger hole. It was found that a large proportion of bed ash in the grout generated a large amount of heat and caused early stiffening of the material. During the experiments, cylinders of grout were prepared for compressive strength testing, and moisture contents were determined on-site. A thermocouple assembly was also constructed to record grout temperatures within an auger hole.

  14. A high-density wireless underground sensor network (WUSN) to quantify hydro-ecological interactions for a UK floodplain; project background and initial results

    NASA Astrophysics Data System (ADS)

    Verhoef, A.; Choudhary, B.; Morris, P. J.; McCann, J.

    2012-04-01

    Floodplain meadows support some of the most diverse vegetation in the UK, and also perform key ecosystem services, such as flood storage and sediment retention. However, the UK now has less than 1500 ha of this unique habitat remaining. In order to conserve and better exploit the services provided by this grassland, an improved understanding of its functioning is essential. Vegetation functioning and species composition are known to be tightly correlated to the hydrological regime, and related temperature and nutrient regime, but the mechanisms controlling these relationships are not well established. The FUSE* project aims to investigate the spatiotemporal variability in vegetation functioning (e.g. photosynthesis and transpiration) and plant community composition in a floodplain meadow near Oxford, UK (Yarnton Mead), and their relationship to key soil physical variables (soil temperature and moisture content), soil nutrient levels and the water- and energy-balance. A distributed high density Wireless Underground Sensor Network (WUSN) is in the process of being established on Yarnton Mead. The majority, or ideally all, of the sensing and transmitting components will be installed below-ground because Yarnton Mead is a SSSI (Site of Special Scientific Interest, due to its unique plant community) and because occasionally sheep or cattle are grazing on it, and that could damage the nodes. This prerequisite has implications for the maximum spacing between UG nodes and their communications technologies; in terms of signal strength, path losses and requirements for battery life. The success of underground wireless communication is highly dependent on the soil type and water content. This floodplain environment is particularly challenging in this context because the soil contains a large amount of clay near the surface and is therefore less favourable to EM wave propagation than sandy soils. Furthermore, due to high relative saturation levels (as a result of high

  15. High-Redshift Supernovae in the Hubble Deep Field

    SciTech Connect

    Gilliland, R.L.; Nugent, P.E.; Phillips, M.M.

    1999-08-01

    Two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with {ital HST} are discussed. The supernovae (SNe) are both associated with distinct galaxies at redshifts of 0.95 (spectroscopic) from Cohen et al. and 1.32 (photometric) from the work of Fern{acute a}ndez-Soto, Lanzetta, & Yahil. These redshifts are near, in the case of 0.95, and well beyond, for 1.32, the greatest distance reported previously for SNe. We show that our observations are sensitive to supernovae to z{approx_lt}1.8 in either epoch for an event near peak brightness. Detailed simulations are discussed that quantify the level at which false events from our search phase would start to arise and the completeness of our search as a function of both SN brightness and host galaxy redshift. The number of Type Ia and Type II SNe expected as a function of redshift in the two HDF epochs are discussed in relation to several published predictions and our own detailed calculations. A mean detection frequency of one SN per epoch for the small HDF area is consistent with expectations from current theory. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  16. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  17. Deep Sea Memory of High Atmospheric CO2 Concentration

    NASA Astrophysics Data System (ADS)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    massive CDR interventions eventually bring down the global mean pH value to the RCP2.6 level, yet cannot restore a similarly homogenous distribution - while the pH of the upper ocean returns to the preindustrial value or even exceed it (in the 180 ppm scenario), the deep ocean remains acidified. The deep ocean is out of contact with the atmosphere and therefore unreachable by atmospheric CDR. Our results suggest that the proposition that the marine consequences of early emissions reductions are comparable to those of delayed reductions plus CDR is delusive and that a policy that allows for emitting CO2 today in the hopes of removing it tomorrow is bound to generate substantial regrets.

  18. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.

  19. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  20. Benchmarking Deep Learning Frameworks for the Classification of Very High Resolution Satellite Multispectral Data

    NASA Astrophysics Data System (ADS)

    Papadomanolaki, M.; Vakalopoulou, M.; Zagoruyko, S.; Karantzalos, K.

    2016-06-01

    In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the AlexNet, AlexNet-small and VGG models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates i.e., above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.

  1. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  2. High-resolution multigrating spectrometer for high-quality deep-UV light source production

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Kubo, Hirokazu; Suganuma, Takashi; Yamashita, Toshio; Wakabayashi, Osamu; Mizoguchi, Hakaru

    2001-09-01

    Deep UV lithography using ArF excimer laser requires very narrower spectral properties. However, spectrometers that have sufficient resolution to evaluate the ArF excimer laser are commercially not available. High-resolution multi-grating spectrometers for measuring spectral bandwidth at full width at half maximum (FWHM) and spectral purity of ArF excimer lasers are introduced. To achieve high resolution, a special grating arrangement called HEXA (Holographic and Echelle Gratings Expander Arrangement) is designed. A holographic grating and an echelle grating are used so that the input light is expanded and diffracted several times. The resolution of the HEXA spectrometer is more than two million. To evaluate the resolution and the stability of the spectrometer, we measured the instrument function by a coherent light source whose wavelength is same as ArF excimer laser. The experimentally obtained resolution of the spectrometer is 0.09pm or 0.05pm that is selectable. The measured dispersion has a good agreement with the theoretical value. To evaluate the spectral properties of excimer lasers, the instrument function must be very stable. This high-resolution spectrometer enables high quality control of line-narrowed ArF excimer laser mass production.

  3. High Power Electric Propulsion for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  4. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  5. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  6. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGES

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions ofmore » approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  7. Deep Space One High-Voltage Bus Management

    NASA Technical Reports Server (NTRS)

    Rachocki, Ken; Nieraeth, Donald

    1999-01-01

    The design of the High Voltage Power Converter Unit on DS1 allows both the spacecraft avionics and ion propulsion to operate in a stable manner near the PPP of the solar array. This approach relies on a fairly well-defined solar array model to determine the projected PPP. The solar array voltage set-points have to be updated every week to maintain operation near PPP. Stable operation even to the LEFT of the Peak Power Point is achievable so long as you do not change the operating power level of the ion engine. The next step for this technology is to investigate the use of onboard autonomy to determine the optimum SA voltage regulation set-point (i.e. near the PPP); this is for future missions that have one or more ion propulsion subsystems.

  8. High resolution SPECT, small deep infarcts and diaschisis.

    PubMed Central

    Bowler, J V; Costa, D C; Jones, B E; Steiner, T J; Wade, J P

    1992-01-01

    Eighteen cases of lacunar infarction are presented. Six of these cases had a purely motor clinical deficit. All the cases were studied by serial high resolution SPECT (single photon emission computerized tomography) using 99Tcm HMPAO. The degree and extent of the changes in cerebral perfusion consistent with diaschisis were noted and these compared with the severity of the clinical deficit at presentation and over time. No significant correlation between diaschisis and the clinical state was found at any stage. The nature, aetiology and importance of diaschisis are discussed and it is suggested that caution should be exercised in attributing clinical features to diaschisis simply because it may be present. Images Figure 1. Figure 2. PMID:1556715

  9. Underground Coal Gasification Program

    SciTech Connect

    Thorsness, C. B.; Britten, J. A.

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  10. Strain engineered high reflectivity DBRs in the deep UV

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Hernandez-Balderrama, L.; Kaess, F.; Bryan, I.; Washiyama, S.; Bobea, M.; Tweedie, J.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-02-01

    The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.

  11. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  12. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    SciTech Connect

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R; Patton, Robert M; Spedalieri, Federico; Liu, Jeremy; Yao, Ke-Thia; Rose, Garrett; Chakma, Gangotree

    2016-01-01

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.

  13. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  14. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  15. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    PubMed Central

    Bougouffa, S.; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Z.; Al-Suwailem, A.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools. PMID:23542623

  16. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    PubMed

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  17. DEEP SPACE: High Resolution VR Platform for Multi-user Interactive Narratives

    NASA Astrophysics Data System (ADS)

    Kuka, Daniela; Elias, Oliver; Martins, Ronald; Lindinger, Christopher; Pramböck, Andreas; Jalsovec, Andreas; Maresch, Pascal; Hörtner, Horst; Brandl, Peter

    DEEP SPACE is a large-scale platform for interactive, stereoscopic and high resolution content. The spatial and the system design of DEEP SPACE are facing constraints of CAVETM-like systems in respect to multi-user interactive storytelling. To be used as research platform and as public exhibition space for many people, DEEP SPACE is capable to process interactive, stereoscopic applications on two projection walls with a size of 16 by 9 meters and a resolution of four times 1080p (4K) each. The processed applications are ranging from Virtual Reality (VR)-environments to 3D-movies to computationally intensive 2D-productions. In this paper, we are describing DEEP SPACE as an experimental VR platform for multi-user interactive storytelling. We are focusing on the system design relevant for the platform, including the integration of the Apple iPod Touch technology as VR control, and a special case study that is demonstrating the research efforts in the field of multi-user interactive storytelling. The described case study, entitled "Papyrate's Island", provides a prototypical scenario of how physical drawings may impact on digital narratives. In this special case, DEEP SPACE helps us to explore the hypothesis that drawing, a primordial human creative skill, gives us access to entirely new creative possibilities in the domain of interactive storytelling.

  18. Deep X-ray spectroscopy of high-z obscured AGN in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Vignali, Cristian; Gilli, Roberto; Iwasawa, Kazushi; Georgantopoulos, Ioannis

    2012-07-01

    According to the recent models for the joint evolution of Super Massive Black Holes and their Host Galaxies, heavy obscuration represents an important phase and is expected to play a key role in the feedback mechanisms self regulating the SMBH growth. The smoking gun signature of heavy absorption is the presence of a heavily absorbed or reflected X-ray spectrum plus a strong Iron line. X-ray spectroscopy thus represents the most efficient method to uncover the most obscured sources. I will present the results of a systematic search for strong iron lines in the ultra-deep (3 Ms) XMM survey in the Chandra Deep Field South (CDFS). I will also highlight the power of deep spectroscopy to obtain redshift estimates more accurate and reliable than available photo-z. Some notable examples of synergies between ultra-deep Chandra (4 Ms) and XMM observations will be also reported.

  19. Searching for exotic particles in high-energy physics with deep learning.

    PubMed

    Baldi, P; Sadowski, P; Whiteson, D

    2014-07-02

    Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on 'shallow' machine-learning models that have a limited capacity to learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

  20. Modeling of the T S D E Heater Test to Investigate Crushed Salt Reconsolidation and Rock Salt Creep for the Underground Disposal of High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.; Wolters, R.; Lux, K. H.

    2014-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal induced fractures and its high thermal conductivity as compared to other shallow-crustal rocks. In addition, the run-of-mine, granular salt, may be used to backfill the mined open spaces. We present simulation results associated with coupled thermal, hydraulic and mechanical processes in the TSDE (Thermal Simulation for Drift Emplacement) experiment, conducted in the Asse salt mine in Germany [1]. During this unique test, conceived to simulate reference repository conditions for spent nuclear fuel, a significant amount of data (temperature, stress changes and displacements, among others) was measured at 20 cross-sections, distributed in two drifts in which a total of six electrical heaters were emplaced. The drifts were subsequently backfilled with crushed salt. This test has been modeled in three-dimensions, using two sequential simulators for flow (mass and heat) and geomechanics, TOUGH-FLAC and FLAC-TOUGH [2]. These simulators have recently been updated to accommodate large strains and time-dependent rheology. The numerical predictions obtained by the two simulators are compared within the framework of an international benchmark exercise, and also with experimental data. Subsequently, a re-calibration of some parameters has been performed. Modeling coupled processes in saliniferous media for nuclear waste disposal is a novel approach, and in this study it has led to the determination of some creep parameters that are very difficult to assess at the laboratory-scale because they require extremely low strain rates. Moreover, the results from the benchmark are very satisfactory and validate the capabilities of the two simulators used to study coupled thermal, mechanical and hydraulic (multi-component, multi-phase) processes relative to the underground disposal of high

  1. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  2. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  3. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  4. Global Pursuits: The Underground Railroad

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…

  5. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  6. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    SciTech Connect

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.

  7. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain.

    PubMed

    Frutos Vázquez, Borja; Olaya Adán, Manuel; Quindós Poncela, Luis Santiago; Sainz Fernandez, Carlos; Fuente Merino, Ismael

    2011-04-01

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m(-3). Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure.

  8. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.

  9. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean.

    PubMed

    Xu, Wei; Pang, Ka-Lai; Luo, Zhu-Hua

    2014-11-01

    Knowledge about the presence and ecological significance of bacteria and archaea in the deep-sea environments has been well recognized, but the eukaryotic microorganisms, such as fungi, have rarely been reported. The present study investigated the composition and abundance of fungal community in the deep-sea sediments of the Pacific Ocean. In this study, a total of 1,947 internal transcribed spacer (ITS) regions of fungal rRNA gene clones were recovered from five sediment samples at the Pacific Ocean (water depths ranging from 5,017 to 6,986 m) using three different PCR primer sets. There were 16, 17, and 15 different operational taxonomic units (OTUs) identified from fungal-universal, Ascomycota-, and Basidiomycota-specific clone libraries, respectively. Majority of the recovered sequences belonged to diverse phylotypes of Ascomycota (25 phylotypes) and Basidiomycota (18 phylotypes). The multiple primer approach totally recovered 27 phylotypes which showed low similarities (≤97 %) with available fungal sequences in the GenBank, suggesting possible new fungal taxa occurring in the deep-sea environments or belonging to taxa not represented in the GenBank. Our results also recovered high fungal LSU rRNA gene copy numbers (3.52 × 10(6) to 5.23 × 10(7)copies/g wet sediment) from the Pacific Ocean sediment samples, suggesting that the fungi might be involved in important ecological functions in the deep-sea environments.

  10. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  11. High power theta-pinch propulsion for piloted deep space exploration

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.

    2000-01-01

    The piloted deep space exploration missions envisioned by the NASA Human Exploration and Development of Space initiative will require the development of advanced electric propulsion systems capable of providing high specific impulse for extended periods of operation. Current electric propulsion thrusters are well suited for orbit maneuvering and robotic exploration, but at present they cannot provide the combination of specific impulse, lifetime, and efficiency required for piloted deep space missions. The theta-pinch thruster concept is a high power plasma rocket that can potentially meet these future deep space propulsion requirements. Efficient, partial preionization of a gas propellant followed by rapid adiabatic magnetic compression is used to generate, heat, and expel a high velocity, high density plasma to provide thrust. The concept is electrodeless, and radial compression of the plasma by the magnetic field of the discharge coil mitigates material erosion to ensure long thruster life. Because the heated plasma is free to flow along axial magnetic field lines during compression, a magnetic mirror located at the entrance to the discharge chamber is used to direct the plasma flow out of the thruster. The thrust and specific impulse of the engine can be tailored for a given mission scenario through the selection of propellant species, mass flow rate, compression coil discharge current, and/or the compression coil repetition rate, making this a unique and versatile electric propulsion system. .

  12. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  13. National Underground Mines Inventory

    DTIC Science & Technology

    1983-10-01

    that the contents necessaZiy reflect the views and policies of the Federal Emergency Management Agency. FINAL REPORT RTI/2506/OO-O1F NATIONAL...UNDERGROUND MINES INVENTORY Prepared by: M. Wright R. Chessin K. Reeves S. York, III Prepared for: Federal Emergency Management Agency Washington , D.C. 20472...Emergency Management Agency October 1983 Washington , DC 20472 I. NUMBEROFPAGES 80 14. MONITORING AGENCY NAME A ADORESS(1lierent bum Controflhi Office

  14. Science and Technology Gaps in Underground Coal Gasification

    SciTech Connect

    Upadhye, R; Burton, E; Friedmann, J

    2006-06-27

    Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid

  15. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    PubMed

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  16. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  17. The Excitation of High Spin States with Quasielastic and Deep Inelastic Reactions.

    NASA Astrophysics Data System (ADS)

    Knott, Clinton Neal

    1988-12-01

    The feasibility of populating high spin states using reactions induced by a 220 MeV ^{22 }Ne beam on a ^{170} Er target was studied. The experiment was carried out using a multidetector array for high resolution gamma-ray spectroscopy, a 14 element sum multiplicity spectrometer and six DeltaE-E particle telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  18. Population of high spin states by quasi-elastic and deep inelastic collisions

    NASA Astrophysics Data System (ADS)

    Takai, H.; Knott, C. N.; Winchell, D. F.; Saladin, J. X.; Kaplan, M. S.; de Faro, L.; Aryaeinejad, R.; Blue, R. A.; Ronningen, R. M.; Morrissey, D. J.; Lee, I. Y.; Dietzsch, O.

    1988-09-01

    The feasibility of populating high spin states using reactions induced by a 10 MeV/nucleon 22Ne beam on 170Er was studied. The experiment was carried out using a multidetector array for high resolution γ-ray spectroscopy, a 14 element sum-multiplicity spectrometer and six ΔE-E telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  19. The excitation of high spin states with quasi-elastic and deep inelastic reactions

    SciTech Connect

    Knott, C.N.

    1988-01-01

    The feasibility of populating high spin states using reactions induced by a 220 MeV {sup 22}Ne beam on a {sup 170}Er target was studied. The experiment was carried out using a multidetector array for high resolution {gamma}-ray spectroscopy, a 14 element sum multiplicity spectrometer and six {Delta}E-E particle telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  20. Population of high spin states by quasi-elastic and deep inelastic collisions

    SciTech Connect

    Takai, H.; Knott, C.N.; Winchell, D.F.; Saladin, J.X.; Kaplan, M.S.; de Faro, L.; Aryaeinejad, R.; Blue, R.A.; Ronningen, R.M.; Morrissey, D.J.; and others

    1988-09-01

    The feasibility of populating high spin states using reactions induced by a 10 MeV/nucleon /sup 22/Ne beam on /sup 170/Er was studied. The experiment was carried out using a multidetector array for high resolution ..gamma..-ray spectroscopy, a 14 element sum-multiplicity spectrometer and six ..delta..E-E telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  1. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    PubMed

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  2. High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies

    SciTech Connect

    Xu, Xiaoyong; Xu, Chunxiang E-mail: jghu@yzu.edu.cn; Hu, Jingguo E-mail: jghu@yzu.edu.cn

    2014-09-14

    A high-performance ZnO quantum dots (QDs)-based ultraviolet (UV) photodetector has been successfully fabricated via the self-assembly of QDs on the Au interdigital electrode. The broadened band gap in ZnO QDs makes the device has the highly selective response for the deep UV detection. The unique QD-QD junction barriers similar to back-to-back Schottky barriers dominate the conductance of the QD network and the UV light-induced barrier-height modulation plays a crucial role in enhancing the photoresponsivity and the response speed. Typically, the as-fabricated device exhibits the fast response and recovery times of within 1 s, the deep UV selectivity of less than 340 nm, and the stable repeatability with on/off current ratio over 10³, photoresponsivity of 5.04×10²A/W, and photocurrent gain of 1.9×10³, demonstrating that the ZnO QD network is a superior building block for deep UV photodetectors.

  3. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  4. Deep blast

    NASA Astrophysics Data System (ADS)

    From southern New Mexico to the Great Slave Lake of Canada, scientists from the United States and Canada recently detonated 10 underground chemical explosions to generate a clearer picture of the Earth's crust and upper mantle. Called Project Deep Probe, the experiment is designed to see through the crust and into the upper mantle to a depth of 300 miles.In the United States, Earth scientists from Rice University, Purdue University, and the University of Oregon are participating in the project. “Researchers hope to get a picture of the upper mantle beneath the Rocky Mountains and the Colorado Plateau, to understand the role the mantle played in formation and uplift,” says Alan Levander of Rice. To enhance that “picture,” 750 portable seismographs were placed along a roughly north-south line extending from Crownpoint, New Mexico to Edmonton, Alberta. The seismic recordings will be used to enhance weak seismic waves that penetrated the upper mantle.

  5. Underground petroleum tanks

    SciTech Connect

    Not Available

    1990-07-01

    This book presents the results of a survey of 46 state underground storage tank program officials. The survey covers: Whether petroleum tank insurance (mandated by the EPA) is available in each state and whether category 3 and 4 owners can obtain it; state programs that help owners meet the financial responsibility and/or technical requirements of such insurance; and lending institutions' attitudes towards providing loans to storage tank owners. A survey of the number and terms of insurance policies offered to tank owners is also presented.

  6. High-resolution simulations of shallow and deep convection over land

    NASA Astrophysics Data System (ADS)

    Martins, J. P.; Teixeira, J.; Soares, P. M.; Miranda, P. M.

    2008-12-01

    The GCSS WG4 (Grabowski, 2006) case was chosen to study the transition from shallow to deep convection over land. The case was based on an idealization of observations made during the TRMM-LBA (Tropical Rainfall Measuring Mission - Large-Scale Biosphere-Atmosphere experiment) in Rondonia, Brazil, on February 23, 1999. The case considered is a daytime convective development over land, which starts with the growth of a mixed boundary layer, evolving to shallow convective clouds with a later transition from shallow to deep precipitating convection. High resolution simulations of this case have been performed using the French community non-hydrostatic model MesoNH. Different model setups were used, with an emphasis on the sensitivity to model resolution, domain size and to the choice of microphysical parametrizations. A single column model (SCM) is also being developed in order to perform a simulation of the same case. The SCM model includes prognostic equations for the wind components, the thermodynamic variables and the turbulent kinetic energy. The sub-grid turbulent and convective fluxes are parameterized using the Eddy- Diffusivity/Mass-Flux approach (EDMF) which combines the effects of local and non-local transport in a unified scheme. The comparison between the SCM and the Cloud Resolving Model will provide clues to the improvement of the EDMF framework in order to include the effects of deep convection, since currently it is only suitable to represent dry and shallow cumulus convection.

  7. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Seasonal changes in the accumulation of soluble sugars in extracellular freezing cortical parenchyma cells and deep supercooling xylem parenchyma cells in Japanese white birch (Betula platyphylla var. japonica) were compared to identify the effects of soluble sugars on the mechanism of deep supercooling, which keeps the liquid state of water in cells under extremely low temperatures for long periods. Soluble sugars in both tissues were analyzed by high-performance liquid chromatography (HPLC), and the concentrations of sugars in cells were estimated by histological observation of occupancy rates of parenchyma cells in each tissue. Relative and equilibrium melting points of parenchyma cells were measured by differential thermal analysis and cryoscanning electron microscopy, respectively. In both xylem and cortical parenchyma cells, amounts of sucrose, raffinose and stachyose increased in winter, but amounts of fructose and glucose exhibited little change throughout the entire year. In addition, no sugars were found to be specific for either tissue. Combined results of HPLC analyses, histological observation and melting point analyses confirmed that the concentration of sugars was much higher in xylem cells than in cortical cells. It is thought that the higher concentration of soluble sugars in xylem cells may contribute to facilitation of deep supercooling in xylem cells by depressing the nucleation temperature.

  8. Jet flavor classification in high-energy physics with deep neural networks

    NASA Astrophysics Data System (ADS)

    Guest, Daniel; Collado, Julian; Baldi, Pierre; Hsu, Shih-Chieh; Urban, Gregor; Whiteson, Daniel

    2016-12-01

    Classification of jets as originating from light-flavor or heavy-flavor quarks is an important task for inferring the nature of particles produced in high-energy collisions. The large and variable dimensionality of the data provided by the tracking detectors makes this task difficult. The current state-of-the-art tools require expert data reduction to convert the data into a fixed low-dimensional form that can be effectively managed by shallow classifiers. We study the application of deep networks to this task, attempting classification at several levels of data, starting from a raw list of tracks. We find that the highest-level lowest-dimensionality expert information sacrifices information needed for classification, that the performance of current state-of-the-art taggers can be matched or slightly exceeded by deep-network-based taggers using only track and vertex information, that classification using only lowest-level highest-dimensionality tracking information remains a difficult task for deep networks, and that adding lower-level track and vertex information to the classifiers provides a significant boost in performance compared to the state of the art.

  9. Unusually high food availability in Kaikoura Canyon linked to distinct deep-sea nematode community

    NASA Astrophysics Data System (ADS)

    Leduc, D.; Rowden, A. A.; Nodder, S. D.; Berkenbusch, K.; Probert, P. K.; Hadfield, M. G.

    2014-06-01

    Kaikoura Canyon, on the eastern New Zealand continental margin, is the most productive, non-chemosynthetic deep-sea habitat described to date, with megafaunal biomass 100-fold higher than those of other deep-sea habitats. The present study, which focused on free-living nematodes, provides the first comparison of faunal community structure and diversity between Kaikoura Canyon and nearby open slope habitats. Results show substantially higher food availability in the canyon relative to open slope sediments, which probably reflects greater levels of primary productivity above the canyon, coupled with downwelling and/or topographically-induced channelling, which serves to concentrate surface-derived organic matter along the canyon axis. This high food availability appears to be responsible for the elevated nematode biomass in Kaikoura Canyon, with values exceeding all published nematode biomass data from canyons elsewhere. There was also markedly lower local species diversity of nematodes inside the canyon relative to the open slope habitat, as well as a distinct community structure. The canyon community was dominated by species, such as Sabateria pulchra, which were absent from the open slope and are typically associated with highly eutrophic and/or disturbed environments. The presence of these taxa, as well as the low observed diversity, is likely to reflect the high food availability, and potentially the high levels of physically and biologically induced disturbance within the canyon. Kaikoura Canyon is a relatively small habitat characterised by different environmental conditions that makes a disproportionate contribution to deep-sea diversity in the region, despite its low species richness.

  10. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  11. The formation of deep basins in High Arctic from metamorphism in continental crust

    NASA Astrophysics Data System (ADS)

    Artyushkov, Eugene; Belyaev, Igor; Chekhovich, Peter; Petrov, Eugene; Poselov, Viktor

    2014-05-01

    In the East Barents and North Chukchi basins, 16-20 km deep, the crystalline crust is attenuated to 12-18 km (reference profiles 2-AR, 4-AR and 5-AR). P-wave velocities and densities in this layer are characteristic of the oceanic crust. However, the subsidence history in the basins is quite different from that typical of the oceanic crust. In both basins the subsidence continued for several hundred million years and one half of the deposits or more was formed long after the start of the subsidence when cooling of the oceanic plate would be already over. Moreover, the basins are 4-5 km deeper than it could be expected according to the thickness of the crystalline crust above the Moho boundary. In the absence of large free-air gravity anomalies, joint analysis of the gravity and seismic data indicates the existence under the Moho of thick layers of high-density and high-velocity eclogites. As can be seen in high resolution seismic profiles, the intensity of crustal stretching did not exceed 10% in the basins, and their formation can be predominantly attributed to a high-grade metamorphism in the mafic lower part of continental crust. At some episodes, strong increase in the rate of subsidence occurred in the basins. This indicates acceleration of metamorphism catalyzed by infiltration of mantle fluids. A set of the above features, abnormally large depth, long subsidence history with its acceleration at the late stages, and episodes of pronounced acceleration of the subsidence represent characteristic features of some other large hydrocarbon basins, e.g., of the North and South Caspian basins. These features can be used for prospecting new prolific provinces on the Arctic shelf. The Lomonosov ridge, Mendeleev high and the Makarov basin pertain to the same structural type. In the Oligocene they underwent erosion near to sea level with the formation of pronounced unconformity. Then at the end of Oligocene deep-water basins were formed in these regions. Rapid crustal

  12. Underground corrosion control

    SciTech Connect

    Not Available

    1993-01-01

    Corrosion of underground metallic structures continues to be a crucial concern within society and the engineering community. Costs associated with corrosion losses are staggering. Indirect costs associated with environmental damage as well as loss of public confidence has in many cases out-stripped direct costs for facility repair and replacement. NACE Group Committee T-10, responsible for the study and advancement of technology necessary for engineering solutions for underground corrosion problems, is divided into five key unit committees as follows: cathodic protection; interference problems; electric power and communications; protective coating systems; and internal corrosion of pipelines. The papers presented in this publication reflect the most recent developments in field practice in all five areas. Cathodic protection criteria, protection of pipelines, tanks and pilings, test methods, transit systems investigations, power and communication cables, and compliance with regulations are addressed. Interference testing, refinery problems, methods of safely mitigating the effects of induced AC on pipelines, and experience with alternate engineering materials such as prestressed concrete cylinder pipe and ductile iron pipe are included. All 37 papers have been processed separately for inclusion on the data base.

  13. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.

    PubMed

    Rajkomar, Alvin; Lingam, Sneha; Taylor, Andrew G; Blum, Michael; Mongan, John

    2017-02-01

    The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73-100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.

  14. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  15. Identifying Variations to the IMF at High-z Through Deep Radio Surveys

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.

    2011-06-01

    In this article I briefly describe how deep radio surveys may provide a means to identify variations in the upper end of the initial mass function (IMF) in star-forming galaxies at high redshifts (i.e., z ≳ 3). At such high redshifts, I argue that deep radio continuum observations at frequencies ≳10 GHz using next generation facilities (e.g., EVLA, MeerKAT, SKA/NAA) will likely provide the most accurate measurements for the ionizing photon rates (star formation rates; SFRs) of normal galaxies since their non-thermal emission should be highly suppressed due to the increased inverse Compton (IC) losses from the cosmic microwave background (CMB), leaving only thermal (free-free) emission detectable. Thus, a careful analysis of such observations in combination with future ALMA and JWST data, measuring the rest-frame far-infrared and UV emission from the same population of galaxies, may yield the best means to search for variability in the stellar IMF at such epochs.

  16. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin.

    PubMed

    Borin, Sara; Brusetti, Lorenzo; Mapelli, Francesca; D'Auria, Giuseppe; Brusa, Tullio; Marzorati, Massimo; Rizzi, Aurora; Yakimov, Michail; Marty, Danielle; De Lange, Gert J; Van der Wielen, Paul; Bolhuis, Henk; McGenity, Terry J; Polymenakou, Paraskevi N; Malinverno, Elisa; Giuliano, Laura; Corselli, Cesare; Daffonchio, Daniele

    2009-06-09

    Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines delta- and epsilon-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.

  17. RESEARCH INTO EVALUATIONS OF UNDERGROUND SPACE ACCORDING TO QOL - CENTERING ON THE NAGOYA UNDERGROUND METRO -

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Naomi; Wake, Tenji; Mita, Takeshi; Wake, Hiromi

    The present research investigates issues concerning space underground and concerns itself with psychological evaluations of comfort in underground railway premises from the perspective of the users of such premises. The actual psychological evaluation was done on the premises of nine Nagoya City underground stations. Four factors were extracted from the results obtained. The first factor is transmission information, the second factor is the comfort of the environment, the third is sense of insecurity, and the fourth, convenience. A covariance structure analysis was carried out to see if there was any relationship between these factors and the research participants' age and frequency of underground usage. It was found from this that the first element is related to the frequency with which the participants in the research use the underground trains. When the frequency of use is high, transmission of information is high. A relationship was also found between aging and factors one and four. The older the person the worse information transmission is and the more dependent they are on convenience, such as, for example, in terms of elevators and escalators.

  18. A Case for Underground Schools.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    The underground school offers several advantages. Preliminary studies in Oklahoma have shown that these schools perform exceptionally well as learning environments. The lack of noise and distractions helps teachers keep the attention of their students. Underground structures can protect people against a broad range of natural and man-made…

  19. A Course on Underground Processing.

    ERIC Educational Resources Information Center

    Miller, Clarence A.

    1981-01-01

    Discusses a one-semester course on recovering fossil fuels and minerals from underground formations. Includes course outline and information of its major divisions: (1) Geological Background; (2) Flow, Transport, and Interfacial Phenomena in Porous Media; and (3) Description of Underground Processes. (SK)

  20. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  1. High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning.

    PubMed

    Kandaswamy, Chetak; Silva, Luís M; Alexandre, Luís A; Santos, Jorge M

    2016-03-01

    High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

  2. Could High Volume of Physical Activities in Early Pregnancy Interfere with Deep Placentation?

    PubMed Central

    Vachon-Marceau, Chantale; Girard, Mario; Bisson, Michèle; Demers, Suzanne; Marc, Isabelle; Bujold, Emmanuel

    2016-01-01

    Background The impact of physical activity (PA) during pregnancy on obstetrical outcomes remains controversial. We followed pregnant women who reported more than 3 hours of sustained PA per week during the first trimester of pregnancy. Cases Total five eligible women were followed. We observed small placenta from the first trimester (median: 0.68; interquartile [IQ]: 0.62–0.97 multiples of median [MoM]) to delivery (median: 0.82; IQ: 0.71–0.94 MoM), high uterine artery pulsatility index in the first (median: 1.82; IQ: 1.68–1.99 MoM) and second trimesters (median: 1.33; IQ: 1.11–1.56 MoM) of pregnancy. Placenta pathology revealed deep vasculopathy in three (60%) cases. However, all participants delivered at term and none of them experienced preeclampsia. Conclusion This small case series suggest that high PA volume in first trimester could interfere with deep placentation. PMID:27924247

  3. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  4. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  5. Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.

    2015-12-01

    Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.

  6. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  7. Very High Resolution Mapping of Tree Cover Using Scalable Deep Learning Architectures

    NASA Astrophysics Data System (ADS)

    ganguly, sangram; basu, saikat; nemani, ramakrishna; mukhopadhyay, supratik; michaelis, andrew; votava, petr; saatchi, sassan

    2016-04-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). As part of our NASA Carbon Monitoring System Phase II activities, we have demonstrated that uncertainties in forest cover estimates at the Landsat scale result in high uncertainties in AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully tested an approach using scalable deep learning architectures (Feature-enhanced Deep Belief Networks and Semantic Segmentation using Convolutional Neural Networks) and High-Performance Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. Our first high resolution satellite training label dataset from the NAIP data can be found here at http://csc.lsu.edu/~saikat/deepsat/ . In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. In this project, we propose to estimate very high resolution forest cover for the continental US at spatial resolution of 1-m in support of reducing uncertainties in the AGB estimation. The proposed work will substantially contribute to filling the gaps in ongoing carbon monitoring research and help quantifying the errors and uncertainties in related carbon products.

  8. High response organic deep ultraviolet photodetector with PEDOT:PSS anode.

    PubMed

    Zhu, Lu; Dai, Qian; Hu, Zuo-Fu; Zhang, Xi-Qing; Wang, Yong-Sheng

    2011-05-15

    We have fabricated an organic deep ultraviolet photodetector (PD) using PEDOT:PSS (PH 1000) as a transparent anode. NPB and PBD were employed as electron donor and acceptor, respectively. The PD exhibits a dark current of 0.0829 μA/cm(2) and a photocurrent of 85.3 μA/cm(2) at -12 V under 280 nm light illumination with an intensity of 0.488 mW/cm(2). A high response at 248-370 nm with its peak of 0.18 A/W at 280 nm and a detectivity of 1.1×10(12) cm Hz(1/2)  W(-1) were achieved. The more detailed mechanism of harvesting high performance and the dependence of photocurrent density on illumination intensity are also discussed.

  9. Deep levels induced by high fluence proton irradiation in undoped GaAs diodes

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Polenta, L.; Canali, C.; Nava, F.; Ferrini, R.; Galli, M.

    1998-12-31

    Semi-insulating liquid encapsulated Czochralski grown GaAs has been investigated after irradiation at high fluences of high-energy protons. Electron beam induced current observations of scanning electron microscopy evidenced a radiation stimulated ordering. An analysis has been carried out of the deep levels associated with defects as a function of the irradiation fluence, using complementary current transient spectroscopies. By increasing the irradiation fluence, the concentration of the native traps at 0.37 eV together with that of the EL2 defect significantly increases and, at the same time, two new electron traps at 0.15 eV and 0.18 eV arise and quickly increase in density.

  10. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice

    DOE PAGES

    Fan, Quli; Cheng, Kai; Yang, Zhen; ...

    2014-11-06

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect

  11. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice.

    PubMed

    Fan, Quli; Cheng, Kai; Yang, Zhen; Zhang, Ruiping; Yang, Min; Hu, Xiang; Ma, Xiaowei; Bu, Lihong; Lu, Xiaomei; Xiong, Xiaoxing; Huang, Wei; Zhao, Heng; Cheng, Zhen

    2015-02-04

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. Here, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect.

  12. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging

    PubMed Central

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-01-01

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models. PMID:27297211

  13. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model.

    PubMed

    Heimpel, Moritz; Aurnou, Jonathan; Wicht, Johannes

    2005-11-10

    The bands of Jupiter represent a global system of powerful winds. Broad eastward equatorial jets are flanked by smaller-scale, higher-latitude jets flowing in alternating directions. Jupiter's large thermal emission suggests that the winds are powered from within, but the zonal flow depth is limited by increasing density and electrical conductivity in the molecular hydrogen-helium atmosphere towards the centre of the planet. Two types of planetary flow models have been explored: shallow-layer models reproduce multiple high-latitude jets, but not the equatorial flow system, and deep convection models only reproduce an eastward equatorial jet with two flanking neighbours. Here we present a numerical model of three-dimensional rotating convection in a relatively thin spherical shell that generates both types of jets. The simulated flow is turbulent and quasi-two-dimensional and, as observed for the jovian jets, simulated jet widths follow Rhines' scaling theory. Our findings imply that Jupiter's latitudinal transition in jet width corresponds to a separation between the bottom-bounded flow structures in higher latitudes and the deep equatorial flows.

  14. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.

    PubMed

    Kuchimaru, Takahiro; Iwano, Satoshi; Kiyama, Masahiro; Mitsumata, Shun; Kadonosono, Tetsuya; Niwa, Haruki; Maki, Shojiro; Kizaka-Kondoh, Shinae

    2016-06-14

    In preclinical cancer research, bioluminescence imaging with firefly luciferase and D-luciferin has become a standard to monitor biological processes both in vitro and in vivo. However, the emission maximum (λmax) of bioluminescence produced by D-luciferin is 562 nm where light is not highly penetrable in biological tissues. This emphasizes a need for developing a red-shifted bioluminescence imaging system to improve detection sensitivity of targets in deep tissue. Here we characterize the bioluminescent properties of the newly synthesized luciferin analogue, AkaLumine-HCl. The bioluminescence produced by AkaLumine-HCl in reactions with native firefly luciferase is in the near-infrared wavelength ranges (λmax=677 nm), and yields significantly increased target-detection sensitivity from deep tissues with maximal signals attained at very low concentrations, as compared with D-luciferin and emerging synthetic luciferin CycLuc1. These characteristics offer a more sensitive and accurate method for non-invasive bioluminescence imaging with native firefly luciferase in various animal models.

  15. High-Precision Ramsey-Comb Spectroscopy at Deep Ultraviolet Wavelengths.

    PubMed

    Altmann, R K; Galtier, S; Dreissen, L S; Eikema, K S E

    2016-10-21

    High-precision spectroscopy in systems such as molecular hydrogen and helium ions is very interesting in view of tests of quantum electrodynamics and the proton radius puzzle. However, the required deep ultraviolet and shorter wavelengths pose serious experimental challenges. Here we show Ramsey-comb spectroscopy in the deep ultraviolet for the first time, thereby demonstrating its enabling capabilities for precision spectroscopy at short wavelengths. We excite ^{84}Kr in an atomic beam on the two-photon 4p^{6}→4p^{5}5p[1/2]_{0} transition at 212.55 nm. It is shown that the ac-Stark shift is effectively eliminated, and combined with a counterpropagating excitation geometry to suppress Doppler effects, a transition frequency of 2 820 833 101 679(103) kHz is found. The uncertainty of our measurement is 34 times smaller than the best previous measurement, and only limited by the 27 ns lifetime of the excited state.

  16. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics.

    PubMed

    Carrasco, Martin A; Buechler, Steven A; Arnold, Randy J; Sformo, Todd; Barnes, Brian M; Duman, John G

    2012-02-02

    Cucujus clavipes puniceus is a freeze avoiding beetle capable of surviving the long, extremely cold winters of the Interior of Alaska. Previous studies showed that some individuals typically supercool to mean values of approximately -40 °C, with some individuals supercooling to as low as -58 °C, but these non-deep supercooling (NDSC) individuals eventually freeze if temperatures drop below this. However, other larvae, especially if exposed to very cold temperatures, supercool even further. These deep supercooling (DSC) individuals do not freeze even if cooled to -100 °C. In addition, the body water of the DSC larvae vitrifies (turns to a glass) at glass transition temperatures of -58 to -70 °C. This study examines the proteomes of DSC and NDSC larvae to assess proteins that may contribute to or inhibit the DSC trait. Using high throughput proteomics, we identified 138 proteins and 513 Gene Ontology categories in the DSC group and 104 proteins and 573 GO categories in the NDSC group. GO categories enriched in DSC include alcohol metabolic process, cellular component morphogenesis, monosaccharide metabolic process, regulation of biological quality, extracellular region, structural molecule activity, and antioxidant activity. Proteins unique to DSC include alpha casein precursor, alpha-actinin, vimentin, tropomyosin, beta-lactoglobulin, immunoglobulins, tubulin, cuticle proteins and endothelins.

  17. High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea.

    PubMed

    Jensen, Sigmund; Bourne, David G; Hovland, Martin; Murrell, J Colin

    2012-10-01

    Coral reefs that exist in the depths of the oceans are surrounded by Eukarya, Archaea and bacterial communities that may play an important role in the nutrition and health of the reef. The first interdomain community structure of planktonic organisms in seawater from a deep-water coral reef is described. Community profiling and analysis of ribosomal RNA gene sequences from a coral reef system at 350 m depth in the Norwegian Sea revealed a rich diversity of Eukarya and Bacteria and a moderate diversity of Archaea. Most sequences affiliated with marine microplankton from deep-sea to cold-surface regions, with many sequences being similar to those described in studies of mesopelagic and oxygen minimum zones. Dominant phylotypes belonged to the Alveolata (group I, II, dinoflagellates), Stramenopiles (silicoflagellates), Alphaproteobacteria (Pelagibacter ubique), Gammaproteobacteria (ARCTIC96BD-19), Bacteroidetes (Flavobacteria) and mesophilic Crenarchaeota (Nitrosopumilus maritimus). Several rare and novel members of the community fell into distinct phylogenetic groups. The inferred function of dominant community members suggested autotrophs that utilise light, ammonium or sulphide, and lifestyles based on host associations. The high diversity reflected a microplankton community structure, which is significantly different from that of microplankton collected at the same depth at a pelagic station away from reefs.

  18. High Biodiversity on a Deep-Water Reef in the Eastern Fram Strait

    PubMed Central

    Meyer, Kirstin S.; Soltwedel, Thomas; Bergmann, Melanie

    2014-01-01

    We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796–2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m−2 and 418.1±49.6 individuals m−2 on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m−2 (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water. PMID:25153985

  19. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations

    NASA Astrophysics Data System (ADS)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-12-01

    The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at

  20. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  1. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  2. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  3. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  4. Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen Reagents

    PubMed Central

    Wilson, Michael R.; Stenglein, Mark D.; Olejnik, Judith; Rennick, Linda J.; Nambulli, Sham; Feldmann, Friederike; Duprex, W. Paul

    2016-01-01

    ABSTRACT Laboratories studying high-priority pathogens need comprehensive methods to confirm microbial species and strains while also detecting contamination. Metagenomic deep sequencing (MDS) inventories nucleic acids present in laboratory stocks, providing an unbiased assessment of pathogen identity, the extent of genomic variation, and the presence of contaminants. Double-stranded cDNA MDS libraries were constructed from RNA extracted from in vitro-passaged stocks of six viruses (La Crosse virus, Ebola virus, canine distemper virus, measles virus, human respiratory syncytial virus, and vesicular stomatitis virus). Each library was dual indexed and pooled for sequencing. A custom bioinformatics pipeline determined the organisms present in each sample in a blinded fashion. Single nucleotide variant (SNV) analysis identified viral isolates. We confirmed that (i) each sample contained the expected microbe, (ii) dual indexing of the samples minimized false assignments of individual sequences, (iii) multiple viral and bacterial contaminants were present, and (iv) SNV analysis of the viral genomes allowed precise identification of the viral isolates. MDS can be multiplexed to allow simultaneous and unbiased interrogation of mixed microbial cultures and (i) confirm pathogen identity, (ii) characterize the extent of genomic variation, (iii) confirm the cell line used for virus propagation, and (iv) assess for contaminating microbes. These assessments ensure the true composition of these high-priority reagents and generate a comprehensive database of microbial genomes studied in each facility. MDS can serve as an integral part of a pathogen-tracking program which in turn will enhance sample security and increase experimental rigor and precision. IMPORTANCE Both the integrity and reproducibility of experiments using select agents depend in large part on unbiased validation to ensure the correct identity and purity of the species in question. Metagenomic deep sequencing

  5. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2, Field investigations. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    1996-12-31

    In this quarter, activity focused on the placement of Flue Gas Desulfurization (FGD) grout into auger holes at the Sunny Ridge Mining Co. site. As discussed in previous reports, the grout was prepared using fluidized bed combustion (FBC) by-product obtained from the Costain Coal Company. The grout was thoroughly mixed with water and transferred to a concrete pumping truck. The nozzle on the pumper truck was attached to PVC pipe through which the grout was pumped into the auger holes. The first field test involved the placement of a very high slump, flowable grout into auger holes sing a simple, earthern bulkhead. These tests were conducted to explore the flowability of the grout. The second series of test was conducted with a lower-slump, higher-viscosity material pumped at high pressure and using sandbags as a bulkhead. The goal of these tests was to examine the feasibility of pressure grouting to completely fill auger holes with a material that will exhibit high long-term strength because of this low initial water content. Although there were many problems encountered during the field demonstration, these initial tests were, overall, successful. It was shown that a high-slump grout can be pumped the length of the auger holes, and can be successfully placed in holes containing standing water. Furthermore, this can be accomplished using available concrete emplacement equipment. In contrast, the pressure grouting proved more challenging than emplacement of the flowable grout mainly because of pipe-joint failures and difficulties in working the stiff, high-viscosity grout; the amount of water added to the mix is critical when placing this type of material. Cylinders of grout for compressive strength testing were prepared during field demonstration, and cores of the in situ hardened grout will be recovered after a minimum of 30 days. Additional field demonstration will focus on improving the procedure for placement of the flowable grout.

  6. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  7. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of §...

  8. Waste disposal in underground mines -- A technology partnership to protect the environment

    SciTech Connect

    1995-12-31

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment.

  9. Deep learning as a tool to distinguish between high orbital angular momentum optical modes

    NASA Astrophysics Data System (ADS)

    Knutson, E. M.; Lohani, Sanjaya; Danaci, Onur; Huver, Sean D.; Glasser, Ryan T.

    2016-09-01

    The generation of light containing large degrees of orbital angular momentum (OAM) has recently been demon- strated in both the classical and quantum regimes. Since there is no fundamental limit to how many quanta of OAM a single photon can carry, optical states with an arbitrarily high difference in this quantum number may, in principle, be entangled. This opens the door to investigations into high-dimensional entanglement shared between states in superpositions of nonzero OAM. Additionally, making use of non-zero OAM states can allow for a dramatic increase in the amount of information carried by a single photon, thus increasing the information capacity of a communication channel. In practice, however, it is difficult to differentiate between states with high OAM numbers with high precision. Here we investigate the ability of deep neural networks to differentiate between states that contain large values of OAM. We show that such networks may be used to differentiate be- tween nearby OAM states that contain realistic amounts of noise, with OAM values of up to 100. Additionally, we examine how the classification accuracy scales with the signal-to-noise ratio of images that are used to train the network, as well as those being tested. Finally, we demonstrate the simultaneous classification of < 100 OAM states with greater than 70 % accuracy. We intend to verify our system with experimentally-produced classi- cal OAM states, as well as investigate possibilities that would allow this technique to work in the few-photon quantum regime.

  10. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    NASA Astrophysics Data System (ADS)

    Velazquez, R.; Aldalbahi, A.; Rivera, M.; Feng, P.

    2016-08-01

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  11. Understanding Depth Variation of Deep Seismicity from in situ Measurements of Mineral Strengths at High Pressures

    SciTech Connect

    Chen, J.

    2010-01-01

    Strengths of major minerals of Earth's mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.

  12. The Jiangmen underground neutrino observatory experiment

    NASA Astrophysics Data System (ADS)

    Brugière, Timothée

    2017-02-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy as a primary physics goal, by detecting reactor antineutrinos from two power plants at 53-km distance. The detector is placed at 1800-m.w.e. deep underground and consists of a 20 kiloton liquid scintillator contained in a 34.5 m-diameter acrylic ball, instrumented by more than 17,000 20-in. PMTs ensuring a 77% photocatode coverage. To reach an unprecedented 3% energy resolution (at 1 MeV), the PMTs need a quantum efficiency of more than 30% and the attenuation length of the liquid has to be better than 20 m (at 430 nm). This precision on the energy is a key point to determine at the 3-4 σ significance level the neutrinos mass hierarchy with six years of running. The measurement of the antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1%. The experiment will also be able to observe neutrinos from terrestrial and extra-terrestrial sources. The international collaboration of JUNO was established in 2014, the civil construction started in 2015 and the R&D of the detectors is ongoing. JUNO is planning to start data taking in 2020.

  13. In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions.

    PubMed

    Chi Fru, E; Athar, R

    2008-06-01

    Subsurface microorganisms are expected to invade, colonize, and influence the safety performance of deep geological spent nuclear fuel (SNF) repositories. An understanding of the interactions of subsurface dwelling microbial communities with the storage is thus essential. For this to be achieved, experiments must be conducted under in situ conditions. We investigated the presence of groundwater microorganisms in repository bentonite saturated with groundwater recovered from tests conducted at the Aspö underground Hard Rock Laboratory in Sweden. A 16S ribosomal RNA and dissimilatory bisulfite reductase gene distribution between the bentonite and groundwater samples suggested that the sulfate-reducing bacteria widespread in the aquifers were not common in the clay. Aerophilic bacteria could be cultured from samples run at or=67 degrees C. Generally, the largely gram-negative groundwater microorganisms were poorly represented in the bentonite while the gram-positive bacteria commonly found in the clay predominated. Thus, bentonite compacted to a density of approximately 2 g cm(-3) together with elevated temperatures might discourage the mass introduction of the predominantly mesophilic granitic aquifer bacteria into future SNF repositories in the long run.

  14. Trajectories for High Specific Impulse High Specific Power Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, T.; Adams, R. B.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Preliminary results are presented for two methods to approximate the mission performance of high specific impulse high specific power vehicles. The first method is based on an analytical approximation derived by Williams and Shepherd and can be used to approximate mission performance to outer planets and interstellar space. The second method is based on a parametric analysis of trajectories created using the well known trajectory optimization code, VARITOP. This parametric analysis allows the reader to approximate payload ratios and optimal power requirements for both one-way and round-trip missions. While this second method only addresses missions to and from Jupiter, future work will encompass all of the outer planet destinations and some interstellar precursor missions.

  15. Making of the underground scientific experimental programme at the Meuse/Haute-Marne underground research laboratory, North Eastern France

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Vinsot, Agnès; Krieguer, Jean-Marie; Rebours, Hervé; Armand, Gilles

    In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to study the feasibility of reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The Laboratory consists of two shafts, an experimental drift at 445 m depth and a set of technical and experimental drifts at the main level at 490 m depth. The main objective of the research is to characterize the confining properties of the argillaceous rock through in situ hydrogeological tests, chemical measurements and diffusion experiments. In order to achieve this goal, a fundamental understanding of the geoscientific properties and processes that govern geological isolation in clay-rich rocks has been acquired. This understanding includes both the host rocks at the laboratory site and the regional geological context. After establishing the geological conditions, the underground research programme had to demonstrate that the construction and operation of a geological disposal will not introduce pathways for waste migration. Thus, the construction of the laboratory itself serves a research purpose through the monitoring of excavation effects and the optimization of construction technology. These studies are primarily geomechanical in nature, though chemical and hydrogeological coupling also have important roles. In order to achieve the scientific objectives of this project in the underground drifts, a specific methodology has been applied for carrying out the experimental programme conducted concurrently with the construction of the shafts and drifts. This methodology includes technological as well as organizational aspects and a systematic use of feedback from other laboratories abroad and every scientific zone of the URL already installed. This methodology was first applied to set up a multi-purpose experimental area

  16. SNOLAB: An International Facility for Underground Science

    NASA Astrophysics Data System (ADS)

    Hime, Andrew

    2006-07-01

    SNOLAB, an international facility for underground science, is presently under construction at a depth of 6000 meters of water equivalent (m.w.e.) at Inco's Creighton mine near Sudbury, Ontario, Canada. Building on the success of the Sudbury Neutrino Observatory, the creation of SNOLAB will provide the deep-site infrastructure required of next generation particle-astrophysics experiments in pursuit of low-energy solar neutrinos, neutrinoless double beta decay, and cosmological dark matter. Following an enthusiastic response from the scientific community to a call for Letters of Interest (LOI's) in staging experiments at SNOLAB, an initial set of recommendations have been developed to guide the scientific program at this new facility.

  17. The Great Observatories Origins Deep Survey High Redshift Search for Supernovae

    NASA Astrophysics Data System (ADS)

    Strolger, L.-G.; Riess, A. G.; Dahlen, T.; GOODS SN Searchers; HHZS Team

    2003-05-01

    We have recently concluded the Hubble Higher-z Supernova Team's search for high redshift supernovae in conjunction with the Great Observatories Origins Deep Survey (GOODS). Using the Advanced Camera for Surveys (ACS), we have surveyed ˜170 sq. arcmin fields about the CDF-S and HSF-N on five epochs each, with ˜45 day baselines. These deep observations have allowed us to discover ˜40 supernovae in the range of 0.2=1. A cosmic evolution of SN Ia luminosity or ``grey dust'' would cause SNe Ia to be systematically fainter at higher-z and thus show a different sign and shape on the Hubble diagram. We are also investigating the rate of SNe at /line{z}˜=0.8-1.0, the relation to the local rates, comparisons of host environments to low redshift host environments, and the implications of each to SN progenitors, star formation rate history, and possibly to cosmology.

  18. High volume-high value usage of flue gas desulfurization (FGD) by- products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1996-12-31

    The target for the project has been shifted from filling, highwall mine adits to filling auger holes with FGD material to provide a stable highwall for automated highwall mining. As reported previously, this shift in emphasis is economically desirable and practical, as the filling operation is safer and permits access to ``locked in`` high quality coal behind existing auger holes. As also reported previously, the fill material was shifted from dry FGD materials to a Fluidized Bed Combustion fly ash from the Archer Daniel Midland No. 6 facility in Illinois. Previous reports have summarized the characterization of this material for the project. However, due mostly to economic concerns with prehydration and transport of the Archer Daniel Midland (ADM6) material, several new desulfurization by-products stored at the Costain facility in Allen, Kentucky were considered during, this quarter. At this stage of the project, the change in fill material required rapid assessment in much the same way an applied working project would demand quick evaluation. This change thus provided an opportunity to demonstrate a rapid assessment of material suitability. The results described below were obtained in a short time frame, and with the exception of characterizing the long term swell and durability of the products, the rapid assessment was a success. No rapid assessment methodology for long term behavior has been developed at this time. The mineralogical characteristics of the two Costain materials will not be summarized in detail here. Unlike the ADM6 ash, the spray dryer and FBC materials currently under review do not include the large percentages of free lime (CaO) that was shown to cause high mixing temperatures in the nonprehydrated ADM6 product. This absence of free lime in the raw by-products is immediately evident when mixing with water, as no significant heating of the mixture is observed.

  19. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  20. Ka-Band High-Rate Telemetry System Upgrade for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi; Bernardo, Abner; Bowen, James; Britcliffe, Michael; Bucknam, Neil; Link, Christopher; Long, Ezra; Manalo, Leslie; O'Dea, James A.; Rochblatt, David; Sosnowski, John; Veruttipong, Watt

    2009-01-01

    The NASA Deep Space Network (DSN) has a new requirement to support high-data-rate Category A (Cat A) missions (within 2 million kilometers of Earth) with simultaneous S-band uplink, S-band downlink and Ka-band downlink. The S-band links are required for traditional TT&C (Telemetry, Tracking, and Command) support to the spacecraft, while the Ka-band link is intended for high-data-rate science returns. The new Ka-band system combines the use of proven DSN cryogenic designs, for low system temperature, and high data rate capability using commercial telemetry receivers. The initial Cat A support is required for the James Webb Space Telescope (JWST) in 2013 and possibly other missions. The upgrade has been implemented into 3 different 34-meter Beam Waveguide (BWG) antennas in the DSN, one at each of the complexes in Canberra (Australia), Goldstone (California) and Madrid (Spain). System test data is presented to show that the requirements were met and the DSN is ready for Cat A Ka-band operational support.

  1. Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.

    PubMed

    Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen

    2011-08-01

    Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters.

  2. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  3. High volume - high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    The amount of dry FGD materials produced in the U.S. has not been increasing at the high rate originally anticipated. This has been due to a number of economic factors affecting the utility industry. Technologies for the disposal of large amounts of materials are not going to be implemented in the near term. In light of this development the target application for this project is being changed from highwall adit filling to the filling of auger holes to allow for highwall mining. This application focuses on using the dry FGD material to recover coal isolated by excessive augering. It produces 10 or more times the amount of coal per ton of dry FGD utilized than the originally proposed methodology. It also does not require extensive equipment development and, if applied to abandoned mine lands, may have substantially more significant environmental benefit. We also propose to use a spray dryer material for the demonstration instead of the fluidized bed material originally proposed. The spray dryer material is already slacked eliminating problems associated with heat generation at the mine site. Auger hole grouting with FGD material is also best performed by hydraulic emplacement methods.

  4. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  5. High levels of natural radioactivity in biota from deep-sea hydrothermal vents: a preliminary communication.

    PubMed

    Charmasson, Sabine; Sarradin, Pierre-Marie; Le Faouder, Antoine; Agarande, Michèle; Loyen, Jeanne; Desbruyères, Daniel

    2009-06-01

    Hydrothermal deep-sea vent fauna is naturally exposed to a peculiar environment enriched in potentially toxic species such as sulphides, heavy metals and natural radionuclides. It is now well established that some of the organisms present in such an environment accumulate metals during their lifespan. Though only few radionuclide measurements are available, it seems likely that hydrothermal vent communities are exposed to high natural radiation doses. Various archived biological samples collected on the East Pacific Rise and the Mid-Atlantic Ridge in 1996, 2001 and 2002 were analysed by ICP-MS in order to determine their uranium contents ((238)U, (235)U and (234)U). In addition (210)Po-Pb were determined in 2 samples collected in 2002. Vent organisms are characterized by high U, and Po-Pb levels compared to what is generally encountered in organisms from outside hydrothermal vent ecosystems. Though the number of data is low, the results reveal various trends in relation to the site, the location within the mixing zone and/or the organisms' trophic regime.

  6. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines.

    PubMed

    Gordon, Sean P; Priest, Henry; Des Marais, David L; Schackwitz, Wendy; Figueroa, Melania; Martin, Joel; Bragg, Jennifer N; Tyler, Ludmila; Lee, Cheng-Ruei; Bryant, Doug; Wang, Wenqin; Messing, Joachim; Manzaneda, Antonio J; Barry, Kerrie; Garvin, David F; Budak, Hikmet; Tuna, Metin; Mitchell-Olds, Thomas; Pfender, William F; Juenger, Thomas E; Mockler, Todd C; Vogel, John P

    2014-08-01

    Brachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.

  7. Inter-disciplinary Interactions in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Bettini, A.

    2010-12-01

    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  8. Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity

    NASA Astrophysics Data System (ADS)

    Lagg, A.; Solanki, S. K.; Doerr, H.-P.; Martínez González, M. J.; Riethmüller, T.; Collados Vera, M.; Schlichenmaier, R.; Orozco Suárez, D.; Franz, M.; Feller, A.; Kuckein, C.; Schmidt, W.; Asensio Ramos, A.; Pastor Yabar, A.; von der Lühe, O.; Denker, C.; Balthasar, H.; Volkmer, R.; Staude, J.; Hofmann, A.; Strassmeier, K.; Kneer, F.; Waldmann, T.; Borrero, J. M.; Sobotka, M.; Verma, M.; Louis, R. E.; Rezaei, R.; Soltau, D.; Berkefeld, T.; Sigwarth, M.; Schmidt, D.; Kiess, C.; Nicklas, H.

    2016-11-01

    Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector. Aims: The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account. Methods: Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe i lines in the 1.56 μm region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the profiles were applied to the GRIS data. We made use of the magnetic line ratio technique, which was tested against realistic magneto-hydrodynamic simulations (MURaM). Results: About 80% of the GRIS spectra of a very quiet solar region show polarimetric signals above a 3σ level. Area and amplitude asymmetries agree well with small-scale surface dynamo-magneto hydrodynamic simulations. The magnetic line ratio analysis reveals ubiquitous magnetic regions in the ten to hundred Gauss range with some concentrations of kilo-Gauss fields. Conclusions: The GRIS spectropolarimetric data at a spatial resolution of ≈0.̋4 are so far unique in the combination of high spatial resolution scans and high magnetic field sensitivity. Nevertheless, the unavoidable effect of spatial straylight and the resulting dilution of the weak Stokes profiles means that inversion techniques still bear a high risk of misinterpretating the data.

  9. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  10. Thermal-Mechanical Modeling of Deep Borehole Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Clayton, D. J.; Herrick, C. G.; Hadgu, T.

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 °C and 180 °C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  11. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  12. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    SciTech Connect

    Ilgner, Ch.

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  13. CAVSIM. Underground Coal Gasification Program

    SciTech Connect

    Britten, J.A., Thorsness, C.B. )

    1989-03-03

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  14. High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment: application to a Mass Transport Complex offshore Nigeria

    NASA Astrophysics Data System (ADS)

    Ker, S.; Marsset, B.; Garziglia, S.; Le Gonidec, Y.; Gibert, D.; Voisset, M.; Adamy, J.

    2010-09-01

    We assess the feasibility of high-resolution seismic depth imaging in deep water based on a new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determination of the P-wave velocity distribution was realized by the adaptation of an iterative focusing approach to the specific acquisition geometry. This innovative experiment combined with advanced processing succeeded in reaching lateral and vertical resolution (2.5 and 1 m) in accordance with the objectives of imaging fine scale structures and correlation with in situ measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred from movement of coherent material inside the MTC and thrust structures at the base of the MTC. Furthermore, a silt layer that was disrupted during emplacement but has maintained its stratigraphic position supports a short transport distance.

  15. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    PubMed Central

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-01-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions. PMID:27934907

  16. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  17. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  18. Three step deep reactive ion etch for high density trench etching

    NASA Astrophysics Data System (ADS)

    Lips, B.; Puers, R.

    2016-10-01

    A three step Deep Reactive Ion Etch (DRIE) process is developed to etch trenches of 10μm wide to a depth of 130μm into silicon with an etch rate of 2.5μm min-1. The aim of this process is to obtain sidewalls with an angle close to 90°. The process allows the etching of multiple trenches with high aspect ratios that are closely placed together. A three step approach is used as opposed to the more conventional two step approach in an attempt to improve the etching selectivity with respect to the masking material. By doing so, a simple AZ6632 positive photoresist could be used instead of the more commonly used metal masks which are harder to remove afterwards. In order to develop this process, four parameters, which are the bias power, processing pressure, step times and number of cycles, are evaluated an optimized on a PlasmaPro 300 Cobra DRIE tool from Oxford Plasma Technology.

  19. Jet substructure classification in high-energy physics with deep neural networks

    NASA Astrophysics Data System (ADS)

    Baldi, Pierre; Bauer, Kevin; Eng, Clara; Sadowski, Peter; Whiteson, Daniel

    2016-05-01

    At the extreme energies of the Large Hadron Collider, massive particles can be produced at such high velocities that their hadronic decays are collimated and the resulting jets overlap. Deducing whether the substructure of an observed jet is due to a low-mass single particle or due to multiple decay objects of a massive particle is an important problem in the analysis of collider data. Traditional approaches have relied on expert features designed to detect energy deposition patterns in the calorimeter, but the complexity of the data make this task an excellent candidate for the application of machine learning tools. The data collected by the detector can be treated as a two-dimensional image, lending itself to the natural application of image classification techniques. In this work, we apply deep neural networks with a mixture of locally connected and fully connected nodes. Our experiments demonstrate that without the aid of expert features, such networks match or modestly outperform the current state-of-the-art approach for discriminating between jets from single hadronic particles and overlapping jets from pairs of collimated hadronic particles, and that such performance gains persist in the presence of pileup interactions.

  20. High Patient Satisfaction with Deep Sedation for Catheter Ablation of Cardiac Arrhythmia.

    PubMed

    Münkler, Paula; Attanasio, Philipp; Parwani, Abdul Shokor; Huemer, Martin; Boldt, Leif-Hendrik; Haverkamp, Wilhelm; Wutzler, Alexander

    2017-02-27

    Patients' satisfaction with invasive procedures largely relies on periprocedural perception of pain and discomfort. The necessity for intraprocedural sedation during catheter ablation of cardiac arrhythmias for technical reasons is widely accepted, but data on patients' experience of pain and satisfaction with the procedural sedation are scarce. We have assessed patients' pain and discomfort during and after the procedure using a standardized questionnaire. One-hundred seventeen patients who underwent catheter ablation answered a standardized questionnaire on periprocedural perception of pain and discomfort after different anesthetic protocols with propofol/midazolam with and without additional piritramide and ketamine/midazolam. Patients report a high level of satisfaction with periprocedural sedation with 83% judging sedation as good or very good. The majority of patients was unconscious of the whole procedure and did not recollect experiencing pain. Procedural pain was reported by 7.7% of the patients and 16% reported adverse effects, e.g. postprocedural nausea and episodes of headache. The results of our study show, that deep sedation during catheter ablation of cardiac arrhythmias is generally well tolerated and patients are satisfied with the procedure. Yet, a number of patients reports pain or adverse events. Therefore, studies comparing different sedation strategies should be conducted in order to optimize sedation and analgesia. This article is protected by copyright. All rights reserved.

  1. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.

    PubMed

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-05-28

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  2. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are

  3. Are high p-wave velocity sediments on thin Tethyan crust, deep-water carbonates?

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Graindorge, David; Klingelhoefer, Frauke; Dellong, David; Kopp, Heidrun; Sallares, Valenti; Bartolome, Rafael; Gallais, Flora

    2016-04-01

    Seismic reflection profiles from the Central Mediterranean and Gulf of Cadiz regions indicate the widespread presence of a seismic unit, marked by strong continuous reflectors, directly overlying the basement. Seismic velocity analysis from seismic reflection and refraction studies indicate high p-wave velocities of 3.5 - 4.5 km/s in this layer. These same seismic studies image a thin crust, typically 6-9 km thick, in most cases thought to be oceanic in nature and related to the Tethys oceanic domain separating Africa (Gondwana) from Laurussia. We interpret this 2-3 km thick reflective layer to be carbonates, deposited in the late Triassic, Jurassic and early Cretaceous in the Tethys Ocean, in deep marine basins. Few drilling studies have penetrated into this layer. In one case (DSDP site 135, drilled at 4152 m water depth on Coral Patch Ridge in the western Gulf of Cadiz), Aptian (early Cretaceous) marls and limestone were drilled (560-689 m sub-seafloor depth). The Calcite compensation depth during the Jurassic to Early Cretaceous was about 4000 m to 3500 m according to compilations from the Atlantic and Indian Oceans and is consistent with deposition of deep-water carbonates. For the NW Moroccan margin (Mazagan transect near El Jadida) there is a 2 km thick sedimentary layer with p-wave velocities of 4.0 - 4.5 km/s at the base of a 4 - 6 km thick sedimentary section. This layer extends from seafloor thought to be oceanic crust (west of the West African Coast magnetic anomaly) across a domain of thin/transitional crust with abundant Triassic salt diapirs to the foot of the margin. This reflective basal layer is also observed in reflection and refraction profiles from the Seine abyssal plain, below the toe of the Cadiz accretionary wedge (S. Algarve margin), in the Ionian abyssal plain and below the toe of the Calabrian accretionary wedge, all regions floored by this thin Tethyan crust. Work is in progress to determine the exact nature of this crust.

  4. Underground at Black Diamond Mines

    SciTech Connect

    Higgins, C.T.

    1989-10-01

    Although California is noted for its mining history and annually leads the nation in total monetary value of minerals produced, there a few opportunities for the public to tour underground mines. One reason is that nearly all mining in the state today is done above ground in open pits. Another reason is that active underground mines are not commonly favorable to public tours. There is one place, Black Diamond Mines Regional Preserve, where the public can safely tour a formerly active underground mine. Black Diamond Mines Regional Preserve is a 3,600-acre parkland about 5 miles southwest of Antioch in Contra Costa County. The Preserve was established in the early 1970s and is administered by the East Bay Regional Park District. Black Diamond Mines Preserve is noteworthy for its mining history as well as its natural history, both of which are briefly described here.

  5. HPPP Hydromechanical tests and developments at the LSBB Underground Research Laboratory (France)

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Rutqvist, J.

    2010-12-01

    The LSBB is a French National Underground Facility dedicated to the observation of coupled THMC processes in the shallow crust. This URL is nested at a 500m depth in a perfect analogue to current middle-eastern oil carbonate reservoirs with porosity varying between 5 and 20%. LSBB galleries give a direct access to the unaltered reservoir porosity under a realistic state of natural stresses and at a meter-to-decameter scale which is the borehole near-field crucial scale in all reservoir engineering problems. The very low seismo-electro-magnetic noise in the LSBB underground environment allowed to conduct high accuracy hydromechanical experiments that were designed (i) to test and develop the High Pulse Poro-Elasticity Protocol (HPPP) and (ii) to improve the knowledge of stress flow coupling processes in fractured-porous reservoirs. The HPPP project relies in the development of a downhole probe that allows synchronous pressure/3D-deformation monitoring of the rock response to a localized source made of a water pressure pulse generated in an injection chamber between packers. The use of Bragg fiber-optic sensors makes it possible to conduct a wide range of frequencies (1-500 Hz) and high accuracy (10-6) sampling of pressure and deformations for the in situ study of variations of Biot-Gassman parameters at the metric to decameter scale. We present some preliminary results from a set of HPPP pressure pulse tests that were performed in boreholes drilled from a horizontal gallery of the LSBB URL. The HPPP protocol enabled to detect infinitesimal deformation components both radial and axial to the borehole related to the complex 3D-deformation of a pressurized 3m thick fractured-porous layer. The realistic experimental conditions of the LSBB URL galleries maked the method look promising to characterize and actively monitor hydraulic and mechanical properties variations of rocks within deep boreholes and underground facilities.

  6. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  7. [Application of high-frequency ultrasound in dermabrasion of patients with deep partial-thickness burns].

    PubMed

    Zang, C Y; Cao, Y Q; Xue, W J; Zhao, R; Zhang, M; Zhang, Y H; Feng, Z; Wang, Y B

    2017-02-20

    Objective: To investigate the application of high-frequency ultrasound in dermabrasion of patients with deep partial-thickness burns. Methods: Twenty-six patients with deep partial-thickness burns conforming to the study criteria were hospitalized in our unit from March 2015 to March 2016. Patients were all performed with dermabrasion. The structure of skin tissue and blood flow signals of uninjured side and wounds before dermabrasion, and those of wounds immediately post dermabrasion and on post dermabrasion day (PDD) 1, 3, 5, 7, 10, 14, and 21 were detected with high-frequency ultrasound, and the percentage of blood flow signals was calculated. According to the results of comparison between percentage of blood flow signals of wounds and that of normal skin before dermabrasion, patients were divided into no significant decrease group (NSD, n=19) and significant decrease group (SD, n=7). Wound healing time of patients in two groups was recorded. Data were processed with analysis of variance of repeated measurement, LSD test, t test and Chi-square test. The correlation between the percentage of blood flow signals of wounds before dermabrasion and wound healing time of 26 patients were analyzed by Spearman correlation analysis. Results: (1) Epidermis of normal skin of patients in two groups before dermabrasion showed continuous smooth linear hyperecho, which was stronger than that of dermis, and boundary of dermis and subcutaneous tissue showed stronger discontinuous linear echo than that of dermis, which gradually transited to subcutaneous tissue. In group NSD, epidermis of wound of patients before dermabrasion showed intermittent rough linear echo, which was weaker than that of normal skin epidermis, and there was no obvious abnormity of boundary between dermis and subcutaneous tissue. Immediately post dermabrasion and on PDD 1, no linear hyperecho of epidermis was observed, showing complete attrition of epidermis, and the echo of dermis and subcutaneous tissue had

  8. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  9. Logistics background study: underground mining

    SciTech Connect

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  10. Underground test area subproject waste management plan. Revision No. 1

    SciTech Connect

    1996-08-01

    The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

  11. Primary upper-extremity deep vein thrombosis: high prevalence of thrombophilic defects.

    PubMed

    Hendler, Mariela F; Meschengieser, Susana S; Blanco, Alicia N; Alberto, Maria F; Salviú, Maria J; Gennari, Laura; Lazzari, Maria A

    2004-08-01

    Primary deep venous thrombosis of the upper extremity (UEDVT) is an unusual disorder. Limited data are available on the contribution of hypercoagulable status in the pathogenesis of this disease. This study aims to report the prevalence of inherited and acquired thrombophilic risk factors (TF) in patients with primary (effort-related and spontaneous) UEDVT. From 1993 to 2002, 31 patients (17 females, median age 38.8 years, range 16-60 years; and 14 males, median age 31.4 years, range 20-56 years) with primary UEDVT (n = 15 effort-related and n = 16 spontaneous) were referred for screening of hypercoagulable status. Nineteen (61.3%) patients had at least one coagulation abnormality. The most common acquired TF were antiphospholipid antibodies (31% lupus anticoagulant and 12.9% anticardiolipin antibodies). Factor V Leiden (12.9%) and prothrombin G20210A mutation (20%) were the most prevalent genetic risk factors. Five patients (16.1%) had high plasma homocysteine levels, and one patient (4.7%) had protein S deficiency. Effort-related UEDVT was associated with male gender (P = 0.04) and younger age (P = 0.02). There was no significant difference in the prevalence of acquired or inherited TF between patients with effort-related or spontaneous UEDVT. A local anatomic abnormality was detected in seven patients (22.5%), and the prevalence of TF was significantly lower within this group (P = 0.006). The incidence of TF in patients without an anatomic abnormality was 75% (RR 5.25). This study found a high prevalence of an underlying thrombophilic status in spontaneous and effort-related UEDVT. Hypercoagulable status may play a significant role in both groups. Screening for local anatomical abnormalities and thrombophilia should be included in the evaluation of primary UEDVT.

  12. High-power waveguide CO2 laser for formation of deep channels in biological tissue

    NASA Astrophysics Data System (ADS)

    Vasiltsov, Victor V.; Golubev, Vladimir S.; Dubrov, V. D.; Egorov, E. N.; Panchenko, Vladislav Y.; Zabelin, Alexandre M.; Zelenov, Evgenii V.; Kubyshkin, Alexander P.; Roshin, A. P.; Ulyanov, Valerii A.

    1998-06-01

    The paper presents the description of a high-power waveguide single-mode CO2 laser generating 800 W average beam power and up to 1 kW peak power at pulse duration from 2 to 100 ms. The diffusion-cooled active medium is excited by a capacitive AC discharge of sound frequency. The advantages of the laser are: high (>10%) technical efficiency, upgraded stability of beam parameters at the cost of the use of waveguide generation mode, extremely low (<1 nl/h) consumption of lasing mixture and possibility of operation in quasi-sealed-off regime; design simplicity, compactness and low cost. As an example of application of various capabilities of these lasers, a description of the developed medical system `Genom-4' used in the transmyocardial revascularization (TMR) procedure is presented. The system is equipped with devices which are necessary both to conducting biophysical experiments and to performing operations under clinical conditions; among them are computer control system, cardiograph for synchronization of laser pulse with ECG of the heart under operation, remote articulated mirror manipulator with optical hand-piece for performing operations. The results of biophysical experiments on drilling channels in organic materials and biological tissues in vitro, as well as the results of operations on patients, are presented. Verification of a possible negative influence of shock waves, which can be generated in biotissues during the TMR procedure, has been studied. It has been shown that the pressure excess due to laser action is lower than one bar. Thus, no destruction of biotissues surrounding the channel should be caused. The autodyne Doppler spectroscopy diagnostics of specifying the moment of keyhole punching in myocardium has been discussed. Other possible applications of the system for drilling deep channels in liver, lungs, etc. are mentioned.

  13. Development of GIS-Based Decision Support System for Optimizing Transportation Cost in Underground Limestone Mining

    NASA Astrophysics Data System (ADS)

    Oh, Sungchan; Park, Jihwan; Suh, Jangwon; Lee, Sangho; Choi, Youngmin

    2014-05-01

    In mining industry, large amount of cost has been invested in early stages of mine development such as prospecting, exploration, and discovery. Recent changes in mining, however, also raised the cost in operation, production, and environmental protection because ore depletion at shallow depth caused large-scale, deep mining. Therefore, many mining facilities are installed or relocated underground to reduce transportation cost as well as environmental pollution. This study presents GIS-based decision support system that optimizes transportation cost from various mining faces to mine facility in underground mines. The development of this system consists of five steps. As a first step, mining maps were collected which contains underground geo-spatial informations. In mine maps, then, mine network and contour data were converted to GIS format in second step for 3D visualization and spatial analysis. In doing so, original tunnel outline data were digitized with ground level, and converted to simplified network format, and surface morphology, contours were converted to digital elevation model (DEM). The next step is to define calculation algorithm of transportation cost. Among the many component of transportation cost, this study focused on the fuel cost because it can be easily estimated if mining maps are available by itself. The cost were calculated by multiplication of the number of blasting, haulage per blasting, distance between mining faces to facility, fuel cost per liter, and two for downhill and uphill, divided by fuel efficiency of mining trucks. Finally, decision support system, SNUTunnel was implemented. For the application of SNUTunnel in actual underground mine, Nammyeong Development Corporation, Korea, was selected as study site. This mine produces limestone with high content of calcite for paper, steel manufacture, or desulfurization, and its development is continuously ongoing to reach down to deeper calcite ore body, so the mine network is expanding

  14. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat.

    PubMed

    Wirsen, C O; Molyneaux, S J

    1999-12-01

    Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.

  15. Deep Trouble.

    ERIC Educational Resources Information Center

    Popke, Michael

    2002-01-01

    Discusses how the safety-related ruling by the National Federation of State High School Associations to eliminate the option of using 18-inch starting platforms in pools less than 4 feet deep may affect operators of swimming pools and the swim teams who use them. (EV)

  16. Twenty Years of Underground Research at Canada's URL

    SciTech Connect

    Chandler, N. A.

    2003-02-27

    Construction of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) began in 1982. The URL was designed to address the needs of the Canadian nuclear fuel waste management program. Over the years, a comprehensive program of geologic characterization and underground hydrogeologic, geotechnical and geomechanical projects have been performed, many of which are ongoing. The scientific work at the URL has evolved through a number of different phases to meet the changing needs of Canada's waste management program. The various phases of the URL have included siting, site evaluation, construction and operation. Collaboration with international organizations is encouraged at the URL, with the facility being a centre of excellence in an International Atomic Energy Agency (IAEA) network of underground facilities. One of AECL's major achievements of the past 20 year program has been the preparation and public defense of a ten-volume Environmental Impact Statement (EIS) for a conceptual deep geologic repository. Completion of this dissertation on the characterization, construction and performance modeling of a conceptual repository in the granite rock of the Canadian Shield was largely based on work conducted at the URL. Work conducted over the seven years since public defense of the EIS has been directed towards developing those engineering and performance assessment tools that would be required for implementation of a deep geologic repository. The URL continues to be a very active facility with ongoing experiments and demonstrations performed for a variety of Canadian and international radioactive waste management organizations.

  17. Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (Postojna Cave, Slovenia).

    PubMed

    Mulec, Janez; Vaupotič, Janja; Walochnik, Julia

    2012-10-01

    Bioaerosols in cave air can serve as natural tracers and, together with physical parameters, give a detailed view of conditions in the cave atmosphere and responses to climatic changes. Airborne microbes in the Postojna Cave system indicated very dynamic atmospheric conditions, especially in the transitory seasonal periods between winter and summer. Physical parameters of cave atmosphere explained the highest variance in structure of microbial community in the winter and in the summer. The airborne microbial community is composed of different microbial groups with generally low abundances. At sites with elevated organic input, occasional high concentrations of bacteria and fungi can be expected of up to 1,000 colony-forming units/m(3) per individual group. The most abundant group of airborne amoebozoans were the mycetozoans. Along with movements of air masses, airborne algae also travel deep underground. In a cave passage with elevated radon concentration (up to 60 kBq/m(3)) airborne biota were less abundant; however, the concentration of DNA in the air was comparable to that in other parts of the cave. Due to seasonal natural air inflow, high concentrations of biological and inanimate particles are introduced underground. Sedimentation of airborne allochthonous material might represent an important and continuous source of organic material for cave fauna.

  18. High-Resolution Bistatic Radar Imaging With The Deep-Space Network

    NASA Astrophysics Data System (ADS)

    Busch, M.; Benner, L.; Slade, M. A.; Teitelbaum, L.; Brozovic, M.; Nolan, M. C.; Taylor, P. A.; Ghigo, F. D.; Ford, J.

    2014-12-01

    Recent upgrades to the Deep Space Network's Goldstone Solar System Radar allow the transmitted waveform to be modulated at up to 40 MHz, providing resolution as fine as 3.75 m in line-of-sight distance for near-Earth asteroids (NEAs) and the Moon. Bistatic observations, transmitting with an antenna at Goldstone and receiving with either another Goldstone antenna or a larger antenna such as the Arecibo Observatory or the Green Bank Telescope, give the highest possible sensitivity combined with high resolution. High-resolution bistatic radar projects have revealed spin state changes and the presence of boulders on many NEAs. Examples include radar imaging campaigns on the NEAs 2005 YU55, Toutatis, 2012 DA14, and 2014 HQ124. In the near future, a new high-resolution transmitter on Goldstone's DSS-13 antenna will be able to transmit a signal modulated at 80 MHz, improving line-of-sight resolution by a factor of two to 1.875 m. This will allow many new projects: seeing previously-invisible surface details; measuring the size distributions of boulders and possibly craters on small NEAs; obtaining better estimates of the masses and densities of asteroids from radiation pressure perturbations to their trajectories; improved trajectory predictions for small spacecraft targets and potential Earth impactors; and possibly imaging the reconfiguration of asteroids' surfaces due to tides during extremely close Earth flybys. Somewhat further into the future, a 1.875-m-resolution transmitter may be installed on a 34-m antenna at the DSN's Canberra complex. This would allow radar imaging of objects in the far southern sky, which current radars cannot see. It would also facilitate rapid follow-up of newly discovered radar targets and before-and-after observations of NEAs making flybys close enough to cause tidal reconfiguration, which move very quickly across the sky at closest approach. As with the current 3.75-m-resolution system, these future high-resolution transmitters will

  19. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  20. Deep earthquakes

    SciTech Connect

    Frohlich, C.

    1989-01-01

    Earthquakes are often recorded at depths as great as 650 kilometers or more. These deep events mark regions where plates of the earth's surface are consumed in the mantle. But the earthquakes themselves present a conundrum: the high pressures and temperatures at such depths should keep rock from fracturing suddenly and generating a tremor. This paper reviews the research on this problem. Almost all deep earthquakes conform to the pattern described by Wadati, namely, they generally occur at the edge of a deep ocean and define an inclined zone extending from near the surface to a depth of 600 kilometers of more, known as the Wadati-Benioff zone. Several scenarios are described that were proposed to explain the fracturing and slipping of rocks at this depth.

  1. Precision-cut liver slices to investigate responsiveness of deep-sea fish to contaminants at high pressure.

    PubMed

    Lemaire, Benjamin; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Stegeman, John; Mork, Jarle; Rees, Jean François

    2012-09-18

    While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.

  2. Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Sori; Park, Byeonghak; Kim, Jun Sik; Kim, Tae-il

    2016-11-01

    The patterning of high-resolution-featured deep-nanoscale structures with a high aspect ratio (AR) has received increasing attention in recent years as a promising technique for a wide range of applications, including electrical, optical, mechanical and biological systems. Despite extensive efforts to develop viable nanostructure fabrication processes, a superior technique enabling defect-free, high-resolution control over a large area is still required. In this review, we focus on recent important advances in the designs and processes of high-resolution nanostructures possessing a high AR, including hierarchical and 3D patterns. The unique applications of these materials are also discussed.

  3. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  4. Highly Compressed Free Gas in Deep-Water Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Barth, G. A.

    2006-12-01

    Natural gas, predominantly methane, is stored in a highly compact form within solid gas hydrate. The large volume of free gas that can be liberated by dissociation of hydrate (at standard surface conditions) is a prominent aspect of this potential energy resource. In contrast, the highly compressed state of free gas under pressure-temperature conditions found in deep-water marine settings is rarely noted. To facilitate comparison of gas quantities present within and below the hydrate stability zone in marine gas hydrate systems, particularly those in the deep-water Bering Sea basins, a suite of volume expansion ratios for 100% methane gas have been calculated. These ratios relate free gas volume under in-situ pressure (P) and temperature (T) conditions to free gas volume at standard surface conditions. The volume calculation is routine, using the Peng-Robinson equation of state (Peng and Robinson, 1976). Because most geophysical field studies aim to resolve the quantities of solid hydrate or free gas as a volume fraction of bulk rock in-situ, whereas gas resource volumes are reported as volume of free gas at STP, results here are presented as free gas volume ratios describing expansion between depth and surface conditions. This presentation also allows direct comparison with free gas yield of solid hydrate. Volume expansion ratio is presented for general reference for the pressure range 1 to 60 MPa and temperature range 0° to 80°C. (See USGS Open File Report 05-1451 online.) For pressures in the range 30 to 52 MPa and temperatures from 4° to 80°C, a more detailed evaluation of the P (water depth) and T (geotherm) effects on gas volumes has been undertaken. Ideal gas deviation factors, or z-factors, are also included. For free methane gas near the base of the hydrate stability zone at 360 m below seafloor in the Bering Sea, under conditions of 3,600 m water depth, 4°C seafloor temperature and 60°C/km geothermal gradient, the ratio of gas volume at standard

  5. Rapid transport and high accumulation of amorphous silica in the Congo deep-sea fan: A preliminary budget

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Ragueneau, Olivier; Jacques, Vincent; Corvaisier, Rudolph; Moriceau, Brivaëla; Khripounoff, Alexis; Pozzato, Lara; Rabouille, Christophe

    2015-01-01

    Mechanisms controlling the transfer and retention of silicon (Si) along continental margins are poorly understood, but play a major role in the functioning of coastal ecosystems and the oceanic biological pump of carbon. Deep-sea fans are well recognized as carbon sink spots, but we lack knowledge about the importance of the fans in the global Si cycle. Here, we provide a first estimate of the role played by the Congo deep-sea fan, one of the biggest in the world, in the Si cycle. Sediment cores sampled in the deep-sea fan were analyzed to build a Si mass balance. An exceptionally high accumulation rate of amorphous silica aSiO2 (2.29 ± 0.58 mol Si m- 2 y- 1) was found, due to a high sedimentation rate and the presence of aluminum in the sediments. Although favored by bioirrigation, recycling fluxes remained low (0.3 mol Si m- 2 y- 1) and reconstructed input fluxes could only be explained by lateral inputs coming from the canyon. Preliminary calculations show that the rapid transport of aSiO2 through the canyon and the excellent preservation efficiency in the sediments imply that 50% of aSiO2 river inputs from the Congo River accumulate annually in the deep-sea fan. Si:C ratios in deep-sea fan sediments were very low (0.2) and only three times as high as those measured in the river itself, which suggests that material from the river and the continental shelf was delivered directly through the canyon, with very little time for Si and C cycle decoupling to take place.

  6. Earthquake damage to underground facilities

    SciTech Connect

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters.

  7. Slavery and the Underground Railroad.

    ERIC Educational Resources Information Center

    Anderson, Nancy Comfort

    2000-01-01

    Presents a bibliography of sources to help children understand slavery and the Underground Railroad and recommends a combination of fiction and nonfiction for a better understanding. Includes picture books, biographies of people who played prominent roles during the time of slavery, nonfiction books for older readers, and videotape. (LRW)

  8. A Large and Deep Root System Underlies High Nitrogen-Use Efficiency in Maize Production

    PubMed Central

    Yu, Peng; Li, Xuexian; White, Philip J.; Li, Chunjian

    2015-01-01

    Excessive N fertilization results in low N-use efficiency (NUE) without any yield benefits and can have profound, long-term environmental consequences including soil acidification, N leaching and increased production of greenhouse gases. Improving NUE in crop production has been a longstanding, worldwide challenge. A crucial strategy to improve NUE is to enhance N uptake by roots. Taking maize as a model crop, we have compared root dry weight (RDW), root/shoot biomass ratio (R/S), and NUE of maize grown in the field in China and in western countries using data from 106 studies published since 1959. Detailed analysis revealed that the differences in the RDW and R/S of maize at silking in China and the western countries were not derived from variations in climate, geography, and stress factors. Instead, NUE was positively correlated with R/S and RDW; R/S and NUE of maize varieties grown in western countries were significantly greater than those grown in China. We then testified this conclusion by conducting field trials with representative maize hybrids in China (ZD958 and XY335) and the US (P32D79). We found that US P32D79 had a better root architecture for increased N uptake and removed more mineral N than Chinese cultivars from the 0-60 cm soil profile. Reported data and our field results demonstrate that a large and deep root, with an appropriate architecture and higher stress tolerance (higher plant density, drought and N deficiency), underlies high NUE in maize production. We recommend breeding for these traits to reduce the N-fertilizer use and thus N-leaching in maize production and paying more attention to increase tolerance to stresses in China. PMID:25978356

  9. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  10. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    SciTech Connect

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  11. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  12. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration.

    PubMed

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-17

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m², 35.6 kHz, and 13.3 nV/m², respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness.

  13. Observations of in situ deep-sea marine bioluminescence with a high-speed, high-resolution sCMOS camera

    NASA Astrophysics Data System (ADS)

    Phillips, Brennan T.; Gruber, David F.; Vasan, Ganesh; Roman, Christopher N.; Pieribone, Vincent A.; Sparks, John S.

    2016-05-01

    Observing and measuring marine bioluminescence in situ presents unique challenges, characterized by the difficult task of approaching and imaging weakly illuminated bodies in a three-dimensional environment. To address this problem, a scientific complementary-metal-oxide-semiconductor (sCMOS) microscopy camera was outfitted for deep-sea imaging of marine bioluminescence. This system was deployed on multiple platforms (manned submersible, remotely operated vehicle, and towed body) in three oceanic regions (Western Tropical Pacific, Eastern Equatorial Pacific, and Northwestern Atlantic) to depths up to 2500 m. Using light stimulation, bioluminescent responses were recorded at high frame rates and in high resolution, offering unprecedented low-light imagery of deep-sea bioluminescence in situ. The kinematics of light production in several zooplankton groups was observed, and luminescent responses at different depths were quantified as intensity vs. time. These initial results signify a clear advancement in the bioluminescent imaging methods available for observation and experimentation in the deep-sea.

  14. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing

    NASA Astrophysics Data System (ADS)

    Lejzerowicz, Franck; Esling, Philippe; Pawlowski, Jan

    2014-10-01

    Spatial patchiness is a natural feature that strongly influences the level of species richness we perceive in surface sediments sampled in the deep-sea. Recent environmental DNA (eDNA) surveys of benthic micro- and meiofauna confirmed this exceptional richness. However, it is unknown to which extent the results of these studies, based usually on few grams of sediment, are affected by spatial patchiness of deep-sea benthos. Here, we analyse the eDNA diversity of Foraminifera in 42 deep-sea sediment samples collected across different scales in the Southern Ocean. At three stations, we deployed at least twice the multicorer and from each multicorer cast, we subsampled 3 sediment replicates per core for 2 cores. Using high-throughput sequencing (HTS), we generated over 2.35 million high-quality sequences that we clustered into 451 operational taxonomic units (OTUs). The majority of OTUs were assigned to the monothalamous (single-chambered) taxa and environmental clades. On average, a one-gram sediment sample captures 57.9% of the overall OTU diversity found in a single core, while three replicates cover at most 61.9% of the diversity found in a station. The OTUs found in all the replicates of each core gather up to 87.9% of the total sequenced reads, but only represent from 12.2% to 30% of the OTUs found in one core. These OTUs represent the most abundant species, among which dominate environmental lineages. The majority of the OTUs are represented by few sequences comprising several well-known deep-sea morphospecies or remaining unassigned. It is crucial to study wider arrays of sample and PCR replicates as well as RNA together with DNA in order to overcome biases stemming from deep-sea patchiness and molecular methods.

  15. High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors.

    PubMed

    Ji, Xiang; Bai, Jing-feng; Shen, Guo-feng; Chen, Ya-zhu

    2009-09-01

    Under some circumstances surgical resection is feasible in a low percentage for the treatment of deep tumors. Nevertheless, high-intensity focused ultrasound (HIFU) is beginning to offer a potential noninvasive alternative to conventional therapies for the treatment of deep tumors. In our previous study, a large scale spherical HIFU-phased array was developed to ablate deep tumors. In the current study, taking into account the required focal depth and maximum acoustic power output, 90 identical circular PZT-8 elements (diameter =1.4 cm and frequency=1 MHz) were mounted on a spherical shell with a radius of curvature of 18 cm and a diameter of 21 cm. With the developed array, computer simulations and ex vivo experiments were carried out. The simulation results theoretically demonstrate the ability of the array to focus and steer in the specified volume (a 2 cmx2 cmx3 cm volume) at the focal depth of 15 to 18 cm. Ex vivo experiment results also verify the capability of the developed array to ablate deep target tissue by either moving single focal point or generating multiple foci simultaneously.

  16. Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells.

    PubMed

    Noh, Jung-Ran; Gang, Gil-Tae; Kim, Yong-Hoon; Yang, Keum-Jin; Lee, Chul-Ho; Na, O-Su; Kim, Gi-Ju; Oh, Won-Keun; Lee, Young-Don

    2010-02-01

    This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, free radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

  17. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  18. Partitioning and characterization of high speed adder structures in deep-submicron technologies

    NASA Astrophysics Data System (ADS)

    Estrada, Adrián; Sassaw, Gashaw; Jiménez, Carlos J.; Valencia, Manuel

    2007-05-01

    The availability of higher performance (in area, time and power consumption) and greater precision binary adders is a constant requirement in digital systems. Consequently, the design and characterization of adders and, most of all, their adaptation to the requisites of present-day deep-submicron technologies, are today still issues of concern. The binary adder structures in deep-submicron technologies must be revised to achieve the best balance between the number of bits in the adder and its delay, area and power consumption. It is therefore very important to make an effort to carefully optimize adder structures, thus obtaining improvements in digital systems. This communication presents the optimization of adder structures for implementations in deep-submicron technologies through their partitioning into blocks. This partitioning consists of dividing the number of input bits to the adder into several subsets of bits that will constitute the inputs to several adder structures of the same or of different types. The structures used to accomplish this study range from the more traditional types, such as the carry look ahead adder, the ripple carry adder or the carry select adder, to more innovative kinds, like the parallel prefix adders of the type proposed by Brent-Kung, Han-Carlson, Kogge-Stone or Ladner-Fischer. The analyses carried out allow the characterization of structures implemented in deep-submicron technologies for area, delay and power consumption parameters.

  19. A novel approach reveals high zooplankton standing stock deep in the sea

    NASA Astrophysics Data System (ADS)

    Vereshchaka, Alexander; Abyzova, Galina; Lunina, Anastasia; Musaeva, Eteri; Sutton, Tracey

    2016-11-01

    In a changing ocean there is a critical need to understand global biogeochemical cycling, particularly regarding carbon. We have made strides in understanding upper ocean dynamics, but the deep ocean interior (> 1000 m) is still largely unknown, despite representing the overwhelming majority of Earth's biosphere. Here we present a method for estimating deep-pelagic zooplankton biomass on an ocean-basin scale. We have made several new discoveries about the Atlantic, which likely apply to the world ocean. First, multivariate analysis showed that depth and Chl were the basic factors affecting the wet biomass of the main plankton groups. Wet biomass of all major groups was significantly correlated with Chl. Second, zooplankton biomass in the upper bathypelagic domain is higher than expected. Third, the majority of this biomass comprises macroplanktonic shrimps, which have been historically underestimated. These findings, coupled with recent findings of increased global deep-pelagic fish biomass, suggest that the contribution of the deep-ocean pelagic fauna for biogeochemical cycles may be more important than previously thought.

  20. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion.

    PubMed

    Crawford, D E; Wright, L A; James, S L; Abbott, A P

    2016-03-18

    Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods.

  1. Underground Study of Big Bang Nucleosynthesis in the Precision Era of Cosmology

    NASA Astrophysics Data System (ADS)

    Gustavino, Carlo

    2017-03-01

    Big Bang Nucleosinthesis (BBN) theory provides definite predictions for the abundance of light elements produced in the early universe, as far as the knowledge of the relevant nuclear processes of the BBN chain is accurate. At BBN energies (30 ≲ Ecm ≲ 300 MeV) the cross section of many BBN processes is very low because of the Coulomb repulsion between the interacting nuclei. For this reason it is convenient to perform the measurements deep underground. Presently the world's only facility operating underground is LUNA (Laboratory for Undergound Nuclear astrophysics) at LNGS ("Laboratorio Nazionale del Gran Sasso", Italy). In this presentation the BBN measurements of LUNA are briefly reviewed and discussed. It will be shown that the ongoing study of the D(p, γ)3He reaction is of primary importance to derive the baryon density of universe Ωb with high accuracy. Moreover, this study allows to constrain the existence of the so called "dark radiation", composed by undiscovered relativistic species permeating the universe, such as sterile neutrinos.

  2. Predicting the distribution of deep-sea vulnerable marine ecosystems using high-resolution data: Considerations and novel approaches

    NASA Astrophysics Data System (ADS)

    Rengstorf, Anna M.; Mohn, Christian; Brown, Colin; Wisz, Mary S.; Grehan, Anthony J.

    2014-11-01

    Little is known about species distribution patterns in deep-sea environments, primarily because sampling surveys in the high seas are expensive and time consuming. The increasing need to manage and protect vulnerable marine ecosystems, such as cold-water corals, has motivated the use of predictive modelling tools, which produce continuous maps of potential species or habitat distribution from limited point observations and full coverage environmental data. Rapid advances in acoustic remote sensing, oceanographic modelling and sampling technology now provide high quality datasets, facilitating model development with high spatial detail. This paper provides a short overview of existing methodologies for predicting deep-sea benthic species distribution, and illustrates emerging issues related to spatial and thematic data resolution, and the use of transect-derived species distribution data. In order to enhance the ecological relevance and reliability of deep-sea species distribution models, novel techniques are presented based on a case study predicting the distribution of the cold-water coral Lophelia pertusa in three carbonate mound provinces in Irish waters. Specifically, the study evaluates (1) the capacity of newly developed high-resolution (250 m grid cell size) hydrodynamic variables to explain local scale cold-water coral distribution patterns, (2) the potential value of species occurrence proportion data to maintain semi-quantitative information of coral prevalence (i.e. coverage) and sampling effort per grid cell within the response variable, and (3) mixed effect modelling to deal with spatially grouped transect data. The study shows that predictive models using vertical and horizontal flow parameters perform significantly better than models based on terrain parameters only. Semi-quantitative proportion data may decrease model uncertainty and increase model reliability, and provide a fruitful avenue of research for analysing large quantities of video data in

  3. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    SciTech Connect

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-17

    In this study, we determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky–Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of cos2Φ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v2=~10%.

  4. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    DOE PAGES

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-17

    In this study, we determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky–Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of cos2Φ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v2=~10%.

  5. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  6. High dissolved methane concentrations in the deep-water Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Chun, Jong-Hwa

    2014-05-01

    As a part of the Korean National Gas Hydrate Program, a production test in the Ulleung Basin is planned to be performed in 2015. The targets are the gas hydrate-bearing sand reservoirs, which were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. To ensure a safe production test, an environmental program has been conducted by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2012. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates using the KIMOS during the production test. A survey for measuring the dissolved methane concentrations in the area at and nearby the gas hydrate production testing site was performed using R/V TAMHAE II and the KISOS. The water samples were also collected and analyzed to measure the dissolved methane concentrations by the SBE carousel water sampler installed in the KISOS and gas chromatography (GC) at KIGAM. The dissolved methane concentrations were also measured using a Frantech METS methane sensor installed in the KISOS. No dissolved methane anomaly was detected at the site where any evidence of gas hydrate presence has not been observed. On the other hand, the water analysis showed high dissolved methane concentrations at the water depth above and within the gas hydrate stability zone (GHSZ) at the site where gas hydrates were identified by drilling. However, these dissolved methane anomalies within the GHSZ were not detected by methane sensor. To examine these uncertain dissolved methane anomalies within the GHSZ, the water samples will be collected and analyzed once again, and the analytical result will be also carefully compared with the data collected using the methane sensor and deep ocean mass spectrometer (DOMS) developed by the University of

  7. High-resolution temporal analysis of deep subseafloor microbial communities inhabiting basement fluids

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Lin, H. T.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    The temporal variation in microbial communities inhabiting the anoxic, sediment-covered basaltic ocean basement is largely uncharacterized due to the inaccessible nature of the environment and difficulties associated with collection of samples from low-biomass microbial habitats. Here, a deep sea instrumented platform was employed on the Juan de Fuca Ridge in the summer of 2013 to collect 46 samples of basement fluids from the most recent generation of borehole observatories (U1362A and B), which feature multiple sampling horizons at a single location and fluid delivery lines manufactured using stainless steel or inert polytetrafluoroethylene (PTFE) parts. Included were three time-series deployments of the GEOmicrobe sled meant to resolve the fine-scale (i.e. hourly) temporal variation within in situ crustal microbial communities. Illumina technology was used to sequence small subunit ribosomal RNA (SSU rRNA) gene fragments from sediment, seawater, and subseafloor fluids. Similar to has been reported previously, basic differences in the three environments was observed. Fluid samples from depth horizons extending 30, 70, and ~200 meters sub-basement revealed differences in the observed microbial communities, indicating potential depth-specific zonation of microorganisms in the basaltic basement fluids. Extensive overlap between microorganisms collected from a single depth horizon but using two fluid delivery lines manufactured with different materials was observed, though some differences were also noted. Several archaeal (e.g. THSCG, MCG, MBGE, Archaeoglobus) and bacterial (e.g. Nitrospiraceae, OP8, KB1) lineages detected in previous years of basement fluid sampling nearby were found here, which further supports the notion that these microorganisms are stable residents of anoxic basaltic subseafloor fluids. Direct cell enumeration of samples collected from U1362A and U1362B revealed an elevated biomass compared to samples at these locations from previous years

  8. High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology.

    PubMed

    Pan, Ying; Xie, Yong H; Deng, Zheng M; Tang, Yue; Pan, Dong D

    2014-07-08

    Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth.

  9. Underground hibernation in a primate.

    PubMed

    Blanco, Marina B; Dausmann, Kathrin H; Ranaivoarisoa, Jean F; Yoder, Anne D

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

  10. Underground hibernation in a primate

    PubMed Central

    Blanco, Marina B.; Dausmann, Kathrin H.; Ranaivoarisoa, Jean F.; Yoder, Anne D.

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation. PMID:23636180

  11. Local deep convection in a megacity environment: A high-resolution modeling study with a rapid refresh system

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Xu, Xiaolin; Wang, Ping; Li, Jia; Zhang, Lei; Chen, Baode

    2013-04-01

    Due to a special underlying surface condition over Shanghai, a great deal of deep convection is locally developed. Because of its relatively small spatial scale, fast development and complicated movement, it's hard to monitor and predict such event in real-time by using the traditional observational network and forecast system. To forecast this kind of system, a rapid refresh cycling (1-hour) forecasting system was established based on the Weather Research and Forecasting (WRF) model and the ARPS Data Analysis System (ADAS), in which a 3-km grid size and the warm-start initialization technique are used. In this study, making use of high-resolution observations and the rapid refresh system, a deep convection weather event occurred in the afternoon of July 31, 2011 was simulated and the mechanism of initiation and development of this convective event was investigated. In the morning, due to the urban heat island effects in city, boundary layer jet stream was maintained and weakened gradually, and in the meantime, a large amount of unstable energy was accumulated. By the afternoon, due to strong land-sea breeze near the Yangtze Estuary and Southeast coastal of Shanghai, abundant water vapor was brought into the lower atmosphere over the urban area. The interaction between land-sea breeze and urban heat island effects largely enhanced the boundary layer vertical wind shear, accelerated the accumulation of instability energy and strengthened the updrafts. While the southward intrusion of weaker cold air led to strong westerly wind in the boundary layer of inland, and at the same time, the powerful easterly land-sea breeze occurred, resulting in a meso-scale surface convergence line over the central area of Shanghai, which triggered the unstable energy releasing and deep convection formed. Our study found that a high-resolution and high-frequency rapid refresh cycling system is capable to predict this kind of local deep convective weather event if a proper data

  12. Deep Fish.

    PubMed

    Ishaq, Omer; Sadanandan, Sajith Kecheril; Wählby, Carolina

    2017-01-01

    Zebrafish ( Danio rerio) is an important vertebrate model organism in biomedical research, especially suitable for morphological screening due to its transparent body during early development. Deep learning has emerged as a dominant paradigm for data analysis and found a number of applications in computer vision and image analysis. Here we demonstrate the potential of a deep learning approach for accurate high-throughput classification of whole-body zebrafish deformations in multifish microwell plates. Deep learning uses the raw image data as an input, without the need of expert knowledge for feature design or optimization of the segmentation parameters. We trained the deep learning classifier on as few as 84 images (before data augmentation) and achieved a classification accuracy of 92.8% on an unseen test data set that is comparable to the previous state of the art (95%) based on user-specified segmentation and deformation metrics. Ablation studies by digitally removing whole fish or parts of the fish from the images revealed that the classifier learned discriminative features from the image foreground, and we observed that the deformations of the head region, rather than the visually apparent bent tail, were more important for good classification performance.

  13. Efficient analysis of deep high-index-contrast gratings under arbitrary illumination.

    PubMed

    Motamedi, Nojan; Shlivinski, Amir; Ford, Joseph E; Lomakin, Vitaliy

    2015-12-28

    An efficient method for computing the problem of an electromagnetic beam transmission through deep periodic dielectric gratings is presented. In this method the beam is decomposed into a spectrum of plane waves, transmission coefficients corresponding to each such plane wave are found via Rigorous Coupled Wave Analysis, and the transmitted beam is calculated via inverse Fourier integral. To make the approach efficient for deep gratings the fast variations of the transmission coefficients versus spatial frequency are accounted for analytically by casting the summations and integrals in a form that has explicit rapidly varying exponential terms. The resulting formulation allows computing the transmitted beam with a small number of samples independent of the grating depth.

  14. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  15. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  16. Above- and underground storage tanks

    SciTech Connect

    Canning, K.; Kilbourne, A.

    1997-09-01

    Storage tanks are the primary means of storing liquid, fluid and gas products. Federal and state environmental regulations, as well as local building and fire codes, take into account leaks and spills, tank emissions, underground tank seepage and safety issues, and they define standards for tank manufacturers and owners. For specific regulatory information pertaining to your application, contact the local authorities having jurisdiction. Storage tanks listed within this product guide have been classified as underground or aboveground, with subcategories including modular, process and temporary tanks. Tank construction materials include aluminum, carbon steel, concrete, fiberglass-reinforced plastic (FRP) and stainless steel. A variety of accessories, including automatic tank gauging systems, level monitors, leak detectors, overfill protection and tank inspection systems, also are listed. Aboveground storage tanks (ASTs) have less than 10 percent of their tank volume and piping below ground. Available in both vertical and horizontal configurations, they can be either erected in the field or fabricated in a factory. Underground storage tanks (USTs) are primarily used to contain regulated substances; USTs have at least 10% of their tank volume and piping buried belowground. Common UST construction materials include carbon steel, coated steel, cathodically protected steel and FRP. USTs are required to have corrosion protection, spill and overfill prevention and control and release detection in place by December 1998.

  17. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  18. The stress and underground environment

    NASA Astrophysics Data System (ADS)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  19. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    SciTech Connect

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  20. Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.

    PubMed

    Qin, Huan; Zhou, Ting; Yang, Sihua; Xing, Da

    2015-06-10

    Photoacoustic imaging (PAI) and photoacoustic (PA) therapy have promising applications for treating tumors. It is known that the utilization of high-absorption-coefficient probes can selectively enhance the PAI target contrast and PA tumor therapy efficiency in deep-seated tissue. Here, the design of a probe with the highest availability of optical-thermo conversion by using graphene oxide (GO) and dyes via π-π stacking interactions is reported. The GO serves as a base material for loading dyes and quenching dye fluorescence via fluorescence resonance energy transfer (FRET), with the one purpose of maximum of PA efficiency. Experiments verify that the designed fluorescence quenching nanoprobes can produce stronger PA signals than the sum of the separate signals generated in the dye and the GO. Potential applications of the fluorescence quenching nanoprobes are demonstrated, dedicating to enhance PA contrast of targets in deep-seated tissues and tumors in living mice. PA therapy efficiency both in vitro and in vivo by using the fluorescence quenching nanoprobes is found to be higher than with the commonly used PA therapy agents. Taken together, quenching dye fluorescence via FRET will provide a valid means for developing high-efficiency PA probes. Fluorescence quenching nanoprobes are likely to become a promising candidate for deep-seated tumor imaging and therapy.

  1. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    SciTech Connect

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  2. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  3. Deterministic modeling of the impact of underground structures on urban groundwater temperature.

    PubMed

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Eisenlohr, Laurent

    2016-12-01

    Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas.

  4. Psycho-social aspects of productivity in underground coal mining

    SciTech Connect

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoing management.

  5. Cosmic ray sun shadow in Soudan 2 underground muon flux.

    SciTech Connect

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Fields, T. H.; Goodman, M. C.; Joffe-Minor, T.; Price, L. E.; Seidlein, R.; Soudan 2 Collaboration; Thron, J. L.

    1999-06-23

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. The authors report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a 3.3{sigma} shadow observed during the years 1995 to 1998.

  6. Rational Design and Characterization of Heteroleptic Phosphorescent Complexes for Highly Efficient Deep-Red Organic Light-Emitting Devices.

    PubMed

    Li, Guomeng; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Liu, Yu; Wang, Yue

    2017-03-27

    Two new deep-red iridium(III) complexes, (fpiq)2Ir(dipba) (fIr1) and (f2piq)2Ir(dipba) (dfIr2), comprising two cyclometaling ligands of fluorophenyl-isoquinoline derivatives (fpiq and f2piq) and a N-heterocyclic carbene (NHC)-based ancillary ligand of N,N'-diisopropylbenzamidinate (dipba) are designed, synthesized, and characterized. Given the unique four-membered Ir-N-C-N backbone built by the metal center and the ancillary ligand, both phosphors achieve significant improvement for their comprehensive optoelectronic characteristics. Density function theory (DFT) calculations and electrochemical measurements support the genuine pure red phosphorescent emission of fIr1 and dfIr2 based on their clearly distinct electron density distributions of the HOMO/LUMO orbitals compared with other red-emitting Ir(III) derivatives. Both new phosphors show deep-red emission with λmax values in the region of 650-660 nm with high PLQYs and short excited-state lifetimes. The phosphorescent organic light emitting diodes (PhOLEDs) based on fIr1 and dfIr2 realize deep-red EL with the stable CIEx,y coordinates of (0.70, 0.30) and (0.69, 0.31), the peak EQE/PE values of 15.4%/9.3 lm W(-1) and 16.7%/10.4 lm W(-1), respectively, which maintain such high levels as 10.6%/3.5 lm W(-1) and 10.8%/3.6 lm W(-1) at the practical luminance of 1000 cd m(-2). They are the highest EL values reported for the OLEDs with such deep-red CIE coordinates.

  7. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill

  8. Deep electronic levels in high-pressure Bridgman Cd{sub 1-x}Zn{sub x}Te

    SciTech Connect

    Szeles, C.; Shan, Y.Y.; Lynn, K.G.; Eissler, E.E.

    1995-12-01

    The behavior of deep electronic levels was studied as a function of Zn concentration in CdZnTe crystals grown by the high-pressure Bridgman technique using thermoelectric effect spectroscopy. A significant increase of the thermal ionization energies of hole traps was observed with the increasing Zn content of the ternary compound. The effect explains the stronger hole trapping and the resulting much shorter hole lifetime usually observed in CdZnTe as compared to CdTe. The behavior also suggests increased carrier recombination and explains the strong deterioration of electron collection in detectors fabricated from CdZnTe of high Zn concentration.

  9. Studies of deep levels in high resistivity silicon detectors irradiated by high fluence fast neutrons using a thermally stimulated current spectrometer

    SciTech Connect

    Li, Z.; Kraner, H.W.; Chen, W.; Beuttenmuller, R.; Biggeri, U.; Bruzzi, M.; Borchi, E.; Baldini, A.; Spillantini, P. |

    1993-04-01

    Measurements of deep level spectrum of high resistivity silicon detectors irradiated by high fluence fast neutrons ({Phi}{sub n}: 2 {times} 10{sup 12}n/cm{sup 2}) have been made using a thermally stimulated current (TSC) spectrometer. It has been found that at least nine new defect levels, with peaking temperature of 19K, 27K, 36K, 44K, 49K, 83K, 93K, 105K, and 120K, begin to appear when {Phi}{sub n} {ge} 1 {times} 10{sup 13}n/cm. All peaks have strong dependences on the filling voltage (V{sub fill}, forward bias) or injection current especially for high fluence ({Phi}{sub n} {ge} 10{sup 13} n/cm{sup 2}) situations. The defect concentration, energy level in the band gap, and cross section of each deep level, totaling, at least 13, have been studied systematically and possible identifications of the levels have been discussed.

  10. Sea water contamination in underground waters of salento (Southern Italy).

    PubMed

    Buccolieri, G; Cardellicchio, N; Dell'Atti, A; Genga, A; Strisciullo, G

    2001-01-01

    In the present work, a study of a physico-chemical characterisation of underground waters, utilised for agriculture and human use in the Lecce district (Southern Italy) has been reported. The aim of the work has been to define the quality of underground waters in the different areas and to value salt contamination due to seawater intrusion. Statistical techniques, such as Principal Component Analysis (PCA) and Cluster Analysis (CA), have been utilised to examine the correlations among the different parameters and to define contamination areas. The results have shown a high salt contamination in artesian wells of the Ionian Sea coast.

  11. High-resolution deep Northeast Pacific radiocarbon record shows little change in ventilation rate during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Mix, A. C.

    2010-12-01

    The rise in atmospheric carbon dioxide during the last deglaciation is thought to be driven by release of carbon sequestered in the abyssal ocean. This mechanism requires a poorly ventilated deep Pacific during the Last Glacial Maximum (LGM) and enhanced ventilation during the deglaciation. Here we evaluate the plausibility of this scenario using planktonic and benthic foraminiferal radiocarbon data from a high-sedimentation rate core (~25 cm/kyr) collected in the deep (2700 m) Northeast Pacific. We estimate that the mean benthic-planktonic (B-P) age was 1620±190 years during the LGM (n=10 pairs). This value is indistinguishable from the mean B-P difference for the deglaciation (1500±230; n=20 pairs) and the difference between surface and deep water 14C ages today (1560±70 years). Furthermore, our time series of benthic Δ14C parallels atmospheric Δ14C with an offset of 300±50‰ from 22 to 10 kyr BP. These data suggest the ventilation rate of the deep NE Pacific remained nearly constant during the deglaciation, consistent with lower resolution data from this region (Okazaki et al., 2010). Between 22 and 16 kyr BP, Δ14C in the deep NE Pacific varied between 0 and 100‰, well above the -200‰ values estimated at intermediate depths off of Baja California during the Mystery Interval (Marchitto et al., 2007). The deep NE Pacific apparently did not contain water of adequate age to source deglacial Δ14C anomalies shallower in the water column. Given that Antarctic Intermediate Water is also an unlikely source (de Pol-Holz et al., 2010; Rose et al., 2010), an alternative explanation is necessary for the extreme 14C depletions in the eastern tropical Pacific. De Pol-Holz, R. D., et al. 2010. No signature of abyssal carbon in intermediate waters off Chile during deglaciation. Nature Geoscience 3, 192-195. Marchitto, T., Lehman, S., Ortiz, J., Fluckiger, J. & van Geen, A. 2007. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science

  12. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    PubMed Central

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787

  13. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    SciTech Connect

    Chen, Barry Y.

    2016-11-29

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patterns are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.

  14. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    NASA Astrophysics Data System (ADS)

    Iwamoto, Naoya; Azarov, Alexander; Ohshima, Takeshi; Moe, Anne Marie M.; Svensson, Bengt G.

    2015-07-01

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 1015 cm-3 range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ˜1014 cm-3). Schottky barrier diodes fabricated on substrates annealed at 1400-1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  15. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    SciTech Connect

    Iwamoto, Naoya Azarov, Alexander; Svensson, Bengt G.; Ohshima, Takeshi; Moe, Anne Marie M.

    2015-07-28

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 10{sup 15 }cm{sup −3} range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ∼10{sup 14 }cm{sup −3}). Schottky barrier diodes fabricated on substrates annealed at 1400–1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  16. High-voltage electron microscopy tomography and structome analysis of unique spiral bacteria from the deep sea.

    PubMed

    Yamaguchi, Masashi; Yamada, Hiroyuki; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Murata, Kazuyoshi; Mori, Yuko; Furukawa, Hiromitsu; Uddin, Mohammad Shorif; Chibana, Hiroji

    2016-08-01

    Structome analysis is a useful tool for identification of unknown microorganisms that cannot be cultured. In 2012, we discovered a unique deep-sea microorganism with a cell structure intermediate between those of prokaryotes and eukaryotes and described its features using freeze-substitution electron microscopy and structome analysis (quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level). We named it Myojin parakaryote Here we describe, using serial ultrathin sectioning and high-voltage electron microscopy tomography of freeze-substituted specimens, the structome analysis and 3D reconstruction of another unique spiral bacteria, found in the deep sea off the coast of Japan. The bacteria, which is named as 'Myojin spiral bacteria' after the discovery location and their morphology, had a total length of 1.768 ± 0.478 µm and a total diameter of 0.445 ± 0.050 µm, and showed either clockwise or counter-clockwise spiral. The cells had a cell surface membrane, thick fibrous layer, ribosomes and inner fibrous structures (most likely DNA). They had no flagella. The bacteria had 322 ± 119 ribosomes per cell. This ribosome number is only 1.2% of that of Escherichia coli and 19.3% of Mycobacterium tuberculosis and may reflect a very slow growth rate of this organism in the deep sea.

  17. High incidence of carpal tunnel syndrome after deep brain stimulation in Parkinson's disease.

    PubMed

    Loizon, Marine; Laurencin, Chloé; Vial, Christophe; Danaila, Teodor; Thobois, Stéphane

    2016-12-01

    We observed several cases of carpal tunnel syndrome (CTS) revealed after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD). 115 consecutive PD patients who underwent STN-DBS between 2010 and 2014 at the Neurological Hospital in Lyon were retrospectively included. CTS was accepted as the diagnosis only if clinical examination and ENMG both confirmed it. Nine patients (7.8 %) developed CTS in the 2 years following surgery, which is far beyond the 2.7/1000 incidence in the general population. The present study shows an overrepresentation of CTS occurrence after STN-DBS in PD.

  18. The High Pressure Nervous Syndrome During Human Deep Saturation and Excursion Diving

    DTIC Science & Technology

    1973-01-01

    thyrotoxicosis and during the shivering of cold. Whilst tremor may not be very incapaci- tating, it is an important rarly sign of the HPNS and may be the ’ rst... warning that th; rate of compression for the depth desired is too fas», before other more serious HPNS changes arc seen, su. h as in the...the late of compression in deep saturation oxygen-helium discs has been reduced significantly to ameliorate the signs and sympt uns of HPNS found

  19. High-voltage VIM Region Deep Brain Stimulation Mimicking Progressive Supranuclear Palsy

    PubMed Central

    Patterson, Addie; Okun, Michael S.; Hess, Christopher

    2017-01-01

    Background Deep brain stimulation (DBS) for essential tremor (ET) can cause unwanted side effects. Case Report A patient with ET underwent unilateral dual-lead thalamic DBS. He later developed parkinsonism with atypical features and was diagnosed with progressive supranuclear palsy. During presentation for a second opinion, stimulation-induced side effects were suspected. Inactivation of DBS resolved atypical features and superimposed idiopathic Parkinson disease (PD) was diagnosed. Discussion This case illustrates the importance of recognizing the possible influence of stimulation-induced side effects and discusses when to utilize dual-lead DBS for ET and the co-occurrence of ET and PD. PMID:28373925

  20. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  1. 12. Credit BG. Typical view down one of the underground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Credit BG. Typical view down one of the underground tunnels connecting the Control and Recording Center with all the JPL Edwards Facility test stands. In addition to personnel traffic, the tunnel system carried electrical power cables, instrumentation and control circuits, and high pressure helium and nitrogen lines. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  2. A Psychosocial Approach to Understanding Underground Spaces

    PubMed Central

    Lee, Eun H.; Christopoulos, George I.; Kwok, Kian W.; Roberts, Adam C.; Soh, Chee-Kiong

    2017-01-01

    With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  3. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  4. Application of high stability oscillators to radio science experiments using deep space probes

    NASA Technical Reports Server (NTRS)

    Kursinski, Emil R.

    1990-01-01

    The microwave telecommunication links between the earth and deep space probes have long been used to conduct radio science experiments which take advantage of the phase coherency and stability of these links. These experiments measure changes in the phase delay of the signals to infer electrical, magnetic and gravitational properties of the solar system environment and beyond through which the spacecraft and radio signals pass. The precision oscillators, from which the phase of the microwave signals are derived, play a key role in the stability of these links and therefore the sensitivity of these measurements. These experiments have become a driving force behind recent and future improvements in the Deep Space Network and spacecraft oscillators and frequency and time distribution systems. Three such experiments which are key to these improvements are briefly discussed and relationship between their sensitivity and the signal phase stability is described. The first is the remote sensing of planetary atmospheres by occultation in which the radio signal passes through the atmosphere and is refracted causing the signal pathlength to change from which the pressure and the temperature of the atmosphere can be derived. The second experiment is determination of the opacity of planetary rings by passage of the radio signals through the rings. The third experiment is the research for very low frequency gravitational radiation. The fractional frequency variation of the signal is comparable to the spatial strain amplitude the system is capable of detecting. A summary of past results and future possibilities for these experiments are presented.

  5. High risk of deep vein thrombosis associated with peripherally inserted central catheters in lymphoma

    PubMed Central

    Li, Chao-Feng; Wang, Yu; Liu, Pan-Pan; Bi, Xi-Wen; Sun, Peng; Lin, Tong-Yu; Jiang, Wen-Qi; Li, Zhi-Ming

    2016-01-01

    Peripherally inserted central venous catheters (PICCs) are widely used in cancer patients. Although PICC is a convenient tool, its use is associated with an obvious increase in the incidence of venous thrombosis. The risk factors for deep vein thrombosis associated with the use of PICCs in cancer patients are largely unexplored. This study aimed to investigate the incidence of PICC-associated thrombosis in lymphoma compared with its incidences in other types of cancer. A total of 8028 adult cancer patients inserted with PICC between June 2007 and June 2015 were included in this study. A total of 249 of the 8028 included patients (3.1%) inserted with PICC developed upper extremity deep vein thrombosis (PICC-UEDVT). Patients with lymphoma were more likely to have PICC-UEDVT than those with other types of malignancies (7.1% vs. 2.80%; P < 0.001). Logistic analysis revealed that a lymphoma diagnosis was a risk factor for UEDVT in cancer patients inserted with PICC (OR: 3.849, 95% CI: 2.334–6.347). Patients with lymphoma may be more predisposed to developing PICC-UEDVT than those with other types of malignancies. Identifying the mechanism underlying the relationship between PICC-UEDVT and lymphoma requires further study. PMID:27078849

  6. GOING UNDERGROUND IN FINLAND: DESIGN OF ONKALO IN PROGRESS

    SciTech Connect

    Dikds, T.; Ikonen, A.; Niiranen, S.; Hansen, J.

    2003-02-27

    The long-term program aimed at selection of a site for a deep repository was initiated in Finland in 1983. This program has come to end in 2001 and a new phase aimed at implementation of the geological disposal of spent fuel has been started. In this new phase the first milestone is the application for a construction license for the disposal facility around 2010. To fulfill the needs for detailed design of the disposal system, an underground rock characterization facility (URCF) will be constructed at the representative depth at Olkiluoto. The excavation of this facility will start the work for underground characterization, testing and demonstration, which is planned to be a continuous activity throughout the whole life cycle of the deep repository. The overall objectives for the underground site characterization are (1) verification of the present conclusions on site suitability, (2) definition and identification of suitable rock volumes for repository space and (3) characterization of planned host rock for detailed design, safety assessment and construction planning. The objective for verification aims at assessing that the Olkiluoto site meets the basic criteria for long-term safety and as well the basic requirements for construction and thus justifies the site selection. The two other main objectives are closely related to design of the repository and assessing the long-term safety of the site-specific disposal system. The most important objective of ONKALO should allow an in-depth investigation of the geological environment and to provide the opportunity to allow validation of models at more appropriate scales and conditions than can be achieved from the surface. In some areas, such as in demonstrating operational safety, in acquiring geological information at a repository scale and in constructional and operational feasibility, the ONKALO will provide the only reliable source of in situ data. The depth range envisaged for URCF called ONKALO is between 400 and

  7. Might underground waste repositories blow up?

    SciTech Connect

    Hippel, F. von

    1996-03-01

    Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

  8. Shotcrete for underground support VI

    SciTech Connect

    Not Available

    1993-01-01

    This proceedings consists of papers presented at the Shotcrete for Underground Support VI Conference held in Niagara-on-the-Lake, Ontario, Canada, May 2-6, 1993. It covers three broad themes concerning shotcrete - engineering, research, and applications. Specifically, the proceedings presents papers on: (1) materials engineering; (2) shotcrete research; (3) engineering design; and (4) tunneling, soil nailing, and mining applications. The book concludes by presenting an international compilation of guidelines and recommendations on shotcrete. Papers have been processed separately for inclusion on the data base.

  9. Efficiency and impacts of hythane (CH4+H2) underground storage

    NASA Astrophysics Data System (ADS)

    Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel

    2016-04-01

    The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing

  10. Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gordon, Sean

    2013-03-01

    Sean Gordon of the USDA on "Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  11. Review: Impact of underground structures on the flow of urban groundwater

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Winiarski, Thierry; Rossier, Yvan; Eisenlohr, Laurent

    2016-02-01

    Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.

  12. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  13. Deep-blue efficient OLED based on NPB with little efficiency roll-off under high current density

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    2017-03-01

    NPB usually is used as a hole-transport layer in OLED. In fact, it is a standard pure blue-emission material. However, its light-emitting efficiency in OLED is low due to emissive nature of organic material. Herein, a deep-blue OLDE based on NPB was fabricated. The light-emitting efficiency of the device demonstrates a moderate value, and efficiency roll-off is little under high current density. The device demonstrates that the electroplex's emission decreases with increasing electric field intensity.

  14. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.

    PubMed

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, A Claude; Fink, Mathias; Aubry, Alexandre

    2016-11-01

    Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.

  15. Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program

    SciTech Connect

    Szczerbinska, Barbara

    2014-06-01

    In response to an increasing interest in experiments conducted at deep underground facilities around the world, in 2010 the theory community has proposed a new initiative - a Center for Theoretical Underground Physics and Related Areas (CETUP*). The main goal of CETUP* is to bring together people with different talents and skills to address the most exciting questions in particle and nuclear physics, astrophysics, geosciences, and geomicrobiology. Scientists invited to participate in the program do not only provide theoretical support to the underground science, they also examine underlying universal questions of the 21st century including: What is dark matter?, What are the masses of neutrinos?, How have neutrinos shaped the evolution of the universe?, How were the elements from iron to uranium made?, What is the origin and thermal history of the Earth? The mission of the CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science via individual and collaborative research in dynamic atmosphere of intense scientific interactions. Our main goal is to bring together scientists scattered around the world, promote the deep underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities. CETUP*2014 included 5 week long program (June 24 – July 26, 2013) covering various theoretical and experimental aspects of Dark Matter, Neutrino Physics and Astrophysics. Two week long session focused on Dark Matter (June 24-July 6) was followed by two week long program on Neutrino Physics and Astrophysics (July 15-26). The VIIth International Conference on Interconnections between Particle Physics and Cosmology (PPC) was sandwiched between these sessions (July 8-13) covering the subjects of dark matter, neutrino physics, gravitational waves, collider physics and other from both theoretical end experimental

  16. Underground storage tank management plan

    SciTech Connect

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  17. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity.

    PubMed

    Kasuga, Jun; Hashidoko, Yasuyuki; Nishioka, Atsushi; Yoshiba, Megumi; Arakawa, Keita; Fujikawa, Seizo

    2008-09-01

    Xylem parenchyma cells (XPCs) of boreal hardwood species adapt to sub-freezing temperatures by deep supercooling to maintain a liquid state of intracellular water near -40 degrees C. Our previous study found that crude xylem extracts from such tree species exhibited anti-ice nucleation activity to promote supercooling of water. In the present study, thus, we attempted to identify the causative substances of supercooling. Crude xylem extracts from katsura tree (Cercidiphyllum japonicum), of which XPCs exhibited deep supercooling to -40 degrees C, were prepared by methanol extraction. The crude extracts were purified by liquid-liquid extraction and then by silica gel column chromatography. Although all the fractions obtained after each purification step exhibited some levels of anti-ice nucleation activity, only the most active fraction was retained to proceed to the subsequent level of purification. High-performance liquid chromatography (HPLC) analysis of a fraction with the highest level of activity revealed four peaks with high levels of anti-ice nucleation activity in the range of 2.8-9.0 degrees C. Ultraviolet (UV), mass and nuclear magnetic resonance (NMR) spectra revealed that these four peaks corresponded to quercetin-3-O-beta-glucoside (Q3G), kaempferol-7-O-beta-glucoside (K7G), 8-methoxykaempferol-3-O-beta-glucoside (8MK3G) and kaempferol-3-O-beta-glucoside (K3G). Microscopic observations confirmed the presence of flavonoids in cytoplasms of XPCs. These results suggest that diverse kinds of anti-ice nucleation substances, including flavonol glycosides, may have important roles in deep supercooling of XPCs.

  18. Coring in deep hardrock formations

    SciTech Connect

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  19. Picos de Europa National and Regional parks (Northern Spain): the karst underground landscape

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Rodríguez-Rodríguez, Laura; José Domínguez-Cuesta, María; Meléndez-Asensio, Mónica; García-Sansegundo, Joaquín

    2015-04-01

    Karst caves represent an environmental with a high value from the Geoheritage and Geodiversity points of view given by hidden underground landscape practically reserved to the speleologists. Nevertheless, cave surveys, 3d models of caves and DEMs, and pictures can be used to approach the endokarst geoheritage characterization. The Picos de Europa National and Regional parks include the 14% of World's Deepest Caves (>1 km depth); moreover these parks shows a high environmental value related with seven protection figures: Biosphere Reserve, Special Protection Area, the Site of Community Importance, and four Natural Monument. The aim of this work is to present the Geoheritage values of the underground landscape of the Picos de Europa National and Regional parks. These parks involve several alpine karst massifs up to 700 km2 and 2,600 m asl, as the Picos de Europa mountains (declared Global Geosite by its geomorphological interest), the Mampodre Massif, and the Peñas Pintas and Yordas peaks (sited in Riaño dam area). The alpine karst involves a large underground landscape formed by more than 3,700 epigenic caves with 403 km of conduits. The 95 % of the cave conduits are located in the Picos de Europa mountains and correspond to caves up to 18.9 km length and 1.6 km depth; the 5 % of cave conduits are sited in other small karst areas and include caves up to 1.5 km length and 200 m depth. The karst caves present high natural, scientific and cultural values. The natural value corresponds to the singularity and the spectacular vertical development of the caves and a very high Geodiversity of cave features. The karst shows a high concentration of deep caves (81 caves deeper than 500 m) that is twice higher than the concentration of other karst areas, as Arabika Massif (Western Caucasus). The natural value is mainly related to the presence of geomorphological and hydrogeological features, highlighting high vadose canyons and shafts, old phreatic and epiphreatic conduits

  20. Deep Drawing for high LDR by a new Hydro-rim Forming Process with Differential Temperature- Analysis and Experiments

    NASA Astrophysics Data System (ADS)

    Simon, Y. Ben; Tirosh, J.; Rubinski, Ludmila

    2005-08-01

    The purpose of this study is to analyze and test a possible increase of the Limit Drawing Ratio (LDR) in Deep Drawing by Hydro-rim process (a certain subset of the classical Hydroforming) which includes the newly differential temperature effect. The idea is to facilitate the plastic flow by local heating along the flange and to cool the area where strength is needed. The suggested analysis is based on the dual bounds approach (upper and lower bounds simultaneously) using the highly versatile Johnson-Cook constitutive material model. The advantage of combined high hydraulic pressure (about 1000 bar) with relatively high blank temperature (with magnitude of about one third the melting temperature of the considered material) in the same operation is discussed. Emphasis is given to the rule of blank temperature difference (between the flange and the wall of the product) conjugate with optimal hydro rim pressure in increasing the limit drawing ratio of the products (Aluminum, Copper and various Steels).

  1. Bucking the trend: genetic analysis reveals high diversity, large population size and low differentiation in a deep ocean cetacean

    PubMed Central

    Thompson, K F; Patel, S; Baker, C S; Constantine, R; Millar, C D

    2016-01-01

    Understanding the genetic structure of a population is essential to its conservation and management. We report the level of genetic diversity and determine the population structure of a cryptic deep ocean cetacean, the Gray's beaked whale (Mesoplodon grayi). We analysed 530 bp of mitochondrial control region and 12 microsatellite loci from 94 individuals stranded around New Zealand and Australia. The samples cover a large area of the species distribution (~6000 km) and were collected over a 22-year period. We show high genetic diversity (h=0.933–0.987, π=0.763–0.996% and Rs=4.22–4.37, He=0.624–0.675), and, in contrast to other cetaceans, we found a complete lack of genetic structure in both maternally and biparentally inherited markers. The oceanic habitats around New Zealand are diverse with extremely deep waters, seamounts and submarine canyons that are suitable for Gray's beaked whales and their prey. We propose that the abundance of this rich habitat has promoted genetic homogeneity in this species. Furthermore, it has been suggested that the lack of beaked whale sightings is the result of their low abundance, but this is in contrast to our estimates of female effective population size based on mitochondrial data. In conclusion, the high diversity and lack of genetic structure can be explained by a historically large population size, in combination with no known exploitation, few apparent behavioural barriers and abundant habitat. PMID:26626574

  2. Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism

    NASA Astrophysics Data System (ADS)

    Hoving, H. J. T.; Robison, B. H.

    2016-10-01

    In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.

  3. Bucking the trend: genetic analysis reveals high diversity, large population size and low differentiation in a deep ocean cetacean.

    PubMed

    Thompson, K F; Patel, S; Baker, C S; Constantine, R; Millar, C D

    2016-03-01

    Understanding the genetic structure of a population is essential to its conservation and management. We report the level of genetic diversity and determine the population structure of a cryptic deep ocean cetacean, the Gray's beaked whale (Mesoplodon grayi). We analysed 530 bp of mitochondrial control region and 12 microsatellite loci from 94 individuals stranded around New Zealand and Australia. The samples cover a large area of the species distribution (~6000 km) and were collected over a 22-year period. We show high genetic diversity (h=0.933-0.987, π=0.763-0.996% and Rs=4.22-4.37, He=0.624-0.675), and, in contrast to other cetaceans, we found a complete lack of genetic structure in both maternally and biparentally inherited markers. The oceanic habitats around New Zealand are diverse with extremely deep waters, seamounts and submarine canyons that are suitable for Gray's beaked whales and their prey. We propose that the abundance of this rich habitat has promoted genetic homogeneity in this species. Furthermore, it has been suggested that the lack of beaked whale sightings is the result of their low abundance, but this is in contrast to our estimates of female effective population size based on mitochondrial data. In conclusion, the high diversity and lack of genetic structure can be explained by a historically large population size, in combination with no known exploitation, few apparent behavioural barriers and abundant habitat.

  4. Fine scale control of microbial communities in deep marine sediments that contain hydrates and high concentrations of methane

    NASA Astrophysics Data System (ADS)

    Colwell, F.; Hangsterfer, A.; Brodie, E.; Daly, R.; Holland, M.; Briggs, B.; Carini, P.; Torres, M.; Kastner, M.; Long, P.; Schaef, H. T.; Delwiche, M.; Winters, W.; Riedel, M.

    2007-12-01

    Deep subseafloor sediments with high concentrations of organic carbon and microbially-generated methane contain microbial communities that play an important role in the biogeochemical cycling of carbon. However, we still have a limited understanding of the fine (centimeter) scale sediment properties (e.g., grain size, presence/absence of hydrates) that determine key microbial attributes in deep marine sediments. Our objective is to determine the quantity, diversity, and distribution of microbial communities in the context of abiotic properties in gas-rich marine sediments. DNA was extracted from deep marine sediments cored from various continental shelf locations including offshore India and the Cascadia Margin. Abiotic characterization of the same sediments included grain size analysis, chloride concentrations in sediment pore waters, and presence of hydrates in the sediments as determined by thermal anomalies. As in past studies of such systems, most of the samples yielded low levels of DNA (0.3-1.5 ng/g of sediment). Bacterial DNA appeared to be more easily amplified than archaeal DNA. Initial attempts to amplify DNA using primers specific for the methanogen functional gene, methyl- CoM-reductase, were unsuccessful. Infrequently, cores from relatively shallow sediments (e.g., 0.5 mbsf Leg 204, 1251B-1H) from central (Hydrate Ridge), and northern Cascadia (offshore Vancouver Island), and from India's eastern margin contained macroscopically visible, pigmented biofilms. One of these biofilms was composed of high concentrations of cell clusters when viewed microscopically. The predominant cells in the Hydrate Ridge biofilm were large (ca. 10 um) cocci and preliminary characterization of the 16S rDNA amplified and sequenced from this biofilm suggests the prevalence of a microbe with 97% similarity to mycobacteria. These discrete biofilm communities appear to be distinctive relative to the normally sparse distribution of cells in the sediments. By determining how the

  5. High Acidification Rate of Norwegian Sea Revealed by Boron Isotopes in the Deep-Sea Coral Madrepora Oculata

    NASA Astrophysics Data System (ADS)

    Gonzalez, C.; Douville, E.; Hall-Spencer, J.; Montagna, P.; Louvat, P.; Gaillardet, J.; Frank, N.; Bordier, L.; Juillet-Leclerc, A.

    2012-12-01

    Ocean acidification and global warming due to the increase of anthropogenic CO2 are major threats for marine calcifying organisms, such as deep-sea corals, particularly in high-latitude regions. In order to evaluate the current anthropogenic perturbation and to properly assess the impacts and responses of calcifiers to previous changes in pH it is critical to investigate past changes of the seawater carbonate system. Unfortunately, current instrumental records of oceanic pH are limited, covering only a few decades. Scleractinian coral skeletons record chemical parameters of the seawater in which they grow. However, pH variability over multidecadal timescales remains largely unknown in intermediate and deep seawater masses. Here we present a study that highlights the potential of deep-sea-corals to overcome the lack of long-term pH records and that emphasizes a rapid acidification of high latitude subsurface waters of Norwegian Sea during the past decades. We have reconstructed seawater pH and temperature from a well dated deep-sea coral specimen Madrepora oculata collected alive from Røst reef in Norwegian Sea (67°N, 9°E, 340 m depth). This large branching framework forming coral species grew its skeleton over more than four decades determined using AMS 14C and 210Pb dating (Sabatier et al. 2012). B-isotopes and Li/Mg ratios yield an acidification rate of about -0.0030±0.0008 pH-unit.year-1 and a warming of 0.3°C during the past four decades (1967-2007). Overall our reconstruction technique agrees well with previous pH calculations (Hönisch et al., 2007 vs. Trotter et al., 2011 and McCulloch et al., 2012, i.e. the iterative method), but additional corrections are here applied using stable isotope correlations (O, C, B) to properly address kinetic fractionation of boron isotopes used for pH reconstruction. The resulting pH curve strongly anti-correlates with the annual NAO index, which further strengthens our evidence for the ocean acidification rate

  6. Polymer containment barriers for underground storage tanks

    SciTech Connect

    Heiser, J.; Colombo, P.

    1994-12-31

    Contaminated soils, buried waste and leaking underground storage tanks pose a threat to the environment through contaminant transport. One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Brookhaven National Laboratory has been involved in several tasks to develop, demonstrate and implement advanced polymer materials for use in subsurface barriers throughout the DOE complex. Binders investigated as barrier composites include polyester styrenes, vinylester styrenes, high molecular weight acrylics, sulfur polymer cement, polyacrylic acids, bitumen and a furfuryl alcohol based furan polymer. Aggregates include: recycled glass, stone, sand, and natural soils (from Hanford). A series of performance tests were used to determine the performance characteristics of polymer composites. This paper details a substrate of this characterization pertaining to subsurface barriers for containing underground storage tanks with emphasis on the DOE`s Hanford site. Testing includes measuring permeability to water, wet-dry cycling, chemical resistivity to ground water, acid, base, and nitrate brine, resistance to irradiation, and measuring compressive strengths. Polymer grouts having a wide range of viscosities have been demonstrated to have desirable qualities for a subterranean barrier. The goal of soil mortar permeabilities of 1 x 10{sup -10} m/s and {open_quotes}clean{close_quotes} aggregate composites of 1 x 10{sup -11} m/s was met. Performance values indicate polymers exist that can meet the requirements for containment barriers for USTs throughout the DOE complex. Proper choice of binder and aggregate followed by the appropriate site specific compatibility testing will result in a durable, high strength, low permeability barrier.

  7. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice... working alone underground in a hazardous location, who is both out of the range of natural unassisted... lamp in his or her work area for emergency use, unless natural light or an emergency lighting...

  8. 30 CFR 57.4761 - Underground shops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... toxic gases from a fire originating in an underground shop where maintenance work is routinely done...

  9. State Certification of Underground Storage Tanks.

    DTIC Science & Technology

    1998-04-15

    This audit was part of the overall audit of "DoD Management of Underground Storage Tanks ," (Project No. 6CK-5051). The overall audit was jointly...Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks were compliant

  10. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  11. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  12. Southern Ocean Deep-Convection as a Driver of Centennial-to-Millennial-Scale Climate Variability at Southern High Latitudes

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S.

    2015-12-01

    Antarctic Isotope Maxima (AIM) are centennial-to-millennial scale warming events observed in Antarctic ice core records from the last glacial period and deglaciation. Mounting evidence links AIM events to parallel variations in atmospheric CO2, Southern Ocean (SO) sea surface temperatures and Antarctic Bottom Water production. According to the prevailing view, AIM events are forced from the North Atlantic by melt-water discharge from ice sheets suppressing the production of North Atlantic Deep Water and associated northward heat transport in the Atlantic. However observations and model studies increasingly suggest that melt-water fluxes have the wrong timing to be invoked as such a trigger. Here, drawing on results form the Kiel Climate Model, we present an alternative hypothesis in which AIM events are forced via internal oscillations in SO deep-convection. The quasi-periodic timescale of deep-convection events is set by heat (buoyancy) accumulation at SO intermediate depths and stochastic variability in sea ice conditions and freshening at the surface. Massive heat release from the SO convective zone drives Antarctic and large-scale southern hemisphere warming via a two-stage process involving changes in the location of Southern Ocean fronts, in the strength and intensity of the Westerlies and in meridional ocean and atmospheric heat flux anomalies. The potential for AIM events to be driven by internal Southern Ocean processes and the identification of time-lags internal to the southern high latitudes challenges conventional views on the North Atlantic as the pacemaker of millennial-scale climate variability.

  13. Southern Ocean Deep-Convection as a Driver of Centennial-to-Millennial-Scale Climate Variability at Southern High Latitudes

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S.

    2014-12-01

    Antarctic Isotope Maxima (AIM) are centennial-to-millennial scale warming events observed in Antarctic ice core records from the last glacial period and deglaciation. Mounting evidence links AIM events to parallel variations in atmospheric CO2, Southern Ocean (SO) sea surface temperatures and Antarctic Bottom Water production. According to the prevailing view, AIM events are forced from the North Atlantic by melt-water discharge from ice sheets suppressing the production of North Atlantic Deep Water and associated northward heat transport in the Atlantic. However observations and model studies increasingly suggest that melt-water fluxes have the wrong timing to be invoked as such a trigger. Here, drawing on results form the Kiel Climate Model, we present an alternative hypothesis in which AIM events are forced via internal oscillations in SO deep-convection. The quasi-periodic timescale of deep-convection events is set by heat (buoyancy) accumulation at SO intermediate depths and stochastic variability in sea ice conditions and freshening at the surface. Massive heat release from the SO convective zone drives Antarctic and large-scale southern hemisphere warming via a two-stage process involving changes in the location of Southern Ocean fronts, in the strength and intensity of the Westerlies and in meridional ocean and atmospheric heat flux anomalies. The potential for AIM events to be driven by internal Southern Ocean processes and the identification of time-lags internal to the southern high latitudes challenges conventional views on the North Atlantic as the pacemaker of millennial-scale climate variability.

  14. Smart optical coherence tomography for ultra-deep imaging through highly scattering media

    PubMed Central

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, A. Claude; Fink, Mathias; Aubry, Alexandre

    2016-01-01

    Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging. PMID:27847864

  15. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  16. Highly Efficient Enzymatic Acylation of Dihydromyricetin by the Immobilized Lipase with Deep Eutectic Solvents as Cosolvent.

    PubMed

    Cao, Shi-Lin; Deng, Xiao; Xu, Pei; Huang, Zi-Xuan; Zhou, Jian; Li, Xue-Hui; Zong, Min-Hua; Lou, Wen-Yong

    2017-03-15

    A novel deep eutectic solvent (DES)-DMSO cosolvent system has been, for the first time, successfully used as the reaction medium for the enzymatic acylation of dihydromyricetin (DMY) catalyzed by the immobilized lipase from Aspergillus niger (ANL). The cosolvent mixture, ChCl:Glycerol-DMSO (1:3, v/v) proved to be the optimal medium. With the newly developed cosolvent, the initial reaction rate of enzymatic acylation of DMY achieved 11.1 mM/h and the conversion of DMY was 91.6%. ANL@PD-MNPs is stable and recyclable in this cosolvent, offering 90% conversion rate after repeated use of 5 times. The lipid-solubility of DMY-16-acetate was 10 times higher than that of its raw materials DMY. The results showed that the DMY-16-acetate product exhibits good antioxidative activity. The present research illustrated that the use of DES-DMSO cosolvent may become a feasible alternative for the synthesis of DMY ester.

  17. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    SciTech Connect

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak shear

  18. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been

  19. Deep Space Communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2012-01-01

    ITU defines deep space as the volume of Space at distances from the Earth equal to, or greater than, 2 106 km. Deep Space Spacecraft have to travel tens of millions of km from Earth to reach the nearest object in deep space. Spacecraft mass and power are precious. Large ground-based antennas and very high power transmitters are needed to overcome large space loss and spacecraft's small antennas and low power transmitters. Navigation is complex and highly dependent on measurements from the Earth. Every deep space mission is unique and therefore very costly to develop.

  20. Transport Model of Underground Sediment in Soils

    PubMed Central

    Guangqian, Wang

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment. PMID:24288479

  1. Study - Radiation Shielding Effectiveness of the Prototyped High Temperature Superconductivity (HTS) 'Artificial' Magnetosphere for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela

    2010-01-01

    The high temperature superconductor (HTS) is being used to develop the magnets for the Variable Specific Impulse Magneto-plasma Rocket (VASIMR ) propulsion system and may provide lightweight magnetic radiation shielding to protect spacecraft crews from radiation caused by GCR and SPEs on missions to Mars. A study is being planned to assess the radiation shielding effectiveness of the artificial magnetosphere produced by the HTS magnet. VASIMR is an advanced technology propulsion engine which is being touted as enabling one way transit to Mars in 90 days or less. This is extremely important to NASA. This technology would enable a significant reduction in the number of days in transit to and from Mars and significantly reduce the astronauts exposure to a major threat - high energy particles from solar storms and GCR during long term deep space missions. This paper summarizes the plans for the study and the subsequent testing of the VASIMR technology onboard the ISS slated for 2013.

  2. Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure

    NASA Astrophysics Data System (ADS)

    Fukagawa, H.; Watanabe, K.; Tsuzuki, T.; Tokito, S.

    2008-09-01

    We have demonstrated a highly efficient, deep-blue organic light-emitting diode (OLED) using a host material with a high triplet energy. The OLED device that we have prepared utilizes a phosphorescent guest material, iridium(III)bis(4',6',-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate, exhibits a peak quantum efficiency of about 15.7%. We employed a double-emitting layer (DEL) structure that distributes the carrier recombination region within the device. In this DEL structure, the emission mechanism is such that the energy transfers from the host material in one emitting layer, and the other emitting layer provides for direct charge trapping in the guest material. This DEL structure proved to be quite useful in achieving the reported device characteristics.

  3. High-efficiency diffractive beam splitters surface-structured on submicrometer scale using deep-UV interference lithography.

    PubMed

    Amako, Jun; Sawaki, Daisuke; Fujii, Eiichi

    2009-09-20

    We report highly efficient diffractive beam splitters intended for high-power laser applications. Submicron relief structures that work as an antireflective layer are formed on the surfaces of a splitter to improve its transmitted efficiency. Surface structuring is performed using deep-UV interference lithography and reactive ion etching. As immersed in an index-matching liquid, the resist layer coated on diffractive surfaces is exposed to the interference fringes that are set intersecting the grooves on the surfaces. Rigorously designed structures with a period of 140 nm and a depth of 55 nm are lithographed onto fused-silica splitters. Splitting efficiencies at 266 nm are increased by 8% to compare favorably with a theoretical value, while Fresnel reflections are considerably reduced.

  4. A Corrosion Risk Assessment Model for Underground Piping

    NASA Technical Reports Server (NTRS)

    Datta, Koushik; Fraser, Douglas R.

    2009-01-01

    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  5. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  6. Toxic hazards of underground excavation

    SciTech Connect

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  7. High-temperature quartz cement and the role of stylolites in a deep gas reservoir, Spiro Sandstone, Arkoma Basin, USA

    USGS Publications Warehouse

    Worden, Richard H.; Morad, Sadoon; Spötl, C.; Houseknecht, D.W.; Riciputi, L.R.

    2000-01-01

    The Spiro Sandstone, a natural gas play in the central Arkoma Basin and the frontal Ouachita Mountains preserves excellent porosity in chloritic channel-fill sandstones despite thermal maturity levels corresponding to incipient metamorphism. Some wells, however, show variable proportions of a late-stage, non-syntaxial quartz cement, which post-dated thermal cracking of liquid hydrocarbons to pyrobitumen plus methane. Temperatures well in excess of 150°C and possibly exceeding 200°C are also suggested by (i) fluid inclusions in associated minerals; (ii) the fact that quartz post-dated high-temperature chlorite polytype IIb; (iii) vitrinite reflectance values of the Spiro that range laterally from 1.9 to ≥ 4%; and (iii) the occurrence of late dickite in these rocks. Oxygen isotope values of quartz cement range from 17.5 to 22.4‰ VSMOW (total range of individual in situ ion microprobe measurements) which are similar to those of quartz cement formed along high-amplitude stylolites (18.4–24.9‰). We favour a model whereby quartz precipitation was controlled primarily by the availability of silica via deep-burial stylolitization within the Spiro Sandstone. Burial-history modelling showed that the basin went from a geopressured to a normally pressured regime within about 10–15 Myr after it reached maximum burial depth. While geopressure and the presence of chlorite coats stabilized the grain framework and inhibited nucleation of secondary quartz, respectively, stylolites formed during the subsequent high-temperature, normal-pressured regime and gave rise to high-temperature quartz precipitation. Authigenic quartz growing along stylolites underscores their role as a significant deep-burial silica source in this sandstone.

  8. Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging

    PubMed Central

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-01-01

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  9. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging.

    PubMed

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-03-02

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  10. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  11. A high power EMI sensor for detecting and classifying small and deep targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Barrowes, B. E.; Wang, Yinlin; Shamatava, Irma; Sigman, J. B.; O'Neil, K.; Steinhurst, Daniel A.

    2016-05-01

    Detecting and classifying small (i.e., with calibers ranging from 20 to 60 mm) and deep targets (burial depth more than 11 times targets diameter) is still a challenging problem using current advanced EMI sensors and signal processing approaches. In order to overcome this problem, the standard time-domain NRL TEMTADS 2x2 electromagnetic induction (EMI) instrument is updated. Namely, the NRL TEMTADS 2x2 system's transmitter electronics is modified to increase transmitter (Tx) currents from 6 Amperes to 14 Amperes. The instrument has a Tx array with four coplanar square coils, together with four tri-axial receivers (Rx) placed at the center of each Tx. Each Rx cube contains three orthogonal coils and thus registers all three vector components of the impinging signals. The Tx coils, with transmitter currents of ~14 A, illuminate a buried target, and the target responses are collected with a 500 kHz sample rate after turn off of the excitation pulse. The system operates in both static (cued) and dynamic modes. For cued mode, the raw decay measurements are grouped into 121 logarithmically-spaced "gates" whose center times range from 25 μs to 24.35 ms with 5% widths. The sensor is placed on a cart which provides a sensor-to-ground offset of 20 cm or less. In this paper, studies for APG Calibration, Blind, and Small Munitions Grids are presented and analyzed. The areas are arranged in grids of test cells and the cell center positions are known. Each target position is flagged with a non-metallic pin flag using cm-level GPS. The sensor is positioned over each target in turn. With the system positioned over the target, each Tx is activated sequentially and during off the Tx current, all four Rx record data. The capabilities of this sensor platform is rigorously investigated for UXO classification at APG blind and small munitions grids.

  12. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  13. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2014-03-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated.

  14. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.

    PubMed

    Li, S; Arbuthnott, G W; Jutras, M J; Goldberg, J A; Jaeger, D

    2007-12-01

    Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STN-DBS that correlates well with clinical outcome is the reduction of synchronous and oscillatory activity in cortical and basal ganglia networks. We hypothesized that antidromic cortical activation may provide an underlying mechanism responsible for this effect, because stimulation is usually performed in proximity to cortical efferent pathways. We show with intracellular cortical recordings in rats that STN-DBS did in fact lead to antidromic spiking of deep layer cortical neurons. Furthermore, antidromic spikes triggered a dampened oscillation of local field potentials in cortex with a resonant frequency around 120 Hz. The amplitude of antidromic activation was significantly correlated with an observed suppression of slow wave and beta band activity during STN-DBS. These findings were seen in ketamine-xylazine or isoflurane anesthesia in both normal and 6-hydroxydopamine (6-OHDA)-lesioned rats. Thus antidromic resonant activation of cortical microcircuits may make an important contribution toward counteracting the overly synchronous and oscillatory activity characteristic of cortical activity in PD.

  15. An underground characterization program for a nuclear fuel waste disposal vault in plutonic rock

    SciTech Connect

    Thompson, P.M.; Everitt, R.A.

    1993-12-31

    The Canadian Nuclear Fuel Waste Management Program (CNFWMP) is developing a concept for disposing of nuclear fuel waste that involves placing and sealing it in a disposal vault excavated 500 to 1,000 m deep in the stable plutonic rock of the Canadian Shield. In this concept, engineered and natural barriers serve to isolate the waste from the biosphere. Since 1983, underground characterization and testing in support of the CNFWMP has been ongoing at the Underground Research Laboratory (URL) in southeastern Manitoba. This paper draws on experience gained at the URL to recommend an approach to underground characterization that would provide the necessary information to make design decisions for a disposal vault in plutonic rock.

  16. Utility of deep sea CO2 release experiments in understanding the biology of a high-CO2 ocean: Effects of hypercapnia on deep sea meiofauna

    NASA Astrophysics Data System (ADS)

    Barry, James P.; Buck, Kurt R.; Lovera, Chris; Kuhnz, Linda; Whaling, Patrick J.

    2005-09-01

    Oceanic CO2 levels are expected to rise during the next 2 centuries to levels not seen for 10-150 million years by the uptake of atmospheric CO2 in surface waters or potentially through the disposal of waste CO2 in the deep sea. Changes in ocean chemistry caused by CO2 influx may have broad impacts on ocean ecosystems. Physiological processes animals use to cope with CO2-related stress are known, but the range of sensitivities and effects of changes in ocean chemistry on most ocean life remain unclear. We evaluate the effectiveness of various designs for in situ CO2 release experiments in producing stable perturbations in seawater chemistry over experimental seafloor plots, as is desirable for evaluating the CO2 sensitivities of deep sea animals. We also discuss results from a subset of these experiments on the impacts of hypercapnia on deep sea meiofauna, in the context of experimental designs. Five experiments off central California show that pH perturbations were greatest for experiments using "point source" CO2 pools surrounded by experimental plots. CO2 enclosure experiments with experimental plots positioned within a circular arrangement of CO2 pools had more moderate pH variation. The concentration of dissolution plumes from CO2 pools were related to the speed and turbulence of near-bottom currents, which influence CO2 dissolution and advection. Survival of meiofauna (nematodes, amoebae, euglenoid flagellates) was low after episodic severe hypercapnia but lower and variable where pH changes ranged from 0 to 0.2 pH units below normal.

  17. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  18. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  19. Underground structure characterization using motor vehicles as passive seismic sources

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  20. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  1. Community metabolism in a deep (stratified) tropical reservoir during a period of high water-level fluctuations.

    PubMed

    Valdespino-Castillo, Patricia M; Merino-Ibarra, Martín; Jiménez-Contreras, Jorge; Castillo-Sandoval, Fermín S; Ramírez-Zierold, Jorge A

    2014-10-01

    As long as lakes and reservoirs are an important component of the global carbon cycle, monitoring of their metabolism is required, especially in the tropics. In particular, the response of deep reservoirs to water-level fluctuations (WLF) is an understudied field. Here, we study community metabolism through oxygen dynamics in a deep monomictic reservoir where high WLF (~10 m) have recently occurred. Simultaneous monitoring of environmental variables and zooplankton dynamics was used to assess the effects of WLF on the metabolism of the eutrophic Valle de Bravo (VB) reservoir, where cyanobacteria blooms are frequent. Mean gross primary production (P g) was high (2.2 g C m(-2) day(-1)), but temporal variation of P g was low except for a drastic reduction during circulation attributed to zooplankton grazing. The trophogenic layer showed net autotrophy on an annual basis, but turned to net heterotrophy during mixing, and furthermore when the whole water-column oxygen balance was calculated, considering the aphotic respiration (Raphotic). The high total respiration resulting (3.1 g C m(-2) day(-1)) is considered to be partly due to mixing enhanced by WLF. Net ecosystem production was equivalent to a net export of 3.4 mg CO₂ m(-2) day(-1) to the atmosphere. Low water levels are posed to intensify boundary-mixing events driven by the wind during the stratification in VB. Long-term monitoring showed changes in the planktonic community and a strong silicon decrease that matched with low water-level periods. The effects of low water-level on metabolism and planktonic community in VB suggest that water-level manipulation could be a useful management tool to promote phytoplankton groups other than cyanobacteria.

  2. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts.

    PubMed

    Zou, Rujia; Zhang, Zhenyu; Liu, Qian; Hu, Junqing; Sang, Liwen; Liao, Meiyong; Zhang, Wenjun

    2014-05-14

    Fabrication of a high-temperature deep-ultraviolet photodetector working in the solar-blind spectrum range (190-280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β-Ga2O3 multi-layered nanobelts with (l00) facet-oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As-fabricated DUV solar-blind photodetectors using (l00) facet-oriented β-Ga2O3 multi-layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors. In particular, the characteristics of the photoresponsivity of the β-Ga2O3 nanobelt devices include a high photoexcited current (>21 nA), an ultralow dark current (below the detection limit of 10(-14) A), a fast time response (<0.3 s), a high R(λ) (≈851 A/W), and a high EQE (~4.2 × 10(3)). The present fabricated facet-oriented β-Ga2O3 multi-layered nanobelt based devices will find practical applications in photodetectors or optical switches for high-temperature environment.

  3. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data

  4. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  5. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics

    NASA Astrophysics Data System (ADS)

    Fujioka, A.; Asada, K.; Yamada, H.; Ohtsuka, T.; Ogawa, T.; Kosugi, T.; Kishikawa, D.; Mukai, T.

    2014-06-01

    255/280/310 nm deep ultraviolet light-emitting diodes (DUV LEDs) suitable for high-current operation are reported. Newly developed 1 mm sized chips are installed in a commercial package with a two-series configuration. At a forward current of 350 mA, we measured powers of 45.2, 93.3, and 65.8 mW for the 255, 280, and 310 nm LEDs, respectively. The corresponding external quantum efficiencies per serial circuit were 1.3, 3.0, and 2.4%, and successful chip scalability was demonstrated. The 50% lifetime of the 280 nm LED die was estimated to be 3000 h at a junction temperature of 30 °C.

  6. High-resolution spectroscopy of the zero-phonon line of the deep donor EL2 in GaAs

    SciTech Connect

    Hecht, C.; Kummer, R.; Thoms, M.; Winnacker, A.

    1997-05-01

    We investigated the zero-phonon line (ZPL) of the deep donor EL2 in GaAs by means of high-resolution absorption spectroscopy with a narrow-band laser. Frequency-selective bleaching ({open_quotes}spectral-hole burning{close_quotes}) experiments and the measurement of the temperature broadening of the ZPL prove an essentially homogeneous broadening of the transition. The observed asymmetry of the line shape is interpreted to be caused by a Fano resonance of the {sup 1}T{sub 2} excited state with the conduction band. A splitting of the {sup 1}T{sub 2} state as the reason for the asymmetry seems unrealistic. The homogeneous broadening of the ZPL prevents the use of spectral-hole burning spectroscopy to study the effect of external perturbations on the ZPL of the EL2. {copyright} {ital 1997} {ital The American Physical Society}

  7. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  8. High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism?

    PubMed

    Teixeira, Sara; Olu, Karine; Decker, Carole; Cunha, Regina L; Fuchs, Sandra; Hourdez, Stéphane; Serrão, Ester A; Arnaud-Haond, Sophie

    2013-09-01

    Chemosynthetic ecosystems are distributed worldwide in fragmented habitats harbouring seemingly highly specialized communities. Yet, shared taxa have been reported from highly distant chemosynthetic communities. These habitats are distributed in distinct biogeographical regions, one of these being the so-called Atlantic Equatorial Belt (AEB). Here, we combined genetic data (COI) from several taxa to assess the possible existence of cryptic or synonymous species and to detect the possible occurrence of contemporary gene flow among populations of chemosynthetic species located on both sides of the Atlantic. Several Evolutionary Significant Units (ESUs) of Alvinocarididae shrimp and Vesicomyidae bivalves were found to be shared across seeps of the AEB. Some were also common to hydrothermal vent communities of the Mid-Atlantic Ridge (MAR), encompassing taxa morphologically described as distinct species or even genera. The hypothesis of current or very recent large-scale gene flow among seeps and vents was supported by microsatellite analysis of the shrimp species Alvinocaris muricola/Alvinocaris markensis across the AEB and MAR. Two nonmutually exclusive hypotheses may explain these findings. The dispersion of larvae or adults following strong deep-sea currents, possibly combined with biochemical cues influencing the duration of larval development and timing of metamorphosis, may result in large-scale effective migration among distant spots scattered on the oceanic seafloor. Alternatively, these results may arise from the prevailing lack of knowledge on the ocean seabed, apart from emblematic ecosystems (chemosynthetic ecosystems, coral reefs or seamounts), where the widespread classification of endemism associated with many chemosynthetic taxa might hide wider distributions in overlooked parts of the deep sea.

  9. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented.

  10. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    NASA Astrophysics Data System (ADS)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  11. High pressure experimental constraints on the fate of water during subduction of oceanic crustal material into the deep mantle

    NASA Astrophysics Data System (ADS)

    Rosenthal, Anja; Frost, Daniel J.

    2014-05-01

    Knowledge of the abundance and distribution of H2O in the Earth's deep mantle remains highly controversial. The chief means of replenishment of the Earth's interior with volatiles over much of geological time is subduction, but constraints are very poor as natural samples from the deep Earth's interior subduction zones are inaccessible. High pressure experimental investigations can overcome that problem by simulating deep mantle conditions and processes. We aim to experimentally determine the maximum storage capacity, substitution mechanism and behaviour of H2O in hydrous and nominally anhydrous minerals (NAMs) during subduction of hydrated oceanic crustal material into the deep upper mantle. A particular interest is to determine the H2O content of NAMs at the conditions where nominally hydrous phases (such as phengite) are breaking down to release H2O that would then leave the slab. By applying a novel experimental approach formerly used for peridotite mantle compositions [1, 2], small amounts of H2O in eclogitic NAMs such as garnet, clinopyroxene, coesite/stishovite etc. will be determined for the first time in high pressure experiments as a function of pressure, temperature and bulk composition by using interlayers of the NAMs and volatile-rich oceanic crustal material of MORB composition. Here we present the first results of experimentally determined melting and phase relations of an altered oceanic basalt composition GA1 [3] containing varying amounts of H2O (up to 7wt.%) at varying temperatures (sub-solidus to near solidus) and pressures (6-10 GPa; i.e. from ~200 to ~330 km depth) using multi anvil apparatuses at University of Bayreuth, Germany. Experiments yield well-crystallised assemblages of garnet ± clinopyroxene ± coesite/stishovite ± rutile ± phengite ± vapour. Similar to previous studies [e.g. 4-8], the stability of phengite varies as a function of pressure, temperature, buffering mineral paragenesis and bulk H2O concentration. In addition, K2O

  12. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    PubMed Central

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  13. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining.

    PubMed

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-10-21

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  14. Physicochemical Characterization of Airborne Particulate Matter at a Mainline Underground Railway Station

    PubMed Central

    2013-01-01

    Underground railway stations are known to have elevated particulate matter (PM) loads compared to ambient air. As these particles are derived from metal-rich sources and transition metals may pose a risk to health by virtue of their ability to catalyze generation of reactive oxygen species (ROS), their potential enrichment in underground environments is a source of concern. Compared to coarse (PM10) and fine (PM2.5) particulate fractions of underground railway airborne PM, little is known about the chemistry of the ultrafine (PM0.1) fraction that may contribute significantly to particulate number and surface area concentrations. This study uses inductively coupled plasma mass spectrometry and ion chromatography to compare the elemental composition of size-fractionated underground PM with woodstove, roadwear generator, and road tunnel PM. Underground PM is notably rich in Fe, accounting for greater than 40% by mass of each fraction, and several other transition metals (Cu, Cr, Mn, and Zn) compared to PM from other sources. Importantly, ultrafine underground PM shows similar metal-rich concentrations as the coarse and fine fractions. Scanning electron microscopy revealed that a component of the coarse fraction of underground PM has a morphology indicative of generation by abrasion, absent for fine and ultrafine particulates, which may be derived from high-temperature processes. Furthermore, underground PM generated ROS in a concentration- and size-dependent manner. This study suggests that the potential health effects of exposure to the ultrafine fraction of underground PM warrant further investigation as a consequence of its greater surface area/volume ratio and high metal content. PMID:23477491

  15. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    SciTech Connect

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  16. Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests

    NASA Astrophysics Data System (ADS)

    Yu, Yongtao; Guan, Haiyan; Zai, Dawei; Ji, Zheng

    2016-02-01

    This paper proposes a rotation-and-scale-invariant method for detecting airplanes from high-resolution satellite images. To improve feature representation capability, a multi-layer feature generation model is created to produce high-order feature representations for local image patches through deep learning techniques. To effectively estimate airplane centroids, a Hough forest model is trained to learn mappings from high-order patch features to the probabilities of an airplane being present at specific locations. To handle airplanes with varying orientations, patch orientation is defined and integrated into the Hough forest to augment Hough voting. The scale invariance is achieved by using a set of scale factors embedded in the Hough forest. Quantitative evaluations on the images collected from Google Earth service show that the proposed method achieves a completeness, correctness, quality, and F1-measure of 0.968, 0.972, 0.942, and 0.970, respectively, in detecting airplanes with arbitrary orientations and sizes. Comparative studies also demonstrate that the proposed method outperforms the other three existing methods in accurately and completely detecting airplanes in high-resolution remotely sensed images.

  17. High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability

    PubMed Central

    Yang, Weihuang; Li, Jinchai; Zhang, Yong; Huang, Po-Kai; Lu, Tien-Chang; Kuo, Hao-Chung; Li, Shuping; Yang, Xu; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2014-01-01

    High internal efficiency and high temperature stability ultraviolet (UV) light-emitting diodes (LEDs) at 308 nm were achieved using high density (2.5 × 109 cm−2) GaN/AlN quantum dots (QDs) grown by MOVPE. Photoluminescence shows the characteristic behaviors of QDs: nearly constant linewidth and emission energy, and linear dependence of the intensity with varying excitation power. More significantly, the radiative recombination was found to dominant from 15 to 300 K, with a high internal quantum efficiency of 62% even at room temperature. PMID:24898569

  18. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

    DOE PAGES

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2016-01-01

    Here we report that many metal halides that contain cations with the ns2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI3 (a lead-free halide perovskite material). The potential of CsGeI3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a large static dielectric constantmore » dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH3NH3PbI3, CH3NH3SnI3, and CsSnI3). The low-hole-density CsGeI3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH3NH3PbI3.« less

  19. Polarized gluon distributions from high-pT pair hadron productions in polarized deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Yamanishi, Teruya; Yu-Bing, Dong; Morii, Toshiyuki

    2001-06-01

    To study the polarized gluon density Δg(x) in the nucleon, we propose the high-pT pair charmed hadron production process in polarized lp scattering. The double spin asymmetry ALL for this process is a good observable for testing the models of Δg(x). .

  20. Underground oil-shale retort monitoring using geotomography

    SciTech Connect

    Daily, W.

    1984-10-01

    Geophysical tomographs (geotomographs) were made of two underground oil-shale retorts: (1) the Occidental Oil Shale Inc. miniretort constructed for ignition tests at the demonstration mine at Logan Wash, Colorado; and (2) the Geokinetics Oil Shale Inc. Retort 25 near Vernal, Utah. These experiments demonstrate that geotomography may be a valuable diagnostic tool for underground oil-shale retorting processes. At the Geokinetics in-situ retort, the technique delineated the zones of high permeability in a cross-section of the retort. At the Occidental modified in-situ miniretort, the technique imaged the high temperature zone of the retort with a spatial resolution of about 2 m, and showed its temporal development over a period of eleven days.

  1. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  2. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  3. A high performance fiber optic pressure penetrator for use in the deep ocean

    NASA Astrophysics Data System (ADS)

    Cowen, S. J.

    1981-02-01

    This report describes results obtained in an FY 80 developmental program carried out at the Naval Ocean System Center, San Diego, under Independent Exploratory Development funding. The objective was to develop a robust, fully-demountable, high pressure penetrator design suitable for coupling light signals transmitted by optical fiber elements in an undersea cable operated at high ambient hydrostatic pressure into an electronics package or manned space. The feasibility of constructing such penetrators utilizing Graded Refractive Index (GRIN) rod lenses as combination pressure barriers and imaging devices has been demonstrated. Prototype realizations have exhibited excellent optical throughput performance and readily survive in excess of 10,000 psi pressure differential as well as tolerating a wide temperature range. The design lends itself to hermetic construction for applications requiring no vapor diffusion over long mission durations. Such devices exhibit excellent potential for satisfying SUBSAFE requirements for manned submarine applications.

  4. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  5. A scheme for a high-power, low-cost transmitter for deep space applications

    NASA Astrophysics Data System (ADS)

    Scheffer, L. K.

    2005-10-01

    Applications such as planetary radars and spacecraft communications require transmitters with extremely high effective isotropic radiated power. Until now, this has been done by combining a high-power microwave source with a large reflective antenna. However, this arrangement has a number of disadvantages. It is costly, since the steerable reflector alone is quite expensive, and for spacecraft communications, the need to transmit hurts the receive performance. For planetary radars, the utilization is very low since the antenna must be shared with other applications such as radio astronomy or spacecraft communications. This paper describes a potential new way of building such transmitters with lower cost, greater versatility, higher reliability, and potentially higher power. The basic idea is a phased array with a very large number of low-power elements, built with mass production techniques that have been optimized for consumer markets. The antennas are built en mass on printed circuit boards and are driven by chips, built with consumer complementary metal-oxide-semiconductor technology, that adjust the phase of each element. Assembly and maintenance should be comparatively inexpensive since the boards need only be attached to large, flat, unmoving, ground-level infrastructure. Applications to planetary radar and spacecraft communications are examined. Although we would be unlikely to use such a facility in this way, an implication for Search for Extraterrestrial Intelligence (SETI) is that high-power beacons are easier to build than had been thought.

  6. A deep survey of the Galactic plane at very high energies

    NASA Astrophysics Data System (ADS)

    Chow, Yeuk Chun

    The Cygnus region of the Galactic plane contains many known supernova remnants, pulsars, X-Ray sources and GeV emitters which makes it a prime candidate for a Very High Energy (VHE) survey study in the Northern Hemisphere. VERITAS, an array of atmospheric Cherenkov telescopes located in southern Arizona, USA, is the most sensitive very high energy gamma-ray telescope in operation today. Between April 2007 and Fall 2009, VERITAS carried out an extensive survey of the Cygnus region between 67 and 82 degrees in Galactic longitude and between -1 and 4 degrees in Galactic latitude. The survey, comprising more than 140 hours of observations, reached an average VHE flux sensitivity of better than 5% of the Crab Nebula flux at energies above 200 GeV, making it the most sensitive VHE gamma-ray survey ever done in the northern Hemisphere. The survey data set revealed two highly probable gamma-ray sources in the region. A detailed description of the observational strategy and analysis methodology of the survey are given and a discussion of the scientific implications resulting from the survey is provided.

  7. The Black Underground: Fugitives from Slavery

    ERIC Educational Resources Information Center

    Quarles, Benjamin

    1969-01-01

    A brief account of the activities prior to the American Civil War of those who assisted black slaves in their flight from the South to the Northern States and Canada by an underground railroad movement. (RJ)

  8. Establishing sustainable strategies in urban underground engineering.

    PubMed

    Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A

    2004-07-01

    Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.

  9. The First Great Migration: The Underground Railroad.

    ERIC Educational Resources Information Center

    Goodstein, Carol

    1990-01-01

    Describes the Underground Railroad, a loosely organized system used by runaway Southern slaves to reach freedom in the North. Discusses the role of "conductors," who acted as guides and offered shelter along the route. (FMW)

  10. Study of photonuclear muon interactions at Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Dadykin, V. L.; Novoseltsev, Y. F.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    The method of pion-muon-electron decays recording was used to distinguish between purely electron-photon and hadronic cascades, induced by high energy muons underground. At energy approx. 1 Tev a ratio of the number of hadronic to electromagnetic cascades was found equal 0.11 + or - .03 in agreement with expectation. But, at an energy approx. 4 Tev a sharp increase of this ratio was indicated though not statistically sound (0.52 + or - .13).

  11. Construction of the NuMI underground laboratory facilities

    SciTech Connect

    Laughton, Christopher; Bruen, Michael P

    2003-01-01

    At Fermilab, a 4000-ft long underground complex has recently been constructed for a high-energy physics experiment. The complex is sited up to 350 ft, below grade principally in bedrock. The rock excavations were mined by TBM and drill and blast methods and supported by a combination of rock bolts, dowels and shotcrete. Water control was achieved using a combination of pre- and post-excavation grouting, drainage systems, drip shielding and air desiccation measures.

  12. Underground muon observations in the Soudan 2 detector

    SciTech Connect

    Allison, W.W.M.; Barr, G.D.; Brooks, C.B.; Cobb, J.H.; Kirby-Gallagher, L.M.; Giles, R.H.; Perkins, D.H.; Shield, P.D.; Thomson, M.A.; West, N. . Nuclear Physics Lab.); Alner, G.J.; Cockerill, D.J.A.; Edwards, V.W.; Garcia-Garcia, C.; Litchfield, P.J.; Pearce, G.F. ); Ambats, I.; Ayres, D.S.; Balka, L.; Barrett, W.L.; Dawson, J.; Fields, T.H.; Goodman, M.C.; Hil

    1989-09-11

    The Soudan 2 nucleon decay detector has recorded data since Summer 1988 using a quarter (dimensions 4 m by 8 m by 5 m high) of the eventual detector. This iron-argon time projection chamber records extensive data on each event and has excellent angular and multi-track resolution. We describe the trigger, the event analysis procedure and the current status of the detector and the underground muon data sample. 1 ref.

  13. High-Precision Marine Sr Isotope Geochronology in Deep Time: Permian Tuffs and Conodonts

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Davydov, V. I.; Snyder, W. S.

    2007-12-01

    Stratigraphic sections of the Southern Urals containing abundant and well-preserved fauna for precise biostratigraphic correlation and common instratified volcanic ash beds dated by U-Pb zircon geochronology offer a unique opportunity to constrain a temporally accurate Late Pennsylvanian-Early Permian seawater Sr curve. The 87Sr/86Sr compositions of conodonts (biogenic apatite) were measured by high-precision thermal ionization mass spectrometry following rigorous pretreatment protocols, and plotted within an age model calibrated by 13 high-precision U-Pb zircon ash bed ages. The resulting seawater Sr curve shows a significant reduction in data scatter by comparison to earlier curves (Denison et al., 1994; Veizer et al., 1999; Bruckschen et al., 1999; Korte et al., 2006), suggesting that our conodont pre-dissolution treatment was highly effective for retrieving the original seawater Sr signal. The relatively flat Late Moscovian through mid-Ghzelian seawater Sr curve of this study is generally consistent with that of Bruckschen et al. (1999). Beginning in the mid-Ghzelian, our data define a decreasing trend in 87Sr/86Sr through the mid-Sakmarian, consistent with the data of Korte et al. (2006). By combining our high precision 87Sr/86Sr measurements and U-Pb age calibration, the resolution of Sr isotope geochronology approaches 0.5 Ma in this interval. This highly resolved seawater 87Sr/86Sr record obtained for the Late Moscovian through mid-Sakmarian will aid in global carbonate chemostratigraphic correlation and contribute to our understanding of the timing of Late Paleozoic glacial and tectonic events. References: Bruckschen, P., Oesmann, S., Veizer, J., 1999. Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chemical Geology 161, p. 127-163. Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr

  14. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent

  15. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  16. 30 CFR 57.8519 - Underground main fan controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the...

  17. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  18. Human Factors Considerations of Undergrounds in Insurgencies

    DTIC Science & Technology

    1966-09-01

    number of these local villagers re- portedly aided the Viet Cong in infiltrating the base area and obtaining enough information to make a life- size model ...instigate, and support subversive under- grounds, have been included. The report is designed to provide the military user with a text to complement...underground organizations is compart- mentalization, designed to protect the organization’s security. The cellular structure follows the underground "fail

  19. Underground infrastructure damage for a Chicago scenario

    SciTech Connect

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  20. Detection of underground structures and tunnels

    SciTech Connect

    Mack, J.M.; Moses, R.W.; Kelly, R.E.; Flynn, E.R.; Kraus, R.H.; Cogbill, A.H.; Stolarczyk, L.G.

    1996-09-01

    This is the final report of a one year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. There is a continuing need in the United States defense and drug interdiction for effective over, convert, and standoff means of detecting underground tunnels, structures, and objects. This project sought to begin an assessment of electromagnetic and gravitational gradient detection approaches to the detection of underground structures and tunnels.

  1. Deep high spectral resolution spectroscopy and chemical composition of ionized nebulae

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García-Rojas, J.; Mesa-Delgado, A.; Toribio San Cipriano, L.

    2014-01-01

    High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2-3 times higher than those derived from CELs - in H II regions - for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star-forming dwarf and spiral galaxies at different redshifts. Additionally, high-resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s-elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E-ELT will be of paramount interest to: (a) extend the studies of heavy-element recombination lines to low metallicity objects, (b) to extend abundance determinations of s-elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions.

  2. Deep Dive Topic: State of understanding of capsule modeling in context of high-foot

    SciTech Connect

    Hurricane, O. A.; Clark, D. S.

    2015-07-14

    The work is summarized from several perspectives: 1D simulation perspective: Post-shot models agree with yield data to within a factor of ~2 at low implosion velocities, but the models diverge from the data as the velocity and convergence ratio increase. 2D simulation perspective: Integrated hohlraum-capsule post-shot models agree with primary data for most implosions, but overpredict yield and DSR for a few of the highest velocity implosions. High-resolution 3D post-shot capsule-only modeling captures much of the delivered performance of the one shot currently simulated.

  3. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    SciTech Connect

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program.

  4. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2

  5. Fossilized high pressure from the Earth's deep interior: The coesite-in-diamond barometer

    PubMed Central

    Sobolev, Nikolai V.; Fursenko, Boris A.; Goryainov, Sergei V.; Shu, Jinfu; Hemley, Russell J.; Mao, Ho-kwang; Boyd, Francis R.

    2000-01-01

    Mineral inclusions in diamonds provide an important source of information about the composition of the continental lithosphere at depths exceeding 120–150 km, i.e., within the diamond stability field. Fossilized high pressures in coesite inclusions from a Venezuela diamond have been identified and measured by using laser Raman and synchrotron x-ray microanalytical techniques. Micro-Raman measurements on an intact inclusion of remnant vibrational band shifts give a high confining pressure of 3.62 (±0.18) GPa. Synchrotron single-crystal diffraction measurements of the volume compression are in accord with the Raman results and also revealed direct structural information on the state of the inclusion. In contrast to olivine and garnet inclusions, the thermoelasticity of coesite favors accurate identification of pressure preservation. Owing to the unique combination of physical properties of coesite and diamond, this “coesite-in-diamond” geobarometer is virtually independent of temperature, allowing an estimation of the initial pressure of Venezuela diamond formation of 5.5 (±0.5) GPa. PMID:11035808

  6. Simulation of the deep-sea biosphere by a continuous high-pressure bioreactor

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Maignien, L.; Verstraete, W.; Henriet, J.-P.; Boon, N.

    2009-04-01

    In ocean system Anaerobic Oxidation of Methane (AOM) followed by carbonate precipitation has a significant effect on the climate regulation, since this process avoids large methane emissions to the atmosphere and fixes carbon dioxide into carbonate structures. However the main difficulty to study AOM is that the consortia involved have extremely long doubling time (2-7 months) at ambient or low pressures. To simulate the in situ condition better and obtain a faster growth, we designed and constructed a unique continuous high-pressure bioreactor. The reactor can reach pressure up to 100 bars, representing a depth of 1000m below sea level; it can be operated in continuous or non-continuous style, simulating the different types of methane resource. By the help of this high pressure bioreactor system, we are also able to study the effect of environmental factors on AOM activity and on microbial community. Captain Arutyunov Mud Volcano (Gulf of Cadiz) sediment has been used as biomass resource and different molecular techniques (DGGE, cloning library, FISH) have been applied to examine the microbial community structure. By increasing methane partial pressure, an immediate increase of AOM activity has been observed before significant enrichment of biomass. A continuous methane flux is necessary to obtain optimal AOM activity. Bacterial community is more sensitive to the change of pressure compared with archaeal community.

  7. Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment.

    PubMed

    Bates, Amanda E; Lee, Raymond W; Tunnicliffe, Verena; Lamare, Miles D

    2010-05-04

    The thermal characteristics of an organism's environment affect a multitude of parameters, from biochemical to evolutionary processes. Hydrothermal vents on mid-ocean ridges are created when warm hydrothermal fluids are ejected from the seafloor and mixed with cold bottom seawater; many animals thrive along these steep temperature and chemical gradients. Two-dimensional temperature maps at vent sites have demonstrated order of magnitude thermal changes over centimetre distances and at time intervals from minutes to hours. To investigate whether animals adapt to this extreme level of environmental variability, we examined differences in the thermal behaviour of mobile invertebrates from aquatic habitats that vary in thermal regime. Vent animals were highly responsive to heat and preferred much cooler fluids than their upper thermal limits, whereas invertebrates from other aquatic environments risked exposure to warmer temperatures. Avoidance of temperatures well within their tolerated range may allow vent animals to maintain a safety margin against rapid temperature fluctuations and concomitant toxicity of hydrothermal fluids.

  8. Evidence for deep regulatory similarities in early developmental programs across highly diverged insects.

    PubMed

    Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh

    2014-09-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene

  9. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  10. Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects

    PubMed Central

    Zhang, Yinan; Samee, Md. Abul Hassan; Halfon, Marc S.; Sinha, Saurabh

    2014-01-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250–350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as “training data” to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary

  11. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates.

    PubMed

    Lv, Xiangyun; Song, Jiali; Yu, Bo; Liu, Huilan; Li, Chao; Zhuang, Yingping; Wang, Yonghong

    2016-11-01

    For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high L-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and L-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze L-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high L-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.

  12. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

  13. Is the signal from Cyg X-3, as recorded in some underground experiments, real?

    NASA Technical Reports Server (NTRS)

    Chudakov, A. E.

    1986-01-01

    Most of the excitement concerning the underground detection of signals from Cyg X-3 comes not from astrophysical grounds, but from the contradiction with surface experimental data. Believing in the Cyg X-3 signal underground and also that the main processes of muon production are well knownm the conclusion was drawn that the signal in EAS Cherenkov or counter experiments could be remarkably high, which is not the case. Possible solutions to this discrepancy are discussed.

  14. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    PubMed

    Miller, Karen J; Rowden, Ashley A; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000-1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  15. Savannah River National Laboratory Underground Counting Facility

    NASA Astrophysics Data System (ADS)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  16. Highly Efficient Deep Blue Organic Light-Emitting Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off.

    PubMed

    Shan, Tong; Liu, Yulong; Tang, Xiangyang; Bai, Qing; Gao, Yu; Gao, Zhao; Li, Jinyu; Deng, Jian; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-10-10

    Great efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials meeting the standards of European Broadcasting Union (EBU) standard with Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.06) for flat-panel displays and solid-state lightings. However, high-performanced deep blue OLEDs are still rare for applications. Herein, two efficient deep blue emitters, PIMNA and PyINA, are designed and synthesized by coupling naphthalene with phenanthreneimidazole and pyreneimidazole, respectively. The balanced ambipolar transporting natures of them are demonstrated by single-carrier devices. Their non-doped OLEDs show deep blue emissions with extremely small CIEy of 0.034 for PIMNA and 0.084 for PyINA, with negligible efficiency roll-off. To take advantage of high photoluminescence quantum efficiency of PIMNA and large fraction of singlet exciton formation of PyINA, doped devices are fabricated by dispersing PyINA into PIMNA, a significantly improved maximum external quantum efficiency (EQE) of 5.05% is obtained through very effective energy transfer with CIE coordinates of (0.156, 0.060), and the EQE remains 4.67% at 1000 cd m-2, which is among the best of deep blue OLEDs reported matching stringent EBU standard well.

  17. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction.

    PubMed

    Laehnemann, David; Borkhardt, Arndt; McHardy, Alice Carolyn

    2016-01-01

    Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete Genomics DNA nanoball sequencing, Illumina sequencing by synthesis, Ion Torrent semiconductor sequencing, Pacific Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the features of the data they analyse, the parameters they determine from them and the data structures and algorithms they use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to consider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific benchmarks would greatly inform tool choices and future software development. The development of stand-alone error correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge about error profiles and from (re)combining ideas from the existing approaches presented here.

  18. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals.

    PubMed

    Cabán-Acevedo, Miguel; Kaiser, Nicholas S; English, Caroline R; Liang, Dong; Thompson, Blaise J; Chen, Hong-En; Czech, Kyle J; Wright, John C; Hamers, Robert J; Jin, Song

    2014-12-10

    Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

  19. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.

    PubMed

    Wang, Shaowei; Xi, Wang; Cai, Fuhong; Zhao, Xinyuan; Xu, Zhengping; Qian, Jun; He, Sailing

    2015-01-01

    Gold nanoparticles can be used as contrast agents for bio-imaging applications. Here we studied multi-photon luminescence (MPL) of gold nanorods (GNRs), under the excitation of femtosecond (fs) lasers. GNRs functionalized with polyethylene glycol (PEG) molecules have high chemical and optical stability, and can be used as multi-photon luminescent nanoprobes for deep in vivo imaging of live animals. We have found that the depth of in vivo imaging is dependent upon the transmission and focal capability of the excitation light interacting with the GNRs. Our study focused on the comparison of MPL from GNRs with two different aspect ratios, as well as their ex vivo and in vivo imaging effects under 760 nm and 1000 nm excitation, respectively. Both of these wavelengths were located at an optically transparent window of biological tissue (700-1000 nm). PEGylated GNRs, which were intravenously injected into mice via the tail vein and accumulated in major organs and tumor tissue, showed high image contrast due to distinct three-photon luminescence (3PL) signals upon irradiation of a 1000 nm fs laser. Concerning in vivo mouse brain imaging, the 3PL imaging depth of GNRs under 1000 nm fs excitation could reach 600 μm, which was approximately 170 μm deeper than the two-photon luminescence (2PL) imaging depth of GNRs with a fs excitation of 760 nm.

  20. Three-Photon Luminescence of Gold Nanorods and Its Applications for High Contrast Tissue and Deep In Vivo Brain Imaging

    PubMed Central

    Wang, Shaowei; Xi, Wang; Cai, Fuhong; Zhao, Xinyuan; Xu, Zhengping; Qian, Jun; He, Sailing

    2015-01-01

    Gold nanoparticles can be used as contrast agents for bio-imaging applications. Here we studied multi-photon luminescence (MPL) of gold nanorods (GNRs), under the excitation of femtosecond (fs) lasers. GNRs functionalized with polyethylene glycol (PEG) molecules have high chemical and optical stability, and can be used as multi-photon luminescent nanoprobes for deep in vivo imaging of live animals. We have found that the depth of in vivo imaging is dependent upon the transmission and focal capability of the excitation light interacting with the GNRs. Our study focused on the comparison of MPL from GNRs with two different aspect ratios, as well as their ex vivo and in vivo imaging effects under 760 nm and 1000 nm excitation, respectively. Both of these wavelengths were located at an optically transparent window of biological tissue (700-1000 nm). PEGylated GNRs, which were intravenously injected into mice via the tail vein and accumulated in major organs and tumor tissue, showed high image contrast due to distinct three-photon luminescence (3PL) signals upon irradiation of a 1000 nm fs laser. Concerning in vivo mouse brain imaging, the 3PL imaging depth of GNRs under 1000 nm fs excitation could reach 600 μm, which was approximately 170 μm deeper than the two-photon luminescence (2PL) imaging depth of GNRs with a fs excitation of 760 nm. PMID:25553113

  1. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?

    PubMed Central

    Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo

    2011-01-01

    Background and Aims While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Methods Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Key Results Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). Conclusions The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light. PMID:21685433

  2. Deep high-resolution fluorescence microscopy of full organs: the benefit of ultraminiature confocal miniprobes

    NASA Astrophysics Data System (ADS)

    Schwarz, France; Le Nevez, Arnaud; Genet, Magalie; Osdoit, Anne; Lacombe, François

    2009-02-01

    Background: Confocal Laser Endomicroscopy (CLE) based on ultraminiature miniprobes (Cellvizio®, Mauna Kea Technologies, Paris, France) is able to image the inner microstructure of retroperitoneal full organs punctured during EUS-FNA procedures, such as pancreas, liver or lymph nodes. Therefore, pCLE can provide an easy-to-use and precise adjunct tool to ultrasonographic interventions in order to target suspicious areas for biopsies in EUS-FNA. Material and Methods: Probe-based CLE (pCLE) was performed on ex-vivo surgically resected specimens after topical application of fluorophores in standard 19G and 22G needles. Two prototype miniprobes ("S-probe" 300 microns diameter, field of view 400*280 microns, and "S-probe" 650 microns diameter, field of view 500*600 microns) were then inserted into the needles and enabled visualization of the inner microstructures of uterus, lung, kidney, stomach and esophagus, in both healthy and cancerous conditions. Then, pCLE was performed in-vivo on four pigs during three NOTES and one EUS-FNA procedures after intravenous injection of 2-7mL fluorescein 1-10% using the prototype "S-probe" 350 microns diameter inserted in 19G FNA needles. Liver, pancreas and spleen were imaged. Results: During the ex-vivo experiments, pCLE made it possible to distinguish microstructures, such as alveoli and macrophages in the lungs. During the in-vivo experiments, Cellvizio® video sequences showed hepatic lobules and the portal vein in the liver, and red and white pulp in the spleen. Conclusion: pCLE provides in vivo cellular information about full organs. It has the potential to help target biopsies during EUSFNA, which suffers from a high rate of false negatives, thus increasing its sensitivity.

  3. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?

    USGS Publications Warehouse

    Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.

    2003-01-01

    The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.

  4. A shallow underground laboratory for low-background radiation measurements and materials development.

    PubMed

    Aalseth, C E; Bonicalzi, R M; Cantaloub, M G; Day, A R; Erikson, L E; Fast, J; Forrester, J B; Fuller, E S; Glasgow, B D; Greenwood, L R; Hoppe, E W; Hossbach, T W; Hyronimus, B J; Keillor, M E; Mace, E K; McIntyre, J I; Merriman, J H; Myers, A W; Overman, C T; Overman, N R; Panisko, M E; Seifert, A; Warren, G A; Runkle, R C

    2012-11-01

    Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

  5. Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Raupach, Michael J.; Malyutina, Marina; Brandt, Angelika; Wägele, Johann-Wolfgang

    2007-08-01

    Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 ( d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 ( d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).

  6. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall...

  7. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance...

  8. Delayed signatures of underground nuclear explosions

    DOE PAGES

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less

  9. Delayed signatures of underground nuclear explosions

    SciTech Connect

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  10. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  11. RecD function is required for high-pressure growth of a deep-sea bacterium.

    PubMed

    Bidle, K A; Bartlett, D H

    1999-04-01

    A genomic library derived from the deep-sea bacterium Photobacterium profundum SS9 was conjugally delivered into a previously isolated pressure-sensitive SS9 mutant, designated EC1002 (E. Chi and D. H. Bartlett, J. Bacteriol. 175:7533-7540, 1993), and exconjugants were screened for the ability to grow at 280-atm hydrostatic pressure. Several clones were identified that had restored high-pressure growth. The complementing DNA was localized and in all cases found to possess strong homology to recD, a DNA recombination and repair gene. EC1002 was found to be deficient in plasmid stability, a phenotype also seen in Escherichia coli recD mutants. The defect in EC1002 was localized to a point mutation that created a stop codon within the recD gene. Two additional recD mutants were constructed by gene disruption and were both found to possess a pressure-sensitive growth phenotype, although the magnitude of the defect depended on the extent of 3' truncation of the recD coding sequence. Surprisingly, the introduction of the SS9 recD gene into an E. coli recD mutant had two dramatic effects. At high pressure, SS9 recD enabled growth in the E. coli mutant strain under conditions of plasmid antibiotic resistance selection and prevented cell filamentation. Both of these effects were recessive to wild-type E. coli recD. These results suggest that the SS9 recD gene plays an essential role in SS9 growth at high pressure and that it may be possible to identify additional aspects of RecD function through the characterization of this activity.

  12. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , i.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  13. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  14. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J.W.; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  15. Deep mantle mineralogy and novel materials synthesis using multianvil high-pressure technology (Robert Wilhelm Bunsen Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Tetsuo, Irifune

    2016-04-01

    Phase relations in mantle and slab materials have been studied using Kawai-type multianvil apparatus (KMA) under pressure and temperature conditions of the mantle transition region and the uppermost lower mantle of the Earth. The associated density and sound velocity changes of these materials have also been determined using the KMA technology combined with synchrotron in situ X-ray and ultrasonic interferometry measurements. The results show that the mantle transition region is made of a pyrolitic composition, while the presence of a harzburgite-rich layer is suggested in the lower parts of this region. Use of sintered diamond anvils for KMA has allowed expansion of these measurements toward deeper region of the lower mantle. Our preliminary results of such measurements indicate that at least upper part of the lower mantle is made of the pyrolitic composition contrary to a recent study based on Brillouin scattering measurements in diamond anvil cell, which concluded a more Si-rich lower mantle. On the other hand, we have been applying KMA technology to synthesis of novel functional materials utilizing its capability of producing very high static pressures and homogeneous temperatures in relatively large sample volumes. These include ultrahard nano-polycrystalline diamond (NPD) directly converted from graphite, which is now being used for applications to abrasive and cutting tools as well as for some scientific applications such as anvils for some high-pressure devices. Another example of such a novel material is hard and tough nano-polycrystalline stishovite (NPS), which is also potentially important for some industrial applications. Moreover, we recently succeeded in making highly transparent nano-polycrystalline garnet (NPG), which is ideal for the measurements of sound velocities by various methods, such as Brillouin scattering and GHz ultrasonic interferometry. Thus, the KMA technology opens the door to the synthesis of transparent nano

  16. RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott

    2007-01-01

    As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.

  17. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    NASA Astrophysics Data System (ADS)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The

  18. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2

    PubMed Central

    Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo

    2017-01-01

    Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. PMID:28084421

  19. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2

    NASA Astrophysics Data System (ADS)

    Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo

    2017-01-01

    Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle.

  20. Barcoding Beetles: A Regional Survey of 1872 Species Reveals High Identification Success and Unusually Deep Interspecific Divergences

    PubMed Central

    Pentinsaari, Mikko; Hebert, Paul D. N.; Mutanen, Marko

    2014-01-01

    With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species. PMID:25255319

  1. Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area.

    PubMed

    Giorli, Giacomo; Au, Whitlow W L; Ou, Hui; Jarvis, Susan; Morrissey, Ronald; Moretti, David

    2015-05-01

    The temporal occurrence of deep diving cetaceans in the Josephine Seamount High Seas Marine Protected Area (JSHSMPA), south-west Portugal, was monitored using a passive acoustic recorder. The recorder was deployed on 13 May 2010 at a depth of 814 m during the North Atlantic Treaty Organization Centre for Maritime Research and Experimentation cruise "Sirena10" and recovered on 6 June 2010. The recorder was programmed to record 40 s of data every 2 min. Acoustic data analysis, for the detection and classification of echolocation clicks, was performed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), a custom matlab program, and an operator-supervised custom matlab program to assess the classification performance of the detector/classification systems. M3R CS-SVM algorithm contains templates to detect beaked whales, sperm whales, blackfish (pilot and false killer whales), and Risso's dolphins. The detections of each group of odontocetes was monitored as a function of time. Blackfish and Risso's dolphins were detected every day, while beaked whales and sperm whales were detected almost every day. The hourly distribution of detections reveals that blackfish and Risso's dolphins were more active at night, while beaked whales and sperm whales were more active during daylight hours.

  2. Evaluating Deep Updraft Formulation in NCAR CAM3 with High-Resolution WRF Simulations During ARM TWP-ICE

    SciTech Connect

    Wang, Weiguo; Liu, Xiaohong

    2009-02-19

    The updraft formulation used in NCAR CAM3 deep convection parameterization assumes that the fractional entrainment rate for a single updraft is height-independent and the updraft mass flux increases monotonically with height to updraft top. These assumptions are evaluated against three-dimensional high-resolution simulations from the weather research and forecast (WRF) model during the monsoon period of the DOE ARM Tropical Warm Pool -- International Cloud Experiment (TWP-ICE). Analyses of the WRF-generated updrafts suggest that the fractional entrainment rate for a single updraft decreases with height and the updraft mass flux increases with height below the top of the conditionally unstable layer but decreases above. It is suggested that the assumed updraft mass flux profile in CAM3 might be unrealistic in many cases because the updraft acceleration is affected by other drag processes in addition to entrainment. Total convective cloud mass flux and detrainment rate over the TWP-ICE domain diagnosed from the CAM3 parameterization driven by WRF meteorological fields are smaller than those derived from WRF simulations. The total entrainment rate of CAM3 is smaller than that of WRF in the lower part of cloud and larger in the upper part of cloud. Compared with WRF simulations, the CAM3-parameterized convection is too active and, as a result, excess moisture and heat may be transported to the upper troposphere by the parameterized convection. Future improvement is envisioned.

  3. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  4. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation.<