Sample records for deep water depth

  1. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  2. Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    PubMed Central

    Miller, Karen J.; Rowden, Ashley A.; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations. PMID:21611159

  3. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change.

  4. Hydrologic regulation of plant rooting depth

    PubMed Central

    Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-01-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923

  5. Hydrologic regulation of plant rooting depth.

    PubMed

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  6. Hydrologic regulation of plant rooting depth

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  7. Warming trend in the western Mediterranean deep water

    NASA Astrophysics Data System (ADS)

    Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.

    1990-10-01

    THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.

  8. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    USGS Publications Warehouse

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  9. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  10. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed Central

    Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015

  11. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  12. Desert shrub responses to experimental modification of precipitation seasonality and soil depth: relationship to the two-layer model and ecohydrological niche

    USGS Publications Warehouse

    Germino, Matthew J.; Reinhardt, Keith

    2013-01-01

    1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that were consistent with the two-layer hypothesis, and the contribution of shallow water to growth on these plots was consistent with the resource-pool hypothesis. However, shallow-soil water also had negative effects on sagebrush, suggesting an ecohydrological trade-off not considered in these or related theories. The interaction between precipitation timing and soil depth indicates that increased winter precipitation could lead to a mosaic of increases and decreases in A. tridentata across landscapes having variable soil depth.

  13. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.

    PubMed

    Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi

    2015-05-01

    Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  14. Physiological and biomechanical responses to walking underwater on a non-motorised treadmill: effects of different exercise intensities and depths in middle-aged healthy women.

    PubMed

    Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco

    2014-01-01

    Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.

  15. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    PubMed

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  16. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish

    USGS Publications Warehouse

    Flinders, C.A.; Magoulick, D.D.

    2007-01-01

    We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.

  17. A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments.

    PubMed

    Cobain, S L; Hodgson, D M; Peakall, J; Wignall, P B; Cobain, M R D

    2018-01-10

    Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.

  18. The timing of deglacial circulation changes in the Atlantic

    NASA Astrophysics Data System (ADS)

    Waelbroeck, C.; Skinner, L.; Gersonde, R.; Mackensen, A.; Michel, E.; Labeyrie, L. D.; Duplessy, J.

    2009-12-01

    We present new benthic isotopic data from core MD07-3076 retrieved in the Atlantic sector of the Southern Ocean (44°09’S, 14°13’W, 3770 m water depth), and place them in the context of well-dated published Atlantic benthic foraminifera isotopic records covering the last 30 ky. Dating of core MD07-3076 was achieved by a combination of 14C AMS measurements on planktonic foraminifera and correlation of sea surface temperature signals derived from both planktonic foraminifera Mg/Ca and census counts, with Antarctic ice isotopic records (Skinner et al., submitted). Comparison of benthic isotopic records from various depths in the North and South Atlantic reveals that circulation changes over the last deglaciation did not take place simultaneously in the 1000-2000 m and in the 3000-4500 m depth ranges. Circulation changes first occurred at lower depth, causing large and relatively rapid changes in benthic δ18O and δ13C at the beginning of Heinrich Stadial 1 (HS1) and the Younger Dryas. Below 3000 m depth, North Atlantic deep water hydrology changed only gradually until a large increase in deep water ventilation took place, resulting from the resumption of North Atlantic Deep Water formation at the end of HS1. In contrast, our deep South Atlantic record indicates that Circumpolar Deep Water around 3800 m depth remained quasi-isolated from northern water masses until the end of HS1. Furthermore, our record shows that core MD07-3076 site was then flushed with better ventilated waters for a few hundred years from ~14.5 to 14 calendar ky BP, before benthic δ18O and δ13C values resumed their progression towards Holocene levels. In conclusion, this set of well-dated Atlantic records demonstrates that benthic δ18O records followed different time evolutions across the last deglaciation, depending on the site latitude and water depth, so that benthic δ18O can not be used as a global correlation tool with a precision better than 3 ky.

  19. Localization, characterization and dating of water circulations in the soil-saprolite system of the Strengbach watershed: petrological, hydro-geophysical and geochemical evidences.

    NASA Astrophysics Data System (ADS)

    Chabaux, François; Viville, Daniel; Pierret, Marie-Claire; Stille, Peter; Lerouge, Catherine; Wyns, Robert; Dezayes, Chrystel; Labasque, Thierry; Aquilina, Luc; Ranchoux, Coralie; Négrel, Philippe

    2017-04-01

    The characterization of the critical zone along depth profiles remains a major scientific issue for understanding and modelling the response of continental surfaces to climatic, tectonic and anthropogenic forcings. Besides characterization it requires the modelling of the water circulations within the substratum of the critical zone. A series of boreholes drilled along the north and the south slopes of the Strengbach watershed makes it possible to characterize the critical zone to depths of ≈100 to 150 m within this critical zone observatory. In this study we attempt to combine mineralogical and petrological observations of the cores recovered through the drilling with chemical data of waters collected in each of these wells and hydro-geophysical data in order to characterize processes of water-rock interactions, visualize the water arrivals within the boreholes and bring new information on the deep water circulations within the watershed. Mineralogical, petrological and hydrogeophysical data suggest that deepwater circulation in the watershed likely occurs along fractures, concentrated in relatively narrow areas, several centimeters wide, interspersed with areas where the granite is much less fractured. This points to the occurrence of deep waters circulating in a network of more or less independent conduits, which could extend over several tens to hundreds of meters deep. The hydrochemical data from the boreholes, show contrasting characteristics for surface waters collected at 10 to 15 m depth and the deeper waters collected between 50 to 80m depth; the surface waters are very similar to those of the spring waters collected in the watershed (Pierret et al., 2014), and the deeper waters collected between 50 to 80m depth. The residence times of the circulating waters are also very variable, with ages of up to a few months for surface and subsurface waters and ages exceeding several decades for the deep waters. These differences suggest that the subsurface circulation systems are quite different from the deeper circulation ones. They also point to the importance to focus future studies on deep-water circulations in order to properly characterize the functioning of the critical zone in watersheds, especially in mountainous areas, such as the Strengbach watershed.

  20. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda

    USGS Publications Warehouse

    Cronin, T. M.; Holtz, T.R.; Whatley, R.C.

    1994-01-01

    Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.

  1. Abyssal ostracods from the South and Equatorial Atlantic Ocean: Biological and paleoceanographic implications

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.

    2008-01-01

    We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.

  2. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  3. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.

    2013-09-01

    We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.

  4. Carbon and Neodymium Isotopic Fingerprints of Atlantic Deep Ocean Circulation During the Warm Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H.; Robinson, M. M.; Dowsett, H. J.; Bell, D. B.

    2012-12-01

    Earth's future climate may resemble the mid-Piacenzian Age of the Pliocene, a time when global temperatures were sustained within the range predicted for the coming century. Surface and deep water temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm surface temperature anomaly in the mid-Piacenzian (3.264 - 3.025 Ma), accompanied by increased evaporation. The anomaly is detected in deep waters at 46°S, suggesting enhanced meridional overturning circulation and more southerly penetration of North Atlantic Deep Water (NADW) during the PRISM interval. However deep water temperature proxies are not diagnostic of water mass and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy investigation of Atlantic deep ocean circulation during the warm mid-Piacenzian, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic composition of fossil fish teeth (ɛNd) as a proxy for water mass source and mixing. This reconstruction utilizes both new and previously published data from DSDP and ODP cores along equatorial (Ceara Rise), southern mid-latitude (Walvis Ridge), and south Atlantic (Meteor Rise/Agulhas Ridge) depth transects. Additional end-member sites in the regions of modern north Atlantic and Southern Ocean deep water formation provide a Pliocene baseline for comparison. δ13C throughout the Atlantic basin is remarkably homogenous during the PRISM interval. δ13C values of Cibicidoides spp. and C. wuellerstorfi largely range between 0‰ and 1‰ at North Atlantic, shallow equatorial, southern mid-latitude, and south Atlantic sites with water depths from 2000-4700 m; both depth and latitudinal gradients are generally small (~0.3‰). However, equatorial Ceara Rise sites below 3500 m diverge, with δ13C values as low as -1.2‰ at ~3.15 Ma. The uniquely negative δ13C values at deep Ceara rise sites suggest that, during PRISM warmth, the oldest Atlantic deep waters may have resided along the modern deep western boundary current, while younger deep water masses were concentrated to the south and east. In the modern Atlantic, the ɛNd value of southern-sourced waters is more radiogenic than that of northern-sourced waters, providing a complimentary means to characterize Pliocene water mass geometry. ɛNd values from shallow (2500 m) and deep (4700 m) Walvis Ridge sites average -10 and -11 respectively; the shallow site is somewhat more radiogenic than published coretop ɛNd (-12), suggesting enhanced Pliocene influence of southern-sourced water masses. Ongoing analytical efforts will fingerprint Piacenzian ɛNd from north and south deep water source regions and will target additional depth transect ɛNd, allowing us to investigate the possibility that "older" carbon isotopic signatures at western equatorial sites reflect entrainment of proto-NADW while "younger" signatures at southern and eastern sites reflect the influence of southern-sourced deep water.

  5. Depth as an organizer of fish assemblages in floodplain lakes

    USGS Publications Warehouse

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  6. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  7. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    PubMed

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  8. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  9. Effect of water depth on wind-wave frequency spectrum I. Spectral form

    NASA Astrophysics Data System (ADS)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo

    1996-06-01

    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  10. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not provide an accurate indication of water quality in the adjacent aquifer. Hence, the measured midpoint in boreholes is a better proxy for freshwater-lens thickness. Brackish water transported upward in a deep monitor well can exit the borehole in the upper, freshwater part of the aquifer and affect the water quality in nearby production wells. Piezometers installed at different depths will provide the best information on aquifer salinity because they are unaffected by borehole flow. Despite the effects of borehole flow, monitoring the midpoint in deep monitor wells is still useful to identify long-term trends in the movement of the transition zone.

  11. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna.

    PubMed

    Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene

    2018-01-01

    The probability of an aquatic animal being available for detection is typically <1. Accounting for covariates that reduce the probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned Aerial Vehicles.

  12. Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Bova, S. C.; Herbert, T.; Fox-Kemper, B.

    2015-12-01

    Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.

  13. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  14. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    PubMed

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  15. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    PubMed Central

    Gaines, Katie P.; Stanley, Jane W.; Meinzer, Frederick C.; McCulloh, Katherine A.; Woodruff, David R.; Chen, Weile; Adams, Thomas S.; Lin, Henry; Eissenstat, David M.

    2016-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. PMID:26546366

  16. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  17. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.

  18. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    NASA Astrophysics Data System (ADS)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  19. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  20. Water Table Depth and Growth of Young Cottonwood

    Treesearch

    W. M. Broadfoot

    1973-01-01

    Planted cottonwood grew best when the water table was about 2 feet deep, whether the tree was planted on soil with a high water table or the water table was raised 1 year after planting. Growth over a 1- foot-deep water table was about the same as over no water table, but a surface water table restricted growth of cuttings planted in the water, and killed trees planted...

  1. A major change in North Atlantic deep water circulation during the Early Pleistocene transition 1.6 million years ago

    NASA Astrophysics Data System (ADS)

    Khélifi, N.; Frank, M.

    2013-12-01

    The global ocean-climate system has been highly sensitive to the formation and advection of deep water in the North Atlantic but its evolution over the Pliocene-Pleistocene global cooling is not fully understood. In particular, changes in the sources and mixing of prevailing deep waters are not well constrained. Here we present new records of the bottom-water radiogenic neodymium isotope (ϵNd) variability obtained from three DSDP/ODP sites at water depths between 2100 and 5000 m in the Northeast Atlantic to reconstruct changes in deep water circulation over the past 4 million years. Prior to 1.6 million years ago (Ma), we find ϵNd values primarily oscillating between -9 and -11 at all sites, consistent with enhanced vertical mixing of water masses. At 1.6 Ma, the ϵNd signatures synchronously shifted to less radiogenic values around -12 at different water depths and water mass signatures gradually became more distinct. Since then values and amplitudes of "glacial/interglacial" ϵNd oscillations have been similar to the Late Quaternary at each site. This change 1.6 Ma reflects a major reorganization of deep water circulation in the Northeast Atlantic towards a more stratified water column with distinct water masses accompanying the enhanced response of climate to the Earth's obliquity forcing during the Early Pleistocene transition.

  2. Relationship Between Metabolic Rate and Sea Depth in Bivalves and Gastropods

    NASA Astrophysics Data System (ADS)

    Ruiz, B. R.; Shih, B.; Heim, N.; Payne, J.

    2016-12-01

    The purpose of this study was to find and observe trends in the metabolic rate of bivalves and gastropod in regards to sea depth in order to see if all organisms follow a general trend for metabolism and to provide data to help future conservation efforts of these keystone organisms. Using geographic data produced by McClain et. al (2012) and body size data from Heim et. al (2015), the metabolic rate and sea depth data were plotted using the `R statistical software'. The Pearson correlation test was performed on each respective graph. Deep sea mollusks were considered those that resided at a water depth of 500 meters or deeper while shallow mollusks resided at a depth less than 500 meters. The gastropods showed positive correlations in the relationship between metabolic rate and ocean depth while bivalves showed a negative trend. When the metabolic rate versus minimum ocean depth was graphed, the graphs for deep bivalves and shallow gastropods returned bad p-values. From this data, it can be seen that water depth and metabolic rate have relationships, although different molluscan classes are adapted to their environments in different ways, as seen by the differences in the relationships between metabolic rates and ocean depth of the gastropods and bivalves. The results indicated that there is a general negative trend between metabolic rate and ocean depth of bivalves, and a positive relationship for gastropods. The difference in relationship in gastropods is thought to be attributed to the size trends of gastropods as they live in deeper waters, which is that gastropods increase in size across the bathyal region, and decrease as gastropods approach the extremely deep water. As displayed by the two different metabolic trends, this study shows the different ways molluscan classes have adapted to different evolutionary selection pressures.

  3. The levels of processing effect under nitrogen narcosis.

    PubMed

    Kneller, Wendy; Hobbs, Malcolm

    2013-01-01

    Previous research has consistently demonstrated that inert gas (nitrogen) narcosis affects free recall but not recognition memory in the depth range of 30 to 50 meters of sea water (msw), possibly as a result of narcosis preventing processing when learned material is encoded. The aim of the current research was to test this hypothesis by applying a levels of processing approach to the measurement of free recall under narcosis. Experiment 1 investigated the effect of depth (0-2 msw vs. 37-39 msw) and level of processing (shallow vs. deep) on free recall memory performance in 67 divers. When age was included as a covariate, recall was significantly worse in deep water (i.e., under narcosis), compared to shallow water, and was significantly higher in the deep processing compared to shallow processing conditions in both depth conditions. Experiment 2 demonstrated that this effect was not simply due to the different underwater environments used for the depth conditions in Experiment 1. It was concluded memory performance can be altered by processing under narcosis and supports the contention that narcosis affects the encoding stage of memory as opposed to self-guided search (retrieval).

  4. Effect of water depth on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Aguirre, Paula; Ojeda, Esther; García, Joan; Barragán, Jesús; Mujeriego, Rafael

    2005-01-01

    The objective of this article is to evaluate the effect of water depth on organic matter removal efficiency in horizontal subsurface flow constructed wetlands (SSFs). Experiments were carried out in a pilot plant comprising eight parallel SSF of almost equal surface area (54-56 m2 each) and treating urban wastewater. Each SSF differs from the others in the aspect ratio or the size of the granular medium or the water depth. During a period of two years, the shallow SSFs (0.27 m water depth) removed more chemical oxygen demand (COD) (72-81%), biochemical oxygen demand (BOD)5 (72-85%), ammonia (35-56%), and dissolved reactive phosphorus (DRP) (8-23%) than deep SSFs (0.5 m water depth) (59-64% for COD; 51-57% for BOD5; 18-29% for ammonia; and 0-7% for DRP). Experiments carried out during the summer indicated that sulphate reduction accounted for a clearly higher organic matter removal in the deep SSFs than in the shallow ones. Denitrification seemed to be a significant mechanism for organic matter removal to occur in shallow SSFs. The results suggest that the relative contribution of different metabolic pathways varies with depth.

  5. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea

    NASA Astrophysics Data System (ADS)

    Eisenbarth, Simone; Zettler, Michael L.

    2016-03-01

    In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.

  6. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Ralph, Nate; Ross, Edith H.

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment traps have measured particle fluxes in the deep Sargasso Sea near Bermuda. There is currently a 20+yr flux record at 3200-m depth, a 12+yr flux at 1500-m depth, and a 9+yr record at 500-m depth. Strong seasonality is observed in mass flux at all depths, with a flux maximum in February-March and a smaller maximum in December-January. There is also significant interannual variability in the flux, especially with respect to the presence/absence of the December-January flux maximum and in the duration of the high flux period in the spring. The flux records at the three depths are surprisingly coherent, with no statistically significant temporal lag between 500 and 3200-m fluxes at our biweekly sample resolution. Bulk compositional data indicate an extremely rapid decrease in the flux of organic constituents with depth between 500 and 1500-m, and a smaller decrease with depth between 1500 and 3200-m depth. In contrast, carbonate flux is uniform or increases slightly between 500 and 1500-m, possibly reflecting deep secondary calcification by foraminifera. The lithogenic flux increases by over 50% between 500 and 3200-m depth, indicating strong deep water scavenging/repackaging of suspended lithogenic material. Concurrent with the rapid changes in flux composition, there is a marked reduction in the heterogeneity of the sinking particle pool with depth, especially within the mesopelagic zone. By 3200-m depth, the bulk composition of the sinking particle pool is strikingly uniform, both seasonally and over variations in mass flux of more than an order of magnitude. These OFP results provide strong indirect evidence for the intensity of reprocessing of the particle pool by resident zooplankton within mesopelagic and bathypelagic waters. The rapid loss of organic components, the marked reduction in the heterogeneity of the bulk composition of the flux, and the increase in terrigenous fluxes with depth are most consistent with a model of rapid particle turnover and material scavenging from the suspended pool during new particle formation. We suggest that much of the deep mass flux is generated in situ by deep-dwelling zooplankton, and that mass flux, as well as scavenging of suspended materials from the deep water column, varies in proportion to changes in grazer activity. Labile, very rapidly sinking aggregates (e.g., salp fecal material) arriving in the bathypelagic zone within days of their upper ocean production may act to stimulate zooplankton grazing rates and increase large particle production and deep mass flux days to weeks in advance of the arrival of bulk of surface-produced material. This process could reconcile mean particle sinking rate estimates with the phase coherence observed between upper and deep ocean mass fluxes.

  7. Importance of depth and intensity of convection on the isotopic composition of water vapor as seen from IASI and TES δD observations

    NASA Astrophysics Data System (ADS)

    Lacour, Jean-Lionel; Risi, Camille; Worden, John; Clerbaux, Cathy; Coheur, Pierre-François

    2018-01-01

    We use tropical observations of the water vapor isotopic composition, derived from IASI and TES spaceborne measurements, to show that the isotopic composition of water vapor in the free troposphere is sensitive to both the depth and the intensity of convection. We find that for any given precipitation intensity, vapor associated with deep convection is isotopically depleted relative to vapor associated with shallow convection. The intensity of precipitation also plays a role as for any given depth of convection, the relative enrichment of water vapor decreases as the intensity of precipitation increases. Shallow convection, via the uplifting of enriched boundary layer air into the free troposphere and the convective detrainment, enriches the free troposphere. In contrast, deep convection is associated with processes that deplete the water vapor in the free troposphere, such as rain re-evaporation. The results of this study allow for a better identification of the parameters controlling the isotopic composition of the free troposphere and indicate that the isotopic composition of water vapor can be used to evaluate the relative contributions of shallow and deep convection in global models.

  8. Deep-focus earthquakes and recycling of water into the earth's mantle

    NASA Technical Reports Server (NTRS)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  9. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40,000 individual deep-water lithoherms may occur on the Blake Plateau and Straits of Florida, perhaps exceeding the areal extent of all the shallow-water reefs of the southeastern U.S. Our research program has provided data on the status of knowledge concerning these deep-reef habitats to the South Atlantic Fishery Management Council (SAFMC). Currently pending is a proposal by the SAFMC for a deep- water coral Habitat Area of Particular Concern (HAPC) that would extend from North Carolina to south Florida (78,888 km2) to protect these diverse and irreplaceable resources from destructive fishing activities such as bottom trawling. Deep-water reefs worldwide have been severely impacted by bottom trawling, including the deep-water Oculina coral reefs off central eastern Florida, which are structurally similar to the Lophelia reefs. Over a 30-year period, up to 99% of unprotected portions of the Oculina reefs were destroyed by rock shrimp trawling, whereas reefs designated as the Oculina HAPC in 1984 were protected from trawling and long-lines and are still relatively healthy. Numerous fisheries may target the deep-water Lophelia reef habitat including royal red shrimp, golden crab, and various fin fish.

  10. Water withdrawal in deep soil layers: a key strategy to cope with drought in tropical eucalypt plantations

    NASA Astrophysics Data System (ADS)

    Christina, M.; Laclau, J.; Nouvellon, Y.; Duursma, R. A.; Stape, J. L.; Lambais, G. R.; Le Maire, G.

    2013-12-01

    Little is known about the role of very deep roots to supply the water requirements of tropical forests. Clonal Eucalyptus plantations managed in short rotation on very deep Ferralsols are simple forest ecosystems (only 1 plant genotype growing on a relatively homogeneous soil) likely to provide an insight into tree water use strategies in tropical forests. Fine roots have been observed down to a depth of 6 m at age 1 year in Brazilian eucalypt plantations. However, the contribution of water stored in very deep soil layers to stand evapotranspiration over tree growth has been poorly quantified. An eco-physiological model, MAESPA, has been used to simulate half-hourly stand water balance over the first three years of growth in a clonal Eucalyptus grandis plantation in southern Brazil (Eucflux project, State of São Paulo). The water balance model in MAESPA is an equilibrium-type model between soil and leaf water potentials for individual trees aboveground, and at the stand scale belowground. The dynamics of the vertical fine root distribution have been taken into account empirically from linear interpolations between successive measurements. The simulations were compared to time series of soil water contents measured every meter down to 10m deep and to daily latent heat fluxes measured by eddy covariance. Simulations of volumetric soil water contents matched satisfactorily with measurements (RMSE = 0.01) over the three-year period. Good agreement was also observed between simulated and measured latent heat fluxes. In the rainy season, more than 75 % of tree transpiration was supplied by water withdrawn in the upper 1 m of soil, but water uptake progressed to deeper soil layers during dry periods, down to a depth of 6 m, 12 m and 15 m the first, second and third year after planting, respectively. During the second growing season, 15% of water was withdrawn below a depth of 6 m, and 5% below 10m. Most of the soil down to 12m deep was dried out the second year after planting and deep drainage was negligible after 2 years. As a consequence, during the third year after planting only 4% of water was taken up below 6m. However, during the dry season, this deep water still supplied 50% of water requirements. Our results show that deep fine roots of E. grandis play a major role in supplying tree water requirements during extended dry periods. Large amounts of water are stored in the whole soil profile after clear cutting and the fast exploration of deep soil layers by roots make it available for tree growth. After canopy closure, precipitation becomes the key limitation for the productivity of these plantations grown in deep sandy soils. Our results suggest that a territorial strategy leading to a fast exploration of very deep soil layers might provide a strong competitive advantage in regions prone to drought.

  11. Bottom Interaction in Ocean Acoustic Propagation

    DTIC Science & Technology

    2013-09-30

    critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic noise in the water column? What...detections and observations on non-traditional sensors such as deep boreholes in the seafloor in water depths well- below the critical depth. Third...press). "Estimating the horizontal 4 and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea," J. Acoust

  12. Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image

    NASA Astrophysics Data System (ADS)

    Li, Dongling; Zhang, Huaguo; Lou, Xiulin

    2018-03-01

    This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.

  13. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.

    PubMed

    Brown, Alastair; Thatje, Sven

    2014-05-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern. © 2013 Natural Environment Research Council. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  14. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth

    PubMed Central

    Brown, Alastair; Thatje, Sven

    2014-01-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern. PMID:24118851

  15. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    PubMed

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  16. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  17. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  18. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei

    2009-10-01

    The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.

  20. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  1. Population Differentiation and Species Formation in the Deep Sea: The Potential Role of Environmental Gradients and Depth

    PubMed Central

    Jennings, Robert M.; Etter, Ron J.; Ficarra, Lynn

    2013-01-01

    Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve ( Nuculaatacellana ) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna. PMID:24098590

  2. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo

    2017-04-01

    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.

  3. The biodiversity of the deep Southern Ocean benthos.

    PubMed

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  4. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  5. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, "Nova," 7219 m water depth) and southwest Pacific deep water (63KD, "Tasman," 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway. Copyright 2004 by the American Geophysical Union.

  6. Trace element evidence for abrupt changes in deep South Atlantic Ocean nutrient and carbonate chemistry across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Haynes, L.; Kroon, D.; Bell, D. B.; Jung, S.; Seguí, M. J.; Raymo, M. E.; Goldstein, S. L.; Pena, L. D.

    2016-12-01

    Pleistocene glaciations underwent a profound transition from lower amplitude 40 kyr cycles to high amplitude 100 kyr cycles between 1.2 and 0.8 Ma, an interval termed the Mid-Pleistocene Transition (MPT). While the underlying causes of the MPT are uncertain, previous studies show quasi-contemporaneous reductions in North Atlantic Deep Water (NADW) export1 and glacial atmospheric pCO22 around 0.9 Ma. Although this suggests a possible role for enhanced deep-ocean carbon storage in amplifying climate change across the MPT, few direct records of deep ocean carbonate chemistry exist for this interval to test this hypothesis. Here we present South Atlantic benthic foraminiferal B/Ca and Cd/Ca records from International Ocean Discovery Program Sites 1088, 1264 and 1267 (2.1 to 4.3 km water depth) as part of a larger study of Atlantic-wide changes in deep ocean chemistry and circulation spanning the MPT. Results show an abrupt 15-20% decrease in benthic B/Ca and 40-50% increase in Cd/Ca at 4.3 km depth (Site 1267) between 1.0 and 0.9 Ma. Site 1088, which at 2.1 km depth is sensitive to input of southern-sourced Upper Circumpolar Deep Water, shows a prolonged 25% decrease in B/Ca and 50% increase in Cd/Ca from 1.0 to 0.6 Ma. In contrast, at Site 1264 ( 2.5 km depth within the core of modern NADW) B/Ca and Cd/Ca changes across the MPT are more modest (-5% and +10%, respectively). These observations reflect on the accumulation of regenerated carbon and nutrients in the deep South Atlantic, and varying contributions of northern- and southern-sourced watermasses to each core site. Implications for deep-ocean carbon storage and forcing of the MPT will be discussed. 1Pena, L. and Goldstein, S. (2014), Science 345, 318 2Hönisch, B. et al. (2009), Science 324, 1551

  7. Influence of seasonal climatic variability on shallow infiltration at Yucca Mountain

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.

    1993-01-01

    To analyze infiltration and the redistribution of moisture in alluvial deposits at Yucca Mountain, water content profiles at a 13.5 m deep borehole were measured at monthly intervals using a neutron moisture probe. Increases in water content to a maximum depth of 1.8 m in response to winter season precipitation were noted. Below a depth of 1.8 m, a gradual drying trend was indicated. A simulation study showed that, although small amounts of water may be percolating through the deep nonwetted ones of the profile, the influence of climatic variability on infiltration through thick alluvial deposits at Yucca Mountain is greatly mitigated by evapotranspiration.

  8. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    NASA Astrophysics Data System (ADS)

    Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.

    2016-11-01

    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.

  9. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-10-15

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  11. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    NASA Astrophysics Data System (ADS)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  12. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  13. Dynamic Autoinoculation and the Microbial Ecology of a deep Water Hydrocarbon Irruption

    DTIC Science & Technology

    2012-12-11

    gas hydrate) likely altered plume com- position near the source, leavrngintruswrscknimatedbythemost soluble compounds, such as gases (2-4, 9, 10, 12...well. These results may reconcile disparate observations of the physical dynamics and microbial community structure of the deep plume . Model...feeds bacterial metabolism and cellular growth. We focused entirely on the deep plume horizon spanning 1,000-1,300 m water depth, applying

  14. Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Carugati, L.; Gambi, C.; Mienert, J.; Petani, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S.; Danovaro, R.

    2016-01-01

    We investigated organic matter (OM) quantity, nutritional quality and degradation rates, as well as abundance and biodiversity of meiofauna and nematodes along the deep continental margin off Spitsbergen, in the Svalbard Archipelago. Sediment samples were collected in July 2010 and 2011 along a bathymetric gradient between 600 m and 2000 m depth, and total mass flux measured at the same depths from July 2010 to July 2011. In both sampling periods sedimentary OM contents and C degradation rates increased significantly with water depth, whereas OM nutritional quality was generally higher at shallower depths, with the unique exception at 600 m depth in 2010. Meiofaunal abundance and biomass (largely dominated by nematodes) showed the highest values at intermediate depths (ca 1500 m) in both sampling periods. The richness of meiofaunal higher taxa and nematode species richness did not vary significantly with water depth in both sampling periods. We suggest here that patterns in OM quantity, C degradation rates, and meiofauna community composition in 2011 were likely influenced by the intensification of the warm West Spitsbergen Current (WSC). We hypothesize that the intensity of the WSC inflow to the Arctic Ocean could have an important role on benthic biodiversity and functioning of deep-sea Arctic ecosystems.

  15. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit)

    NASA Astrophysics Data System (ADS)

    Azzaro, M.; La Ferla, R.; Maimone, G.; Monticelli, L. S.; Zaccone, R.; Civitarese, G.

    2012-08-01

    We report on investigations of prokaryotic abundance, biomass, extracellular enzymatic activity, prokaryotic heterotrophic production and respiration in the full water column (˜1200 m) of a deep convection site (the Southern Adriatic Pit), carried out on six cruises in 2006-2008. Prokaryotic abundance (PA) varied vertically and temporally and ranged from 1.2 to 20.4×105 cell ml-1. Cell volumes, generally increased with depth; the lowest mean cell volume was observed in a period with no active convective process (Feb-07) and the highest in a period of stratification (Jun-08) following the convection process occurred in Feb-08. Prokaryotic biomass decreased with the depth and was related with both seasonal cycles of organic matter and hydrological processes. The picophytoplankton ranged in the upper layer (UL) from 0.089 to 10.71×104 cell ml-1. Cells were also recorded till 500 m depth in Feb-08 and this finding could be linked to water convection occurred in the Southern Adriatic Pit in that month. In UL the variations of enzymatic activities as well as leucine-aminopeptidase/ß-glucosidase ratio showed a seasonal trend probably linked to the productive processes of the photic layer. An inverse relation between alkaline phosphatase activity (APA) and phosphate concentrations was found (APA=0.0003PO4-1.7714, R2=0.333, P<0.05). Generally cell-specific enzymatic activities increased with depth as did cell-specific carbon dioxide production rates, while cell-specific prokaryotic heterotrophic production had an opposite trend. High values of prokaryotic growth efficiency registered in the deep layers in Nov-06 reflected a supply of preformed C transported within the deep water masses. Overall, in 2007 when no convective phenomenon was observed, the variability of prokaryotic metabolism was governed by the seasonal cycle of the organic matter, while in Nov-06 and Jun-08 the dynamics of deep water ventilation influenced the trend along the water column of many microbial parameters. The yearly trophic balance of the study site appeared to move towards autotrophy only in UL, whilst in the whole water column, the prokaryotic carbon demand exceeded POC availability rained down from euphotic zone. This mismatch was balanced by the DOC entrapped in the "younger waters" of new formation that alters the normal flux of the biological pump and fuels the deep marine biota in this area of deep water convection.

  16. Decay of deep water convection in CMIP5 GCMs in the North Atlantic and Southern Ocean in the 21st century

    NASA Astrophysics Data System (ADS)

    Molodtsov, S.; Anis, A.; Marinov, I.; Cabre, A.

    2016-12-01

    Contemporary changes in the climate system due to anthropogenic activity have already resulted in unprecedented melting rates of the polar ice caps. This in turn may have a significant impact on the thermohaline circulation in the future. The freshening of the surface waters increases stable stratification in regions of deep water formation, eventually triggering a weakening and, ultimately, may bring to a cessation of deep convection in these regions. Here we present comparatively an analysis of the response of deep convective processes in the North Atlantic (NA) and Southern Ocean (SO) to anthropogenic forcing using output from the latest generation of Earth System Models (ESM), part of the CMIP5 intercomparison. Our findings indicate an attenuation of deep convection by the end of the 21st century from ESM simulations under representative concentration pathways (RCP) 8.5 scenario when compared to the years under historical scenario in both NA and SO. The average depth of the mixed layer in the regions studied during March/September, the months with maximum mixed layer depths in the NA/SO, respectively, was found to decrease dramatically by the end of the 21st century. Furthermore, the increase in stratification and decrease in mixed layer depths, resulting in the decay of deep convection, leads to accumulation of excess heat, previously released during the convection events, in the ocean interior in both regions.

  17. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Galer, Stephen J. G.; Abouchami, Wafa; Rijkenberg, Micha J. A.; de Baar, Hein J. W.; De Jong, Jeroen; Andreae, Meinrat O.

    2017-08-01

    We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50°S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high ε 112 / 110Cd at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in ε 112 / 110Cd is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated ε 112 / 110Cd reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg-1, ε 112 / 110Cd are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 ± 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacterial/picoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of ε 112 / 110Cd in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion of NADW and either AABW or AAIW depending on the depth. Overall, the SW Atlantic Cd isotope dataset demonstrates that the large-scale ocean circulation exerts the primary control on ε 112 / 110Cd cycling in the global deep ocean.

  18. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.

    2012-01-01

    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  19. Ejecta from Ocean Impacts

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  20. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations

    PubMed Central

    Laclau, Jean-Paul; da Silva, Eder A.; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L.; Bouillet, Jean-Pierre; Gonçalves, José L. de Moraes; Jourdan, Christophe; Nouvellon, Yann

    2013-01-01

    Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1–3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5–3.0 m deep. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses. PMID:23847645

  1. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    Treesearch

    Katie P. Gaines; Jane W. Stanley; Frederick C. Meinzer; Katherine A. McCulloh; David R. Woodruff; Weile Chen; Thomas S. Adams; Henry Lin; David M. Eissenstat; Nathan Phillips

    2015-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process...

  2. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  3. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... than 200 meters and entirely less than 400 meters deep. (c) In the case of a lease located partly or... less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and not...

  4. "Live" (stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: implications for calcification depths

    NASA Astrophysics Data System (ADS)

    Dejardin, Rowan; Kender, Sev; Allen, Claire S.; Leng, Melanie J.; Swann, George E. A.; Peck, Victoria L.

    2018-01-01

    It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat-stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living (Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living, infaunal species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.

  5. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646

  6. Geohydrology of the central Mesilla Valley, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Wilson, Clyde A.; White, Robert R.

    1984-01-01

    Five large-capacity irrigation wells, with depths ranging from 370 to 686 feet, were drilled by the Elephant Butte Irrigation District between 1973 and 1975, in the Mesilla Valley about 7 miles south of Las Cruces, New Mexico. These were the first deep wells in the area, and their installation provided an opportunity to conduct extensive aquifer tests under relatively undisturbed conditions. The deep irrigation wells are perforated in the Santa Fe Group of Miocene to Pleistocene Age. The Santa Fe Group is composed of interfingering and alternating beds of clay, silt, sand, and small gravel. In the area of these wells, the upper part of the saturated zone contains slightly saline water to a depth of about 100 to 175 feet below the water table, underlain by a freshwater zone extending to depths greater than 1,200 feet. As water is pumped from the freshwater zone, leakage occurs from above and below the perforated interval. At one of the irrigation district wells, slightly saline water moved downward because of a lack of confining layers in the aquifer. At three other wells, the surface casing was not set deep enough and slightly saline water moved into the top of the perforations , downward in the casing, and into the freshwater part of the aquifer. (USGS)

  7. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    NASA Astrophysics Data System (ADS)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  8. Tritium in the western Mediterranean Sea during 1981 Phycemed cruise

    NASA Astrophysics Data System (ADS)

    Andrie, Chantal; Merlivat, Liliane

    1988-02-01

    We report on simultaneous hydrological and tritium data taken in the western Mediterranean Sea during April 1981 and which implement our knowledge of the spatial and temporal variability of the convection process occurring in the Northern Basin (Gulf of Lion, Ligurian Sea). The renewal time of the deep waters in the Medoc area is calculated to be 11 ± 2 years using a box-model assymption. An important local phenomenon of "cascading" off the Ebro River near the Spanish coast is, noticeable by the use of tritium data. In the Sardinia Straits area tritium data indicate very active mixing between 100 and 500 m depth. The tritium subsurface maxima in Sardinia Straits suggests the influence of not only the Levantine Intermediate Water (LIW) but also an important shallower component. In waters deeper than 500m, an active mixing occurs between the deep water and the LIW via an intermediate water mass from the Tyrrhenian Sea by "salt-fingering". Assuming a two end-member mixing. We determine the deep tritium content in the Sardinia Channel to be 1.8 TU. For comparison, the deep tritium content of the Northern Basin is equal to 1.3 TU. Tritium data relative to the Alboran Sea show that a layer of high tritium content persists all along its path from Sardifia to Gibraltar on a density surface shallower than the intermediate water. The homogeneity of the deep tritium concentrations between 1200 m depth and the bottom corroborate the upward "pumping" and westward circulation of deep waters along the continental slope of the North African Shelf. From the data measured in the Sardinia Straits and in the Alboran Sea, and upper limit of the deep advection rate of the order of 0.5 cm s-1 is estimated.

  9. Cost of oviposition site selection in a water strider Aquarius paludum insularis: egg mortality increases with oviposition depth.

    PubMed

    Hirayama, Hiroyuki; Kasuya, Eiiti

    2010-06-01

    Females generally avoid selecting sites for oviposition which have a high predation risk to increase offspring survival. Previous studies have focused on costs to ovipositing females. However, although offspring may also incur costs by being oviposited at low predation risk sites, no studies have focused on costs to offspring. Such costs to offspring were examined by using Aquarius paludum insularis, females of which avoid eggs parasitism by ovipositing at deep sites. Deep sites are safe from egg parasitism but may be unsuitable for hatching due to environmental factors. We examined the costs to offspring at deep sites by comparing the hatching rate, the duration to hatching and the proportion of drowned larvae between eggs that were set at three levels of water depth (0 cm, 25 cm and 50 cm depth). While the hatching rate at 50 cm was lower than that at 0 cm, the rate at 25 cm did not differ from that at 0 cm. Duration to hatching and the proportion of drowned larvae did not differ between the three depths. It is suggested that the declining survival rate of A. paludum eggs was due to increased water pressure at greater depth. Such a cost may exist in other species and such an observation may aid in understanding oviposition site selection. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Etnoyer, Peter J.; Doughty, Cheryl; English, Lisa; Falco, Rosalia; Remon, Natasha; Rittinghouse, Matthew; Cordes, Erik E.

    2014-01-01

    Deep-sea communities are becoming increasingly vulnerable to anthropogenic disturbances, as fishing, hydrocarbon exploration and extraction, and mining activities extend into deeper water. Negative impacts from such activities were recently documented in the Gulf of Mexico (GoM), where the Deepwater Horizon oil spill caused substantial damage to a deep-water octocoral community. Although a faunal checklist and numerous museum records are currently available for the entire GoM, local-scale diversity and assemblage structure of octocoral communities remains unknown, particularly in deep water. On a series of recent cruises (2008-2011) using remotely operated vehicles, 435 octocorals were collected from 33 deep-water sites (250-2500 m) in the northern GoM. To elucidate species boundaries, the extended mitochondrial barcode (COI+igr1+msh) was successfully amplified and sequenced for 422 of these specimens, yielding a total of 64 haplotypes representing at least 52 species. Further, at least 29% of the species collected were either previously not known to occur in the GoM (12 species) or represent new species (at least three species). Overall, species richness at each site was fairly low (1-12 spp.). The greatest species richness occurred at the shallowest (<325 m: GC140, n=8 spp.) and the deepest (2100-2500 m: DC673, n=12 spp., DC583, n=10 spp.) sites, and minimum taxonomic and phylogenetic (Faith's Index) diversity was evident at 600-950 m. This pattern is the opposite of the typical pattern of deep-sea diversity in the GoM, which normally peaks at mid-slope depths. Sorensen's Index of taxonomic β-diversity indicated that six distinct (65-95% dissimilarity) species assemblages corresponded with five depth breaks at ~325, 425, 600, 1100, and 2100 m. Further assemblage structure was observed within certain depth zones. Of note, within the 425-600 m depth range, species assemblages at the West Florida Slope differed from the other sites, corresponding to an established biogeographic barrier. The phylogenetic approach used in this study provided important insights into the species boundaries of many taxa while demonstrating that evolutionary history plays a critical role in community structure of deep-sea octocorals.

  11. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  12. Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Burls, N.; Hodell, D. A.

    2017-12-01

    Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.

  13. A system of automated processing of deep water hydrological information

    NASA Technical Reports Server (NTRS)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  14. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.

  15. Comments on "J. Vera et. al., Soil water balance trial involving capacitance and neutron probe measurements"

    USDA-ARS?s Scientific Manuscript database

    Vera et al. (2009) compared estimates of soil profile water content (mm) to a depth of 0.8 m made with the neutron moisture meter (NMM) and a multi-depth capacitance probe (MDCP), using measurements replicated in four drainage lysimeters (5 m x 5 m x 1.5-m deep). The NMM estimates of water content w...

  16. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... and the bottom of the lock chamber are −13.0 feet elevation, CofE datum, and usually provides a depth of water ranging from 14.0 feet at LLW to 19.4 feet at HHW, with greater depths during large floods...

  17. Water masses transform at mid-depths over the Antarctic Continental Slope

    NASA Astrophysics Data System (ADS)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  18. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  19. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, Gary S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M.; ,

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for palaeoceanographic study. Shells from the Polar Surface Water (−1 to −1.5°C) had Mg:Ca molar ratios of about 0.006–0.008; shells from Arctic Intermediate Water (+0.3 to +2.0°C) ranged from 0.09 to 0.013. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2 = 0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from Arctic and Nordic seas from water depths <900 m. Late Quaternary Krithe Mg:Ca ratios were analysed downcore using material from the Gakkel Ridge (water depths 3047 and 3899 m), the Lomonosov Ridge (water depth 1051 m) and the Amundsen Basin (water depth 4226 m) to test the core-top Mg:Ca temperature calibration. Cores from the Gakkel and Lomonosov ridges display a decrease in Mg:Ca ratios during the interval spanning the last glacial/deglacial transition and the Holocene, perhaps related to a decrease in bottom water temperatures or other changes in benthic environments.

  20. Reconstruct the past thermocline circulation in the Atlantic: calcification depths and Mg/Ca-temperature calibrations for 6 deep-dwelling planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Cleroux, C.; deMenocal, P.; Arbuszewski, J.; Linsley, B.

    2012-04-01

    The subtropical cells are shallow meridional overturning circulations driven by the atmospheric circulation and the deep thermohaline circulation. They connect the mid-latitude and the tropic, release latten heat to the atmosphere and impact climate on decadal to longer time scale. The upper water column temperature and salinity structures of the ocean reflect this circulation. We present proxies to study these past structures. We performed stable oxygen isotope (δ18O) and trace element ratio measurements on one surface-dwelling (G. ruber)1 and six deep-dwelling planktonic foraminifera species (N. dutertrei, G. inflata, G. tumida, G. truncatulinoides, G. hirsuta and G. crassaformis) on 66 coretops spanning from 35°N to 20°S along the Mid-Atlantic ridge. Comparison between measured δ18O and predicted δ18O (using water column temperature and seawater δ18O), shows that N. dutertrei, G. tumida, G. hirsuta and G. crassaformis keep the same apparent calcification depth along the transect (respectively: 125m, 150m, 700m and 800m). Calcification at two depth levels was also tested. For the six deep-dwelling species, we establish Mg/Ca-temperature calibrations with both atlas temperature at the calcification depth and isotopic temperature. We present Mg/Ca-temperature equations for species previously very poorly calibrated. The δ18O and temperature (Mg/Ca derived) on the six planktonic foraminifera species faithfully reproduce the modern water column structure of the upper 800 m depth, establishing promising proxies for past subsurface reconstruction. 1 Arbuszewski, J. J., P. B. deMenocal, A. Kaplan, and C. E. Farmer (2010), On the fidelity of shell-derived δ18Oseawater estimates, Earth and Planetary Science Letters, 300(3-4), 185-196.

  1. Hydrogeology and physical characteristics of water samples at the Red River aluminum site, Stamps, Arkansas, April 2001

    USGS Publications Warehouse

    Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.

    2001-01-01

    The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site

  2. Interstitial water studies on small core samples, Deep Sea Drilling Project: Leg 10

    USGS Publications Warehouse

    Manheim, Frank T.; Sayles, Fred L.; Waterman, Lee S.

    1973-01-01

    Leg 10 interstitial water analyses provide new indications of the distribution of rock salt beneath the floor of the Gulf of Mexico, both confirming areas previously indicated to be underlain by salt bodies and extending evidence of salt distribution to seismically featureless areas in the Sigsbee Knolls trend and Isthmian Embayment. The criterion for presence of salt at depth is a consistent increase in interstitial salinity and chlorinity with depth. Site 86, on the northern margin of the Yucatan Platform, provided no evidence of salt at depth. Thus, our data tend to rule out the suggestion of Antoine and Bryant (1969) that the Sigsbee Knolls salt was squeezed out from beneath the Yucatan Scarp. Cores from Sites 90 and 91, in the central Sigsbee Deep, were not obtained from a great enough depth to yield definite evidence for the presence of buried salt.

  3. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.

  4. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  5. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.

  6. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  7. Deep water circulation, residence time, and chemistry in a karst complex.

    PubMed

    Aquilina, L; Ladouche, B; Doerfliger, N; Bakalowicz, M

    2003-01-01

    We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36Cl, 14C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 m) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of approximately 2500 m, which represents the thermal reservoir in the Jurassic units with residence time of approximately 100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system, and by water flow from the surface to the deep parts of the carbonate formations.

  8. Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance.

    PubMed

    Rhodes, Justin; Hetzenauer, Harald; Frassl, Marieke A; Rothhaupt, Karl-Otto; Rinke, Karsten

    2017-09-01

    This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake's trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.

  9. Hydrologic sections through Lee County and adjacent areas of Hendry and Collier counties, Florida

    USGS Publications Warehouse

    Boggess, Durward H.; Missimer, T.M.; O'Donnell, T. H.

    1981-01-01

    The freshwater underlying Lee, western Hendry, and northern Collier Counties occurs within the marine terrace sands, the Fort Thompson, Caloosahatchee, Tamiami, and Hawthorn Formations. These are, respectively, the water-table aquifer, an aquifer in the Tamiami Formation, and an aquifer in the upper part of the Hawthorn Formation. These aquifers are separated by clay, marl, and marly limestone. Wells tapping the water-table aquifer are commonly less than 50 feet deep, with yields ranging from 5 to 500 gallons per minute. The water quality in the aquifer is usually good, except for iron, which generally exceeds 1 milligram per liter, and color, which ranges from 30 to 600 Platinum-Cobalt units. Wells tapping the Tamiami aquifer range in depth from about 60 to 300 feet; most are less than 100 feet deep. Yields range from 20 to 500 gallons per minute. The water quality in the Tamiami aquifer is good, except where affected by leakage from deep artesian wells. Wells tapping the upper Hawthorn aquifer range in depth from about 100 to 300 feet. Yields range from 10 to 500 gallons per minute. The water quality from the upper Hawthorn aquifer is good, except in areas where upward leakage from the deep artesian aquifer has occurred. (USGS)

  10. Bathymetric patterns in standing stock and diversity of deep-sea nematodes at the long-term ecological research observatory HAUSGARTEN (Fram Strait)

    NASA Astrophysics Data System (ADS)

    Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Soltwedel, Thomas

    2017-08-01

    Bathymetric patterns in standing stocks and diversity are a major topic of investigation in deep-sea biology. From the literature, responses of metazoan meiofauna and nematodes to bathymetric gradients are well studied, with a general decrease in biomass and abundance with increasing water depth, while bathymetric diversity gradients often, although it is not a rule, show a unimodal pattern. Spatial distribution patterns of nematode communities along bathymetric gradients are coupled with surface-water processes and interacting physical and biological factors within the benthic system. We studied the nematode communities at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN, located in the Fram Strait at the Marginal Ice Zone, with respect to their standing stocks as well as structural and functional diversity. We evaluated whether nematode density, biomass and diversity indices, such as H0, Hinf, EG(50), Θ- 1, are linked with environmental conditions along a bathymetric transect spanning from 1200 m to 5500 m water depth. Nematode abundance, biomass and diversity, as well as food availability from phytodetritus sedimentation (indicated by chloroplastic pigments in the sediments), were higher at the stations located at upper bathyal depths (1200-2000 m) and tended to decrease with increasing water depth. A faunal shift was found below 3500 m water depth, where genus composition and trophic structure changed significantly and structural diversity indices markedly decreased. A strong dominance of very few genera and its high turnover particularly at the abyssal stations (4000-5500 m) suggests that environmental conditions were rather unfavorable for most genera. Despite the high concentrations of sediment-bound chloroplastic pigments and elevated standing stocks found at the deepest station (5500 m), nematode genus diversity remained the lowest compared to all other stations. This study provides a further insight into the knowledge of deep-sea nematodes, their diversity patterns and a deeper understanding of the environmental factors shaping nematodes communities at bathyal and abyssal depths.

  11. Abrupt Deglacial Changes in Subarctic Pacific Ventilation: Intermediate and Deep Water Ventilation, Oxygen Fluctuations, and the relation to carbon cycle dynamics

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Max, L.; Zou, J.; Shi, X.; Lohmann, G.

    2016-12-01

    The modern subarctic Pacific halocline prevents the formation of deepwater masses andonly mid-depth waters are ventilated by North Pacific Intermediate Water (NPIW). During the last glacial, isolation of the deep North Pacific ids thought to have been more pronounced, combined with a better ventilated and expanded NPIW. This glacial deep to intermediate separation, together with upper ocean stratification, has principal implications for the deep ocean storage of carbon, as well as the mid-depth provision of nutrients by NPIW to the lower-latitude thermocline and the Pacific subarctic gyre. To date, conflicting evidence persists how the North Pacific biological and physical carbon pump reorganized during millennial-scale glacial and deglacial changes over the past 50 ka, limiting our understanding of carbon pool dynamics between Pacific ocean and the atmosphere. We present proxydata and paleoclimate modelling evidence for rapid intermediate and deep ocean nutrient and ventilation changes based on a sediment core collection with good temporal and spatial resolution from the Okhotsk Sea, Bering Sea, and the open subarctic North Pacific. High sedimentation rates (20-200 cm/ka) enable us to decipher rapid climatic changes on millennial time scales through MIS 2-3 and with a higher, up to inter-decadal, resolution during the last glacial termination. Paired AMS radiocarbon planktic-benthic ages help us to constrain water mass age changes, while multi-species foraminiferal stable isotope and redox-sensitive elemental time series provide information on past oxygenation and nutrient dynamics. We found evidence for a weaker chemical separation between intermediate and deep water during the glacial than previously thought, with rapid alternations between major NPIW ventilation areas in marginal seas, in particular during Heinrich stadials and the termination. We provide new information about the deglacial mid-depth subarctic Pacific de-oxygenation timing, extent and forcing. Finally, we discuss evidence for the spatial characteristics and causes of observed physical and chemical intermediate and deep ocean changes, based on results from a suite of paleoclimate modelling experiments using the COSMOS Earth System Model, and the high-resolution (eddy-permitting) sea ice - ocean model AWI-FESOM.

  12. Spatial and vertical gradients in the stable carbon isotope composition of Lower Circumpolar Deep Water over the last 900 thousand years

    NASA Astrophysics Data System (ADS)

    Williams, T.; Hillenbrand, C. D.; Piotrowski, A. M.; Smith, J.; Hodell, D. A.; Frederichs, T.; Allen, C. S.

    2014-12-01

    Changes in stable carbon isotopes (δ13C) recorded in benthic foraminiferal calcite reflect that of the dissolved inorganic carbon (DIC) of ambient seawater, and thus are used to reconstruct past changes in water mass mixing. Records of benthic foraminiferal δ13C from the Atlantic Ocean have revealed the development of a sharp vertical δ13C gradient between 2300-2500m water depth during successive glacial periods throughout the Late Quaternary, with extremely negative δ13C values recorded below this depth. It had been hypothesised that this gradient resulted from an increased stratification of water masses within the glacial Atlantic Ocean, and that these extreme δ13C values originated in the Southern Ocean. However the mechanisms behind the formation of this gradient and extreme δ13C depletion have remained unclear. This is in part due to the poor preservation of calcareous microfossils in the corrosive waters below 2500-3000m found in the Southern Ocean, which hampers our understanding of this key region. Here we present a unique new δ13C deep water record measured on benthic foraminifera (Cibicidoides spp.) from a sediment core recovered from 2100m water depth in the Amundsen Sea, south-eastern Pacific sector of the Southern Ocean. The site is bathed in Lower Circumpolar Deep Water (LCDW) today, and combined palaeomagnetic and oxygen isotope stratigraphy show that the sediments continuously span at least the last 890 ka. A comparison of this new δ13C data with other LCDW records from ODP Sites 1089/1090 in the South Atlantic and ODP Site 1123 in the Southwest Pacific demonstrate a clear spatial gradient in circum-Antarctic LCDW during glacial periods. The pool of extremely depleted glacial deep marine δ13C is restricted to the Atlantic Sector of the Southern Ocean, with increasingly positive δ13C values found in the Southwest Pacific and the south-eastern Pacific sector of the Southern Ocean. This implies that the δ13C depletion in the deep glacial Atlantic was sourced in the Atlantic sector of the Southern Ocean, and remained limited to this sector. This finding indicates either increased supply of relatively more positive δ13C deep waters or increased vertical mixing in the Indian and Pacific sectors of the glacial Southern Ocean.

  13. Deep Water Munitions Detection System

    DTIC Science & Technology

    2010-03-01

    information if it does not display a currently valid OMB control number. 1. REPORT DATE MAR 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00...water systems to deeper water depths would result in even greater costs. While some of the cost escalation may be unavoidable, it is desirable to...magnetometers, spaced 61 cm apart, on a towed sensor platform. The sensor platform has active control elements that allow its depth to be changed

  14. Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.

    PubMed

    Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan

    2017-07-18

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑ 6 DDT (0.10-66 pg L -1 ) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

  15. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxu; Jaeglé, Lyatt; Thompson, LuAnne

    2014-05-01

    We implement mercury (Hg) biogeochemistry in the offline global 3-D ocean tracer model (OFFTRAC) to investigate the natural Hg cycle, prior to any anthropogenic input. The simulation includes three Hg tracers: dissolved elemental (Hg0aq), dissolved divalent (HgIIaq), and particle-bound mercury (HgPaq). Our Hg parameterization takes into account redox chemistry in ocean waters, air-sea exchange of Hg0, scavenging of HgIIaq onto sinking particles, and resupply of HgIIaq at depth by remineralization of sinking particles. Atmospheric boundary conditions are provided by a global simulation of the natural atmospheric Hg cycle in the GEOS-Chem model. In the surface ocean, the OFFTRAC model predicts global mean concentrations of 0.16 pM for total Hg, partitioned as 80% HgIIaq, 14% Hg0aq, and 6% HgPaq. Total Hg concentrations increase to 0.38 pM in the thermocline/intermediate waters (between the mixed layer and 1000 m depth) and 0.82 pM in deep waters (below 1000 m), reflecting removal of Hg from the surface to the subsurface ocean by particle sinking followed by remineralization at depth. Our model predicts that Hg concentrations in the deep North Pacific Ocean (>2000 m) are a factor of 2-3 higher than in the deep North Atlantic Ocean. This is the result of cumulative input of Hg from particle remineralization as deep waters transit from the North Atlantic to the North Pacific on their ~2000 year journey. The model is able to reproduce the relatively uniform concentrations of total Hg observed in the old deep waters of the North Pacific Ocean (observations: 1.2 ± 0.4 pM; model: 1.1 ± 0.04 pM) and Southern Ocean (observations: 1.1 ± 0.2 pM; model: 0.8 ± 0.02 pM). However, the modeled concentrations are factors of 5-6 too low compared to observed concentrations in the surface ocean and in the young water masses of the deep North Atlantic Ocean. This large underestimate for these regions implies a factor of 5-6 anthropogenic enhancement in Hg concentrations.

  16. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  17. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    PubMed

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  18. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  19. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.

  20. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-02-01

    In spite of the relative importance of groundwater in coastal dune systems, the number of studies concerning the responsiveness of vegetation to ground water (GW) variability, in particularly in Mediterranean regions, is scarce. In this study, we established 5 study sites within a meso-mediterranean sand dune Pinus pinaster forest on the Atlantic coast of Portugal, taking advantage of natural topographic variability and artificial GW exploitation, which resulted in substantial variability in depth to GW between microsites. Here we identify the degree of usage and dependence on GW of different plant functional groups (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous microsites. Our results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). The species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to microsite differences in GW use in deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring rather than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understorey drought adapted shrub, across seasons and microsites seemed to be independent of water availability. Thus, the susceptibility to changing GW availability in sand dune plant species is variable, being particularly relevant for deep rooted species and phreatophytes, which have typically been less exposed to GW fluctuations.

  2. UK Atlantic Margin Environmental Survey: Introduction and overview of bathyal benthic ecology

    NASA Astrophysics Data System (ADS)

    Bett, Brian J.

    2001-05-01

    The recent expansion of the Oil and Gas Industry in to the deep waters of the UK Atlantic Frontier prompted the industry and its regulator to reappraise the needs and means of environmental monitoring. In concert, deep-sea academics, specialist contractors, the regulator and the Industry, through the Atlantic Frontier Environmental Network (AFEN), devised and implemented a large-scale environmental survey of the deep waters to the north and west of Scotland. The AFEN-funded survey was carried out during the summers of 1996 and 1998, and involved two steps; an initial sidescan sonar mapping of the survey areas, followed up with direct seabed investigations by coring and photography. This contribution deals with the latter step. Seabed samples were collected to assess sediment type, organic content, heavy metals, hydrocarbons and macrobenthos. Photographic and video observations were employed to provide both 'routine' seabed assessments and to investigate particular sidescan features of note. Although essentially intended as a 'baseline' environmental survey, anthropogenic impacts are already evident throughout the areas surveyed. Indications of the effects of deep-sea trawling were frequently encountered (seabed trawl marks and areas of disturbed sediments), being present in almost all of the areas studied and extending to water depths in excess of 1000 m. Evidence of localised contamination of the seabed by drilling muds was also detected, though background hydrocarbon contamination is predominantly of terrestrial origin or derived from shipping. The benthic ecology of the UK Atlantic Margin is dominated by the marked differences in the hydrography of the Faroe-Shetland Channel (FSC) and the Rockall Trough (RT). Comparatively warm North Atlantic Water is common to both areas; however, in the FSC, cold (subzero) waters occupy the deeper parts of the channel (>600 m). The extreme thermal gradient present on the West Shetland Slope has a substantial influence on the distribution and diversity of the macrobenthos. While there is continuous variation in the fauna with depth, warm and cold water faunas are nonetheless quite distinct. The boundary region, centred on 400 m water depth, may be best characterised as an ecotone, having a mixed warm and cold water fauna with a distinctly enhanced diversity. The Wyville-Thomson Ridge largely prevents the cold waters of the deep FSC from entering the RT (they certainly do not influence the areas of the Malin/Hebrides Slope assessed during the survey). Consequently, the deep-water faunas north and south of the ridge are highly distinct. There is also a very marked difference in the diversity of the two faunas: diversity declines with depth in the FSC but increases with depth in the RT. The distribution of macrobenthos in the RT is largely continuous with depth, with little indication of local variations but some evidence of enhanced rates of change at around 1200 m, possibly associated with the presence of Labrador Sea Water. Other observations made during the course of the survey include: (a) the occurrence of sponge dominated communities (' ostebund') at mid-slope depths (ca. 500 m) north and west of Shetland; (b) the discovery of a population of sediment surface dwelling enteropneusts associated with a sandy contourite deposit at the base of the West Shetland Slope (ca. 900 m); (c) the widespread and abundant occurrence of phytodetritus in the RT but not the FSC; and (d) the discovery of the ' Darwin Mounds' at ca. 1000 m in the northern RT, a field of numerous, small seabed mounds that support significant growths of the coral Lophelia pertusa. These mounds also have 'acoustically visible tails' with dense populations of xenophyophores ( Syringammina fragilissima), a species found to be common elsewhere in the RT.

  3. A vertical wall in the Whittard Canyon with a novel community assemblage

    NASA Astrophysics Data System (ADS)

    Johnson, Mark; White, Martin; Wilson, Annette; Wuerzberg, Laura; Schwabe, Enrico; Folch, Helka; Allcock, Louise

    2013-04-01

    We describe a hitherto unreported community from a vertical wall in the Whittard Canyon system on the Atlantic Margin. The wall extended vertically for about 100 m from approximately 750 m depth. We explored the wall with an ROV and discovered an assemblage cominated by large limid bivalves Acesta excavata and deep-water oysters Neopycnodonte zibrowii at very high densities, particularly at overhangs. The assemblage also contained deep-water corals (including solitary corals). It had high numbers of flytrap anemones and had many mobile species associated with it including crustaceans such as Paramola cuvieri and Bathynectes longispina, echinoderms and fishes. We took CTD transects in the area of the wall and beam attenuation indicated nepheloid layers present in the water column. The greatest densities of suspended material at the ROV dive site were at the depth of the wall. We hypothesise that internal waves concentrate suspended sediment at the foot of the vertical wall. This may provide the resources to support the high density of large filter feeders at these depths.

  4. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    NASA Astrophysics Data System (ADS)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  5. A bio-optical model for integration into ecosystem models for the Ligurian Sea

    NASA Astrophysics Data System (ADS)

    Bengil, Fethi; McKee, David; Beşiktepe, Sükrü T.; Sanjuan Calzado, Violeta; Trees, Charles

    2016-12-01

    A bio-optical model has been developed for the Ligurian Sea which encompasses both deep, oceanic Case 1 waters and shallow, coastal Case 2 waters. The model builds on earlier Case 1 models for the region and uses field data collected on the BP09 research cruise to establish new relationships for non-biogenic particles and CDOM. The bio-optical model reproduces in situ IOPs accurately and is used to parameterize radiative transfer simulations which demonstrate its utility for modeling underwater light levels and above surface remote sensing reflectance. Prediction of euphotic depth is found to be accurate to within ∼3.2 m (RMSE). Previously published light field models work well for deep oceanic parts of the Ligurian Sea that fit the Case 1 classification. However, they are found to significantly over-estimate euphotic depth in optically complex coastal waters where the influence of non-biogenic materials is strongest. For these coastal waters, the combination of the bio-optical model proposed here and full radiative transfer simulations provides significantly more accurate predictions of euphotic depth.

  6. Implementation and testing of a Deep Water Correlation Velocity Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer thatmore » mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.« less

  7. Throughfall Reduction x Fertilization: Monitoring and Modeling the Effect on Deep Soil Water Usage in a Loblolly Pine Plantations of the Southeast US

    NASA Astrophysics Data System (ADS)

    Qi, J.; Markewitz, D.; Radcliffe, D. E.

    2016-12-01

    Forests in the southeastern U.S. are predicted to experience a moderate decrease in water availability that will result in soil water deficiency during the growing season. The potential impact of drier climate on the productivity of managed loblolly pine plantations in the Southeast US is uncertain. Access to water reserves in deep soil during drought periods helps the forest buffer the effects of water deficits. To better understand the potential impact of drought on deep soil hydrology, we studied the combined effects of throughfall reduction and soil fertility on soil hydrology to the depth of 3 m in a 10-year-old loblolly pine plantation by applying a throughfall reduction treatment (ambient versus 30% throughfall reduction) and a fertilization treatment (no fertilization versus fertilization). Fertilization lowered soil moisture for all depths and differences were significant at 30-60 cm and 300 cm. Throughfall reduction also lowered soil moisture for all depths and differences were significant in the surface soils (0-30 cm) and deep soils (below 2m). Fertilization significantly decreased 10-90 cm soil water when combined with throughfall reduction treatment. HYDRUS 1-D model was used to simulate changes in the vertical distribution of soil water and to enhance our understanding of hydrologic processes. The model was accurately calibrated using 914 days of data under ambient rainfall (R2=0.84 and RMSE = 0.04). Using data under throughfall reduction treatment, the model validation showed R2=0.67 and RMSE = 0.04, suggesting that this model captures the hydrological processes of this study site. The difference in the rates of simulated cumulative actual evapotranspiration between ambient and throughfall reduction were only 10%; however, water yield as lower boundary flux decreased 64%. These empirical and simulated results suggested that when evapotranspiration exceeded precipitation, the soil water in the upper 90 cm did not satisfy the demand for AET, soil below 90 cm constantly contribute to plant water uptake. With 30% less throughfall, the water in the 3 meter soil profile can satisfy the demand of evapotranspiration before water yield.

  8. Biogeochemical and physical controls on the distribution of dissolved organic carbon in the deep Gulf of Mexico and basins of the Caribbean

    NASA Astrophysics Data System (ADS)

    Margolin, A. R.; Hansell, D. A.

    2016-02-01

    Over the past two decades, significant advances have been made in understanding dissolved organic carbon (DOC) distributions in the Atlantic and throughout the global ocean. Surprisingly, however, little is known about DOC distributions in the Atlantic's neighboring Gulf of Mexico (GoM) and Caribbean due to few observations, especially in their deep layers. To address the dearth of DOC data in the GoM and Caribbean, samples were collected during multiple cruises spanning the region, allowing comparisons between the deep layers of the basins. Additionally, complementary biogeochemical (oxygen, nutrients) and physical (temperature, salinity) measurements were made to aid in DOC interpretation, which show clear distinctions between the deep waters of the GoM, basins of the Caribbean and Atlantic. The unique characteristics of these deep layers result from exchanges being restricted to narrow passages that separate the basins, limiting the deep water renewal to periodic overflows of relatively dense water, capable of penetrating below the 2000 m sill depths. Furthermore, hydrocarbon seeps (in GoM) and hydrothermal activity (in Caribbean), along with the offshore oil industry have the potential to alter deep DOC concentrations regionally, which are considered here. Samples collected below 250 m show that concentrations decrease with depth, ranging from 40-50 µmol kg-1. Compared to the Atlantic, the GoM and Venezuelan Basin concentrations are lower, while they are similar to the Atlantic in the Yucatan Basin; responsible processes are inferred.

  9. Neogene sedimentation and erosion in the Amirante Passage, western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Johnson, D. A.; Ledbetter, M. T.; Damuth, J. E.

    1983-02-01

    Twenty piston cores from the northern Mascarene Basin and Amirante Passage reflect the effects of the Deep Western Boundary Current (DWBC) upon the lithologic and stratigraphic record of the late Cenozoic. The cores span a depth interval of 3350 to 5200 m, representing the transition zone between modern North Atlantic Deep Water (NADW)-Circumpolar Water (CPW) and the underlying Antarctic Bottom Water (AABW). During the late Cretaceous and for much of the Paleogene, pelagic sedimentation occurred in the absence of significant bottom current activity. The formation of the global psychrosphere near the Eocene-Oligocene boundary initiated the DWBC, part of which could enter the Madagascar Basin via deep fractures in the Southwest Indian Ridge. The DWBC was well developed before the early Miocene, transporting course detrital sands northward into the passage from turbidite deposits along the continental margin of Madagascar. The DWBC was confined to depths below ˜ 4 km until the middle Miocene, when the flow strengthened and shoaled to depths <3300 m. Strong DWBC flow continued intermittently until the latest Pleistocene, producing extensive erosional surfaces. Today the flow of the DWBC is relatively weak, with strong only below ˜ 3850 m in the western channels. Pleistocene and late Tertiary erosion at intermediate depths (3 to 4 km) in the Indian Ocean contrasts with depositional continuity at the same depths farther 'upstream' in NADW. Fluctuations in the intensity of circumpolar flow rather than in the rate of production of NADW may have been the major controlling factor in the late Tertiary erosional history of the Amirante Passage.

  10. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  11. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  12. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  13. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    NASA Astrophysics Data System (ADS)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The approach of hot spring variation research also has potential benefits for earthquake monitoring and prediction.

  14. Vertical distribution of living ostracods in deep-sea sediments, North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Jöst, Anna B.; Yasuhara, Moriaki; Okahashi, Hisayo; Ostmann, Alexandra; Arbizu, Pedro Martínez; Brix, Saskia

    2017-04-01

    The depth distribution of living specimens of deep-sea benthic ostracods (small crustaceans with calcareous shells that are preserved as microfossils) in sediments is poorly understood, despite the importance of this aspect of basic ostracod biology for paleoecologic and paleoceanographic interpretations. Here, we investigated living benthic ostracod specimens from deep-sea multiple core samples, to reveal their depths distributions within sediment cores. The results showed shallow distribution and low population density of living deep-sea benthic ostracods (which are mostly composed of Podocopa). The living specimens are concentrated in the top 1 cm of the sediment, hence deep-sea benthic ostracods are either epifauna or shallow infauna. This observation is consistent with the information from shallow-water species. We also confirmed shallow infaunal (0.5-2 cm) and very shallow infaunal (0-1 cm) habitats of the deep-sea ostracod genera Krithe and Argilloecia, respectively.

  15. Characterisation of DOC and its relation to the deep terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian

    2010-05-01

    The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic-rich layers like coals and source rocks which may provide carbon sources for the deep biosphere by leaching water soluble organic compounds. We investigated the potential of a series of Eocene-Pleistocene coals, mudstones and sandstones from New Zealand with different maturities (Ro between 0.29 and 0.39) and total organic carbon content (TOC) regarding their potential to release such compounds. The water extraction of these New Zealand coals using Soxhlet apparatus resulted in yields of LMWOA that may feed the local deep terrestrial biosphere over geological periods of time (VIETH et al., 2008). However, the DOC of the water extracts mainly consisted of humic substances. To investigate the effect of thermal maturity of the organic matter as well as the effect of the organic matter type on the extraction yields, we examined additional coal samples (Ro between 0.29 and 0.80) and source rock samples from low to medium maturity (Ro between 0.3 to 1.1). Within our presentation we would like to show the compositional diversity and variability of dissolved organic compounds in natural formation fluids as well as in water extracts from a series of very different lithologies and discuss their effects on the carbon cycling in the deep terrestrial subsurface. References: Andrews, J. N., Youngman, M. J., Goldbrunner, J. E., and Darling, W. G., 1987. The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environmental Geology 10, 43-57. Vieth, A., Mangelsdorf, K., Sykes, R., and Horsfield, B., 2008. Water extraction of coals - potential to estimate low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere? Organic Geochemistry 39, 985-991.

  16. Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas

    USGS Publications Warehouse

    Gibson, T.G.; Schlee, J.

    1967-01-01

    In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.

  17. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths.

    PubMed

    Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C

    2014-09-01

    The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.

  18. Extreme Longevity in Proteinaceous Deep-Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelrymore » trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.« less

  19. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  20. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.

  1. Terrestrial Responses to Variability in the Southern Westerlies Inferred from Deep Holocene Peat Archives

    NASA Astrophysics Data System (ADS)

    Hughes, P. D. M.; Mauquoy, D.; van Bellen, S.; Roland, T. P.; Loader, N.; Street-Perrott, F. A.; Daley, T.

    2017-12-01

    The deep ombrotrophic peat bogs of Chile are located throughout the latitudes dominated by the southern westerly wind belt. The domed surfaces of these peatlands make them sensitive to variability in summer atmospheric moisture balance and the near-continuous accumulation of deep peat strata throughout the Holocene to the present day means that these sites provide undisturbed archives of palaeoclimatic change. We have reconstructed late-Holocene bog water table depths - which can be related to changes in the regional balance of precipitation to evaporation (P-E) - from a suite of peat bogs located in three areas of Tierra del Feugo, Chile, under the main path of the SWWB. Water-table depths were reconstructed from sub-fossil testate amoebae assemblages using a conventional transfer function to infer past water-table depths, based on taxonomic classification of tests but also an innovative trait-based transfer function to infer the same parameter. Water table reconstructions derived from the two methods were consistent within sites. They show that mire water tables have been relatively stable in the last 2000 years across Tierra del Feugo. Higher water table levels, most probably indicating increased effective precipitation, were found between c. 1400 and 900 cal. BP., whereas a consistent drying trend was reconstructed across the region in the most recent peat strata. This shift may represent a pronounced regional decrease in precipitation and/or a change to warmer conditions linked to strengthening of the SWWB. However, other factors such as recent thinning of the ozone layer over Tierra del Fuego could have contributed to recent shifts in some testate amoebae species.

  2. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  3. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  4. Experimental demonstration of multiuser communication in deep water using time reversal.

    PubMed

    Shimura, T; Ochi, H; Song, H C

    2013-10-01

    Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.

  5. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia.

    PubMed

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO 2 . Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the " assimilation of bicarbonate in the dark " (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m -3 d -1 , were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m -2 d -1 . This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO 2 -fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.

  6. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia

    PubMed Central

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S.; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M.

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the “assimilation of bicarbonate in the dark” (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m−3 d−1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13–14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m−2 d−1. This quantity of produced de novo organic carbon amounts to about 85–424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota “low-ammonia-concentration” deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study. PMID:29403458

  7. 3D Modeling of the Deep Groundwater System at Mount Shasta, California, Using Finite Difference and Inverse Modeling in Combination with Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Webb, C. H.; Foglia, L.; Fogg, G. E.; McClain, J.

    2017-12-01

    Precipitation in mountainous systems is responsible for much of the world's freshwater supply. Volcanic mountains in particular may have the capacity to store large amounts of groundwater, due to the relatively high permeability of volcanic rocks as compared to fractured crystalline rocks. These qualities make volcanic aquifers likely candidates for laterally extensive deep groundwater systems. However, the depth extent of these aquifers is not well understood and has been little studied, due to the dearth of well data in most mountain systems. When determining a water budget, especially for mountainous regions, it is necessary to understand the extent of the entire system, including the deep components. Mount Shasta of the California cascade volcanoes is one potential case of a deep groundwater system with the capacity to store significant amounts of water. In order to develop a conceptual model of the role of deep and regional groundwater flow in the Mt. Shasta groundwater system, the region was modeled using MODFLOW_2005, the finite difference flow model developed by USGS. The model was constrained using SRTM topography data, spring flow rates, PRISM precipitation rates, and well log levels. Geologic cross sections and gravity data were referenced in order to create a realistic estimate of the aquifer's structure down to 6km in depth. The aquifer stratigraphy was then represented by using 6 layers with 2-4 zones of hydraulic conductivity per layer to account for both vertical and lateral differences in lithology as well as decreasing permeability with depth. These hydraulic conductivity parameters of the model were varied using inverse modeling (UCODE_2014) to determine which layers and zones could support flow and still produce results consistent with existing well logs. Depth of flow was also corroborated with resistivity data collected in Shasta Valley using magnetotelluric (MT) soundings. Depths with comparatively low electrical resistivity were assumed to be aquifer units, and zones with high resistivity were assumed to be aquitards. By performing MT soundings in multiple locations and dividing the model into zones, this model tests both the maximum depth of flow as well as how that depth varies with lithology and geographical location.

  8. Experimental and ecosystem model approach to assessing the sensitivity of High arctic deep permafrost to changes in surface temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. H.; Zhang, W.; Elberling, B.; Cable, S.

    2016-12-01

    Permafrost affected areas in Greenland are expected to experience large temperature increases within the 21st century. Most previous studies on permafrost consider near-surface soil, where changes will happen first. However, how sensitive the deep permafrost temperature is to near-surface conditions through changes in soil thermal properties, snow depth and soil moisture, is not known. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed deep permafrost sediments from deltaic, alluvial and fluvial depositional environments in the Zackenberg valley, NE Greenland. We also calibrated a coupled heat and water transfer model, the "CoupModel", for the two closely situated deltaic sites, one with average snow depth and the other with topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four scenarios with changes in surface forcing: a. 3 °C warming and 20 % increase in precipitation; b. 3 °C warming and 100 % increase in precipitation; c. 6 °C warming and 20 % increase in precipitation; d. 6 °C warming and 100 % increase in precipitation.Our results indicated that frozen sediments had higher TC than thawed sediments. All sediments showed a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Fluvial sediments had high sensitivity, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments were less sensitive to soil moisture than deltaic and fluvial sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher annual mean ground temperature than the average snow site. The soil temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Precipitation had no significant additional effect to warming. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can significantly affect the deep permafrost within a short period, and that differences in snow depth affect surface temperatures. Geology, pedology and precipitation should thus be considered if estimating future High arctic deep permafrost sensitivity.

  9. Deep-Sea coral evidence for rapid change in ventilation of the deep north atlantic 15,400 years Ago

    PubMed

    Adkins; Cheng; Boyle; Druffel; Edwards

    1998-05-01

    Coupled radiocarbon and thorium-230 dates from benthic coral species reveal that the ventilation rate of the North Atlantic upper deep water varied greatly during the last deglaciation. Radiocarbon ages in several corals of the same age, 15.41 +/- 0.17 thousand years, and nearly the same depth, 1800 meters, in the western North Atlantic Ocean increased by as much as 670 years during the 30- to 160-year life spans of the samples. Cadmium/calcium ratios in one coral imply that the nutrient content of these deep waters also increased. Our data show that the deep ocean changed on decadal-centennial time scales during rapid changes in the surface ocean and the atmosphere.

  10. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.

    2012-12-01

    Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.

  11. Impact of switching crop type on water and solute fluxes in deep vadose zone

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.

    2015-12-01

    Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.

  12. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state controls on deep system behavior in all deep accretionary wedge and basin environments where clays are abundant. This research used samples provided by the International Ocean Discovery Program (IODP).

  13. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  14. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.

  15. Carbon, water and energy balances of an Eucalyptus grandis plantation in Brazil: effects of clearcut and stand age

    NASA Astrophysics Data System (ADS)

    Nouvellon, Y.; Stape, J. L.; Le Maire, G.; Bonnefond, J.; Rocha, H.; Campoe, O.; Bouillet, J.; Laclau, J.

    2013-12-01

    Eucalypt grandis plantations in Brazil are among the most productive forests of the world, reaching mean annual increments of about 50 m3/ha/yr over short (6 yr) rotations. These high productions are generally associated with high water-use, but little is known on the effects of management practices on their carbon (C), water and energy budgets. We investigated the effects of stand age and clear cutting on the C and water balances through continuous eddy-covariance measurements of latent (LE), sensible heat (H), and CO2 fluxes over a 5 yrs period encompassing two successive rotations: 2 yrs before and 3 yrs after clear cutting and replanting. The water table depth, soil temperature and soil water content (SWC, till 10 m deep) were also continuously monitored. Leaf area index (LAI) was measured at 3-month intervals, and the soil exploration by fine roots was investigated. For the last 2 yrs before clearcutting the first rotation, LAI was ~3.5 and fine roots were found down to a depth of 16 m. No percolation was observed below 5 m, and the 5-10 m soil layer was water-depleted. Actual evapotranspiration (AET) was approximately equal to annual precipitation (1350 mm). H was very low, except during some dry events characterized by sharp increases in the bowen ratio (H/LE). Clearcut resulted in an increase in soil temperature and H, and a strong decrease in AET, allowing gravitational water to reach 6, 8 and 10 m depths about 1.5, 2.5, and 3.5 months after clearcutting, respectively, in this sandy soil. From the clearcut (Oct 2009) to the end of the first rainy season (May 2010), the water table had raised from -18.5 to -15 m. The third year after clearcutting and replanting, AET was higher than rainfall, leading to soil water-depletion till 10 m deep. This rapid depletion of soil water was consistent with the fast exploration of the soil by fine roots (root front at 6-7 m deep at age 1 yr) and the fast increase in LAI (reaching 5 at age 2.5 yr). Clearcutting turned the forest from a strong C sink (NEP of ~1 tC/ha/month) to a C source (NEP decreased down to ~ -1.6 tC/ha/month during replanting, about 1 month after the clearcut), but the plantation rapidly turned back to a C sink (C neutrality (NEP = 0) reached 7 months after clearcutting, and then NEP was always positive) due the rapid increase in LAI. The water balance of these eucalypt plantations is thus characterized by three successive phases: 1) the first year of the rotation, AETrainfall, resulting in water depletion in soil layers down to a depth of 10 m, and 3) from age 3 yrs to the end of the rotation, AET=rainfall. Our results suggest that process based models should take into account soil water dynamics in very deep soil layers to make reliable predictions of the effects of forest disturbances on C and water fluxes in deep tropical soils.

  16. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  17. The action of water films at Å-scales in the Earth: Implications for the Nankai subduction system

    NASA Astrophysics Data System (ADS)

    Brown, Kevin M.; Poeppe, Dean; Josh, Matthew; Sample, James; Even, Emilie; Saffer, Demian; Tobin, Harold; Hirose, Takehiro; Kulongoski, J. T.; Toczko, Sean; Maeda, Lena; IODP Expedition 348 Shipboard Party

    2017-04-01

    Water properties change with confinement within nanofilms trapped between natural charged clay particles. We investigated nanofilm characteristics through high-stress laboratory compression tests in combination with analyses of expelled pore fluids. We utilized sediments obtained from deep drilling of the Nankai subduction zone at Site C0002 of the Integrated Ocean Drilling Program (IODP). We show that below 1-2 km, there should be widespread ultrafiltration of migrating fluids. Experiments to > ∼ 100 MPa normal compression collapse pores below a few ion monofilm thicknesses. A reduction towards a single condensing/dehydrating ion monofilm occurs as stresses rise >100-200 MPa and clay separations are reduced to <10-20 Å. Thus, porosity in high mineral surface area systems only consists of double and single monofilms at depths below a few km leaving little room for either bulk water or the deep biosphere. The resulting semipermeable properties result in variable segregation of ions and charged isotopes and water during active flow. The ultrafiltration and ion dehydration processes are coupled in that both require the partial immobilization of ions between the charged clay surfaces. The general effect is to increase salinities in residual pore fluids at depth and freshen fluids expelled during consolidation. Cessation of nanofilm collapse to a near constant ∼17 Å below 2 km depth at Nankai supports the contention for the onset of substantial geopressuring on the deeper seismogenic fault. The properties of monofilm water, thus, have considerable implications for the deep water properties of subduction zones generating major tremor and Mw 8+ earthquakes. Indeed, the combined effects of advective flow, ultrafiltration, diffusion, and diagenesis could provide a unifying explanation for the origins of overpressuring and pore water geochemical signals observed in many natural systems.

  18. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall, potential evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  19. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  20. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2) or 2080 (CNRM-CM5); thus, the conditions required for thermobaric instability induced mixing become rare or non-existent in these projections. The results indicate that the frequency of deep water renewal events could change substantially in a warmer future climate, potentially altering the lake ecosystem and water clarity.

  1. Water-mass formation and Sverdrup dynamics; a comparison between climatology and a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Tomczak, Matthias; Stuart Godfrey, J.

    1992-06-01

    The coupled ocean-atmosphere model integrations of Manabe and Stouffer (1988) are compared with climatological distributions of depth-integrated flow and water-mass formation. The description of the ocean circulation in their two quasi-stable equilibria is extended to include an analysis of the horizontal and meridional transport as well as the water-mass formation and vertical motion in the model. In particular, the wind-driven Sverdrup flow is computed and compared with the actual mass transport streamfunction of the model. It is found that a Sverdrup model of depth-integrated flow captures the major features of the coupled model's ocean circulation, except near region of deep water formation, where the thermohaline field drives ocean currents and wind-driven flow becomes secondary. The coupled model fails to allow for a barotropic mass transport through the Indonesian Passage. Instead, only baroclinically driven fluxes of heat and freshwater are resolved through the Indonesian Archipelago. The Sverdrup model suggests that a barotropic throughflow would transport about 16 Sv from the Pacific to Indian Oceans. According to Sverdrup dynamics, this would serve to weaken the East Australian Current by about 16 Sv and strengthen the Agulhas Current by the same amount. Recent integrations of a World Ocean model with and without a barotropic throughflow in the Indonesian Passage suggest that the modelled heat transport is sensitive to the nature of flow through the Indonesian Archipelago. From' a comparison of observed and simulated water mass properties, it is shown that some major aspects of the global-scale water masses are not captured by the coupled model. This reveals a shortcoming of the model's ability to represent the global-scale heat and freshwater balances. For example, there is an unrealistically intense halocline in the immediate vicinity of Antartica, prohibiting the formation of bottom water in the Weddell and Ross Seas. Also, no low salinity traces of Antarctic or North Pacific Intermediate Water appear in the model integrations, primarily because there is no source of sufficiently dense bottom water adjacent to Antarctica. Without this dense bottom water, the "would-be" intermediate water at 60°S sinks to great depths and actually becomes the model ocean's bottom water. Then, the simulated bottom water is too fresh and warm in the climate model, matching the temperature—salinity signature of Antarctic Intermediate Water. In the North Atlantic, whilst deep water formation appears in one of the climate states of Manabe and Stouffer (1988), its downward penetration is not as deep as observed. This is because their deep North Atlantic is not ventilated by the thermohaline overturning of warm salty North Atlantic Deep Water. Instead, a deep overturning cell centred near the equator transports relatively fresh water into the region. In contrast, the location and strength of Central Water formation agrees well with climatology.

  2. Distributions and fluxes of methylmercury in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Yang, Jisook; Kim, Hyunji; Kang, Chang-Keun; Kim, Kyung-Ryul; Han, Seunghee

    2017-12-01

    The East/Japan Sea (EJS) is well ventilated to deep water via brine rejection from ice formations and thermohaline convection, resulting in a short overturning period in several decades. Due to these characteristics, the dissolved oxygen concentration in the EJS deep water is much higher (190-200 μg L-1 at 3000 m water depth) than that found at the same depths of the Northwestern Pacific (30 μg L-1) or anywhere in the Pacific Ocean. The total mercury (THg) and methylmercury (MeHg) distributions, and MeHg mass budgets were investigated to identify how the EJS's distinct circulation pattern affects Hg speciation. Whereas the THg concentration in the surface seawater (ranging from 0.20 to 1.2 pM, mean 0.59 ± 0.24 pM) showed no site variation between the Japan Basin and the Ulleung Basin, the MeHg concentration in the surface seawater was significantly higher (p < 0.05) in the Japan Basin (32 ± 24 fM) than in the Ulleung Basin (12 fM), with a south to north increasing gradient. This observation was supported by the mass budget estimation showing that upward diffusion as well as net methylation of Hg(II) was the primary source of MeHg in the surface seawater; the upward diffusion value was higher in the Japan Basin (3.2 nmol m-2 yr-1) than in the Ulleung Basin (1.9 nmol m-2 yr-1) due to the shallow thermocline depths in the Japan Basin. In contrast, the MeHg concentration in deep seawater (1000-3000 m) was similar between the Japan Basin (530 ± 87 fM) and the Ulleung Basin (610 ± 99 fM) and significantly (p < 0.05) higher than in the North Pacific (24 ± 40 fM) or North Atlantic (87 ± 96 fM) deep seawater. The Hg(II) methylation capacity, represented by the MeHg concentration normalized to apparent oxygen utilization, was also higher for the EJS deep water (0.0048) than the Northeastern Pacific (0.0030) and Northwestern Pacific (0.0025) intermediate waters, implying that the short overturning period of EJS may cause exclusively high MeHg concentrations in the deep water.

  3. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.

  4. Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, V.; Abernathey, R. P.; Mazloff, M. R.; Wang, J.; Talley, L. D.

    2018-03-01

    Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient-rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy-permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.

  5. A Modeling Study of Deep Water Renewal in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  6. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    PubMed

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  7. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  8. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  9. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin

    USGS Publications Warehouse

    Michaela, Holly A.; Voss, Clifford I.

    2008-01-01

    Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (<100 m) depths by domestic and irrigation wells in the Bengal Basin aquifer system. The government of Bangladesh has begun to install wells to depths of >150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe groundwater has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the deep resource. Here, it is shown, through quantitative, large-scale hydrogeologic analysis and simulation of the entire basin, that the deeper part of the aquifer system may provide a sustainable source of arsenic-safe water if its utilization is limited to domestic supply. Simulations provide two explanations for this result: deep domestic pumping only slightly perturbs the deep groundwater flow system, and substantial shallow pumping for irrigation forms a hydraulic barrier that protects deeper resources from shallow arsenic sources. Additional analysis indicates that this simple management approach could provide arsenic-safe drinking water to >90% of the arsenic-impacted region over a 1,000-year timescale. This insight may assist water-resources managers in alleviating one of the world's largest groundwater contamination problems.

  10. Nitrogen isotopic composition of nitrate in the South China Sea: A clue to the origin of nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Chen, J.; Chen, M.; Ran, L.; Li, H.; Zhu, Y.; Wang, C.; Ji, Z.; Zhang, J.; Zhang, D.

    2016-02-01

    Nitrogen isotopic composition of water column nitrate was measured in the South China Sea to clarify the sources of nitrogen. The δ15NNO3 value in deep water (5.4±0.2‰) was higher than the average deep oceanic δ15NNO3 ( 5‰), and a weak δ15NNO3 maximum (5.9±0.2‰) was observed at 500 m depth, matching the salinity minimum. These indicated the intrusion of the North Pacific Water which carried nitrate with a high δ15NNO3 and showed a similar δ15NNO3 distribution profile with the South China Sea. The high N* (1.74±0.23 μmol/L) combined with the low δ15NNO3 (4.7±0.2‰) at 100 m depth indicated that N2 fixation (and possibly Atmospheric Deposition) introduces new N to the surface ocean. The distribution of δ15N values of nitrate, sinking particles and surface sediment suggest that laterally-advected sediments may be a source of nitrogen to the deep ocean.

  11. Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.

    PubMed

    Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J

    2004-12-23

    The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.

  12. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  13. Dive Europa: a search-for-life initiative.

    PubMed

    Naganuma, T; Uematsu, H

    1998-06-01

    Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.

  14. Geochemical and sedimentological records of intermediate-depth circulation in the Labrador Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. S.; Dalsing, R.; McManus, J. F.

    2016-12-01

    Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.

  15. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    NASA Astrophysics Data System (ADS)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological conditions of the water column.

  16. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient

    PubMed Central

    Gori, Andrea; Lopez-González, Pablo; Bramanti, Lorenzo; Rossi, Sergio; Gili, Josep-Maria; Abbiati, Marco

    2016-01-01

    Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations. PMID:27490900

  17. Advances in Hadal Research in China

    NASA Astrophysics Data System (ADS)

    Tian, J.; Zhang, X. H.; Xin, Y.; Xu, H.; Chen, D.; Zhang, C.

    2017-12-01

    Trenches (depths > 6000 m) are the least explored oceanic provinces, which may offer unique insight into microbial biogeography, diversity, and adaptations in the hadal environment that is characterized by extremely high pressure and low temperature. We have carried out three cruises since 2015 in order to systematically study the dynamics of the hadal ecosystems in the Mariana Trench, utilizing expertise from physical oceanography, sedimentology, organic geochemistry, and microbial genomics. A cross-trench mooring array composed of 5 independent mooring systems was deployed along 143 ºE in the `Challenger Deep', which was kept fully operational for nearly one year at depths from 4000 m to 10000 m. The one-year continuous ADCP and current data revealed unusual temporal changes in hydrodynamics in the trench system. With the assistance of a custom-designed deep water collection system, we successfully obtained seawater up to 1200 liters at depths of 2000 m, 4000 m, 6000 m, 8000 m and 10000 m below sea surface. Filtration of >1000 liters of hadal water provided valuable information on the genomics of pico/nano-plankton, archaea and bacteria, and viruses, and their potential roles in nutrient and element cycling in the hadal ecosystem. Four sediment traps were deployed at the Challenge Deep at depth of 2000 m, 4000 m, 6000 m and 8000 m, which provided downward POC fluxes at the monthly resolution. Lastly, sediment cores (0- 450 cm) were collected from the hadal seafloor at water depths down to 10853 m. Preliminary results show rates of organic matter degradation and accumulation are enhanced in the trench axis, suggesting an influence of lateral transport from trench slope and rim. Overall, our studies demonstrated a dynamic trench system with strong interactions among physical, chemical, sedimentary and biological processes in the trench.

  18. Environmental Assessment, East Coast Basing of C-17 Aircraft. Volume 1

    DTIC Science & Technology

    2005-09-01

    hydrogeologic units have been identified in the McGuire AFB area, particularly three shallow units and one deep unit (the Potomac-Raritan- Magothy System...McGuire AFB 2003c). The depth to groundwater is relatively shallow (less than five feet in some areas). The Potomac-Raritan- Magothy aquifer is...the primary source of potable water in the McGuire AFB area. The Base obtains water from four deep wells in the Potomac-Raritan- Magothy aquifer at

  19. Environmental Assessment East Coast Basing of C-17 Aircraft. Volume 1

    DTIC Science & Technology

    2005-09-01

    hydrogeologic units have been identified in the McGuire AFB area, particularly three shallow units and one deep unit (the Potomac-Raritan- Magothy System...McGuire AFB 2003c). The depth to groundwater is relatively shallow (less than five feet in some areas). The Potomac-Raritan- Magothy aquifer is...the primary source of potable water in the McGuire AFB area. The Base obtains water from four deep wells in the Potomac-Raritan- Magothy aquifer at

  20. Demersal Fish Assemblages on Seamounts and Other Rugged Features in Deep Waters of the Greater and Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Quattrini, A.; Demopoulos, A. W.

    2015-12-01

    Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the deep (>200 m) assemblages remain poorly known due to the technical challenges associated with focused surveys at these greater depths. The numerous geological features (e.g., seamounts, island ridges, banks) that punctuate the insular margins increase habitat heterogeneity, which may lead to enhanced diversity of the deep demersal fish community in the region. Recent (2013-2014) expeditions in the area using the E/V Nautilus and the ROV Hercules surveyed fish communities during 17 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other environmental factors. Preliminary analyses suggested that assemblage differences are influenced by depth, dissolved oxygen, and differences in benthic microhabitat (i.e., soft substrate, rock outcrop, slope angle). Notably, both abundance and diversity of fishes was low at depths >700 m on seamounts in the Anegada Passage. This pattern is likely due to limited food supply in the region. ROV surveys further elucidated the biogeography of numerous species, as several range and depth extensions were documented. For instance, the morid Lepidion sp., previously known only from the eastern Atlantic and the western North Atlantic, was documented on Norrôit Seamount. A new species, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Also, many common, mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions influencing local-scale distribution of deep-sea fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic fish species.

  1. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    USGS Publications Warehouse

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.

  2. The biomass of the deep-sea benthopelagic plankton

    NASA Astrophysics Data System (ADS)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  3. The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly

    NASA Astrophysics Data System (ADS)

    Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.

    2016-02-01

    The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.

  4. Polarization Lidar for Shallow Water Supraglacial Lake Depth Measurement

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Adler, J.; Thayer, J. P.; Hayman, M.

    2010-12-01

    A bathymetric, polarization lidar system transmitting at 532 nanometers and using a single photomultiplier tube is developed for applications of shallow water depth measurement, in particular those often found in supraglacial lakes of the ablation zone on the Greenland Ice Sheet. The technique exploits polarization attributes of the probed water body to isolate surface and floor returns, enabling constant fraction detection schemes to determine depth. The minimum resolvable water depth is no longer dictated by the system’s laser or detector pulse width and can achieve better than an order of magnitude improvement over current water depth determination techniques. In laboratory tests, a Nd:YAG microchip laser coupled with polarization optics, a photomultiplier tube, a constant fraction discriminator and a time to digital converter are used to target various water depths, using ice as the floor to simulate a supraglacial lake. Measurement of 1 centimeter water depths with an uncertainty of ±3 millimeters are demonstrated using the technique. This novel technique enables new approaches to designing laser bathymetry systems for shallow depth determination from remote platforms while not compromising deep water depth measurement, and will support comprehensive hydrodynamic studies of supraglacial lakes. Additionally, the compact size and low weight (<15 kg) of the field system currently in development presents opportunities for use in small unmanned aircraft systems (UAS) for large areal surveys of the ablation zone.

  5. Generalized scaling of seasonal thermal stratification in lakes

    NASA Astrophysics Data System (ADS)

    Shatwell, T.; Kirillin, G.

    2016-12-01

    The mixing regime is fundamental to the biogeochemisty and ecology of lakes because it determines the vertical transport of matter such as gases, nutrients, and organic material. Whereas shallow lakes are usually polymictic and regularly mix to the bottom, deep lakes tend to stratify seasonally, separating surface water from deep sediments and deep water from the atmosphere. Although empirical relationships exist to predict the mixing regime, a physically based, quantitative criterion is lacking. Here we review our recent research on thermal stratification in lakes at the transition between polymictic and stratified regimes. Using the mechanistic balance between potential and kinetic energy in terms of the Richardson number, we derive a generalized physical scaling for seasonal stratification in a closed lake basin. The scaling parameter is the critical mean basin depth that delineates polymictic and seasonally stratified lakes based on lake water transparency (Secchi depth), lake length, and an annual mean estimate for the Monin-Obukhov length. We validated the scaling on available data of 374 global lakes using logistic regression and found it to perform better than other criteria including a conventional open basin scaling or a simple depth threshold. The scaling has potential applications in estimating large scale greenhouse gas fluxes from lakes because the required inputs, like water transparency and basin morphology, can be acquired using the latest remote sensing technologies. The generalized scaling is universal for freshwater lakes and allows the seasonal mixing regime to be estimated without numerically solving the heat transport equations.

  6. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    PubMed

    Huvenne, Veerle A I; Tyler, Paul A; Masson, Doug G; Fisher, Elizabeth H; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P; Wolff, George A

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  7. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    PubMed Central

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked – quite literally – and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin. PMID:22194903

  8. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling-Allerød interstadial.

  10. Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.

    2002-01-01

    In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring wells are similar, even though the wells are completed in different geologic formations.Geophysical logs collected at the DMW1 site indicate saline water in most water-bearing zones shallower than 720 feet below land surface and from about 1,025 to 1,130 feet below land surface, and indicate fresher water from about 910 to 950 feet below land surface (DMW1-4), 1,130 to 1,550 feet below land surface, and below 1,650 feet below land surface. Temporal differences between electromagnetic induction logs indicate possible seasonal seawater intrusion in five water-bearing zones from 350 to 675 feet below land surface in the upper-aquifer system.The water-chemistry analyses from the deep-aquifer system monitoring and supply wells indicate that these deep aquifers in the Marina area contain potable water with the exception of the saline water in well DMW1-3. The saline water from well DMW1-3 has a chloride concentration of 10,800 milligrams per liter and dissolved solids concentration of 23,800 milligrams per liter. The source of this water was determined not to be recent seawater based on geochemical indicators and the age of the ground water. The high salinity of this ground water may be related to the dissolution of salts from the saline marine clays that surround the water-bearing zone screened by DMW1-3. The major ion water chemistry of the monitoring wells and the nearby MCWD water-supply wells are similar, which may indicate they are in hydraulic connection, even though the stratigraphic layers differ below 955 feet below land surface.No tritium was detected in samples from the deep monitoring wells. The lack of tritium suggest that there is no recent recharge water (less than 50 years old) in the deep-aquifer system at the DMW1 site. The carbon-14 analyses of these samples indicate ground water from the monitoring site was recharged thousands of years ago.

  11. Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater.

    PubMed

    Taniguchi, Takeshi; Usuki, Hiroyuki; Kikuchi, Junichi; Hirobe, Muneto; Miki, Naoko; Fukuda, Kenji; Zhang, Guosheng; Wang, Linhe; Yoshikawa, Ken; Yamanaka, Norikazu

    2012-08-01

    Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.

  12. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    PubMed

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.

  14. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan

    NASA Astrophysics Data System (ADS)

    Hong, W.; Moen, N.; Haley, B. A.

    2013-12-01

    IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.

  15. Numerical and experimental results on the spectral wave transfer in finite depth

    NASA Astrophysics Data System (ADS)

    Benassai, Guido

    2016-04-01

    Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.

  16. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years

    NASA Astrophysics Data System (ADS)

    Umling, Natalie E.; Thunell, Robert C.

    2018-06-01

    A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.

  17. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon

    2015-09-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.

  18. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured by an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; An, S. U.; Park, Y. G.; Kim, E.; Kim, D.; Kwon, J. N.; Kang, D. J.; Noh, J. H.

    2016-02-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) BelcII and BelpII. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge- slope-basin system in the East Sea.

  19. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.

  20. Overview of the limnology of crater lake

    USGS Publications Warehouse

    Larson, G.L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the Zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions. ?? 1996 by the Northwest Scientific Association. All rights reserved.

  1. Overview of the limnology of Crater Lake

    USGS Publications Warehouse

    Larson, Gary L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions.

  2. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0-5000 m) off the Galician coast (NW Iberian margin)

    NASA Astrophysics Data System (ADS)

    Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.

    2016-08-01

    The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.

  3. Gulf of Aden eddies and their impact on Red Sea Water

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Fratantoni, David M.; Johns, William E.; Peters, Hartmut

    2002-11-01

    New oceanographic observations in the Gulf of Aden in the northwestern Indian Ocean have revealed large, energetic, deep-reaching mesoscale eddies that fundamentally influence the spreading rates and pathways of intermediate-depth Red Sea Water (RSW). Three eddies were sampled in February 2001, two cyclonic and one anticyclonic, with diameters 150-250 km. Both cyclones had surface-intensified velocity structure with maxima ~0.5 m s-1, while the equally-energetic anticyclone appeared to be decoupled from the surface circulation. All three eddies reached nearly to the 1000-2000 m deep sea floor, with speeds as high as 0.2-0.3 m s-1 extending through the depth range of RSW. Comparison of salinity and direct velocity measurements indicates that the eddies advect and stir RSW through the Gulf of Aden. Anomalous water properties in the center of the anticyclonic eddy point to a possible formation site in the Somali Current System.

  4. A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.

    2010-12-01

    A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.

  5. Microbial community composition and function in the Tonga Trench: from 400m below the sea surface to 9100m water depth and from 0 to 2 m below the seafloor.

    NASA Astrophysics Data System (ADS)

    Leon Zayas, R. I.; Bartlett, D.; Biddle, J.

    2016-12-01

    Exploration of the deep ocean has expanded our understanding of oceanic ecosystems including continental margins and mid-ocean ridges, but little is known about the deepest sites on Earth, oceanic trenches. In this study, sediment and water samples were collected from the Tonga Trench at 9100m below sea level. These include four water column samples at depths of 400m, 3000m, 5000m and 9100m, and sediment samples at 0, 1, and 2 meter below the seafloor (mbsf). DNA was extracted and sequencing was performed for the recovery of metagenomic data for all samples. The analysis of the sediment samples from Tonga Trench has provided a new perspective of life in the deep ocean. The data for microbial community composition and metabolic profiles at the surface sediments, 0 mbsf, suggest that the microbes are present and taxonomically similar to the water column microbes, and perform an array of aerobic as well as anaerobic metabolisms, including degradation of organic carbon, oxidative phosphorylation, fermentation, nitrate reduction and sulfur oxidation among others. On the other hand, at 1 and 2 mbsf, the microbial community has diminished richness and diversity when compared to 0 mbsf and is potentially environmentally degraded due to the lack of quality data recoverable. Tonga Trench water column metagenomes are compared to other deep and hadal environments to better understand how different geographical locations, water masses and depth affect microbial community composition, distribution and metabolic potential. To our knowledge, this is the deepest metagenome analyzed to date (9100m), presenting an unprecedented look at one of the deepest environments on our planet.

  6. Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon

    USGS Publications Warehouse

    McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.

    1994-01-01

    A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.

  7. Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta

    NASA Astrophysics Data System (ADS)

    Prinzhofer, Alain; Deville, Eric

    2013-04-01

    This paper discusses the origin of gas seepages (free gas or dissolved gas in ground water or brine) sampled with the Nautile submarine during the Nautinil cruise at the seafloor of the deep water area of the Nile turbiditic system on different mud volcanoes and brine pools. Generally, the gas is wet and includes C1, C2, C3, iC4, nC4, CO2. These gas samples show no evidence of biodegradation which is not the case of the gas present in the deep hydrocarbon accumulations at depth. It indicates that the gas expelled by the mud volcanoes is not issued from direct leakages from deep gas fields. The collected gas samples mainly have a thermogenic origin and show different maturities. Some samples show very high maturities indicating that these seepages are sourced from great depths, below the Messinian salt. Moreover, the different chemical compositions of the gas samples reflect not only differences in maturity but also the fact that the gas finds its origin in different deep source rocks. Carbon dioxide has an organic signature and cannot result from carbonate decomposition or mantle fluids. The crustal-derived radiogenic isotopes show that the analyzed gas samples have suffered a fractionation processes after the production of the radiogenic isotopes, due either to oil occurrence at depth interacting with the flux of gas, and/or fractionation during the fluid migration.

  8. 33 CFR 164.35 - Equipment: All vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's..., permanently displayed on the navigating bridge and in the steering gear compartment. (l) An indicator readable...

  9. 33 CFR 164.35 - Equipment: All vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's..., permanently displayed on the navigating bridge and in the steering gear compartment. (l) An indicator readable...

  10. 33 CFR 164.35 - Equipment: All vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to alter course 90 degrees with maximum rudder angle and constant power settings, for either full and...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's...

  11. 33 CFR 164.35 - Equipment: All vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to alter course 90 degrees with maximum rudder angle and constant power settings, for either full and...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's...

  12. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.

  13. Neodymium and carbon isotopic fingerprints of warm Pliocene circulation throughout the deep Atlantic

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H. D.; Dowsett, H. J.; Robinson, M. M.

    2013-12-01

    The mid-Piacenzian age of the Pliocene is the most recent interval in Earth's history to sustain global warmth within the range predicted for the 21st century. To understand this interval, the USGS PRISM Project has developed a reconstruction of global conditions at 3.264-3.025 Ma, which includes a significant North Atlantic warm SST anomaly coupled with increased evaporation. Warm anomalies are also detected in the deep ocean as far as 46°S, suggesting that enhanced meridional overturning circulation may have been responsible for more southerly penetration of North Atlantic Deep Water (NADW). However, deep temperature proxies are not diagnostic of water mass, and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy synthesis of Atlantic deep ocean circulation during the PRISM interval, using the neodymium isotopic composition (ɛNd) of fossil fish teeth as a proxy for water mass source and the δ13C of benthic foraminifera as a proxy for water mass age. This reconstruction utilizes both new and previously published data from 11 DSDP and ODP sites in the North Atlantic (Site 610) and along depth transects from equatorial Ceara Rise, southern mid-latitude Walvis Ridge, and south Atlantic Meteor Rise/Agulhas Ridge. Published data from ferromanganese crusts constrain Pliocene Antarctic deep waters at ~ ɛNd = -8, distinct from the less radiogenic ɛNd = -11.5 that characterizes Pliocene northern component water (NCW). These values fingerprint northern and southern sources throughout the Atlantic basin. Pliocene fish teeth from Site 610 (2400 m water depth) and from four Ceara Rise sites (3000-4300 m) preserve distinctly North Atlantic ɛNd. When averaged across the PRISM interval, mean values for these five sites range from ɛNd = -10.97 to -10.25, and the Pliocene depth transect closely mirrors the structure of the modern column, indicating that Ceara Rise was dominantly influenced by NCW at all depths. In contrast, Walvis Ridge water column structure was significantly different in the Pliocene. Today, a core of NADW between 1800 and 3500 m overlies abyssal southern component water (SCW). During the Pliocene, however, sites at 4000 and 4700 m were influenced exclusively by NCW, with PRISM mean ɛNd of -11.14 and -11.45. In contrast, mean ɛNd = -9.86 indicates that the shallowest site (2500 m), which sits in the core of NADW today, was instead influenced by SCW throughout the PRISM interval. The Meteor Rise/Agulhas Ridge transect provides further evidence for south Atlantic restructuring in the warm Pliocene. At the deepest Agulhas Ridge site (3700 m), PRISM mean ɛNd = -8.47, an unequivocally SCW signature. Today, the shallower Meteor Rise sites (2000 and 2500 m) are within NADW, yet mean PRISM ɛNd = -7.68 and -7.82 - more radiogenic than the SCW end member - raising the possibility that south Atlantic intermediate waters incorporated both Pacific and Antarctic components in the Pliocene.

  14. Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi

    NASA Astrophysics Data System (ADS)

    Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.

    2017-12-01

    Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in all depth ranges and shows a better accuracy compared to that of classification map produced using only with DII.

  15. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848

  16. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-08-02

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

  17. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  18. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  19. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  20. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    NASA Astrophysics Data System (ADS)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  1. Light penetration structures the deep acoustic scattering layers in the global ocean.

    PubMed

    Aksnes, Dag L; Røstad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M; Irigoien, Xabier

    2017-05-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  2. Intermediate to deep water hydrographic changes of the Japan Sea over the past 10 Myr, inferred from radiolarian data (IODP Exp. 346, Site U1425)

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kenji M.; Itaki, Takuya; Tada, Ryuji; Kurokawa, Shunsuke

    2017-04-01

    The Japan Sea is a back-arc basin opened under a continental rifting during the Early to Middle Miocene (ca. 25-13 Ma). This area is characterized by active tectonism, which drastically modified the Japan Sea paleogeography such as the sill depth of its key straits. In modern condition, the Japan Sea is connected to adjacent marginal seas and the Pacific Ocean by four straits shallower than 130 m. These straits are the Tsushima Strait connecting to the East China Sea, the Tsugaru Strait connecting to the Pacific, and the Soya and Mamiya Straits connecting to the Sea of Okhotsk. Therefore, the intermediate and deep water of the Japan Sea is isolated, leading the formation of a unique and regional deep sea water, known as the Japan Sea Proper Water. However, past studies show that during the late Miocene and Pliocene, only the Tsugaru Strait connecting to the North Pacific was opened. This strait was deeper during Plio-Miocene and have likely enable inflow of deep to intermediate water of the North Pacific in the Japan Sea. Radiolarians are one of the planktic micro-organisms group bearing siliceous skeletons. Their species comprise shallow to deep water dwellers, sensitive to changes in sea water physical/ecological properties forced by climate changes. Their fossils are known for be well preserved in the deep-sea sediments of the North Pacific. Therefore, in this study we propose to monitor changes in intermediate to deep water hydrography of the Japan Sea since the late Miocene, using radiolarian as an environmental proxy. In 2013 the IODP Expedition 346 retrieved sediment cores at different sites in the Japan Sea. In this study, we have analyzed 139 core sediments samples collected at Site U1425. This site is situated in the middle of the Yamato Bank. We selected this site because the past 10 Myr could be recovered continuously without hiatuses. Changes in radiolarian assemblages reveal that the oceanographic setting of the Japan Sea changed drastically at ca. 2.7 Ma. For older interval (2.7- 10 Ma), deep water species of the North Pacific could be identified at site U1425, inferring influences of deep water from the North Pacific and consequently a deeper sill depths of the connecting strait. Radiolarian assemblages also show that the intermediate water of the Japan sea is characterized by taxa living in equatorial to mid latitude area of the Northwest Pacific during the time interval between 2.7-10 Ma. While between 4 and 5 Ma, taxa related to the Sea of Okhotsk show very high abundances, inferring also inflow of intermediate water from the Sea of Okhotsk in the Japan Sea.

  3. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Hirai, Miho; Shimamura, Shigeru; Makabe, Akiko; Koide, Osamu; Kikuchi, Tohru; Miyazaki, Junichi; Koba, Keisuke; Yoshida, Naohiro; Sunamura, Michinari; Takai, Ken

    2015-03-17

    Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.

  4. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to <0.5% at 140cm depth. High-throughput sequencing highlighted distinct microbial communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these tropical subsoils contain small but metabolically active microbial communities that are highly OM limited and may persist via degradation of recent inputs.

  5. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep rooted species and phreatophytes, which seem to depend heavily on access to GW.

  6. Management Plan Report. Unconfined Open-Water Disposal of Dredged Material. Phase 2. (North and South Puget Sound)

    DTIC Science & Technology

    1989-09-01

    depth of 442’ at the center of the disposal zone. The area is subject to weak currents. In general, commercially important marine invertebrate ...Fish and Wildlife Service " Charles Dunn U.S. Fish and Wildlife Service * Rob Jones National Marine Fisheries Service * Dr. Herb Curl National Oceanic...environmental impacts. In the future, for many projects, disposal in deep and relatively deep marine waters is expected to be a preferred option for envirc

  7. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  8. Survival of the fittest: phosphorus burial in the sulfidic deep Black Sea

    NASA Astrophysics Data System (ADS)

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline

    2016-04-01

    The Black Sea is characterized by permanently anoxic and sulfidic deep waters. Studies of the mechanisms of P burial in such a setting can be used to improve our understanding of P cycling in modern coastal systems undergoing eutrophication and ancient oceans during periods of anoxia in Earth's past. Here, we present phosphorus and iron (Fe) pools as determined in surface sediments along a transect from oxic shallow waters to sulfidic deep waters in the northwestern Black Sea, using a combination of bulk chemical analyses and micro-scale X-ray fluorescence (μXRF) and X-ray absorption spectroscopy (μXAS). We show that under oxic bottom water conditions, ferric iron oxides (Fe(III)ox) in surficial sediment efficiently scavenge dissolved phosphate from pore waters. Under these conditions, Fe(III)ox-bound P constitutes the main P pool at the sediment surface, but rapidly declines with depth in the sediment due to anoxic diagenesis. The transition from shallow (oxic) to deep (sulfidic) waters along the depth transect is reflected in a slight increase in the fraction of organic P. We also show evidence for authigenic calcium phosphate formation under sulfidic conditions at relatively low dissolved PO4 concentrations. Furthermore, we provide spectroscopic evidence for the presence of Fe(II)-Mn(II)-Mg-P minerals in sediments of the sulfidic deep basin. We hypothesize that these minerals are formed as a result of input of Fe(III)ox-P from shallower waters and subsequent transformation in either the water column or sediment. This finding suggests an unexpected strength of Fe-P shuttling from the shelf to the deep basin. While the presence of Fe-P species in such a highly sulfidic environment is remarkable, further analysis suggests that this P pool may not be quantitatively significant. In fact, our results indicate that some of the P that is interpreted as Fe-bound P based on chemical extraction may in fact be Ca-associated PO4 consisting of a combination of fish debris and adsorbed P.

  9. Observation of water mass characteristics in the southwestern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xie, Q.; Hong, B.

    2016-12-01

    The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.

  10. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  11. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.

  12. Ecological and morphological traits predict depth-generalist fishes on coral reefs

    PubMed Central

    Bridge, Tom C. L.; Luiz, Osmar J.; Coleman, Richard R.; Kane, Corinne N.; Kosaki, Randall K.

    2016-01-01

    Ecological communities that occupy similar habitats may exhibit functional convergence despite significant geographical distances and taxonomic dissimilarity. On coral reefs, steep gradients in key environmental variables (e.g. light and wave energy) restrict some species to shallow depths. We show that depth-generalist reef fishes are correlated with two species-level traits: caudal fin aspect ratio and diet. Fishes with high aspect ratio (lunate) caudal fins produce weaker vortices in the water column while swimming, and we propose that ‘silent swimming’ reduces the likelihood of detection and provides an advantage on deeper reefs with lower light irradiance and water motion. Significant differences in depth preference among trophic guilds reflect variations in the availability of different food sources along a depth gradient. The significance of these two traits across three geographically and taxonomically distinct assemblages suggests that deep-water habitats exert a strong environmental filter on coral reef-fish assemblages. PMID:26791616

  13. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2011-11-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  14. 76 FR 39369 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fishery; Amendment 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... crab vessels may not deploy parlor traps/pots in water depths greater than 400 meters (219 fathoms... water deeper than 400 m; prohibit a limited access red crab vessel from harvesting red crab in water shallower than 400 m; and prohibit parlor traps from being deployed at water shallower than 400 m. This...

  15. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses

    PubMed Central

    Muck, Simone; Griessler, Thomas; Köstner, Nicole; Klimiuk, Adam; Winter, Christian; Herndl, Gerhard J.

    2014-01-01

    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses. PMID:24917857

  16. Fish depth distributions in the Lower Mississippi River

    USGS Publications Warehouse

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  17. Deep structure of the Afro-Arabian hotspot by S receiver functions

    NASA Astrophysics Data System (ADS)

    Vinnik, L. P.; Farra, V.; Kind, R.

    2004-06-01

    We investigated deep structure of the Afro-Arabian hotspot by using recordings from Geoscope seismograph station ATD. The records are processed with the S receiver function technique, which allows a detection of Sp converted phases from the upper mantle discontinuities. The seismic data reveal two unusual discontinuities. The discontinuity at a depth of 160 km beneath the Gulf of Aden corresponds to the onset of melting. If the water content in olivine is around 800 H/106Si, melting at this depth requires a temperature close to 1550°C, about 120°C higher than the average. Another remarkable discontinuity is found at a depth of 480 km, where S velocity drops with depth by about 0.2 km/s. This can be the head of another plume which is trapped in the mantle transition zone.

  18. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Kim, Seung Hyeon; Kim, Jae Woo; Kim, Jong-Hyeob; Lee, Kun-Seop

    2013-02-01

    Growth and photosynthetic responses of Zostera marina transplants along a depth gradient were examined to determine appropriate transplanting areas for seagrass restoration. Seagrass Z. marina was once widely distributed in the Taehwa River estuary in southeastern Korea, but has disappeared since the 1960s due to port construction and large scale pollutant inputs from upstream industrial areas. Recently, water quality has been considerably improved as a result of effective sewage treatment, and the local government is attempting to restore Z. marina to the estuary. For seagrass restoration in this estuary, a pilot transplantation trial of Z. marina at three water depths (shallow: 0.5 m; intermediate: 1.5 m; deep: 2.5 m relative to MLLW) was conducted in November 2008. The transplant shoot density increased gradually at the intermediate and deep sites, whereas the transplants at the shallow site disappeared after 3 months. To find the optimal transplantation locations in this estuary, the growth and photosynthetic responses of the transplants along a depth gradient were examined for approximately 4 months following transplantation in March 2009. In the 2009 experimental transplantation trial, shoot density of transplants at the shallow site was significantly higher than those at the intermediate and deep sites during the first 3 months following transplantation, but rapidly decreased approximately 4 months after transplantation. The chlorophyll content, photosynthetic efficiency (α), and maximum quantum yield (Fv/Fm) of the transplants were significantly higher at the deep site than at the shallow site. Shoot size, biomass and leaf productivity were also significantly higher at the deep site than at the shallow site. Although underwater irradiance was significantly lower at the deep site than at the shallow site, transplants at the deep site were morphologically and physiologically acclimated to the low light. Transplants at the shallow site exhibited high mortality during the early period of transplantation perhaps due to high physical disturbances at the site, but transplants at the intermediate and deep sites showed higher growth through more efficient photosynthesis and morphological adaptation. Thus, the intermediate and deep sites (1.5-2.5 m relative to MLLW) appeared to be more appropriate seagrass transplantation sites in this estuary.

  19. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.

    PubMed

    Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui

    2017-01-01

    Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  20. The Dynamics of Vertical Migration in the Oceanic Gulf of Mexico after Deepwater Horizon: Active Linkage of Large Vertebrates and Deep-Pelagic Nekton

    NASA Astrophysics Data System (ADS)

    Sutton, T.; Cook, A.; Frank, T. M.; Boswell, K. M.; Vecchione, M.; Judkins, H.; Romero, I.

    2016-02-01

    Toothed whales, smaller cetaceans, seabirds, and epipelagic gamefishes rely on deep-pelagic (meso- and bathypelagic) nekton as primary or secondary prey. This trophic interaction is mediated by downward and upward vertical movements (e.g., sperm whale diving and lanternfishes migration, respectively). This interaction also links particle-feeding lower trophic levels with top predators in a manner that spans the gamut of depth domains. This is particularly important with respect to a whole-water column disturbance such as the Deepwater Horizon oil spill (DWHOS). Here we present highly resolved vertical distribution and migration data collected during a large-scale, NOAA-supported, deep-pelagic (0-1500 m) survey in 2011, along with data collected during ongoing GoMRI-supported DEEPEND consortium surveys. The deep-pelagic nekton community of the Gulf of Mexico is a complex mixture of migrating, non-migrating, and partially migrating assemblages that connect surface waters with depths in excess of 1000 m. Major patterns of vertical distribution for 400+ species of fishes, cephalopods, and macrocrustaceans, the primary prey of many important species of oceanic vertebrates living near-surface, will be summarized and quantified with the goal of highlighting potential vectors of anthropogenic contamination transfer in the deep-pelagial, the Gulf's largest ecosystem.

  1. To what extent can specialized species succeed in the deep sea? The biology and trophic ecology of deep-sea spiny eels (Notacanthidae) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Romeu, Oriol Rodríguez; Cartes, Joan E.; Solé, Montse; Carrassón, Maite

    2016-09-01

    The population structure, reproductive biology and feeding ecology of the two notacanthids inhabiting the deep Mediterranean, Notacanthus bonapartei and Polyacanthonotus rissoanus, were analyzed in the Balearic Basin at depths from 579 to 2233 m (mainly pristine depths or subjected to low fishing impact), including seasonal variations. Preferred average depths (Centres of Gravity, CoG) of Notacanthusbonapartei were situated over the middle slope (942 m) and of P. rissoanus on the lower slope (1680 m). For both species, bigger individuals collected at the deepest depths had the highest values of a gonadosomatic index (GSI), suggesting that in reproductive periods adults migrate into deeper waters. The reproductive season for N. bonapartei was late summer and autumn; that of P. rissoanus was narrower, restricted to summer. N. bonapartei exploited benthic prey, among identified prey mainly echinoderms (e.g., Penilpidia ludwigi, Hymenodiscus coronata) and sessile benthic organisms (e.g., actinians and polyps of the bamboo coral Isidella elongata). Consumption of bamboo coral polyps by N. bonapartei constitutes a unique specialized trophic strategy and a direct link with such corals. Some differences in the diet composition related to depth were observed, as were a few differences related to periods of water-column stratification and homogenization. Gut fullness (F) of this species was mainly correlated with surface Chlorophyll a recorded 2-3 months before sampling date and somewhat but less so with river discharges 1 month before sampling. That suggests that vertical flux of organic matter was the food source for prey exploited by N. bonapartei. Diet of P. rissoanus was based on epibenthic-suprabenthic crustaceans, e.g. tanaids (Apseudes spp.), isopods (Munnopsurus atlanticus) and amphipods (Rhachotropis caeca) and on polychaetes (Polynoidae, Harmothoe spp.), all these prey more mobile than consumed by N. bonapartei. No significant differences in diet composition were found related with either depth or homogenization/stratification of the water column. This lack of changes in diet is probably attributable to the greater stability of the lower slope where P. rissoanus lives. Gut fullness was mainly correlated with surface Chlorophyll a recorded simultaneously with the fish sampling. Lactate dehydrogenase (LDH) activity was similar in the muscle of the two notacanthids (N. bonapartei=3.72-8.75 μmol/min/mg prot; P. rissoanus=7.56 μmol/min/mg prot). Values for N. bonapartei were the highest found compared to other deep-sea fish in the deep Mediterranean. This could be related with the special feeding behaviour of this species when it removes sessile prey from substrate.

  2. Draft Genome Sequence of Pseudoalteromonas sp. Strain ND6B, an Oil-Degrading Isolate from Eastern Mediterranean Sea Water Collected at a Depth of 1,210 Meters

    DOE PAGES

    Harris, Austin P.; Techtmann, Stephen M.; Stelling, Savannah C.; ...

    2014-11-26

    We report the draft genome of Pseudoalteromonas sp. strain ND6B, which is able to grow with crude oil as a carbon source. Strain ND6B was isolated from eastern Mediterranean Sea deep water at a depth of 1,210 m. The genome of strain ND6B provides insight into the oil-degrading ability of the Pseudoalteromonas species.

  3. Mars: Crustal pore volume, cryospheric depth, and the global occurrence of groundwater

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1987-01-01

    It is argued that most of the Martian hydrosphere resides in a porous outer layer of crust that, based on a lunar analogy, appears to extend to a depth of about 10 km. The total pore volume of this layer is sufficient to store the equivalent of a global ocean of water some 500 to 1500 m deep. Thermal modeling suggests that about 300 to 500 m of water could be stored as ice within the crust. Any excess must exist as groundwater.

  4. Optimization of remediation strategies using vadose zone monitoring systems

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.

  5. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  6. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  7. Hydrology of some deep mines in Precambrian rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yardley, D.H.

    1975-10-01

    A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less

  8. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society of Wetland Scientists.

  9. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    PubMed Central

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  10. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  11. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  12. Frequency of sublethal injury in a deepwater ophiuroid, Ophiacantha bidentata, an important component of western Atlantic Lophelia reef communities

    USGS Publications Warehouse

    Allen, Brooks R.; Nizinski, M.S.; Ross, Steve W.; Sulak, K.J.

    2007-01-01

    The occurrence and relative abundance of tissue (arm) regeneration in the ophiuroid, Ophiacantha bidentata (Retzius), was examined in individuals collected primarily among colonies of the deep-water coral Lophelia pertusa off the southeastern United States. Seven deep-water coral sites (384-756 m), located between Cape Lookout, NC, and Cape Canaveral, FL, were sampled in June 2004 using a manned submersible. The presence of regenerative tissue was evaluated by visual inspection of each individual ophiuroid, and the proportion of regenerating arms per individual was examined relative to size of individual, geographic location, and depth of collection. Ophiacantha bidentata, the dominant brittle star collected, commonly displayed signs of sublethal injury with over 60% of individuals displaying some evidence of regeneration. These levels of regeneration rival those reported for shallow-water ophiuroids. Larger individuals (>6.5 mm disc size) had a higher incidence of regeneration than smaller individuals. Size of individual and percent of regeneration were negatively correlated with depth. Although O. bidentata was significantly less abundant in southern versus northern sites, ophiuroid abundance did not appear to be influenced by amount or density of coral substratum. Presence of dense aggregations of O. bidentata indicates that they are an important component of the invertebrate assemblage associated with deep-water coral habitat especially in the northern part of the study area. Assuming that observed frequencies of injury and subsequent regeneration represent predation events then dense ophiuroid aggregations in deep-water coral habitats represent an important renewable trophic resource within these communities. ?? 2007 Springer-Verlag.

  13. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community.

    PubMed

    Bongaerts, Pim; Frade, Pedro R; Hay, Kyra B; Englebert, Norbert; Latijnhouwers, Kelly R W; Bak, Rolf P M; Vermeij, Mark J A; Hoegh-Guldberg, Ove

    2015-01-07

    The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60-100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a "deep-water" lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with "deep-specialist" photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2-3 cm yr(-1)), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management.

  14. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH

    PubMed Central

    Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810

  15. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.

    PubMed

    Fillinger, Laura; Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  16. Profiling soil water content sensor

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  17. Impacts of Residential Demolition and the Sustainable Reuse of Vacant Lots (Cleveland, Ohio)

    EPA Science Inventory

    The summarized research takes a comprehensive look at the nature of urban soils by measuring how fast water moves into the soil, taking deep soil cores, and using soil taxonomy and the cores to understand how water moves through various depths. The research expands our knowledge ...

  18. Toxiological Considerations in the Gulf of Mexico Oil Spill

    EPA Science Inventory

    The Deep Water Horizon oil rig exploded on April 20, 2010, resulting in an ongoing release of light sweet petroleum crude oil and methane into Gulf of Mexico waters. The release from the deepwater wellhead 41 miles from Louisiana is at approximately 1 mile depth, and flow rates e...

  19. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean.

    PubMed

    Anderson, Thomas R; Rice, Tony

    2006-12-01

    While dredging in the Aegean Sea during the mid-19th century, Manxman Edward Forbes noticed that plants and animals became progressively more impoverished the greater the depth they were from the surface of the water. By extrapolation Forbes proposed his now infamous azoic hypothesis, namely that life would be extinguished altogether in the murky depths of the deep ocean. The whole idea seemed so entirely logical given the enormous pressure, cold and eternal darkness of this apparently uninhabitable environment. Yet we now know that the sea floor is teeming with life. Curiously, it took 25 years for the azoic hypothesis to fall from grace. This was despite the presence of ample contrary evidence, including starfishes, worms and other organisms that seemingly originated from the deep seabed. This is a tale of scientists ignoring observations that ran counter to their deep-seated, yet entirely erroneous, beliefs.

  20. Bathymetry from fusion of airborne hyperspectral and laser data

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. Joseph

    1998-10-01

    Airborne hyperspectral and nadir-viewing laser data can be combined to ascertain shallow water bathymetry. The combination emphasizes the advances and overcomes the disadvantages of each method used alone. For laser systems, both the hardware and software for obtaining off-nadir measurement are complicated and expensive, while for the nadir view the conversion of laser pulse travel time to depth is straightforward. The hyperspectral systems can easily collect data in a full swath, but interpretation for water depth requires careful calibration and correction for transmittance through the atmosphere and water. Relative depths are apparent in displays of several subsets of hyperspectral data, for example, single blue-green wavelengths, endmembers that represent the pure water component of the data, or ratios of deep to shallow water endmembers. A relationship between one of these values and the depth measured by the aligned nadir laser can be determined, and then applied to the rest of the swath to obtain depth in physical units for the entire area covered. We demonstrate this technique using bathymetric charts as a proxy for laser data, and hyperspectral data taken by AVIRIS over Lake Tahoe and Key West.

  1. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  2. Deep-water zooplankton in the Mediterranean Sea: Results from a continuous, synchronous sampling over different regions using sediment traps

    NASA Astrophysics Data System (ADS)

    Danovaro, R.; Carugati, L.; Boldrin, A.; Calafat, A.; Canals, M.; Fabres, J.; Finlay, K.; Heussner, S.; Miserocchi, S.; Sanchez-Vidal, A.

    2017-08-01

    Information on the dynamics of deep-sea biota is extremely scant particularly for long-term time series on deep-sea zooplankton. Here, we present the results of a deep-sea zooplankton investigation over one annual cycle based on samples from sediment trap moorings in three sub-basins along the Mediterranean Sea. Deep-sea zooplankton assemblages were dominated by copepods, as in shallow waters, only in the Adriatic Sea (>60% of total abundance), but not in the deep Ionian Sea, where ostracods represented >80%, neither in the deep Alboran Sea, where polychaetes were >70%. We found that deep-sea zooplankton assemblages: i) are subjected to changes in their abundance and structure over time, ii) are characterized by different dominant taxa in different basins, and iii) display clear taxonomic segregation between shallow and near-bottom waters. Zooplankton biodiversity decreases with increasing water depth, but the equitability increases. We suggest here that variations of zooplankton abundance and assemblage structure are likely influenced by the trophic condition characterizing the basins. Our findings provide new insights on this largely unknown component of the deep ocean, and suggest that changes in the export of organic matter from the photic zone, such as those expected as a consequence of global change, can significantly influence zooplankton assemblages in the largest biome on Earth.

  3. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    NASA Astrophysics Data System (ADS)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been recorded as yet. However, the effects of plastic pollution and trawling damage in the deep-sea regarding pennatulacean populations are known in various regions globally.

  4. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.

    PubMed

    McElrone, Andrew J; Bichler, Justin; Pockman, William T; Addington, Robert N; Linder, C Randal; Jackson, Robert B

    2007-11-01

    Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and water potential measurements on deep roots, we found that calculated root hydraulic conductivity (RHC) fluctuated diurnally for both species and decreased under shading for B. lanuginosa. To assess whether these dynamic changes in RHC were regulated during initial water absorption by fine roots, we used an ultra-low flowmeter and hydroxyl radical inhibition to measure in situ fine root hydraulic conductivity (FRHC) and aquaporin contribution to FRHC (AQPC), respectively. During the summer, FRHC and AQPC were found to cycle diurnally in both species, with peaks corresponding to the period of highest transpirational demand at midday. During whole-tree shade treatments, B. lanuginosa FRHC ceased diurnal cycling and decreased by 75 and 35% at midday and midnight, respectively, while AQPC decreased by 41 and 30% during both time periods. A controlled growth-chamber study using hydroponically grown saplings confirmed daily cycling and shade-induced reductions in FRHC and AQPC. Winter measurements showed that the evergreen Q. fusiformis maintained high FRHC and AQPC throughout the year, while the deciduous B. lanuginosa ceased diurnal cycling and exhibited its lowest annual values for both parameters in winter. Adjustments in FRHC and AQPC to changing canopy water demands may help the trees maintain the use of reliable water resources from depth and contribute to the success of these species in this semi-arid environment.

  5. Groundwater mixing dynamics at a Canadian Shield mine

    NASA Astrophysics Data System (ADS)

    Douglas, M.; Clark, I. D.; Raven, K.; Bottomley, D.

    2000-08-01

    Temporal and spatial variations in geochemistry and isotopes in mine inflows at the Con Mine, Yellowknife, are studied to access the impact of underground openings on deep groundwater flow in the Canadian Shield. Periodic sampling of inflow at 20 sites from 700 to 1615 m depth showed that salinities range from 1.4 to 290 g/l, with tritium detected at all depths. Three mixing end-members are identified: (1) Ca(Na)-Cl Shield brine; (2) glacial meltwater recharged at the margin of the retreating Laurentide ice sheet at ˜10 ka; and (3) modern meteoric water. Mixing fractions, calculated for inflows on five mine levels, illustrate the infiltration of modern water along specific fault planes. Tritium data for the modern component are corrected for mixing with brine and glacial waters and interpreted with an exponential-piston flow model. Results indicate that the mean transit time from surface to 1300 m depth is about 23 years in the early period after drift construction in 1979, but decreases to about 17 years in the past decade. The persistence of glacial meltwater in the subsurface to the present time, and the rapid circulation of modern meteoric water since the start of mining activities underline the importance of gradient, in addition to permeability, as a control on deep groundwater flow in the Canadian Shield.

  6. A Geologic Model for Eridania Basin on Ancient Mars

    NASA Image and Video Library

    2017-10-06

    This diagram illustrates an interpretation for the origin of some deposits in the Eridania basin of southern Mars as resulting from seafloor hydrothermal activity more than 3 billion years ago. The ground level depicted is an exaggerated topography of a transect about 280 miles (450 kilometers) long. Blue portions of the diagram depict water-depth estimates and the possibility of ice covering the ancient sea. Thick, clay-rich deposits (green) formed through hydrothermal alteration of volcanic materials in deep water, by this model. Notations indicate deep-water reactions of iron and magnesium ions with silicates, sulfides and carbonates. Deep-seated structural discontinuities could have facilitated the ascent of magma from a mantle source. Chloride deposits formed from evaporation of seawater at higher elevations in the basin. https://photojournal.jpl.nasa.gov/catalog/PIA22060

  7. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    NASA Astrophysics Data System (ADS)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes exhibited by the SCW community appeared to be highly localised. We conclude that the bacterial communities of the SCW are active and adapted to their environment. Activity is influenced by the trophic nature of the site and may show temporal changes linked with episodic food supply. We postulate that the existence of such communities is linked to the role of the sediment-water interface as the initial site of deposition of sea-surface derived labile organic material.

  8. Bathymetric and interspecific variability in maternal reproductive investment and diet of eurybathic echinoderms

    NASA Astrophysics Data System (ADS)

    Ross, David A. N.; Hamel, Jean-François; Mercier, Annie

    2013-10-01

    While conditions in shallow-water and deep-sea environments differ markedly, it remains unclear how eurybathic species adapt their life histories to cope with these changes. The present study compared indicators of maternal reproductive investment of three common echinoderms collected shallower than 20 m and deeper than 850 m: Cucumaria frondosa (Holothuroidea), Solaster endeca and Henricia sanguinolenta (Asteroidea). Depth-specific and species-specific differences were found in gonad indices (GI), potential fecundity, oocyte size frequency, as well as lipid classes and fatty acids measured in gonad tissue and oocytes. The asteroids, S. endeca and H. sanguinolenta, exemplified the interspecific trade-off between size and number of oocytes: the former had fewer larger oocytes than the latter, with higher total lipid proportions in them. However, intraspecifically, larger oocytes found in deep specimens of S. endeca did not translate into lower fecundity but rather into a seemingly higher GI, indicating greater investment per oocyte without reducing fecundity. Oocytes were absent in specimens of C. frondosa sampled in deep water, suggesting delayed or impaired maturation at the limit of their depth tolerance. Analysis of S. endeca sterol proportions in gonads and oocytes across depths showed higher sterol input into oocytes in females from the deep. Gonads of S. endeca and H. sanguinolenta contained similar essential fatty acids, but showed significant differences in major fatty acids and some of the less dominant ones, indicating diet specificities. Analyses within S. endeca showed evidence of similar feeding mode (carnivory) at both depths, but suggested shifts in the diet or synthesis of fatty acids, presumably reflecting differences in available food sources and/or adaptations to their respective environments.

  9. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the Federal State of Lower Saxony and industry partner Baker Hughes Celle.

  10. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei

    PubMed Central

    Nakamura, Itsumi; Meyer, Carl G.; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200–300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200–300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats. PMID:26061525

  11. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    PubMed

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  12. Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    PubMed Central

    Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.

    2014-01-01

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  13. Deep inflow into the Mozambique Basin

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Pollard, R. T.

    1999-02-01

    More than 200 conductivity-temperature-depth (CTD) stations were worked around the Southwest Indian Ridge and Del Caño Rise as part of the World Ocean Circulation Experiment. A selection of these data provides information about the inflow of bottom water into the Mozambique Basin. The basin is closed below 3000 m, yet the inflow is significantly large, of order 1 Sv (1 Sv = 106 m3 s-1). Estimates of the basin-scale upwelling at 4000 m suggest that the vertical velocity is also large, 10 × 10-5 cm s-1 or more, an order of magnitude greater than global ocean estimates. Examination of the characteristics of the bottom water in the Mozambique and Agulhas Basins and the Prince Edward Fracture Zone shows that bottom water enters the Mozambique Basin from the Agulhas Basin and also directly from the Enderby Basin. Most of the transport enters the Mozambique Basin via the Agulhas Basin, where two regions of northward flow below 4000 m are found. The major flow, on the eastern flank of the Mozambique Ridge, is through and above the deep, extending (5900 m) trench that connects the Agulhas and Mozambique Basins. The second, weaker flow enters the Transkei Basin along the deep eastern flank of the Agulhas Plateau, then turning east into the Mozambique Basin. The only source of bottom water to the Agulhas Basin is the Enderby Basin, but a more direct route between the Enderby and Mozambique Basins exists via the Prince Edward fracture, which extends deeper than 4000 m throughout its length and links the two basins directly across the Southwest Indian Ridge. Full depth CTD stations trace the changing characteristics of the deep and bottom water in the fracture, and moored current meter data show the strength and persistence of the throughflow. Strong mixing with the overlying deep water elevates the salt content of the bottom water by comparison with the other water in the Mozambique Basin. Thus two distinct bottom waters of the Mozambique Basin originate in the same place (the Enderby Basin), and their different characteristics are solely a function of the routes they have taken and the processes encountered along the different pathways.

  14. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    PubMed

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  15. Rare earth element distributions in the West Pacific: Trace element sources and conservative vs. non-conservative behavior

    NASA Astrophysics Data System (ADS)

    Behrens, Melanie K.; Pahnke, Katharina; Paffrath, Ronja; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2018-03-01

    Recent studies suggest that transport and water mass mixing may play a dominant role in controlling the distribution of dissolved rare earth element concentrations ([REE]) at least in parts of the North and South Atlantic and the Pacific Southern Ocean. Here we report vertically and spatially high-resolution profiles of dissolved REE concentrations ([REE]) along a NW-SE transect in the West Pacific and examine the processes affecting the [REE] distributions in this area. Surface water REE patterns reveal sources of trace element (TE) input near South Korea and in the tropical equatorial West Pacific. Positive europium anomalies and middle REE enrichments in surface and subsurface waters are indicative of TE input from volcanic islands and fingerprint in detail small-scale equatorial zonal eastward transport of TEs to the iron-limited tropical East Pacific. The low [REE] of North and South Pacific Tropical Waters and Antarctic Intermediate Water are a long-range (i.e., preformed) laterally advected signal, whereas increasing [REE] with depth within North Pacific Intermediate Water result from release from particles. Optimum multiparameter analysis of deep to bottom waters indicates a dominant control of lateral transport and mixing on [REE] at the depth of Lower Circumpolar Deep Water (≥3000 m water depth; ∼75-100% explained by water mass mixing), allowing the northward tracing of LCDW to ∼28°N in the Northwest Pacific. In contrast, scavenging in the hydrothermal plumes of the Lau Basin and Tonga-Fiji area at 1500-2000 m water depth leads to [REE] deficits (∼40-60% removal) and marked REE fractionation in the tropical West Pacific. Overall, our data provide evidence for active trace element input both near South Korea and Papua New Guinea, and for a strong lateral transport component in the distribution of dissolved REEs in large parts of the West Pacific.

  16. Temporal Differences in Flow Depth and Velocity Distributions and Hydraulic Microhabitats Near Bridges of the Lower Platte River, Nebraska, 1934-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.

    2008-01-01

    As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang

  17. Trading shallow safety for deep sleep: Juvenile green turtles select deeper resting sites as they grow

    USGS Publications Warehouse

    Hart, Kristen M.; White, Connor F.; Iverson, Autumn R.; Whitney, Nick

    2016-01-01

    To better protect endangered green sea turtles Chelonia mydas, a more thorough understanding of the behaviors of each life stage is needed. Although dive profile analyses obtained using time-depth loggers have provided some insights into habitat use, recent work has shown that more fine-scale monitoring of body movements is needed to elucidate physical activity patterns. We monitored 11 juvenile green sea turtles with tri-axial acceleration data loggers in their foraging grounds in Dry Tortugas National Park, Florida, USA, for periods ranging from 43 to 118 h (mean ± SD: 72.8 ± 27.3 h). Approximately half of the individuals (n = 5) remained in shallow (overall mean depth less than 2 m) water throughout the experiment, whereas the remaining individuals (n = 6) made excursions to deeper (4 to 27 m) waters, often at night. Despite these differences in depth use, acceleration data revealed a consistent pattern of diurnal activity and nocturnal resting in most individuals. Nocturnal depth differences thus do not appear to represent differences in behavior, but rather different strategies to achieve the same behavior: rest. We calculated overall dynamic body acceleration (ODBA) to assess the relative energetic cost of each behavioral strategy in an attempt to explain the differences between them. Animals in deeper water experienced longer resting dives, more time resting per hour, and lower mean hourly ODBA. These results suggest that resting in deeper water provides energetic benefits that outweigh the costs of transiting to deep water and a potential increased risk of predation.

  18. Bending-related faulting and mantle serpentinization at the Middle America trench.

    PubMed

    Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C

    2003-09-25

    The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.

  19. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  20. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Hirai, Miho; Shimamura, Shigeru; Makabe, Akiko; Koide, Osamu; Kikuchi, Tohru; Miyazaki, Junichi; Koba, Keisuke; Yoshida, Naohiro; Sunamura, Michinari; Takai, Ken

    2015-01-01

    Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0 ∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000 ∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology. PMID:25713387

  1. Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries?

    PubMed

    Bailey, D M; Collins, M A; Gordon, J D M; Zuur, A F; Priede, I G

    2009-06-07

    A severe scarcity of life history and population data for deep-water fishes is a major impediment to successful fisheries management. Long-term data for non-target species and those living deeper than the fishing grounds are particularly rare. We analysed a unique dataset of scientific trawls made from 1977 to 1989 and from 1997 to 2002, at depths from 800 to 4800 m. Over this time, overall fish abundance fell significantly at all depths from 800 to 2500 m, considerably deeper than the maximum depth of commercial fishing (approx. 1600 m). Changes in abundance were significantly larger in species whose ranges fell at least partly within fished depths and did not appear to be consistent with any natural factors such as changes in fluxes from the surface or the abundance of potential prey. If the observed decreases in abundance are due to fishing, then its effects now extend into the lower bathyal zone, resulting in declines in areas that have been previously thought to be unaffected. A possible mechanism is impacts on the shallow parts of the ranges of fish species, resulting in declines in abundance in the lower parts of their ranges. This unexpected phenomenon has important consequences for fisheries and marine reserve management, as this would indicate that the impacts of fisheries can be transmitted into deep offshore areas that are neither routinely monitored nor considered as part of the managed fishery areas.

  2. Artificial Water Reservoir Triggered Earthquakes at Koyna, India: Completion of the 3 km deep Pilot Borehole

    NASA Astrophysics Data System (ADS)

    Gupta, H. K.; Tiwari, V. M.; Satyanarayana, H.; Roy, S.; Arora, K.; Patro, P. K.; Shashidhar, D.; Mallika, K.; Akkiraju, V.; Misra, S.; Goswami, D.; Podugu, N.; Mishra, S.

    2017-12-01

    Koyna, near the west coast of India is the most prominent site of artificial water reservoir triggered seismicity (RTS). Soon after the impoundment of the Koyna Dam in 1962, RTS was observed. It has continued till now. It includes the largest RTS earthquake M 6.3 on December 10, 1967; 22 M≥5.0, and thousands of smaller earthquakes. The entire earthquake activity is limited to an area of about 30 km x 20 km, with most focal depths being within 6 km. There is no other earthquake source within 50 km of the Koyna Dam. An ICDP Workshop held in March 2011 found Koyna to be the most suitable site to investigate reservoir- triggered seismicity (RTS) through deep drilling. Studies carried out in the preparatory phase since 2011 include airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 9 boreholes going to depths of 1500 m and logging, heat flow measurements, seismological investigations including the deployment of six borehole seismometers, and LiDAR. The Second ICDP Workshop held during 16- 18 May 2014, reviewed the progress made and detailed planning of putting the borehole observatory was discussed. The site of a 3 km deep pilot borehole was debated and among the 5 possible location. Based on the seismic activity and logistics the location of the first Pilot Borehole has been finalized and the drilling started on the 21st December 2016. The 3000 m deep borehole was completed on 11th June 2017. The basement was touched at 1247 m depth and there were no sediments below basalt. Several zones with immense fluid losses were encountered. Geophysical Logging has been completed. Cores were recovered from 1269, 1892 and 2091 depths. The cores are 9 m long and with 4 inches diameter. The core recovery is almost 100%. In-situ stress measurements have been conducted at depths of 1600 m onwards.

  3. IODP Expedition 337: Deep Coalbed Biosphere off Shimokita - Microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean

    NASA Astrophysics Data System (ADS)

    Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists

    2016-06-01

    The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui

    Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. Themore » average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.« less

  5. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    PubMed

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  6. Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection

    USGS Publications Warehouse

    Sanford, W.E.; Whitaker, F.F.; Smart, P.L.; Jones, G.

    1998-01-01

    Differences in fluid density between cold ocean water and warm ground water can drive the circulation of seawater through carbonate platforms. The circulating water can be the major source of dissolved constituents for diagenetic reactions such as dolomitization. This study was undertaken to investigate the conditions under which such circulation can occur and to determine which factors control both the flux and the patterns of fluid circulation and temperature distribution, given the expected ranges of those factors in nature. Results indicate that the magnitude and distribution of permeability within a carbonate platform are the most important parameters. Depending on the values of horizontal and vertical permeability, heat transport within a platform can occur by one of three mechanisms: conduction, forced convection, or free convection. Depth-dependent relations for porosity and permeability in carbonate platforms suggest circulation may decrease rapidly with depth. The fluid properties of density and viscosity are controlled primarily by their dependency on temperature. The bulk thermal conductivity of the rocks within the platform affects the conductive regime to some extent, especially if evaporite minerals are present within the section. Platform geometry has only a second-order effect on circulation. The relative position of sealevel can create surface conditions that range from exposed (with a fresh-water lens present) to shallow water (with hypersaline conditions created by evaporation in constricted flow conditions) to submerged or drowned (with free surface water circulation), but these boundary conditions and associated ocean temperature profiles have only a second-order effect on fluid circulation. Deep, convective circulation can be caused by horizon tal temperature gradients and can occur even at depths below the ocean bottom. Temperature data from deep holes in the Florida and Bahama platforms suggest that geothermal circulation is actively occurring today to depths as great as several kilometers.

  7. Epibenthic communities of sedimentary habitats in a NE Atlantic deep seamount (Galicia Bank)

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Cartes, J. E.; Papiol, V.; Punzón, A.; García-Alegre, A.; Arronte, J. C.; Ríos, P.; Lourido, A.; Frutos, I.; Blanco, M.

    2017-12-01

    Galicia Bank is a deep seamount included as Site of Community Importance (SCI) in the Spanish Natura 2000 Network proposal. In the present study, epibenthic assemblages of sedimentary habitats have been described, together with the main environmental factor explaining species and communities distribution. Five epibenthic assemblages have been identified. Depth was the main factor explaining assemblage distribution, and the role of sediment type, water masses, and coral framework presence is also discussed. Three assemblages are located in the summit: the shallowest one (730-770 m), in the boundary between Eastern North Atlantic Central Water (ENACW) and Mediterranean Overflow Water (MOW) water masses is typified by ophiuroids and characterized by medium sands. The second assemblage (770-800 m) typified by the bivalve Limopsis minuta and the solitary coral Flabellum chunii correspond with medium sands and MOW core; and the third typified by the presence of cold-water coral communities dominated by Lophelia pertusa and Madrepora oculata, also on the MOW influence. In the border of the summit, in the bank break, an assemblage located in the range 1000-1200 m is dominated by the urchin Cidaris cidaris and the sponge Thenea muricata. In the flat flanks around the bank, the deepest assemblage (1400-1800 m) is dominated by the holothurian Benthogone rosea, in a depth range dominated by the Labrador water (LSW) and in fine sands with highest contents of organic matter. Most of species appeared in a depth range smaller than 25% of total depth range sampled and in < 10% of samples. Differential preference of species is evident in the different trophic guilds, with a higher dominance of filter-feeders in the summit and of deposit-feeders in the deepest assemblage, and have clear links with nutrient dynamics in the bank.

  8. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    NASA Astrophysics Data System (ADS)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  9. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-04-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust datasets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, is promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop conservation and management options.

  10. Deep and shallow water effects on developing preschoolers' aquatic skills.

    PubMed

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  11. Deep and Shallow Water Effects on Developing Preschoolers’ Aquatic Skills

    PubMed Central

    Costa, Aldo M.; Marinho, Daniel A.; Rocha, Helena; Silva, António J.; Barbosa, Tiago M.; Ferreira, Sandra S.; Martins, Marta

    2012-01-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher’s exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk’s method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills. PMID:23487406

  12. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  13. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    PubMed

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  14. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    NASA Astrophysics Data System (ADS)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe grade API 5L X60 which size from 8 to 20mm thickness with a water depth of 50 to 300m. Result shown that pipeline installation will fail from the wall thickness of 18mm onwards since it has been passed the critical yield percentage.

  15. Remote sensing of submerged aquatic vegetation in lower Chesapeake Bay - A comparison of Landsat MSS to TM imagery

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1987-01-01

    Landsat MSS and TM imagery, obtained simultaneously over Guinea Marsh, VA, as analyzed and compares for its ability to detect submerged aquatic vegetation (SAV). An unsupervised clustering algorithm was applied to each image, where the input classification parameters are defined as functions of apparent sensor noise. Class confidence and accuracy were computed for all water areas by comparing the classified images, pixel-by-pixel, to rasterized SAV distributions derived from color aerial photography. To illustrate the effect of water depth on classification error, areas of depth greater than 1.9 m were masked, and class confidence and accuracy recalculated. A single-scattering radiative-transfer model is used to illustrate how percent canopy cover and water depth affect the volume reflectance from a water column containing SAV. For a submerged canopy that is morphologically and optically similar to Zostera marina inhabiting Lower Chesapeake Bay, dense canopies may be isolated by masking optically deep water. For less dense canopies, the effect of increasing water depth is to increase the apparent percent crown cover, which may result in classification error.

  16. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    PubMed

    Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc

    2013-01-01

    Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  17. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    NASA Astrophysics Data System (ADS)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  18. Abyssal ocean overturning shaped by seafloor distribution.

    PubMed

    de Lavergne, C; Madec, G; Roquet, F; Holmes, R M; McDougall, T J

    2017-11-08

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  19. Abyssal ocean overturning shaped by seafloor distribution

    NASA Astrophysics Data System (ADS)

    de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.

    2017-11-01

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  20. Calculations of Asteroid Impacts into Deep and Shallow Water

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent. There is some indication that near-field effects are more severe if the impact occurs in shallow water.

  1. Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments

    NASA Astrophysics Data System (ADS)

    Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon

    2013-04-01

    A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.

  2. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system

    PubMed Central

    Nguyen, Hoang Minh; Rountrey, Adam N.; Meeuwig, Jessica J.; Coulson, Peter G.; Feng, Ming; Newman, Stephen J.; Waite, Anya M.; Wakefield, Corey B.; Meekan, Mark G.

    2015-01-01

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats. PMID:25761975

  3. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system.

    PubMed

    Nguyen, Hoang Minh; Rountrey, Adam N; Meeuwig, Jessica J; Coulson, Peter G; Feng, Ming; Newman, Stephen J; Waite, Anya M; Wakefield, Corey B; Meekan, Mark G

    2015-03-12

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats.

  4. 228Ra and 226Ra Profiles from the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, H.; Chung, Y.; Lin, C.

    2005-05-01

    We previously reported the distributions of 228Ra and 226Ra in the northern South China Sea (SCS) which showed that both nuclides in surface waters were much higher than those in the open oceans because the SCS was enclosed mostly by landmasses which are known as sources of these nuclides. Large temporal and spectial variations were also observed probably due to the monsoons and intrusion of the Kuroshio Current. During a recent cruise conducted in the northern SCS in February, 2004, three vertical 228Ra profiles were measured by gamma spectrometry on the Ra isotopes which were concentrated first by the MnO2-impregnated acrylic fiber and then acid-washed as sample solution for counting. The two deep water 228Ra profiles are remarkably similar, showing high values in the surface layer and fairly uniform at about 10 to 13 dpm/100L below 200m depth but with a clear increase toward the bottom due to input from the underlying sediments. The shallow water profile on the shelf shows higher 228Ra values due to both vertical and horizontal mixing of the shelf water with additional source from the shore zone. Additional 228Ra profiles measured on samples from earlier cruises show that the deep water values may differ significantly (up to 5 dpm/100L) at the same location in different seasons or cruises. The associated 226Ra profiles are also variable but quite comparable to those in the northwest Pacific in deep water. 226Ra activities in the shallow water (less than 1000m depth) are higher in the SCS than in the open oceans. The 228Ra/226Ra activity ratios vary mostly from about 0.3 to 0.5 in the deep water. These values are much higher than those in the open oceans which are generally less than 0.1.

  5. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; de Mol, B.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-09-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends.

  6. A major change in North Atlantic deep water circulation 1.6 million years ago

    NASA Astrophysics Data System (ADS)

    Khélifi, N.; Frank, M.

    2014-07-01

    The global ocean-climate system has been highly sensitive to the formation and advection of deep overflow water from the Nordic Seas as integral part of the Atlantic Meridional Overturning Circulation (AMOC) but its evolution over the Pliocene-Pleistocene global cooling is not fully understood. In particular, changes in the sources and mixing of prevailing deep waters that were involved in driving overturning throughout the Pliocene-Pleistocene climate transitions are not well constrained. Here we investigate the evolution of a substantial deep southward return overflow of the AMOC over the last 4 million years. We present new records of the bottom-water radiogenic neodymium isotope (ϵNd) variability obtained from three sediment cores (DSDP site 610 and ODP sites 980/981 and 900) at water depths between 2170 and 5050 m in the northeast Atlantic. We find that prior to the onset of major Northern Hemisphere glaciation (NHG) ∼3 million years ago (Ma), ϵNd values primarily oscillated between -9 and -11 at all sites, consistent with enhanced vertical mixing and weak stratification of the water masses during the warmer-than-today Pliocene period. From 2.7 Ma to ∼2.0 Ma, the ϵNd signatures of the water masses gradually became more distinct, which documents a significant advection of Nordic Seas overflow deep water coincident with the intensification of NHG. Most markedly, however, at ∼1.6 Ma the interglacial ϵNd signatures at sites 610 (2420 m water depth (w.d.)) and 980/981 (2170 m w.d.) synchronously and permanently shifted by 2 to 3 ϵNd units to less radiogenic values, respectively. Since then the difference between glacial and interglacial ϵNd values has been similar to the Late Quaternary at each site. A decrease of ∼2ϵNd units at 1.6 Ma was also recorded for the deepest water masses by site 900 (∼5050 m w.d.), which thereafter, however, evolved to more radiogenic values again until the present. This major ϵNd change across the 1.6 Ma transition reflects a significant reorganization of the overturning circulation in the northeast Atlantic paving the way for the more stratified water column with distinct water masses prevailing thereafter.

  7. Integrated Analysis of Flow, Temperature, and Specific-Conductance Logs and Depth-Dependent Water-Quality Samples from Three Deep Wells in a Fractured-Sandstone Aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Knutson, Kevin D.

    2009-01-01

    Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at 615, 785, and 995 feet each contributed about one-third of the pumped flow measured below the pump. Volatile organic compounds were not detected in the ambient and pumped flows.

  8. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-05-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  9. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    USGS Publications Warehouse

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-01-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.

  10. Increase in Dominance of Eukaryote Over Prokaryote Phytoplankton Biomass Between the Surface and the Deep Chlorophyll Maximum in the Summertime Western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Vaillancourt, R. D.; Lance, V. P.; Hargreaves, B. R.; Marra, J. F.

    2016-02-01

    We report a general increase in the dominance of eukaryotes phytoplankton between the surface and the deep chlorophyll maximum (DCM) depths in the western North Atlantic Ocean along a transect between Bermuda (BATS) and the New England continental shelf sea during the summer 2007 & 2008. At each of 40 stations HPLC pigment concentrations were determined from 6 -10 depths from the surface to near or below the base of the euphotic zone. The community composition was determined using CHEMTAX (Mackey et al. 1996) using marker pigment ratios for varying light regimes published in Higgins et al (2011) and from our own monocultures. Cluster analysis was used to partition the dataset into five distinct regional groups to reduce the pigment ratio variability in CHEMTAX runs. Within each regional group the data were again clustered depth-wise into five to seven overlapping optical depth (OD) bins, and each OD bin was analyzed using a pigment ratio matrix ideal for that light depth range. This analysis revealed the likely presence of nine pigment classes: pelagophytes, diatoms, dinoflagellates, Synechococcus sp., Prochlorococcs sp., cryptophytes, chlorophytes, prasinophytes, and haptophytes. Partial verification of CHEMTAX results was obtained using flow cytometry cell counts coincident with samples from the BATS stations that show reasonable (according to published values) Chl a/cell values for surface and deep populations. At most locations and depths, the eukaryote haptophyte group dominated the phytoplankton biomass. In the upper optical depth the proportion of phytoplankton biomass contributed by prokaryotes was 39 (± 23)%. Deeper, between OD 1 and 2, this proportion decreased to 33 (± 17)%, between ODs 2 and 4.6 to 25 (± 15)%, and below OD 4.6, to 21 (± 17)%. Some geographic variation was observed, with the trend most pronounced in oligotrophic ocean waters and weaker in continental shelf waters.

  11. Utilizing Depth of Colonization of Seagrasses to Develop ...

    EPA Pesticide Factsheets

    US EPA is working with state and local partners in Florida to develop numeric water quality criteria to protect estuaries from nutrient pollution. Similar to other nutrient management programs in Florida, EPA is considering status of seagrass habitats as an indicator of biological integrity, with depth of colonization of seagrasses used to relate potential seagrass extent to water quality requirements (especially water clarity). We developed and validated an automated methodology for evaluating depth of colonization and applied it to generate 228 estimates of seagrass colonization depth for coverage years spanning 67 years (1940-2007) in a total of 100 segments within 19 estuarine and coastal areas in Florida. A validation test showed that two parameters that were computed, Zc50 and ZcMax, approximated the average and 95th percentile depth at the deep-water margin of seagrass beds. Zc50 was estimated separately for continuous seagrass vs. all seagrass. Average values for Zc50 as well as long-term trends were evaluated for the entire state, illustrating a decline on average from early years (e.g., 1940-1953) to a middle period (1982-1999) and a variable degree of recovery since 2000. The largest decrease in Zc50 occurred in Florida panhandle estuaries. Extensive water quality data compiled in the Florida DEP’s Impaired Waters Rule database was evaluated to characterize Secchi depth, CDOM, TSS, and chlorophyll-a in relation to depth of colonization estima

  12. Millennial Variability of Eastern Equatorial Bottom Water Oxygenation and Atmospheric CO2 over the past 100 kyr

    NASA Astrophysics Data System (ADS)

    Marcantonio, F.; Loveley, M.; Wisler, M.; Hostak, R.; Hertzberg, J. E.; Schmidt, M. W.; Lyle, M. W.

    2017-12-01

    Storage of respired carbon in the deep ocean may play a significant role in lowering atmospheric CO2 concentrations by about 80 ppm during the last glacial maximum compared to pre-industrial times. The cause of this sequestration and the subsequent release of the deep respired carbon pool at the last termination remains elusive. Within the last glacial period, on millennial timescales, the relationship between the CO2 cycle and any waxing and waning of a deep respired pool also remains unclear. To further our understanding of the millennial variability in the storage of a deep-ocean respired carbon pool during the last glacial, we measure authigenic uranium and 230Th-derived non-lithogenic barium fluxes (xsBa flux) in two high-sedimentation-rate cores from the Panama Basin of the Eastern Equatorial Pacific (EEP) (8JC, 6° 14.0' N, 86° 02.6' W; 1993 m water depth; 17JC 00° 10.8' S, 85° 52.0' W; 2846 m water depth). Sediment authigenic U concentrations are controlled by the redox state of sediments which, in turn, is a function of the rain of organic material from the surface ocean and the oxygen content of bottom waters. At both 8JC and 17JC, the mismatch between xsBa fluxes, a proxy for the reconstruction of oceanic productivity, and authigenic uranium concentrations suggests that the primary control of the latter values is changes in bottom water oxygenation. Peak authigenic uranium concentrations occur during glacial periods MIS 2, 3, and 4, respectively, and are two to three times higher than those during interglacial periods, MIS 1 and 5. EEP bottom waters were likely suboxic during times of the last glacial period when atmospheric CO2 concentrations were at their lowest concentrations. In addition, the pattern of increased deep-water oxygenation during times of higher CO2 during the last glacial is similar to that reported in a study of authigenic U in sediments from the Antarctic Zone of the Southern Ocean (Jaccard et al., 2016). We suggest that a respired carbon pool existed within a large swath of the abyssal Southern and Pacific Oceans throughout the entire last glacial cycle, and that this respired carbon was periodically released through increased ventilation of deep ocean waters. Jaccard et al. (2016) Nature 530, 207-210.

  13. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McDonnell, J. J.; Shanley, J. B.; Kendall, C.

    1999-09-01

    The hydrology of the near-stream riparian zone in upland humid catchments is poorly understood. We examined the spatial and temporal aspects of riparian flowpaths during snowmelt in a headwater catchment within the Sleepers River catchment in northern Vermont. A transect of 15 piezometers was sampled for Ca, Si, DOC, other major cations, and δ18O. Daily piezometric head values reflected variations in the stream hydrograph induced by melt and rainfall. The riparian zone exhibited strong upward discharge gradients. An impeding layer was identified between the till and surficial organic soil. Water solute concentrations increased toward the stream throughout the melt. Ca concentrations increased with depth and DOC concentrations decreased with depth. The concentrations of Ca in all piezometers were lower during active snowmelt than during post-melt low flow. Ca data suggest snowmelt infiltration to depth; however, only upslope piezometers exhibited snowmelt infiltration and consequent low δ18O values,(while δ18O values varied less than 0.5‰ in the deep riparian piezometers throughout the study period. Ca and δ18O values in upslope piezometers during low streamflow were comparable to Ca and δ18O in riparian piezometers during high streamflow. The upland water Ca and δ18O may explain the deep riparian Ca dilution and consistent δ18O composition. The temporal pattern in Ca and δ18O indicate that upland water moves to the stream via a lateral displacement mechanism that is enhanced by the presence of distinct soil/textural layers. Snowmelt thus initiates the flux of pre-melt, low Ca upland water to depth in the riparian zone, but itself does not appear at depth in the riparian zone during spring melt. This is despite the coincident response of upland groundwater and stream discharge.

  14. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  15. Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.

    2017-07-01

    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.

  16. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    NASA Astrophysics Data System (ADS)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  17. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system

    NASA Astrophysics Data System (ADS)

    Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.

    2008-01-01

    The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of allochthonous organic carbon, increased demersal fish diversity and biomass over the MAR relative to the abyssal plains may be maintained by increased bathypelagic food resources. The aggregation of bathypelagic fishes with MAR topographic features was primarily a large adult phenomenon. Considering the immense areal extent of mid-ocean ridge systems globally, this strategy may have significant trophic transfer and reproductive benefits for deep-pelagic fish populations.

  18. Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014-2015

    NASA Astrophysics Data System (ADS)

    Piron, A.; Thierry, V.; Mercier, H.; Caniaux, G.

    2017-02-01

    Using Argo floats, we show that a major deep convective activity occurred simultaneously in the Labrador Sea (LAB), south of Cape Farewell (SCF), and the Irminger Sea (IRM) during winter 2014-2015. Convection was driven by exceptional heat loss to the atmosphere (up to 50% higher than the climatological mean). This is the first observation of deep convection over such a widespread area. Mixed layer depths exceptionally reached 1700 m in SCF and 1400 m in IRM. The deep thermocline density gradient limited the mixed layer deepening in the Labrador Sea to 1800 m. Potential densities of deep waters were similar in the three basins (27.73-27.74 kg m-3) but warmer by 0.3°C and saltier by 0.04 in IRM than in LAB and SCF, meaning that each basin formed locally its own deep water. The cold anomaly that developed recently in the North Atlantic Ocean favored and was enhanced by this exceptional convection.

  19. From where does the Amazon forest gets its water?

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, G.; Fan, Y.

    2016-12-01

    The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we ask: what is the water source that sustains the dry-season ET? Where over the Amazon it is largely local and recent rain (hence ET shutting down in dry season), or past rain that is stored in the deep soils and the groundwater (deep roots tapping deep reservoirs sustaining ET), or is it rain that fell on higher grounds (through topography-driven lateral convergence)? Using synthesis of isotope and other tracer observations and basin-wide inverse modeling (shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth), we attempt to tease out these components. The results shed light on likely ET sources and how future global change may preferentially impact Amazon ecosystem functioning.

  20. Calcareous sponges from abyssal and bathyal depths in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Rapp, Hans Tore; Janussen, Dorte; Tendal, Ole S.

    2011-03-01

    Calcareous sponges have traditionally been regarded as shallow-water organisms, a persistent myth created by Hentschel (1925), partly supported by the problematic question of calcareous skeletal secretion under high partial CO 2-pressure below the CCD in the abyss. Up to now, only few species world-wide of the sponge class Calcarea have been described from depths below 2000 m. By far, the largest number of records of Antarctic Calcarea is known from shelf areas between 50 and 400 m depth. They have only been sporadically recorded on the lower shelf and the upper slope from depths between 570 and 850 m. From abyssal depths in the Antarctic there are no previous records of calcareous sponges. It was therefore a big surprise when the first true deep-sea Calcarea from the Antarctic were collected at depths between 1120 and 4400 m during the ANDEEP I, II and III expeditions ( Janussen et al., 2006). To date, five calcareous sponge species have been found, including three species new to science. The three new species belong to the genera Ascaltis, Clathrina and Leucetta. Although calcareous sponges are rare in the Antarctic deep sea, they seem to constitute a constant component of the fauna. Antarctic Calcarea shows all the characteristics of need for revision and further collection and investigation. Still, many new species are likely to be discovered in the Antarctic deep-sea.

  1. Edwardsia sojabio sp. n. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae), a new abyssal sea anemone from the Sea ofJapan

    NASA Astrophysics Data System (ADS)

    Sanamyan, Nadya; Sanamyan, Karen

    2013-02-01

    The paper describes new deep-water edwardsiid sea anemone Edwardsia sojabio sp. n. which is very common on soft muddy bottoms at lower bathyal and upper abyssal depths in the Sea of Japan. It was recorded in high quantity in depths between 2545 and 3550 m and is the second abyssal species of the genus Edwardsia.

  2. Use of geophysical methods to characterize groundwater in karstic rocks near Puerto Morelos, Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    cerda Garcia, C. G.; Carpenter, P. J.; Leal-Bautista, R. M.

    2017-12-01

    Geophysical surveys were used to determine the depth of the freshwater/saltwater interface and groundwater preferential flow pathways along the Ruta de los Cenotes, near Puerto Morelos (northeast part of the Yucatán peninsula). The Yucatán Peninsula is a limestone platform that allows quick recharge of the aquifer, the main supply of water for this region. The water in the aquifer is divided into freshwater and saltwater zones. A Schlumberger resistivity sounding along the road near one cenote suggests the water table is 5 meters deep and the freshwater/saltwater interface is 38 meters deep. A time-domain electromagnetic (TEM) sounding suggests the freshwater/saltwater interface is 45 meters deep. The depth of the interface determines the volume of fresh water available. Preferential flow pathways in the vadose and saturated zones are karst conduits where groundwater percolates downward in the vadose zone. These were identified using resistivity profiling and spontaneous self-potential (SP) geophysical methods. Interpretation of SP profile Line SP1, located 3 m south of the cenote, suggests two fractures, which appear to extend south as far as SP profile Line SP2, 15 m south of the cenote; both lines are parallel to each other. SP anomalies suggest water flow along these fractures. The use of noninvasive geophysical methods, specifically SP, resistivity and TEM are useful for exploring the karst system in the Yucatán peninsula.

  3. Saturn's depths in a new light: Novel views of meteorology, circulation and dynamics by Cassini/VIMS

    NASA Astrophysics Data System (ADS)

    Baines, Kevin; Momary, Thomas; Roos-Serote, Maarten; Showman, Adam; Atreya, Sushil K.; Brown, Robert H.; Buratti, Bonnie; Clark, Roger; Nicholson, Phillip

    The depths of Saturn below the ubiquitous covering of ammonia hazes have been revealed in detail by the Visual Infrared Mapping Spectrometer (VIMS) onboard the Cassini orbiter. Using Saturn's own indigenous glow produced by warm air at depth to back-light deep clouds, a diverse array of cloud features have been discovered near the 3-bar level, some 75 km underneath the ammonia clouds. Likely comprised of ammonia hydrosulfide, perhaps with a complement of water, the menagerie of deep cloud structures - including dozens of surprisingly narrow axisymmetric "zones", "smoke rings", a long-lived "string of pearls" spanning 1/4 of the planet, large plume-like and cyclonic features, and a deep-seated hexagonal feature circumscribing the north pole - reveal Saturn at depth to be a dynamic, meteorologically active planet much more like frenetic Jupiter than the classically serene face Saturn shows in sunlight. Additional information on Saturn's dynamically active nature is provided by daytime imagery of discrete clouds observed at the southpole - revealing two compositional types of clouds, suggesting a variety of upwelling phenomena - and the latitudinal variability of the trace disequilibrium gases arsine and phosphine observed in VIMS spectra.

  4. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity.

    PubMed

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-11

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  5. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  6. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  7. EDITORIAL: The FDR Prize The FDR Prize

    NASA Astrophysics Data System (ADS)

    Kida, Shigeo

    2009-06-01

    From the 45 papers published in the year 2008 in Fluid Dynamics Research the following paper has been selected for the second FDR prize: 'Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis' by Adrian Constantin and Robin S Johnson, published in volume 40 (March 2008) pp 175-211. This paper takes, as its main theme, the analysis of the propagation of very long gravity waves in the ocean environment, with the possibility of applying the results to tsunamis. Both variable depth and some pre-existing vorticity are allowed in the model, but under the over-arching assumption of long waves; indeed, it is argued, the waves are so long that it is impossible for classical soliton theory to be the appropriate description of a developing tsunami. This aspect is supported by some simple scaling arguments, together with some observations associated with the tsunami of Boxing Day 2004. The formulation is based on two small scales: the slow scale on which the depth varies and the small amplitude of the wave (as initially generated in deep water). The technique adopted is that of matched asymptotic expansions. The solution, constructed for deep water, is not valid in suitably reduced depth of water; the solution in this shallow region (close inshore) is then matched to the deep-water solution. A novel feature of this work is the inclusion of a general distribution of vorticity in the absence of waves—intended to model the realistic ocean—which is based on the slow evolution scale for the bottom topography. Some general properties of such background flows are proved, and two specific examples have been obtained: constant vorticity everywhere (as far as the shoreline), and regions of isolated vorticity (for appropriate bottom profiles). The way in which the wave properties are modified in the presence of vorticity is described. The significant overall proposal in this theory, specifically applicable to tsunamis, is that it is the profile of the initial disturbance (generated by the seismic activity) that is the single most important ingredient in the formation of tsunami waves (provided, of course, the familiar requirement of a long, gently shelving beach is also present). This contention is described and developed, and supported by some graphical examples of the various types of solution that can be obtained; these include contributions from variable depth and suitable background vorticity.

  8. Research Spotlight: Narwhals document continued warming of Baffin Bay

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2011-03-01

    Baffin Bay, situated between northern Greenland and Canada, is a major gateway between waters from the North Atlantic and Arctic oceans. Dynamics within the bay help govern how much water from the Arctic flows south and sinks to form North Atlantic Deep Water, a deep current that drives ocean circulation on a global scale. Unfortunately, monitoring the deep reaches of Baffin Bay throughout the year is difficult—most oceanographic data are collected in the summer when the area is ice free. To overcome this inability to collect data in harsh winter conditions, Laidre et al. hit upon a novel solution: mounting instruments on narwhals to collect temperature and depth data. Narwhals, a top predator in this frigid ecosystem, make annual migrations from summering grounds in the Canadian High Arctic and western Greenland to wintering grounds in the dense offshore pack ice of Baffin Bay. Moreover, narwhals, which rank among the deepest-diving whales in the world, dive extensively and repeatedly to depths exceeding 1800 meters under pack ice to reach their major food source, the flatfish that swarm on the seafloor of Baffin Bay. Narwhal dives are nearly vertical, making this whale an ideal platform on which to mount surveying instruments. (Journal of Geophysical Research-Oceans, doi:10.1029/2009JC005820, 2010)

  9. Standardization of deep partial-thickness scald burns in C57BL/6 mice

    PubMed Central

    Medina, Jorge L; Fourcaudot, Andrea B; Sebastian, Eliza A; Shankar, Ravi; Brown, Ammon W; Leung, Kai P

    2018-01-01

    Mouse burn models are used to understand the wound healing process and having a reproducible model is important. The different protocols used by researchers can lead to differences in depth of partial-thickness burn wounds. Additionally, standardizing a protocol for mouse burns in the laboratory for one strain may result in substantially different results in other strains. In our current study we describe the model development of a deep partial-thickness burn in C57BL/6 mice using hot water scalding as the source of thermal injury. As part of our model development we designed a template with specifications to allow for even contact of bare mouse skin (2×3 cm) with hot water while protecting the rest of the mouse. Burn depth was evaluated with H&E, Masson’s trichrome, and TUNEL staining. Final results were validated with pathology analysis. A water temperature of 54°C with a scalding time of 20 seconds produced consistent deep partial-thickness burns with available equipment described. Other than temperature and time, factors such as template materials and cooling steps after the burn could affect the uniformity of the burns. These findings are useful to burn research by providing some key parameters essential for researchers to simplify the development of their own mouse burn models. PMID:29755839

  10. A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.

    2011-12-01

    The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.

  11. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.

    2017-12-01

    The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  12. Geotechnical Properties of Periplatform Carbonate Sediments

    DTIC Science & Technology

    1990-07-01

    and Atmospheric and geoacoustic parameters for similar sediments in Research Laboratory participated in Ocean Drilling other regions. Leg 101. During...this exercise sha’"w-water and midwater depth carbonate sediments from a few deep drill holes were studied extensively by Results and Recommendations...protected by the grains and are less Deep Sea Drilling Project Leg 86. In: Heath, G. R., affected by consolidation than they are in matrix- Bruckle, L. H

  13. A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities

    PubMed Central

    Poole, Anthony M.; Sjöberg, Britt-Marie; Sjöling, Sara

    2013-01-01

    The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment. We report strong stratification across a depth transect for both functional capacity and taxonomic affiliation, with functional capacity corresponding most closely to key environmental parameters of oxygen, salinity and temperature. We report similarities in functional capacity between the hypoxic community and hadal zone communities, underscoring the substantial degree of eutrophication in the Baltic Proper. Reconstruction of the nitrogen cycle at Landsort deep shows potential for syntrophy between archaeal ammonium oxidizers and bacterial denitrification at anoxic depths, while anaerobic ammonium oxidation genes are absent, despite substantial ammonium levels below the chemocline. Our census also reveals enrichment in genetic prerequisites for a copiotrophic lifestyle and resistance mechanisms reflecting adaptation to prevalent eutrophic conditions and the accumulation of environmental pollutants resulting from ongoing anthropogenic pressures in the Baltic Sea. PMID:24086414

  14. Deepwater Program: Studies of Gulf of Mexico lower continental slope communities related to chemosynthetic and hard substrate habitats

    USGS Publications Warehouse

    Ross, Steve W.; Demopoulos, Amanda W.J.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Ames, Cheryl L.; Casazza, Tara L.; Gualtieri, Daniel; Kovacs, Kaitlin; McClain, Jennifer P.; Quattrini, Andrea M.; Roa-Varon, Adela Y.; Thaler, Andrew D.

    2012-01-01

    This report summarizes research funded by the U.S. Geological Survey (USGS) in collaboration with the University of North Carolina at Wilmington (UNCW) on the ecology of deep chemosynthetic communities in the Gulf of Mexico. The research was conducted at the request of the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE; formerly Minerals Management Service) to complement a BOEMRE-funded project titled "Deepwater Program: Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico." The overall research partnership, known as "Chemo III," was initiated to increase understanding of the distribution, structure, function, and vulnerabilities of these poorly known associations of animals and microbes for water depths greater than 1,000 meters (m) in the Gulf of Mexico. Chemosynthetic communities rely on carbon sources that are largely independent of sunlight and photosynthetic food webs. Despite recent research directed toward chemosynthetic and deep coral (for example, Lophelia pertusa) based ecosystems, these habitats are still poorly studied, especially at depths greater than 1,000 m. With the progression into deeper waters by fishing and energy industries, developing sufficient knowledge to manage these deep ecosystems is essential. Increased understanding of deep-sea communities will enable sound evaluations of potential impacts and appropriate mitigations.

  15. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika

    2002-08-01

    Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.

  16. Syllidae (Annelida: Phyllodocida) from the deep Mediterranean Sea, with the description of three new species.

    PubMed

    Langeneck, Joachim; Musco, Luigi; Busoni, Giulio; Conese, Ilaria; Aliani, Stefano; Castelli, Alberto

    2018-01-03

    Despite almost two centuries of research, the diversity of Mediterranean deep-sea environments remain still largely unexplored. This is particularly true for the polychaete family Syllidae. We report herein 14 species; among them, we describe Erinaceusyllis barbarae n. sp., Exogone sophiae n. sp. and Prosphaerosyllis danovaroi n. sp. and report Parexogone wolfi San Martín, 1991, Exogone lopezi San Martín, Ceberio Aguirrezabalaga, 1996 and Anguillosyllis Day, 1963 for the first time from the Western Mediterranean, the latter based on a single individual likely belonging to an undescribed species. Moreover, we re-establish Syllis profunda Cognetti, 1955 based on type and new material. Present data, along with a critical analysis of available literature, show that Syllidae are highly diverse in deep Mediterranean environments, even though they are rarely reported, probably due to the scarce number of studies devoted to the size-fraction of benthos including deep-sea syllids. Most deep-sea Syllidae have wide distributions, which do not include shallow-waters. 100 m depth apparently represents the boundary between the assemblages dominated by generalist shallow water syllids like Exogone naidina Ørsted, 1843 and Syllis parapari San Martín López, 2000, and those deep-water assemblages characterised by strictly deep-water species like Parexogone campoyi San Martín, Ceberio Aguirrezabalaga, 1996, Parexogone wolfi San Martín, 1991 and Syllis sp. 1 (= Langerhansia caeca Katzmann, 1973).

  17. Nematoda from the terrestrial deep subsurface of South Africa.

    PubMed

    Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C

    2011-06-02

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  18. The role of depth in regulating water quality and fish assemblages in oxbow lakes

    USGS Publications Warehouse

    Goetz, Daniel B.; Miranda, Leandro E.; Kroger, Robert; Andrews, Caroline S.

    2015-01-01

    We evaluated water quality and fish assemblages in deep (> 3.0 m; N = 7) and shallow (< 1.5 m; N = 6) floodplain lakes in the intensively cultivated Yazoo River Basin (Mississippi, USA) using indirect gradient multivariate procedures. Shallow lakes displayed wide diel oxygen fluctuations, some reaching hypoxic/anoxic conditions for extended periods of time, high suspended solids, and extreme water temperatures. Conversely, deeper lakes were represented by higher visibility, stable oxygen levels, and cooler water temperatures. Fish assemblages in shallow lakes were dominated by tolerant, small-bodied fishes and those able to breathe atmospheric oxygen. Deeper lakes had a greater representation of predators and other large-bodied fishes. Our evaluation suggests fish assemblages are reflective of oxbow lakes water quality, which is shaped by depth. Understanding the interactions between depth, water quality, and fish assemblages may facilitate development of effective management plans for improving conditions necessary to sustain diverse fish assemblages in agriculturally dominated basins.

  19. Time-resolved and Depth-dependent Photo-Degradation of Marine Dissolved Organic Matter Analyzed by Semi-continuous EEM Fluorescence Monitoring

    NASA Astrophysics Data System (ADS)

    Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.

    2016-02-01

    Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.

  20. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  1. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence

    PubMed Central

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177

  2. Environmental controls on the distribution of living (stained) benthic foraminifera on the continental slope in the Campos Basin area (SW Atlantic)

    NASA Astrophysics Data System (ADS)

    Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado

    2018-05-01

    Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).

  3. Evaluation of Soil Moisture, Storm Characteristics, and Their Influence on Storm Runoff and Water Yield at the Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Aulenbach, B. T.

    2015-12-01

    Understanding the factors that control runoff processes is important for many aspects of water supply and ecosystem protection, especially during climatic extremes that result in flooding or droughts; potentially impacting human safety. Furthermore, having knowledge of the conditions during which runoff occurs contributes to the conceptual understanding of the hydrologic cycle and may improve parameterization of hydrologic models. We evaluated soil moisture, storm characteristics, and the subsequent runoff and water yield for 297 storms over an eight-year period at Panola Mountain Research Watershed to better understand runoff generation processes. Panola Mountain Research Watershed is a small (41-hectare), relatively undisturbed forested watershed near Atlanta, GA, U.S.A. Strong relations were observed between total precipitation for a given storm, deep (70 cm below surface) antecedent soil moisture content and the volume of runoff. However, the strength of the relations varied based on occurrence during the growing (April - September; 172 storms) or dormant (October - March; 125 storms) period. In general, soil moisture responded at a minimum of 15 cm depth for all but 18 events. In addition, we found storms that initiated a response of deep soil moisture (70 cm below surface) to be an important factor relating to storm runoff and water yield. Seventy percent of the dormant period storms generated a response at 70 cm depth compared to 58% of growing period storms. A stronger relation between soil moisture and water yield was noted during the dormant period and indicated that all storms that produced a water yield >12% occurred when deep pre-event soil moisture was >20%. Similar patterns were also present during the growing season with occasional intense thunderstorms also generating higher water yields even in the absence of high soil moisture. The importance of deep soil moisture likely reflects the overall status of watershed storage conditions.

  4. Reconstruction of intermediate water circulation in the tropical North Atlantic during the past 22,000 years

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2014-09-01

    Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.

  5. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence.

    PubMed

    Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott

    2013-08-20

    Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.

  6. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence

    PubMed Central

    Erban, Laura E.; Gorelick, Steven M.; Zebker, Howard A.; Fendorf, Scott

    2013-01-01

    Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km2) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene–Miocene-age aquifers, where nearly 900 wells at depths of 200–500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water. PMID:23918360

  7. Looking For a Needle in the Haystack: Deciphering Indigenous 1.79 km Deep Subsurface Microbial Communities from Drilling Mud Contaminants Using 454 Pyrotag Sequencing

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.

    2010-12-01

    Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.

  8. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  9. Chapter 23: Marbled Murrelet At-Sea and Foraging Behavior

    Treesearch

    Gary Strachan; Michael McAllister; C. John Ralph

    1995-01-01

    The behavior of Marbled Murrelets (Brachyramphus marmoratus) at sea while foraging for small fish and invertebrates is poorly known. This murrelet forages by pursuit diving in relatively shallow waters, usually between 20 and 80 meters in depth. We have also observed it diving in waters less than 1 meter and more than 100 meters deep. The majority of...

  10. Influence of water movement and root growth on the downward dispersion of rotylenchulus reniformis

    USDA-ARS?s Scientific Manuscript database

    The presence of Rotylenchulus reniformis at depths of greater than 1.5 -m can have negative effects on cotton health. Two trials were established in 7.62 -cm diameter by 75 -cm deep soil cores to determine 1) the effect of water infiltration on vertical translocation of R. reniformis, and 2) the rol...

  11. Migration Pathways, Behavioural Thermoregulation and Overwintering Grounds of Blue Sharks in the Northwest Atlantic

    PubMed Central

    Campana, Steven E.; Dorey, Anna; Fowler, Mark; Joyce, Warren; Wang, Zeliang; Yashayaev, Igor

    2011-01-01

    The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1–2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ∼2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic. PMID:21373198

  12. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  13. Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Endler, Michael; Moros, Matthias; Jokinen, Sami A.; Hämäläinen, Jyrki; Kotilainen, Aarno T.

    2016-12-01

    Many modern epicontinental seas were dry land before their marine flooding by the mid-Holocene glacioeustatic sea-level rise, whereas the Baltic Sea Basin was covered by a huge postglacial lake. This change from a postglacial lake to the present-day semi-enclosed brackish-water sea is studied here in sediment cores and acoustic profiles from the Baltic Sea major sub-basins, based on novel datasets combined with information extracted from earlier publications. In shallow areas (<50m water depth), the base of the brackish-water mud is erosional and covered by a patchy, thin, transgressive silt-sand sheet resulting from decreased sediment supply, winnowing and the redistribution of material from local coarse-grained deposits during transgression. This erosional marine flooding surface becomes sharp and possibly erosional in deep areas (>50m water depth), where it may be locally less clearly expressed due to reworking and bioturbation. Both in the shallow and deep areas, the brackish-water mud is strongly enriched in organic matter compared to underlying sediments. Bioturbation type changes at the flooding surface in response to the increased sedimentary organic content, but no firm-ground ichnofacies were developed because of low erosion. It is concluded that the base of the brackish-water mud is a robust allostratigraphic bounding surface that is identifiable by the lithologic examination of cores over the Baltic Sea. The surface is a distinct reflector in seismic-acoustic profiles, which facilitates mapping and basin-wide stratigraphic subdivision. Detailed geochronologic studies are required to confirm if sediments immediately overlying the erosional flooding surface in shallow areas are younger than the basal part of the brackish-water mud in deep areas that is predicted to be time-equivalent to the erosion.

  14. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  15. Bottom water circulation in Cascadia Basin

    NASA Astrophysics Data System (ADS)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  16. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    PubMed

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. In Situ Mo Isotope Fractionation in the Water Columns of Euxinic Basins

    NASA Astrophysics Data System (ADS)

    Neubert, N.; Nägler, T. F.; Böttcher, M. E.

    2007-12-01

    The present study investigates for the first time the overall process of molybdenum (Mo) scavenging in modern euxinic systems using Mo concentration and stable isotope measurements. We analyzed samples from three different sites: The Black Sea, the largest permanently euxinic basin, and two anoxic basins of the Baltic Sea, the Gotland Deep and the Landsort Deep which have maximum water depths of 247 m and 459 m, respectively. Water column profiles, as well as surface sediment samples, were recovered from different water depths. Mo is a redox-sensitive trace metal which is soluble as the molybdate oxyanion in oxic seawater with a residence time of about 800 ka. The isotope signature of Mo is a relatively new proxy used to reconstruct the paleo-redox conditions of the Earth's atmosphere and the oceanic system. The Mo isotope composition in seawater is homogeneous (Siebert et al. 2003). Scavenging of Mo under euxinic conditions is related to the amount of free sulfide in the water column. Near total removal of Mo from the water column is reached at aquatic sulfide concentration of c. 11 μM (Erickson and Helz 2000). In the Black Sea this corresponds to a water depth of about 400 m. Sediment samples of the Black Sea from more then 400 m water depth show seawater isotopic composition, in line with the assumption of bulk Mo removal. However, shallower sediments deposited under lower aquatic sulfide concentrations show significant Mo isotope fractionation. The Baltic Sea oceanographic conditions, including temporary bottom water oxygenation due to sporadic North Sea water inflows, are more complex than in the Black Sea. The aquatic sulfide concentration in the water column is less than 5 μM in the two anoxic troughs. As expected from this lower sulfidity, the surface sediments show Mo fractionation similar to the oxic to slightly euxinic sediments of the Black Sea. Our new results on the Mo isotopic composition in euxinic water columns clearly indicate in situ fractionation of Mo isotopes. All euxinic water samples from the three settings are shifted towards heavier Mo isotope signatures, thus complementing the lighter values in the surface sediments (Nagler et al. 2005).

  18. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  19. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former U.S. Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA, to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large difference in head (as much as greater then 49 ft) between water-bearing fractured in the upper and lower part of the borehole. Vertical distribution of specific capacity between land surface and 250 ft below land surface is not related to depth.

  20. Dueling Deglacial Depth Transects: A Synthesis of Isotope Records from the South Atlantic and Pacific Oceans Provides Insight into Deglacial Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Sikes, E. L.; Allen, K. A.; Lund, D. C.

    2016-12-01

    The end of the last ice age was marked by rapid increases in atmospheric CO2 and changes in ocean circulation and seawater δ13C and Δ14C, suggesting that enhanced ventilation of the deep ocean may have released sequestered CO2 to the atmosphere. Here we compare depth transects of Δ14C and high-resolution Cibicidoides sp. δ13C and δ18O records from the Southwest Pacific and the Southwest Atlantic to gain insight into the changing extent and composition of water masses in the Southern Hemisphere. Our vertical transects document that during the Last Glacial Maximum (LGM), water mass properties and boundaries in the Southwest Atlantic and Pacific were very different from one another and from their respective modern profiles. The shallow to deep δ13C difference (Δδ13C, 660- 2500 m) in the Pacific was 1.7‰, more than double the Holocene value ( 0.7‰) and a deep watermass boundary was situated above 1600m. LGM Δδ13C in the Atlantic was similar to the Pacific, but the deep geochemical front was situated at 2500 m (as observed previously; e.g. Hoffman and Lund, 2012). At the onset of Heinrich Stadial 1 (HS1; 18 - 14.5 ka), changes in the shallow isotope records (< 1500 m) from the two basins differed, indicating independent controls on intermediate water composition/formation in these two ocean basins. During HS1 in the Pacific, rapid δ13C and Δ14C enrichment above 1600 m coincided with δ13C depletion in Atlantic waters between 1500 m and 2500 m. Benthic δ13C below 2500 m in both basins and D14C in the Pacific remained depleted until the Antarctic Cold Reversal (ACR; 14.7 to 12.7 ka). During the ACR, Pacific Δ14C below 1600 m increased while both the Atlantic and Pacific experienced a rapid increase in δ13C and decrease in δ18O below 2500 m. These simultaneous isotopic shifts in the Pacific and Atlantic support the idea of a widespread pulse of deep-water ventilation driven by the resumption of North Atlantic Deep Water formation during the ACR. Overall, early shallow to intermediate ventilation differed between the two basins and simultaneous deep ventilation occurred later in the deglaciation, coincident with the reinitiation of deep overturning circulation during the Bølling-Allerød.

  1. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.

  2. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; Cono, Violetta La; Denaro, Renata

    2009-05-01

    The autotrophic and ammonia-oxidizing crenarchaeal assemblage at offshore site located in the deep Mediterranean (Tyrrhenian Sea, depth 3000 m) water was studied by PCR amplification of the key functional genes involved in energy (ammonia mono-oxygenase alpha subunit, amoA) and central metabolism (acetyl-CoA carboxylase alpha subunit, accA). Using two recently annotated genomes of marine crenarchaeons, an initial set of primers targeting archaeal accA-like genes was designed. Approximately 300 clones were analyzed, of which 100% of amoA library and almost 70% of accA library were unambiguously related to the corresponding genes from marine Crenarchaeota. Even though the acetyl-CoA carboxylase is phylogenetically not well conserved and the remaining clones were affiliated to various bacterial acetyl-CoA/propionyl-CoA carboxylase genes, the pool of archaeal sequences was applied for development of quantitative PCR analysis of accA-like distribution using TaqMan ® methodolgy. The archaeal accA gene fragments, together with alignable gene fragments from the Sargasso Sea and North Pacific Subtropical Gyre (ALOHA Station) metagenome databases, were analyzed by multiple sequence alignment. Two accA-like sequences, found in ALOHA Station at the depth of 4000 m, formed a deeply branched clade with 64% of all archaeal Tyrrhenian clones. No close relatives for residual 36% of clones, except of those recovered from Eastern Mediterranean, was found, suggesting the existence of a specific lineage of the crenarchaeal accA genes in deep Mediterranean water. Alignment of Mediterranean amoA sequences defined four cosmopolitan phylotypes of Crenarchaeota putative ammonia mono-oxygenase subunit A gene occurring in the water sample from the 3000 m depth. Without exception all phylotypes fell into Deep Marine Group I cluster that contain the vast majority of known sequences recovered from global deep-sea environment. Remarkably, three phylotypes accounted for 91% of all Mediterranean amoA clones and corresponded to the sequences retrieved from the less deep compartments of the world's ocean, most likely reflecting the higher temperature at the depth of the Mediterranean Sea. In order to verify whether these phylotypes might represent important Crenarchaeota in the functioning of the Mediterranean bathypelagic ecosystem, expression of crenarchaeal amoA gene was monitored by direct RNA retrieval and following analysis of amoA-related mRNA transcripts. Surprisingly, all mRNA-derived sequences formed a tight monophyletic group, which fell into large Shallow Marine Group I cluster with sequences retrieved from shallow (up to 200 m) waters, sediments and corals. This group was not detected in DNA-based clone library, obviously, due to an overwhelming dominance of the Deep Marine Group I. The failure to recover the amoA transcripts, related to Deep Marine Group I of Crenarchaeota, was unanticipated and likely resulted from the physiology of these strongly adapted deep-sea organisms. As far as all seawater samples were treated on-board under atmospheric pressure conditions and sunlight, the decompression and/or photoinhibition likely affected their metabolic activity, followed by the strong decay of gene expression.

  3. Transpiration by tree roots in the deep unsaturated regolith buffers the recharge process in a tropical watershed under deciduous forest (Mule Hole, India)

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques

    2010-05-01

    Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. These results are of practical relevance as they invalidate recharge assessment methods based on steady state assumptions in this context. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. Ruiz L, Varma MRR, Mohan Kumar MS, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Sat Kumar, Kumar C and Braun JJ 2010 Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India) : regolith matric storage buffers the groundwater recharge process. Journal of Hydrology, 380, 460-472. http://dx.doi.org/10.1016/j.jhydrol.2009.11.020

  4. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    USGS Publications Warehouse

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  5. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.

  6. The deep-sea zooplankton of the North, Central, and South Atlantic: Biomass, abundance, diversity

    NASA Astrophysics Data System (ADS)

    Vereshchaka, Alexander; Abyzova, Galina; Lunina, Anastasia; Musaeva, Eteri

    2017-03-01

    Ocean-scale surveys of vertical distribution of the zooplankton from the surface to the bathypelagic zone along transects are quite rare in the North Atlantic and absent in the Equatorial and South Atlantic. We present the first deep-sea quantitative survey of the zooplankton in the Equatorial and South Atlantic, analyze the interaction between environment (depth, water masses, surface productivity) and zooplankton abundance and biomass, and assess the biodiversity and role of copepods in various deep strata. Samples were taken at 20 sites along a submeridional transect between 40°N and 30°S at four discrete depth strata: epi- meso-, upper- and lower- bathypelagic. A closing Bogorov-Rass plankton net (1 m2 opening, 500 μm mesh size, towed at a speed of 1 m s-1) was used and three major plankton groups were defined: non-gelatinous mesozooplankton (mainly copepods and chaetognaths; 1-30 mm length), gelatinous mesozooplankton (mainly siphonophorans, medudae and salps; individual or zooid; 1-30 mm length) and macroplankton (mainly shrimps; over 30 mm length). Over 300 plankton taxa were identified, among which 243 belonged to Copepoda. Two-dimensional distribution (latitude versus depth zone) of major group biomass, total copepod abundance, and abundance of dominant species is presented as well as distribution of biodiversity parameters (number of species, Shannon and 'dominance' indices). Biomass and abundance of all major groups were depth-dependent. The number of taxa (N) was depended on surface productivity, diversity of the communities was strongly linked to depth, whilst 'evenness' was independant upon both variables. Each of depth strata was inhabited by distinct copepod assemblages, which significantly differed from each other. The paper is concluded with brief descriptions of the deep Atlantic plankton communities from studied strata.

  7. 210Pb in the western Indian Ocean: distribution, disequilibrium, and partitioning between dissolved and particulate phases

    NASA Astrophysics Data System (ADS)

    Chung, Y.

    1987-09-01

    Dissolved 210Pb profiles are presented for 13 GEOSECS stations in the western Indian Ocean. In surface water away from high southern latitudes, 210Pb is in excess over 226Ra due to the atmospheric fallout from decay of 222Rn. Except in the Circumpolar region, the dissolved 210Pb profiles display a gentle mid-depth maximum similar to the corresponding 226Ra profiles. The 210Pb/ 226Ra activity ratio ranges from 1.6 in the surface water east of Madagascar to 0.4 or less in the bottom water of all the basins. The lowest ratio observed was 0.1 in the Gulf of Aden very close to the continental land mass. A ratio of 0.6 divides the western Indian Ocean horizontally into two portions, with the contour at shallower depth in the north than in the south. The deep water disequilibrium is thus more extensive north of Madagascar than south of it. It appears that locality and bottom topography play a strong role in controlling the distributions of 210Pb and 226Ra as well as their extent of disequilibrium in the water column. The mean residence time for Pb with respect to particulate and boundary scavenging in the deep water ranges from about 15 to 75 years.

  8. Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model

    PubMed Central

    Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te

    2015-01-01

    Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856

  9. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    PubMed

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  10. PRISM3 DOT1 Atlantic Basin Reconstruction

    USGS Publications Warehouse

    Dowsett, Harry; Robinson, Marci; Dwyer, Gary S.; Chandler, Mark; Cronin, Thomas

    2006-01-01

    PRISM3 DOT1 (Pliocene Research, Interpretation and Synoptic Mapping 3, Deep Ocean Temperature 1) provides a three-dimensional temperature reconstruction for the mid-Pliocene Atlantic basin, the first of several regional data sets that will comprise a global mid-Pliocene reconstruction. DOT1 is an alteration of modern temperature values for the Atlantic Ocean in 4 degree x 5 degree cells in 13 depth layers for December 1 based on Mg/Ca-derived BWT estimates from seventeen DSDP and ODP Sites and SST estimates from the PRISM2 reconstruction (Dowsett et al., 1999). DOT1 reflects a vaguely modern circulation system, assuming similar processes of deep-water formation; however, North Atlantic Deep Water (NADW) production is increased, and Antarctic Bottom Water (AABW) production is decreased. Pliocene NADW was approximately 2 degreesC warmer than modern temperatures, and Pliocene AABW was approximately 0.3 degreesC warmer than modern temperatures.

  11. Characteristics of the deep ocean carbon system during the past 150,000 years: ΣCO2 distributions, deep water flow patterns, and abrupt climate change

    PubMed Central

    Boyle, Edward A.

    1997-01-01

    Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737

  12. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater

    USGS Publications Warehouse

    Cooper, D.J.; D'Amico, D.R.; Scott, M.L.

    2003-01-01

    We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (gs) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, gs and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.

  13. Nile damming as plausible cause of extinction and drop in abundance of deep-sea shrimp in the western Mediterranean over broad spatial scales

    NASA Astrophysics Data System (ADS)

    Cartes, J. E.; Maynou, F.; Fanelli, E.

    2011-11-01

    Greatly increased retention of flow in Nile River reservoirs was initiated in 1964, after completion of the Aswan High Dam, which induced important oceanographic changes in the Mediterranean Sea, including deep waters (below a depth of 150 m). Based on an analysis of data series starting in the 1940s/1950s, the giant red shrimp Aristaeomorpha foliacea has become locally extinct off of the Catalonian coasts (and elsewhere in the northwestern Mediterranean) at depths of 400-900 m, with a simultaneous and significant drop in the catches of red shrimp, Aristeus antennatus, in the second half of the 1960s. The extinction and sharp decline of deep-shrimp populations off Catalonian coast (at ca. 3200 km westwards from Nile Delta) followed the 1964 drop in Nile discharge with a delay of ca. 3-5 yrs (breakpoint analysis applied to data series). The breakpoints detected in the second half of 1960s both in Nile runoff and shrimps’ abundance were independent of climatic events in the study area (e.g. changes in NAO) and occurred before the increase in fishing effort off Catalonian coasts (breakpoint in 1973-1974). The Levantine Intermediate Water (LIW), inhabited by A. foliacea in the western Basin, had significant temperature (T) and salinity (S) increases in the 1950-1970 period, and Nile damming has contributed about 45% of the total S increase of Western Mediterranean deep-water masses from the 1960s to the late 1990s (Skliris and Lascaratos, 2004). This had to increase, for instance, LIW salinity at its formation site in the eastern Mediterranean. Nile damming was probably a triggering factor for the extinction/drop in abundance of deep-sea shrimp off Catalonian coasts.

  14. Stable Isotopes (δ13C and δ15N) in Two Depth-Segregated Species of Deep-Sea Gorgonian Octocorals from the Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, S.; Williams, B.; Etnoyer, P. J.

    2016-02-01

    Found across the world's oceans and with ages up to hundreds of years, deep-sea gorgonian octocorals represent valuable archives of past oceanic climate change. Similar to the rings of trees, deep-sea gorgonian octocorals form their skeletons in distinct growth increments, and the chemical composition of these growth bands record changes in their environment over time. The ratios of carbon and nitrogen stable isotopes in the sinking particulate organic matter (POM) that the corals feed upon drive the δ13C and δ15N of the organic material in their growth bands. Changes in the coral skeletal δ13C and δ15N therefore reflect changes in surface water nutrient levels and primary productivity. Here, we measured δ13C and δ15N across the growth bands of three Acanthogorgia sp. and two Eugoria rubens specimens collected from the Channel Islands National Marine Sanctuary in California in 2015 to study inter- and intraspecies variability and develop these species as archives of surface water processes. The taxa represent two different depth strata in the Southern California Bight; Acanthogorgia are typically observed 150-400 meters deep, while Eugorgia corals occur in relatively shallower waters between 50-100 meters deep. Results will be interpreted in the context of eastern Pacific POM values and local environmental influences to examine changes in the corals' food source. Results will also provide information on subsequent alteration of carbon and nitrogen after their incorporation into Acanthogorgia and Eugoria skeletons to aid future study of these corals as proxy records of oceanic climate change.

  15. Changes in the Functional Potential of Diverse and Active Bacterial Communities in Arctic Deep-Sea Sediments along a Water Depth Gradient

    NASA Astrophysics Data System (ADS)

    Rapp, J. Z.; Bienhold, C.; Offre, P.; Boetius, A.

    2016-02-01

    The deep sea covers approximately 70% of the Earth's surface and the majority of its seafloor is composed of fine-grained sediments. Bacteria are the dominant organisms in these sediments, accounting for up to 90% of total benthic biomass. Although benthic bacterial communities are assumed to play a central role in biogeochemical cycling at the seafloor, we still have very limited knowledge of their diversity, activity and ecological functions. We sampled Arctic deep-sea surface sediments from seven stations along a gradient from 1000 m to 5500 m water depth at the long-term ecological research station HAUSGARTEN in Fram Strait. Bacterial cell numbers decreased with depth from 3.8*108 to 1.3*108 cells per ml sediment. Illumina 16S rRNA gene surveys based on DNA and cDNA revealed substantial shifts in the structure of the total and active bacterial community along this gradient, which could be linked to environmental parameters, especially organic matter availability. The functional potential and actual activity of microbial communities was investigated using meta-genomic and -transcriptomic sequencing of four representative samples. Reconstruction of 16S rRNA genes from metagenomic data indicated a stronger contribution of certain groups at 1200-2500 m depth (e.g. OM190, Planctomycetacia, Betaproteobacteria) as compared to 3500-5500 m depth (e.g. SAR202 clade, Subgroup 22, Cytophagia). Analysis of orthologous gene clusters and protein families suggested that the genetic potential of microbial communities at the deepest station varied from that of communities at shallower depth, with higher representation of genes involved in the TCA cycle and in the biosynthesis of fatty acids, amino acids and vitamin biosynthesis at the deepest station. The observed variations may result from the accumulation of organic matter at the deepest station caused by the funnel-like topography at this site. The research contributes to European Research Council Advanced Investigator grant no. 294757.

  16. Water penetration study

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1973-01-01

    Nine film-filter combinations have been tested for effectiveness in recording water subsurface detail when exposed from an aerial platform over a typical water body. An experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and an infrared film with selected filters were tested. Results have been tabulated to show the relative capability of each film-filter combination for: (1) image contrast in shallow water (0 to 5 feet); (2) image contrast at medium depth (5 to 10 feet); (3) image contrast in deep water (10 feet plus); (4) water penetration; maximum depth where detail was discriminated; (5) image color (the spectral range of the image); (6) vegetation visible above a water background; (7) specular reflections visible from the water surface; and (8) visual compatibility; ease of discriminating image detail. Recommendations for future recording over water bodies are included.

  17. Linear shoaling of free-surface waves in multi-layer non-hydrostatic models

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Cheung, Kwok Fai

    2018-01-01

    The capability to describe shoaling over sloping bottom is fundamental to modeling of coastal wave transformation. The linear shoaling gradient provides a metric to measure this property in non-hydrostatic models with layer-integrated formulations. The governing equations in Boussinesq form facilitate derivation of the linear shoaling gradient, which is in the form of a [ 2 P + 2 , 2 P ] expansion of the water depth parameter kd with P equal to 1 for a one-layer model and (4 N - 4) for an N-layer model. The expansion reproduces the analytical solution from Airy wave theory at the shallow water limit and maintains a reasonable approximation up to kd = 1.2 and 2 for the one and two-layer models. Additional layers provide rapid and monotonic convergence of the shoaling gradient into deep water. Numerical experiments of wave propagation over a plane slope illustrate manifestation of the shoaling errors through the transformation processes from deep to shallow water. Even though outside the zone of active wave transformation, shoaling errors from deep to intermediate water are cumulative to produce appreciable impact to the wave amplitude in shallow water.

  18. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.

    PubMed

    Albert, A; Mobley, C

    2003-11-03

    Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.

  19. Diverse foraging strategies by a marine top predator: Sperm whales exploit pelagic and demersal habitats in the Kaikōura submarine canyon

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Hickmott, L.; van der Hoop, J.; Rayment, W.; Leunissen, E.; Slooten, E.; Moore, M.

    2017-10-01

    The submarine canyon off Kaikōura (New Zealand) is an extremely productive deep-sea habitat, and an important foraging ground for male sperm whales (Physeter macrocephalus). We used high-resolution archival tags to study the diving behaviour of sperm whales, and used the echoes from their echolocation sounds to estimate their distance from the seafloor. Diving depths and distance above the seafloor were obtained for 28 dives from six individuals. Whales foraged at depths between 284 and 1433 m, targeting mesopelagic and demersal prey layers. The majority of foraging buzzes occurred within one of three vertical strata: within 50 m of the seafloor, mid-water at depths of 700-900 m, and mid-water at depths of 400-600 m. Sperm whales sampled during this study performed more demersal foraging than that reported in any previous studies - including at Kaikōura in further inshore waters. This suggests that the extreme benthic productivity of the Kaikōura Canyon is reflected in the trophic preferences of these massive top predators. We found some evidence for circadian patterns in the foraging behaviour of sperm whales, which might be related to vertical movements of their prey following the deep scattering layer. We explored the ecological implications of the whales' foraging preferences on their habitat use, highlighting the need for further research on how submarine canyons facilitate top predator hotspots.

  20. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    NASA Astrophysics Data System (ADS)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially important component of deep-sea microeukaryote communities.

  1. The use of water-jetting technology in prostheses revision surgery-first results of parameter studies on bone and bone cement.

    PubMed

    Honl, M; Rentzsch, R; Müller, G; Brandt, C; Bluhm, A; Hille, E; Louis, H; Morlock, M

    2000-01-01

    Water-jet cutting techniques have been used in industrial applications for many different materials. Recently these techniques have been developed into a revolutionary cutting tool for soft tissues in visceral surgery. The present study investigates the usage of this cutting technology for the revision surgery of endoprostheses. In the first part of the study, samples of bovine bone and acrylic bone cement (PMMA) were cut using an industrial jet cutting device with pure water. Below 400 bar, only PMMA was cut; above 400 bar, bone was also cut, but only pressures above 800 bar resulted in clinically useful rates of material removal (cut depth 2. 4 mm at 10 mm/min traverse speed). In the second part of the study, the effect of adding biocompatible abrasives to the water in order to reduce the required pressure was investigated, resulting in a significantly higher removal of material. At 600 bar, PMMA was cut 5. 2 mm deep with plain water and 15.2 mm deep with added abrasives. The quality of the cuts was increased by the abrasive. Though there was no clear selectivity between bone and PMMA any more, the rate of material removal at similar pressures was significantly higher for PMMA than for bone (600 bar: 1.6 mm cut depth for bone samples, 15.2 mm for PMMA). The measured cut depths with either method were not influenced by a change of the cutting direction with respect to the main direction of the osteons in the bone. However, a reduction of the jet surface angle (90 degrees to 23 degrees ) resulted for bone in a significantly lower cut depth at 600 bar (plain water: 0.62 mm vs. 0.06 mm; abrasive: 1.61 mm vs. 0.60 mm). The laboratory experiments indicate that abrasive water jets may be suitable for cutting biomaterials like bone and bone cement. Copyright 2000 John Wiley & Sons, Inc.

  2. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    PubMed

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  3. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean

    PubMed Central

    Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.

    2013-01-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565

  4. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea

    PubMed Central

    Goldsmith, Dawn B.; Parsons, Rachel J.; Beyene, Damitu; Salamon, Peter

    2015-01-01

    Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was used to track viral diversity throughout the water column at the Bermuda Atlantic Time-series Study (BATS) site in the summer (September) and winter (March) of three years. Viral phoH sequences reveal differences in the viral communities throughout a depth profile and between seasons in the same year. Variation was also detected between the same seasons in subsequent years, though these differences were not as great as the summer/winter distinctions. Over 3,600 phoH operational taxonomic units (OTUs; 97% sequence identity) were identified. Despite high richness, most phoH sequences belong to a few large, common OTUs whereas the majority of the OTUs are small and rare. While many OTUs make sporadic appearances at just a few times or depths, a small number of OTUs dominate the community throughout the seasons, depths, and years. PMID:26157645

  5. Water-Searchers: A Reconfigurable and Self Sustaining Army of Subsurface Exploration Robots Searching for Water/Ice Using Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Youk, G. U.; Whittaker, W. (Red); Volpe, R.

    2000-01-01

    Perhaps the most promising site for extant life on Mars today is where subsurface water has been maintained. Therefore, searching for underground water will provide a good chance to find evidence of life on Mars. The following are scientific/engineering questions that we want to answer using our approach: (1) Is there subsurface water/ice? How deep is it? How much is there? Is it frozen? (2) What kinds of underground layers exist in the Martian crust? (3) What is the density of Martian soil or regolith? Can we dig into it? Should we drill into it? (4) Can a sudden release of underground water occur if a big asteroid hits Mars? Our approach provides essential information to answer these questions. Moreover, dependence on the water content and depth in soil, not only resultant scientific conclusions but also proper digging/drilling methods, are suggested. 'How much water is in the Martian soil?' There can be several possibilities: (1) high water content that is enough to form permafrost; (2) low water content that is not enough to form permafrost; or (3) different layers with different moisture contents. 'How deep should a rover dig into soil to find water/ice?' The exact size-frequency distribution has not been measured for the soil particles. On-board sensors can provide not only the water content but also the density (or porosity) of Martian soil as a function of depth.

  6. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  7. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew

    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation inmore » 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials« less

  8. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  9. Errors in Tsunami Source Estimation from Tide Gauges

    NASA Astrophysics Data System (ADS)

    Arcas, D.

    2012-12-01

    Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of tide gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the tide gauge site. This study demonstrates the inaccuracies incurred in source estimation using tide gauge data in conjunction with a linear combination procedure for tsunami source estimation.

  10. Altering recharge dynamics through woody vegetation removal: a study on the Carrizo-Wilcox aquifer of south Texas

    NASA Astrophysics Data System (ADS)

    Mattox, A. M.

    2011-12-01

    Grasslands in many semi-arid regions of the world have seen an expansion of woody vegetation over the past century and many now exist largely as woodlands or shrublands. This "woody encroachment" results in numerous changes to ecosystem function, including alteration of element and water cycles. As in many parts of the world, these shrublands in south Texas have been subjected to a variety of management practices intended to reduce woody vegetation and increase the dominance of herbaceous vegetation. In addition to the intended change in vegetation structure, this activity has the potential to affect hydrologic fluxes and potentially increase deep drainage through reduced transpiration and rooting depths. However, there is significant uncertainty about the hydrologic response of vegetation to woody vegetation removal. We report here the results of a large manipulative experiment designed to assess the effects of woody vegetation removal on soil moisture movement in the vadose zone in an area that serves as a recharge zone for an unconsolidated sediment aquifer (Carrizo-Wilcox). In this study woody vegetation has been removed using a mechanical method (roller chopping) as well as a mechanical and chemical method (chainsaw removal + stump herbicide). The treated plots are located on three different soil types that represent the range of soils typical in this area. A water balance approach is used to assess soil moisture fluxes and potential deep drainage. In this first year of the study we quantified ecological and edaphic components that have the greatest effect on deep drainage, namely rooting depth, soil texture and antecedent soil water conditions. Exceptionally dry conditions this year have provided a unique opportunity to understand plant soil water interactions in the critical zone given the strong soil moisture limitations observed in the surface soil horizons. Understanding these interactions across different plant communities and soil textures are the initial steps to determining if ground water recharge may be increased through brush management. Rooting depth and volumetric water content were determined in the Chacon clay loam, Webb sandy loam and Antosa-Bobillo loamy sands. Two soil cores were taken to depths of 2 m in each of the 1/4 acre plots in each of the treated and untreated plots for a total of 54 cores. Rooting depths were determined through a combination of hydro-pneumatic root elutriation, comparison of soil water profiles in treated and untreated plots, as well as stem and soil water isotope analysis. Initial data indicates hydraulic redistribution is occurring in the loamy sand as well as the clay loam soils. Neutron probe measurements suggest that vegetation may be facilitating the movement of water into deeper soil horizons in the clay loam soils. In addition to improving our understanding of the relationships between vegetation structure and vadose zone hydrology, our results will be useful for managing water resources under increasing demand, climate change, and varied priorities for entities tasked with managing water resources.

  11. Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis

    NASA Astrophysics Data System (ADS)

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.

    2017-05-01

    Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.

  12. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    NASA Astrophysics Data System (ADS)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  13. Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf-Nd isotope compositions and rare earth element distributions

    NASA Astrophysics Data System (ADS)

    Filippova, Alexandra; Frank, Martin; Kienast, Markus; Rickli, Jörg; Hathorne, Ed; Yashayaev, Igor M.; Pahnke, Katharina

    2017-02-01

    The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf-Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between -16.8 and -14.9 at the surface to more radiogenic values near -11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to -11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ -4) and North East Atlantic Deep Water (ɛHf ∼ -0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ -2) and deep Labrador Sea Water (ɛHf ∼ -4.5). The latter layer was formed between the late 1980's and mid 1990's during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.

  14. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.

    PubMed

    Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee

    2016-03-01

    In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Deep groundwater quantity and quality in the southwestern US

    NASA Astrophysics Data System (ADS)

    Kang, M.; Ayars, J. E.; Jackson, R. B.

    2017-12-01

    Groundwater demands are growing in many arid regions and adaptation through the use of non-traditional resources during extreme droughts is increasingly common. One such resource is deep groundwater, which we define as deeper than 300 m and up to several kilometer-depths. Although deep groundwater has been studied in the context of oil and gas, geothermal, waste disposal, and other uses, it remains poorly characterized, especially for the purposes of human consumption and irrigation uses. Therefore, we evaluate deep groundwater quantity and quality within these contexts. We compile and analyze data from water management agencies and oil and gas-based sources for the southwestern US, with a detailed look at California's Central Valley. We also use crop tolerance thresholds to evaluate deep groundwater quality for irrigation purposes. We find fresh and usable groundwater volume estimates in California's Central Valley to increase by three- and four-fold respectively when depths of up to 3 km are considered. Of the ten basins in the southwestern US with the most data, we find that the Great Basin has the greatest proportions of fresh and usable deep groundwater. Given the potentially large deep groundwater volumes, it is important to characterize the resource, guard against subsidence where extracted, and protect it for use in decades and centuries to come.

  16. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1) occurred at <1.0% and > 0.1% of the incident surface solar radiation, and that the typical maximum depths ranged between 75 and 140 m during thermal stratification.

  17. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  18. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  19. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  20. Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico.

    PubMed

    Ramírez-Macías, Dení; Queiroz, Nuno; Pierce, Simon J; Humphries, Nicolas E; Sims, David W; Brunnschweiler, Juerg M

    2017-01-01

    Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14-134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity.

  1. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.

    2013-12-01

    As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  2. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    NASA Astrophysics Data System (ADS)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  3. Analysis of nutrients, selected inorganic constituents, and trace elements in water from Illinois community-supply wells, 1984-91

    USGS Publications Warehouse

    Warner, Kelly L.

    2000-01-01

    The lower Illinois River Basin (LIRB) study unit is part of the National Water-Quality Assessment program that includes studies of most major aquifer systems in the United States. Retrospective water-quality data from community-supply wells in the LIRB and in the rest of Illinois are grouped by aquifer and depth interval. Concentrations of selected chemical constituents in water samples from community-supply wells within the LIRB vary with aquifer and depth of well. Ranked data for 16 selected trace elements and nutrients are compared by aquifer, depth interval, and between the LIRB and the rest of Illinois using nonparametric statistical analyses. For all wells, median concentrations of nitrate and nitrite (as Nitrogen) are highest in water samples from the Quaternary aquifer at well depths less than 100 ft; ammonia concentrations (as Nitrogen), however, are highest in samples from well depths greater than 200 ft. Chloride and sulfate concentrations are higher in samples from the older bedrock aquifers. Arsenic, lead, sulfate, and zinc concentrations are appreciably different between samples from the LIRB and samples from the rest of Illinois for ground water from the Quaternary aquifer. Arsenic concentration is highest in the deep Quaternary aquifer. Chromium, cyanide, lead, and mercury are not frequently detected in water samples from community-supply wells in Illinois.

  4. Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, Chrysanthi; Rockel, Burkhardt; Wüest, Alfred; Budnev, Nikolay M.; Sturm, Michael; Schmid, Martin

    2015-03-01

    Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000-2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  5. Excess total organic carbon in the intermediate water of the South China Sea and its export to the North Pacific

    NASA Astrophysics Data System (ADS)

    Dai, Minhan; Meng, Feifei; Tang, Tiantian; Kao, Shu-Ji; Lin, Jianrong; Chen, Junhui; Huang-Chuan, Jr.; Tian, Jiwei; Gan, Jianping; Yang, Shuang

    2009-12-01

    Depth profiles of total organic carbon (TOC) were measured in spring (2005) and winter (2006) in the South China Sea (SCS), the largest marginal sea adjacent to the North Western Pacific (NWP). Compared to TOC profiles in the NWP, excess TOC (3.2 ± 1.1 μmol kg-1) was revealed in the intermediate layer of the SCS at σθ ˜ 27.2-27.6 (˜1000-1500 m). Below the depth of 2000 m, TOC concentrations were identical between the SCS and the NWP. Based on a one-dimensional steady state diffusion advection model constrained by potential temperature, we estimated a net TOC production rate of 0.12 ± 0.04 μmol kg-1 yr-1 to maintain this excess. A positive relationship between TOC and apparent oxygen utilization in the SCS deep water lent support to such a model-derived TOC production. This excess TOC in the out-flowing intermediate water may carry 3.1 ± 2.1 Tg C yr-1 of organic carbon out from the SCS and potentially into the deep open ocean. In light of the short residence time of the SCS deep water, the exported TOC was likely from the recently fixed organic carbon within the SCS. The export of such organic carbon, thereby less likely to return to the atmosphere may therefore contribute significantly to the carbon sequestration in the SCS.

  6. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    PubMed Central

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-01-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from <20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 μm filter. Such cells of <0.22 μm would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with >86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the <0.22 μm populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow ‘modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, ‘old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community. PMID:26484735

  7. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    PubMed

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from <20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 μm filter. Such cells of <0.22 μm would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with >86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the <0.22 μm populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  8. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M.; Joyce, T. M.; Curry, R. G.

    2016-03-01

    Shipboard velocity and water property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40 °N are examined to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and mixing between DSOW and the interior. The examined transects along Line W - which stretches from the continental shelf south of New England to Bermuda - were made between 1994 and 2014. The shipboard data comprise measurements at regular stations of velocity from lowered acoustic Doppler current profilers, CTD profiles and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths. Comparison of the Line W velocity sections with concurrent sea surface height maps from satellite altimetry indicates that large cyclones in the deep ocean accompany intermittent quasi-stationary meander troughs in the Gulf Stream path at Line W. A composite of 5 velocity sections along Line W suggests that a typical cyclone reaches swirl speeds of greater than 30 cm s-1 at 3400-m depth and has a radius (distance between the center and the maximum velocity) of 75 km. Tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC's DSOW and the interior. Vigorous exchange is corroborated by a mismatch in the CFC-11:CFC-12 and CFC-113:CFC-12 ratio ages calculated for DSOW at Line W. During the most recent 5-year period (2010-2014), a decrease in DSOW density has been driven by warming (increasing by almost 0.1 °C) as salinity has increased only slightly (by 0.003, which is close to the 0.002 uncertainty of the measurements). The abyssal ocean offshore of the DWBC and Gulf Stream and deeper than 3000-m depth has freshened at a rate of 6×10-4 yr-1 since at least 2003. Density here remains nearly unchanged over this period, due to temperature compensation, though a linear cooling trend in the abyssal ocean (to compensate the freshening) is not statistically significant.

  9. Effect of current on spectrum of breaking waves in water of finite depth

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.

    1987-01-01

    This paper presents an approximate method to compute the mean value, the mean square value and the spectrum of waves in water of finite depth taking into account the effect of wave breaking with or without the presence of current. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first obtained using the wave energy flux balance equation without considering wave breaking. The Miche wave breaking criterion for waves in finite water depth is used to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and its second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value and the spectrum are obtained. These results are applied to the case in which a deep water unidirectional wave train, propagating normally towards a straight shoreline over gently varying sea bottom of parallel and straight contours, encounters an adverse steady current whose velocity is assumed to be uniformly distributed with depth. Numerical results are obtained and presented in graphical form.

  10. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide ore zone. Samples were collected from a drill core that extends from surface soil to an oxide zone where gypsum and jarosite coexist with atacamite at Spence, a supergene enriched copper porphyry deposit located between Calama and Antofagasta. We found that at 15 to ~100 m depths, the Δ17O and δ34S both decrease while the δ18O increases steadily with depths, suggesting a binary mixing of two distinct sulfate sources, with the surface sulfate having Δ17O, δ34S, and δ18O at +0.55‰, +5.80‰, and +10.80‰, while the deep oxide-ore- zone sulfate at -0.23‰, +3.6‰, and+19.8‰, respectively. The surface sulfate has reached a maximum depth of ~ 50 meters, as marked by the disappearance of positive Δ17O signals at that depth. The intact preservation of this transitional sulfate mixing profile supports our model, a model that does not require a deep formation water source for atacamite formation in oxide zone of Spence copper porphyry deposit.

  11. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2014-09-30

    beaked whales , and shallow-diving mysticetes, with a focus on humpback whales . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...obtained via large-aperture vertical array techniques (for humpback whales ). APPROACH The experimental approach used by this project uses data...m depth. The motivation behind these multiple deployments is that multiple techniques can be used to estimate humpback whale call position, and

  12. Long-term Variation of Ventilation System in the East Sea (Japan Sea) Revealed by Heat Content Change and Water Mass Analysis

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.

    2016-02-01

    The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.

  13. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    PubMed

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  14. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, Amanda N.; Anthony Koslow, J.

    2015-10-01

    Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.

  15. Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea.

    PubMed

    Barclay, David R; Buckingham, Michael J

    2013-01-01

    In 2009, as part of PhilSea09, the instrument platform known as Deep Sound was deployed in the Philippine Sea, descending under gravity to a depth of 6000 m, where it released a drop weight, allowing buoyancy to return it to the surface. On the descent and ascent, at a speed of 0.6 m/s, Deep Sound continuously recorded broadband ambient noise on two vertically aligned hydrophones separated by 0.5 m. For frequencies between 1 and 10 kHz, essentially all the noise was found to be downward traveling, exhibiting a depth-independent directional density function having the simple form cos θ, where θ ≤ 90° is the polar angle measured from the zenith. The spatial coherence and cross-spectral density of the noise show no change in character in the vicinity of the critical depth, consistent with a local, wind-driven surface-source distribution. The coherence function accurately matches that predicted by a simple model of deep-water, wind-generated noise, provided that the theoretical coherence is evaluated using the local sound speed. A straightforward inversion procedure is introduced for recovering the sound speed profile from the cross-correlation function of the noise, returning sound speeds with a root-mean-square error relative to an independently measured profile of 8.2 m/s.

  16. Age depth model construction of the upper section of ICDP Dead Sea Deep Drilling Project based on the high-resolution 14C dating

    NASA Astrophysics Data System (ADS)

    Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.

    2014-12-01

    To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.

  17. Evaluating the role of higher order nonlinearity in water of finite and shallow depth with a direct numerical simulation method of Euler equations

    NASA Astrophysics Data System (ADS)

    Fernandez, L.; Toffoli, A.; Monbaliu, J.

    2012-04-01

    In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.

  18. [Effects of short-term deep vertically rotary tillage on topsoil structure of lime concretion black soil and wheat growth in Huang-Huai-Hai Plain, China].

    PubMed

    Zhai, Zhen; Li, Yu Yi; Zhang, Li; Pang, Bo; Pang, Huan Cheng; Wei, Ben Hui; Wang, Qing Wei; Qi, Shao Wei

    2017-04-18

    Annual rotary tillage can often create a compacted plough pan and shallow arable layer which hampers the high crop yield in Huang-Huai-Hai region. A brand new farming method named Vertically Rotary Tillage was introduced to solve this problem. One short-term field experiment was conducted to explore the effect of deep vertically rotary tillage on soil physical properties and photosynthetic characteristics at flowering stage of winter wheat. Two tillage treatments were designed including subsoiling tillage with 20 cm depth (SS 20 , CK) and deep vertically rotary tillage with 30 cm depth (DVR 30 ). The result showed that compared with SS 20 treatment, DVR 30 treatment could thoroughly break the plow pan and loose the arable layer. The soil bulk density at 10-20 cm and 20-30 cm layers under DVR 30 treatment was decreased by 9.5% and 11.2% respectively than that under SS 20 treatment. Meanwhile, the penetration resistance at 20-30 cm layer under DVR 30 treatment was also decreased by 42.3% than that under SS 20 treatment. Moreover, water infiltration under DVR 30 treatment and the soil water storage in the deep soil layers was then increased. The mass water content of soil increased significantly with the increase of soil depth. There was significant difference of mass water content of 30-40 cm 40-50 cm between SS 20 and DVR 30 . The mass water content 30-40 cm and 40-50 cm layers under DVR 30 treatment was increased by 16.9% and 10.6% compared with SS 20 treatment, respectively. Furthermore, DVR 30 treatment promoted the improvement of the photosynthetic capacity of wheat which could contribute to the dry matter accumulation of winter wheat. The net photosynthesis rate and SPAD at flowering stage of winter wheat leaves under DVR 30 treatment were increased by 1.3% and 15.5% respectively than that under SS 20 treatment, thereby the above and underground dry matter accumulation of winter wheat under DVR 30 was increased significantly. Due to all the superiority of DVR 30 treatment over SS 20 treatment showed above, the winter wheat yield under DVR 30 treatment was increased by 12.4% than that under SS 20 . It was concluded that deep vertically rotary tillage could provide a new and effective way to break up the compacted plough pan, build a reasonable soil structure and increase crop yield.

  19. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal.

    PubMed

    Robison, Bruce; Seibel, Brad; Drazen, Jeffrey

    2014-01-01

    Octopuses typically have a single reproductive period and then they die (semelparity). Once a clutch of fertilized eggs has been produced, the female protects and tends them until they hatch. In most shallow-water species this period of parental care can last from 1 to 3 months, but very little is known about the brooding of deep-living species. In the cold, dark waters of the deep ocean, metabolic processes are often slower than their counterparts at shallower depths. Extrapolations from data on shallow-water octopus species suggest that lower temperatures would prolong embryonic development periods. Likewise, laboratory studies have linked lower temperatures to longer brooding periods in cephalopods, but direct evidence has not been available. We found an opportunity to directly measure the brooding period of the deep-sea octopus Graneledone boreopacifica, in its natural habitat. At 53 months, it is by far the longest egg-brooding period ever reported for any animal species. These surprising results emphasize the selective value of prolonged embryonic development in order to produce competitive hatchlings. They also extend the known boundaries of physiological adaptations for life in the deep sea.

  20. Deep-Sea Octopus (Graneledone boreopacifica) Conducts the Longest-Known Egg-Brooding Period of Any Animal

    PubMed Central

    Robison, Bruce; Seibel, Brad; Drazen, Jeffrey

    2014-01-01

    Octopuses typically have a single reproductive period and then they die (semelparity). Once a clutch of fertilized eggs has been produced, the female protects and tends them until they hatch. In most shallow-water species this period of parental care can last from 1 to 3 months, but very little is known about the brooding of deep-living species. In the cold, dark waters of the deep ocean, metabolic processes are often slower than their counterparts at shallower depths. Extrapolations from data on shallow-water octopus species suggest that lower temperatures would prolong embryonic development periods. Likewise, laboratory studies have linked lower temperatures to longer brooding periods in cephalopods, but direct evidence has not been available. We found an opportunity to directly measure the brooding period of the deep-sea octopus Graneledone boreopacifica, in its natural habitat. At 53 months, it is by far the longest egg-brooding period ever reported for any animal species. These surprising results emphasize the selective value of prolonged embryonic development in order to produce competitive hatchlings. They also extend the known boundaries of physiological adaptations for life in the deep sea. PMID:25075745

  1. Effect of nitrogen narcosis on free recall and recognition memory in open water.

    PubMed

    Hobbs, M; Kneller, W

    2009-01-01

    Previous research has demonstrated that nitrogen narcosis causes decrements in memory performance but the precise aspect of memory impaired is not clear in the literature. The present research investigated the effect of narcosis on free recall and recognition memory by appling signal detection theory (SDT) to the analysis of the recognition data. Using a repeated measures design, the free recall and recognition memory of 20 divers was tested in four learning-recall conditions: shallow-shallow (SS), deep-deep (DD), shallow-deep (SD) and deep-shallow (DS). The data was collected in the ocean offDahab, Egypt with shallow water representing a depth of 0-10m (33ft) and deep water 37-40m (121-131ft). The presence of narcosis was independently indexed with subjective ratings. In comparison to the SS condition there was a clear impairment of free recall in the DD and DS conditions, but not the SD condition. Recognition memory remained unaffected by narcosis. It was concluded narcosis-induced memory decrements cannot be explained as simply an impairment of input into long term memory or of self-guided search and it is suggested instead that narcosis acts to reduce the level of processing/encoding of information.

  2. Diversity-based acoustic communication with a glider in deep water.

    PubMed

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  3. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico

    USGS Publications Warehouse

    Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.

    2011-01-01

    Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.

  4. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    NASA Astrophysics Data System (ADS)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  5. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  6. Radon in the fluvial aquifers of the White River Basin, Indiana, 1995

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moore, Rhett C.

    1996-01-01

    Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin

  7. Estimating amplitudes of fifth-order sea level fluctuations from peritidal through basinal carbonate deposits, Lower Mississippian, Wyoming-Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrick, M.; Read, J.F.

    1990-05-01

    Three types of 1-10-m upward-shallowing cycles are observed in the Lower Mississippian Lodgepole and lower Madison formations of Wyoming and Montana. Typical peritidal cycles have pellet grainstone bases overlain by algal laminites, which are rarely capped by paleosol/regolith horizons. Shallow ramp cycles have burrowed pellet-skeletal wackestone bases overlain by cross-bedded ooid/crinoid grainstone caps. Deep ramp cycles are characterized by sub-wave base limestone/argillite, storm-deposited limestone, overlain by hummocky stratified grainstone caps. Average cycle periods range from 17-155 k.y. This, rhythmically bedded limestone/argillite deposits of basinal facies do not contain shallowing-upward cycles, but do contain 2-4 k.y. limestone/argillite rhythms. These sub-wave basemore » deposit are associated with Waulsortian-type mud mounds which have >50 m synoptic relief. This relief provides minimum water depth estimates for the deposits, and implies storm-wave base was less than 50 m. Two-dimensional computer modeling of cyclic platform through noncyclic basinal deposits allows for bracketing of fifth-order sea level fluctuation amplitudes, thought responsible for cycle formation. Computer models using fifth-order amplitudes less than 20 m do not produce cycles on the deep ramp (assuming a 25-30 m storm-wave base). Amplitudes >30 m produce water depths on the inner ramp that are too deep, and disconformities extend too far into the basin. The absence of meter-scale cycles in the basin suggests water depths were too great to record the effects of sea level oscillations occurring on the platform, or climatic fluctuation, associated with glacio-eustatic sea level oscillations, were not sufficient to affect hemipelagic depositional patterns in the tropical basin environment.« less

  8. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands

    PubMed Central

    Wanjari, Piyush P.; Gibb, Bruce C.; Ashbaugh, Henry S.

    2013-01-01

    Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied. PMID:24359375

  9. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  10. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    PubMed

    Webb, Thomas J; Vanden Berghe, Edward; O'Dor, Ron

    2010-08-02

    Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  11. Fluid pressure and flow at great depth in the continental crust. A discussion in relation to topography, temperature and salinity distribution using as an example the KTB Fault Zones in connection with the Eger Rift Hot Spot.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Kuhlmann, S.; Li, X.

    2006-12-01

    Hydraulic investigations in and between the two KTB boreholes have shown that groundwater flow is possible at great depth in the crystalline crust. Remarkable permeability was found particularly in the SE1 and SE2 fault zones. The results from a long term pump and injection test, and the related three-dimensional groundwater modelling (Graesle et al., 2006), document the existence of a large-scale (more than 10 km) hydraulic reservoir in the crystalline crust. According to this calculation, an overpressure of 0.4 MPa can be still be expected in KTB-HB in 2009, 4 years after the end of the injection. The good match with the measurement data confirms groundwater pathways at a scale of more than 10 km. The isotopic water composition recovered from the KTB pilot hole indicates a downward water flow along the SE2 fault zone, which is in contact with the Franconian Line. Moreover, there is a deep upward groundwater flow 60 km away in the western Eger Rift Valley as indicated e.g. by the temperature signature and gas flow observations. Therefore, the demand for fluid mass continuity means that water is being supplied by a downstream groundwater flow, probably from the Franconian Line. The question of potential driving processes must be answered to understand and quantify the flow in the deeper crust at a scale of 10 km to 100 km. The processes must result in a sufficient horizontal pressure gradient to allow groundwater flow at great depth. The density variations of groundwater with depth are highly relevant for the calculation of horizontal pressure differences. The two independent potential fields of gravity and pressure have to be considered. Differentiation into 4 relevant driving processes is required: \\bullet The groundwater surface topography related to the groundwater recharge and mean regional distance between neighbouring valleys \\bullet Geothermal gradient and water density depending on temperature and pressure \\bullet Different salt contents in adjacent geological formations \\bullet Gas content in the water and gas dissolution The interpretation of these processes for the Eger Rift Franconian Line area results in horizontal pressure gradients up to 0.5 MPa/km. With these pressure gradients in deep fault zones similar to the KTB fault zones SE1 and SE2, a remarkable groundwater flow is also possible in the deep crystalline crust. For only a 1 MPa pressure difference between the Franconian Line and the Eger Rift Valley, which lie nearly 60 km apart, we get a tracer velocity of 1.0 to 5.0 m/a (using the Darcy relation and porosities for the hydraulic KTB data). The flow system at great depth is determined mainly by the counteractive forces of salinity and temperature with a nonlinear relation to the water density. References GRAESLE, W., KESSELS, W., KUEMPEL, H.-J., LI, XUAN (2006): HYDRAULIC OBSERVATIONS FROM A ONE YEAR FLUID PRODUCTION TEST IN THE 4000 M DEEP KTB PILOT BOREHOLE. GEOFLUIDS, 6, 8 23 KESSELS, W., KUECK, J. (1995): HYDRAULIC COMMUNICATION IN CRYSTALLINE ROCK BETWEEN THE TWO BOREHOLES OF THE CONTINENTAL DEEP DRILLING PROJECT IN GERMANY. INT. J. ROCK MECH. MIN. SCI. &GEOMECH. ABSTR., 32, 37 47

  12. Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking

    NASA Astrophysics Data System (ADS)

    Derakhti, M.; Kirby, J. T., Jr.

    2016-12-01

    Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.

  13. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.

    2018-02-01

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.

  14. 3D ultra-high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): New insights on deep hydrothermal fluid circulation processes.

    PubMed

    De Landro, Grazia; Serlenga, Vincenzo; Russo, Guido; Amoroso, Ortensia; Festa, Gaetano; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-06-13

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei, a still active caldera, so it is of major importance to characterize its level of activity and potential danger. In this light, a 3D tomographic high-resolution P-wave velocity image of the shallow central part of Solfatara crater is obtained using first arrival times and a multiscale approach. The retrieved images, integrated with the resistivity section and temperature and the CO 2 flux measurements, define the following characteristics: 1. A depth-dependent P-wave velocity layer down to 14 m, with V p  < 700 m/s typical of poorly-consolidated tephra and affected by CO 2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO 2 reservoir. These features are expression of an area located between the Fangaia, water saturated and replenished from deep aquifers, and the main fumaroles, superficial relief of the deep rising CO 2 flux. Therefore, the changes in the outgassing rate greatly affect the shallow hydrothermal system, which can be used as a "mirror" of fluid migration processes occurring at depth.

  15. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance.

    PubMed

    Keen, Douglas A; Constantopoulos, Eleni; Konhilas, John P

    2016-01-01

    Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.

  16. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

    PubMed

    Johnson, Kenneth S; Riser, Stephen C; Karl, David M

    2010-06-24

    Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.

  17. Seasonal and inter-annual variations of dissolved oxygen in the northwestern Mediterranean Sea (DYFAMED site)

    NASA Astrophysics Data System (ADS)

    Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie

    2018-03-01

    Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.

  18. Internal Wave Spectrum of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, C.; Schmid, M.; Wuest, A.

    2013-05-01

    Lake Baikal is the most voluminous and deepest (over 1.6 Km) fresh water body on earth holding 80% of the world's fresh water supplies. The lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. Due to the lake's great depth only the top 250 m are experiencing the direct effects of the wind. The deeper part of the lake is barely stratified and has a constant temperature all year round. A distinct peak is observed in the temperature Fourier spectrum around the inertial frequency almost at all times and at all depths. Here we investigate the particularities of the internal wave spectrum using the wavelet transform. We focus on the inertial frequency band and study the propagation through time and depth. Our goal is to evaluate the importance of the internal oscillations to the mixing and to correlate them to external forcing.

  19. Transfer of lipid molecules and polycyclic aromatic hydrocarbons to open marine waters by dense water cascading events

    NASA Astrophysics Data System (ADS)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2017-12-01

    Settling particles were collected by a set of moored sediment traps deployed during one year in the western Gulf of Lion along Cap de Creus and Lacaze-Duthiers submarine canyons and on the adjacent southern open slope. These traps collected particles during periods of pelagic settling and also during events of deep water flushing by dense shelf water cascading (DSWC). Analyses of lipid biomarkers (n-alkanes, n-alkan-1-ols, sterols and C37-C38 alkenones) and polycyclic aromatic hydrocarbons (PAHs) showed much higher transfer of terrestrial lipids and PAHs to open deep waters during DSWC than in the absence of cascading. The area of highest lateral fluxes was mostly located at 1000 m depth but also at 1500 m depth and extended along the canyons and to the adjacent slope. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water over the continental shelf, and its transport through the canyons towards the continental slope and deep basin. DSWC involved the highest settling fluxes of terrestrial lipids and PAHs ever described in marine continental slopes and the pelagic domain, as illustrated by peak values of C23-C33 odd carbon numbered alkanes (405 ng m-2 d-1), C22-C32 even carbon numbered alkan-1-ols (850 ng m-2 d-1), β-sitosterol+sitostanol (4800 ng m-2 d-1) and PAHs (55 μg m-2 d-1). The algal lipids also showed higher transfer to deep waters during DSWC but to a lower extent than the terrigenous compounds. However, the C37-C38 alkenones constituted an exception and their settling fluxes were not influenced by DSWC. The lack of influence of the DSWC on the C37-C38 alkenone settling is consistent with absence of haptophyte algal inputs from the continental shelf and reinforces the reliability of these molecules for palaeothermometry and palaeoproductivity measurements in pelagic systems.

  20. Long-Term Observations of Epibenthic Fish Zonation in the Deep Northern Gulf of Mexico

    PubMed Central

    Wei, Chih-Lin; Rowe, Gilbert T.; Haedrich, Richard L.; Boland, Gregory S.

    2012-01-01

    A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient. PMID:23056412

  1. Long-term observations of epibenthic fish zonation in the deep northern Gulf of Mexico.

    PubMed

    Wei, Chih-Lin; Rowe, Gilbert T; Haedrich, Richard L; Boland, Gregory S

    2012-01-01

    A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964-1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983-1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m(-2)), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.

  2. Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study.

    PubMed

    Hilt, Sabine; Henschke, Ingo; Rücker, Jacqueline; Nixdorf, Brigitte

    2010-01-01

    Feedback between submerged macrophytes and water transparency stabilizing the clear, macrophyte-dominated regime has been described so far for shallow lakes. Based on data of total phosphorus (TP) concentrations, underwater light supply, phytoplankton and submerged macrophyte abundance from narrow, stratified Lake Scharmützelsee (mean depth: 9 m, retention time: 16 yr) of the period 1994-2006 we hypothesize that submerged macrophytes may influence transparency and trophic state in deep lakes. The lake was characterized by summer epilimnion TP concentrations of 38 to 57 mug L(-1), turbid water due to mass development of cyanobacteria, and low abundance of few submerged macrophyte species until 2003. Thereafter, a sudden increase in water transparency was followed by a rapid submerged macrophyte colonization of the littoral down to about 5 m depth corresponding to the depth of a light supply of 3 E m(-2) d(-1). Initially, this recolonization was probably a consequence of decreased turbidity. We argue that the increase of submerged macrophyte coverage from < 10% in 1994 to 2003 to about 24% in 2005-2006 has contributed to the stabilization of the clear-water regime during the subsequent years. This is supported by the fact that earlier shifts to clear-water regimes in 1994 and 2000 without a significant spread of submerged macrophytes were not stable. We discuss potential mechanisms that may have resulted in a positive effect of plants on transparency such as P uptake and immobilization by the dominant rootless macrophyte species Nitellopsis obtusa and Ceratophyllum demersum and other macrophyte-related mechanisms such as increased zooplankton grazing and allelopathy.

  3. Investigation of Deep Ocean Circulation and Mixing Using Ar-39 (Invited)

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Schlosser, P.

    2013-12-01

    Ar-39 is a radioactive noble gas that forms in the atmosphere by cosmic ray interaction with Ar-40. It has a half-life of 269 years and its production rate in the atmosphere has varied no more than 7% during the past 1000 years. It enters the surface ocean with an average equilibration time of about one month and thus the entire surface ocean, except for ice covered regions at high latitudes, is in quasi-equilibrium with the atmospheric Ar-39:Ar ratio. The well known input to the ocean, radioactive decay constant and chemical inertness make Ar-39 an ideal tracer of circulation and mixing in the deep ocean, where anthropogenic transient tracers such as CFCs and tritium have not yet penetrated. However, due to the difficult measurement, only about 125 oceanic Ar-39 samples have been measured to date. This was done by counting the decays of Ar-39 atoms and required a half liter of argon gas per sample, extracted from about 1500 liters of water. The 125 samples that have been measured provide a glimpse of the information that can be gained from Ar-39 observations. In the Pacific Ocean three vertical profiles show a decrease in Ar-39 from the surface mixed layer through the thermocline to a minimum at intermediate depths and an increase from there to the bottom. This reflects formation of bottom water around the Antarctic continent, spreading of this water northward and upwelling and mixing into intermediate depths. The lowest concentration was 6×4% modern which is equivalent to a 900-1600 year isolation time from the surface. In the Atlantic Ocean newly formed North Atlantic Deep Water has an Ar-39 concentration of about 85% modern compared to 55% modern for newly formed Antarctic Bottom Water and reach values as low as about 40% modern in the interior reflecting the more rapid ventilation of the deep Atlantic Ocean relative to the deep Pacific Ocean. In the Arctic Ocean the mean residence time of deep water in the Nansen, Amundsen and Makarov Basins based on Ar-39 are about 270, 190, and 330 years respectively. Radiocarbon also provides information on circulation and mixing in the deep ocean and thousands of measurements have been made. However, the distributions of Ar-39 and C-14 are different due to the large difference in their half-lives (269 years and 5730 years respectively). Measurement of both tracers provides information on the relative importance of advection and mixing in the deep ocean and provides more accurate transit times than can be obtained with only one of these tracers. In the Atlantic Ocean, where the deep water is roughly a two-end member mixture of northern component and southern component water, the age of the two components can be estimated from simultaneous measurement of Ar-39 and C-14. The few existing measurements suggest that the northern component water has an age range of 40-200 years and the southern component water a range of 60-600 years. Development of the ATTA method for measuring radioactive noble gases offers great potential to dramatically increase the number of samples that can be measured for Ar-39, which could greatly improve our understanding of mixing and circulation in the deep ocean.

  4. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

    PubMed Central

    Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.

    2016-01-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845

  5. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  6. A Trip Through the Virtual Ocean: Understanding Basic Oceanic Process Using Real Data and Collaborative Learning

    NASA Astrophysics Data System (ADS)

    Hastings, D. W.

    2012-12-01

    How can we effectively teach undergraduates the fundamentals of physical, chemical and biological processes in the ocean? Understanding physical circulation and biogeochemical processes is essential, yet it can be difficult for an undergraduate to easily grasp important concepts such as using temperature and salinity as conservative tracers, nutrient distribution, ageing of water masses, and thermocline variability. Like many other topics, it is best learned not in a lecture setting, but working with real data: plotting values, making predictions, and making mistakes. Part I: Using temperature and salinity values from any location in the world ocean (World Ocean Atlas), combined with an excellent user interface (http://ferret.pmel.noaa.gov), students are asked to answer a series of specific questions related to ocean circulation. Using established temperature and salinity values to characterize different water masses, students are able to identify various water masses and gain insight to physical circulation processes. Questions related to ocean circulation include: How far south and at what depth does NADW extend into the S. Atlantic? Is deep water formed in the North Pacific? How and why does the depth of the thermocline vary with latitude in the Atlantic Ocean? How deep does the Mediterranean Water descend as it leaves the Straits of Gibraltar? How far into the Atlantic can you see the influence of the Amazon River? Is there any Antarctic Bottom Water in the North Pacific? Collaborating with another student typically leads to increased engagement. Especially in large lecture settings, where one teacher is not able to address student questions or concerns, working in pairs or in groups of three is best. Part II: Using the same web-based viewer and data set students are subsequently assigned one oceanic property (phosphate, nitrate, silicate, O2, or AOU) and asked to construct three different plots: 1) vertical depth profile at one location; 2) latitude vs. depth at 20°W; and 3) a latitude vs. longitude at 4,000 m depth in the entire ocean. Students do this work at home, and come to class prepared with hypotheses that explain variations of their variable observed in their figures. Nutrients, for example, are typically depleted in the surface ocean, increase at intermediate depths, and then typically decrease in deep water. How do oceanic processes drive these variations? In the context of the other variables, and with the help of other group members, they typically develop an understanding of surface productivity, respiration of organic matter in deeper waters, upwelling of deeper water, ocean circulation, insolation, evaporation, precipitation, and temperature dependence of gas solubility. Students then prepare a written explanation to accompany the plots. Cartoon-like depictions of nutrient profiles typically presented in introductory texts have their place, but they lack the complexity inherent in real data. The objective is to mimic the excitement of discovery and the challenge of developing a hypothesis to explain existing data. The ability to develop viable hypotheses to explain real data with real variability are what motivate and inspire many scientists. How can we expect to motivate and inspire students with lackluster descriptions of ocean processes?

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuffey, R.J.; Pachut, J.F.

    The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets.more » Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.« less

  8. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India

    USGS Publications Warehouse

    Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.

    1983-01-01

    The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.

  9. Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus obtained by laser ablation from core top sediments: Relationship to bottom water temperature

    NASA Astrophysics Data System (ADS)

    Rathmann, SöHnke; Hess, Silvia; Kuhnert, Henning; Mulitza, Stefan

    2004-12-01

    A laser ablation system connected to an inductively coupled plasma mass spectrometer was used to determine Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus. A set of modern core top samples collected along a depth transect on the continental slope off Namibia (320-2300 m water depth; 2.9° to 10.4°C) was used to calibrate the Mg/Ca ratio against bottom water temperature. The resulting Mg/Ca-bottom water temperature relationship of O. umbonatus is described by the exponential equation Mg/Ca = 1.528*e0.09*BWT. The temperature sensitivity of this equation is similar to previously published calibrations based on Cibicidoides species, suggesting that the Mg/Ca ratio of O. umbonatus is a valuable proxy for thermocline and deep water temperature.

  10. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  11. Potential impact of global climate change on benthic deep-sea microbes.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Continuous monitoring of deep groundwater at the ice margin, Kangerlussuaq, West Greenland

    NASA Astrophysics Data System (ADS)

    Claesson Liljedahl, L.; Lehtinen, A. M.; Ruskeeniemi, T.; Engström, J.; Hansson, K.; Sundberg, J.; Henkemans, E.; Frape, S.; Johansson, S.; Acuna, J.

    2012-12-01

    The deep geologic repository (DGR) concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel at depths of approximately 500-1000 m below ground surface within a suitable geological formation for hundreds of thousands of years. A key objective of the used fuel DGR research programs of the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively) is to further understanding of geosphere stability and long-term evolution. Future glaciation represents an intense external perturbation of a DGR situated in northern latitudes. To advance the understanding of processes associated with glaciation and their impact on the long-term performance of a DGR, the Greenland Analogue Project (GAP) was initiated by SKB, POSIVA and NWMO. The GAP was initiated in 2008 as a four-year field and modelling study utilizing the Greenland ice sheet and sub-surface conditions in West Greenland as an analogue for the conditions expected to prevail in Fennoscandia and Canada during future glacial cycles. One of the main aims of the GAP is to improve the understanding of how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost. One way to study this is by monitoring deep drillholes. A 645 m deep drillhole (DH-GAP04) was drilled and instrumented in July 2011 at the ice-sheet margin in Kangerlussuaq, West Greenland to investigate the hydrogeochemical and hydrogeological conditions of a subglacial environment. Of particular interest is the recharge of glacial meltwater, and understanding to what depth it intrudes into the bedrock and whether it affects the chemistry and physico-chemical properties of the deep groundwater. DH-GAP04 is instrumented with a two-packer multi-sensor system, installed at a depth of 560 m, dividing the hole into three sections. The upper section extends from the base of permafrost (about 350 m) down to the upper packer and is 190 m. The mid section is straddled by the two packers and is 10 m long. The lower section extends from the lower packer to the bottom of the hole and is 80 m. DH-GAP04 enables; 1) sub-permafrost geochemical sampling and monitoring of pressure and EC in three sections; 2) temperature monitoring in the mid section and temperature profiling along the hole using multimode fiber-optic cables and the distributed temperature sensing technique (DTS), and; 3) estimation of rock mass hydraulic properties. DTS-data shows that permafrost extends to a depth of 350 m at the ice sheet margin. Results from the first year's monitoring and sampling of DH-GAP04 suggest that the upper and mid sections are hydraulically connected, but hydrogeochemically different. The upper and mid sections have similar transmissivities and fresh water heads, but the mid section with its small volume is believed to provide a good opportunity to observe possible interactions between deep groundwaters and subglacial meltwaters. The upper section is long, but flushing of drilling water contamination occurs at the same speed as for the mid section. The water in the upper section is isotopically lighter and more saline than the water in the mid section, while the lower section seems to be rather stagnant, but appears to contain an under pressurized fracture system discharging water from the hole.

  13. Li/B ratio in deep fluids an indicator of their generation depth

    NASA Astrophysics Data System (ADS)

    Hirajima, Takao; Sengen, Yoshiteru; Nishimura, Koshi; Ohsawa, Shinji

    2010-05-01

    Deep fluids derived from subducted terrestrial materials significantly affect and cause various physicochemical processes in the subduction zone, e.g., earthquakes in the subducting plate, partial melting in the mantle wedge, which causes island arc volcanism, the exhumation of high pressure metamorphic rocks, and so on (e.g., Schmidt and Poli, 1998). However, nature of deep fluids is still under the deep veil. To evaluate precisely the effect of deep fluids which affect various subduction processes, following aspects concerning the nature of deep fluids should be evaluated well, 1) the depths and the amounts of fluid release, 2) species and compositions of fluids, 3) the fluid paths and scale of motion, and etc. (e.g., Scambelluri and Philippot, 2001). In recent years, the depths and amounts of fluid release become to be evaluated well by synthetic experiments and thermodynamic calculation in the basaltic system (e.g., Schmidt and Poli, 1998; Hacker et al., 2003). The information on species and compositions of fluids can be obtained directly from fluid inclusions trapping in natural HP/UHP metamorphic rocks, but quantitative analyses of their major and trace element composition are still in the hard task. This paper reports the Li-B-Cl ratio of deep fluids extracted from quartz veins/lenses developing parallel to the main foliation of LT/HP type metamorphic rocks crystallized from 20 to 60 km depths in the Sanbagawa belt, Japan. The quartz veins crosscutting the main foliation, i.e., formed during the retrograde stage, are out of scope in this paper. Raman spectroscopy for fluid inclusions in quartz veins/lenses reveals that most inclusions are composed of aqueous liquid and gas species of CO2, CH4 and/or N2. Aqueous bubble was not detected. Microthermometry for them reveals that freezing temperature varies from -15oC to 0oC .Rough negative correlation is detected between the freezing temperature and homogenization temperature (120-450 oC). These results suggest that the fluid inclusions in the studied specimens were produced during multi-stages, probably higher salinity syn-metamorphic ones and lower salinity post-peak metamorphic ones. The deep fluids contained in the quartz veins/lenses were leached into the extra-pure water by the crush leaching technique, mainly following Banks and Yardley (1992) and Bottrell et al. (1988). Composition in the leached fluids was analyzed using gas-chromatography and ICP-MS. All extracted fluids are characterized by significantly lower Cl/(Lix2000+Bx500+Cl) (<0.2) ratio than the value of the modern sea water (ca. 0.8). Li(x2000)/B(x500) ratio of extracted fluids varies from 0.1 to 1.0 and shows a positive correlation with the metamorphic grade of the host rock., i.e., ca. 0.1 in the chlorite zone, ca. 0.2 in the garnet zone, ca. 0.4 in the biotite zone and 0.4-1.0 in the eclogite unit. Literature data of Li-B contents in natural HP metamorphic rocks suggest that Li/B ration of dehydrated fluid released from subducted meta-basalts increases with the metamorphic depth (Marschall et al., 2006; 2007). These evidences suggest that Li/B ratio of deep fluids has a potential evaluating the generated depth, although there remains several factors which control should Li/B ration ratio in the fluid should be clarified.

  14. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.

  15. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, O; Edinger, E; Guilderson, T P

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface watermore » bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.« less

  16. Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng

    2017-04-01

    This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For the analysis of propagation of cold waters formed on the NW Black Sea shelf we use a passive tracer method. The tracer is treated as an artificial dye that "stains" a water parcel within the defined area as soon as it cooled below a 7°C temperature. To quantify the shelf-deep sea exchange, the transport of water, salt and heat between the NW shelf and deep-sea regions is calculated across an enclosed boundary (a "fence") approximating the 200 m isobath on the NW shelf plus two short segments connected to the coast. Partial transports are also calculated for the surface layer (top 20 m) and the under-surface layer (from 20 m to the bottom). The 20 m level is approximately equal to the Ekman depth in summer. It is also close to the depth of the biologically active euphotic layer. For validation of the NEMO-BLS24 configuration we present comparisons of the model with satellite-derived sea surface temperature measurements and with ship-derived cross-sections that show the vertical structure. We also compare the model to observations carried out during Black Sea cruises in 2004, 2007 and 2008. The model represents well the sea surface temperature, the depth of the upper mixed layer and the depth of the CIL, while overestimating the temperature in the core of the CIL by approx. 0.5 °C. Mechanism 1: exchanges due to a frontal eddy. Numerical simulations for the year 2005 (for which comprehensive remote sensed data is available) shows that a significant cross-shelf transport was generated by a long-lived anticyclonic eddy impinging on the shelf, sometimes assisted by a cyclonic meander of the Rim Current. Over 69 days between April 23 and June 30, 2005, a volume of 2.84×10^12 m3 of water (102% of the entire volume of the shelf waters) was transported out of the shelf and a similar amount onto the shelf (see details in Zhou et al. 2014). Mechanism 2: exchanges due to Ekman drift. During the short but intensive wind events of April 15 - 22 and July 1 - 4, 2005, 23% and 16% of shelf waters, were moved into the deep-sea region, respectively. Due to the high intensity of cross-shelf exchanges, the average renewal time for the NW shelf in the Black Sea was only 28 days in the summer of 2005 (Zhou et al. 2014). Mechanism 3: exchanges due to assisted cascading. Using the model run for 2003 as an example, we examine the fate of the tracer after 5.5 months of model integration. At 100m depth we identify four anti-cyclonic eddies: two eddies west of the Crimea peninsula, one north of Sinop and one west of Batumi. These eddies can be seen to assist cascading into the basin interior of cold waters formed on a shallow NW shelf to a depth greater than at which they were originally formed. The important result is that for many of the 24 studied years a significant proportion of dense shelf water does not cascade locally off the NW shelf, but is transported by the Rim Current over hundreds of kilometres before cascading into the deep basin in the southern and southeastern Black Sea. This work has been supported by EU FP7 PERSEUS, EU H2020 Sea Basin checkpoints Lot4 - Black Sea and a number of Chinese and Russian national projects. References Zhou, F., G. I. Shapiro, and F. Wobus, 2014: Cross-shelf exchange in the northwestern Black Sea. Journal of Geophysical Research: Oceans, 119, 2143-2164.

  17. Mesophotic and Deep-sea Demersal Fish Assemblages on Rugged Hardbottoms of the Greater-Lesser Antilles Transition Zone

    NASA Astrophysics Data System (ADS)

    Quattrini, A.; Chaytor, J. D.; Demopoulos, A. W.

    2016-02-01

    Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the mesophotic (>50 m) and deep (>200 m) assemblages remain poorly known due to the technical challenges associated with surveying greater depths. Numerous seafloor features (e.g., seamounts, island ridges, banks) punctuate the insular margins and increase habitat heterogeneity, which may lead to enhanced diversity of the deeper demersal fish community in the region. Recent (2013-2015) expeditions in the area using the E/Vs Nautilus and Okeanos Explorer and ROVs Hercules and Deep Discoverer surveyed fish communities during 18 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other (e.g., dissolved oxygen, microhabitat) abiotic factors. A totla of 3,532 fishes representing at least 140 species in 53 families were documented. Assemblage differences were primarily influenced by depth, but differences in microhabitat (i.e., soft substrate, profile, slope) further influenced assemblage structure. Several range and depth extensions were documented. The morid Lepidion sp., previously known only from the eastern and the western North Atlantic, was documented on Norôit Seamount. A new species of labrid, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Many mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions, particularly depth and microhabitat, influencing local-scale distribution of demersal fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic species.

  18. Temporal changes in the vertical distribution of flow and chloride in deep wells.

    PubMed

    Izbicki, John A; Christensen, Allen H; Newhouse, Mark W; Smith, Gregory A; Hanson, Randall T

    2005-01-01

    The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield.

  19. An alternative tensiometer design for deep vadose zone monitoring

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Kandelous, M. M.; Hopmans, J. W.

    2015-12-01

    The conventional tensiometer is among the most accurate devices for soil water matric potential measurements, as well as for estimations of soil water flux from soil water potential gradients. Uncertainties associated with conventional tensiometers such as caused by ambient temperature effects and the draining of the tensiometer tube, as well as their limitation for deep soil monitoring has prevented their widespread use for vadose zone monitoring, despite their superior accuracy, in general. We introduce an alternative tensiometer design that offers the accuracy of the conventional tensiometer, while minimizing afore-mentioned uncertainties and limitations. The proposed alternative tensiometer largely eliminates temperature-induced diurnal fluctuations and uncertainties associated with the draining of the tensiometer tube, and removes the limitation in installation depth. In addition, the manufacturing costs of this alternative tensiometer design is close to that of the conventional tensiometer, while it is especially suited for monitoring of soil water potential gradients as required for soil water flux measurements.

  20. Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.

    PubMed

    Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.

  1. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  2. Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice

    PubMed Central

    Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324

  3. Estimating the volume of supra-glacial melt lakes across Greenland: A study of uncertainties derived from multi-platform water-reflectance models

    NASA Astrophysics Data System (ADS)

    Cordero-Llana, L.; Selmes, N.; Murray, T.; Scharrer, K.; Booth, A. D.

    2012-12-01

    Large volumes of water are necessary to propagate cracks to the glacial bed via hydrofractures. Hydrological models have shown that lakes above a critical volume can supply the necessary water for this process, so the ability to measure water depth in lakes remotely is important to study these processes. Previously, water depth has been derived from the optical properties of water using data from high resolution optical satellite images, as such ASTER, (Advanced Spaceborne Thermal Emission and Reflection Radiometer), IKONOS and LANDSAT. These studies used water-reflectance models based on the Bouguer-Lambert-Beer law and lack any estimation of model uncertainties. We propose an optimized model based on Sneed and Hamilton's (2007) approach to estimate water depths in supraglacial lakes and undertake a robust analysis of the errors for the first time. We used atmospherically-corrected data from ASTER and MODIS data as an input to the water-reflectance model. Three physical parameters are needed: namely bed albedo, water attenuation coefficient and reflectance of optically-deep water. These parameters were derived for each wavelength using standard calibrations. As a reference dataset, we obtained lake geometries using ICESat measurements over empty lakes. Differences between modeled and reference depths are used in a minimization model to obtain parameters for the water-reflectance model, yielding optimized lake depth estimates. Our key contribution is the development of a Monte Carlo simulation to run the water-reflectance model, which allows us to quantify the uncertainties in water depth and hence water volume. This robust statistical analysis provides better understanding of the sensitivity of the water-reflectance model to the choice of input parameters, which should contribute to the understanding of the influence of surface-derived melt-water on ice sheet dynamics. Sneed, W.A. and Hamilton, G.S., 2007: Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34, 1-4.

  4. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria

    2016-08-01

    The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in mid-depth (1-2 km) cores of the eastern equatorial Pacific (EEP) which may suggest a stronger influence of NPDW return flow to the core sites and decreased local input in the EEP. Taken together, our Nd records do not support a dynamically slower glacial Pacific overturning circulation, and imply that the increased carbon inventory of Pacific deep water might be due to poor high latitude air-sea exchange and increased biological pump efficiency in glacial times.

  5. Flooding in the middle Koyukuk River basin, Alaska, August 1994

    USGS Publications Warehouse

    Meyer, David F.

    1995-01-01

    During August 1994, a flood on the Koyukuk River, Alaska, inundated the villages of Allakaket and Alatna and parts of Hughes. Topographic maps of the inundated areas, showing peak water-surface elevations and depths of water, indicate that flooding ranged from 2 to more than 10 feet deep in Allakaket, from 8 to more than 10 feet deep in Alatna, and from 0 to more than 10 feet deep in Hughes. Severe damage to buildings occurred in Allakaket and Alatna; minor damage occurred in Hughes, although some homes were irreparably damaged by inundation. Between the mouth of the Kanuti River, about 10 miles downstream from Allakaket, to Hughes, the peak discharge was about 330,000 cubic feet per second. A flow of that magnitude at Hughes has an annual probability of occurrence of 1 percent.

  6. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water habitat sites, relatively few fish entered them and the median time fish spent within a given site was less than 1.4 h. Fish located by mobile tracking away from study sites were pelagically oriented, and generally not found over shallow water or close to shore. The findings in this report: (1) support the selection of natural fall Chinook subyearlings as the indicator group for determining the potential benefits of using dredge spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., < 6 m deep) warrants reconsideration, and (5) provide guidance for when to dredge and create shallow water habitat. Future research on habitat preference, feeding ecology, the food web, and intra-specific competition would help to better inform the long-term management plan.

  7. Ancient origin of the modern deep-sea fauna.

    PubMed

    Thuy, Ben; Gale, Andy S; Kroh, Andreas; Kucera, Michal; Numberger-Thuy, Lea D; Reich, Mike; Stöhr, Sabine

    2012-01-01

    The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000-1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales.

  8. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida)

    PubMed Central

    2010-01-01

    Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida). PMID:21167065

  9. Experimental investigation of the Peregrine Breather of gravity waves on finite water depth

    NASA Astrophysics Data System (ADS)

    Dong, G.; Liao, B.; Ma, Y.; Perlin, M.

    2018-06-01

    A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.

  10. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  11. Deep water recycling through time.

    PubMed

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

  12. Shallow peatland ecohydrology - the control of peat depth on moss productivity

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.

  13. Light field and water clarity simulation of natural environments in laboratory conditions

    NASA Astrophysics Data System (ADS)

    Pe'eri, Shachak; Shwaery, Glenn

    2012-06-01

    Simulation of natural oceanic conditions in a laboratory setting is a challenging task, especially when that environment can be miles away. We present an attempt to replicate the solar radiation expected at different latitudes with varying water clarity conditions up to 30 m in depth using a 2.5 m deep engineering tank at the University of New Hampshire. The goals of the study were: 1) to configure an underwater light source that produced an irradiance spectrum similar to natural daylight with the sun at zenith and at 60° under clear atmospheric conditions, and 2) to monitor water clarity as a function of depth. Irradiance was measured using a spectra-radiometer with a cosine receiver to analyze the output spectrum of submersed lamps as a function of distance. In addition, an underwater reflection method was developed to measure the diffuse attenuation coefficient in real time. Two water clarity types were characterized, clear waters representing deep, open-ocean conditions, and murky waters representing littoral environments. Results showed good correlation between the irradiance measured at 400 nm to 600 nm and the natural daylight spectrum at 3 m from the light source. This can be considered the water surface conditions reference. Using these methodologies in a controlled laboratory setting, we are able to replicate illumination and water conditions to study the physical, chemical and biological processes on natural and man-made objects and/or systems in simulated, varied geographic locations and environments.

  14. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  15. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2015-09-30

    dispersion of received signals with measured range. Two broad classes of calls are to be examined: deep-diving odontocetes such as sperm and potentially...comparison with satellite-tag positions (for sperm whales) or by comparison with ranges obtained via large-aperture vertical array techniques (for...depredating sperm whales, three of which had been tagged by satellite tags just before the deployment. Location fixes from the satellite tags are used to

  16. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    PubMed

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity resistances. Such a programme with field and laboratory evaluation at the outset will speed up delivery of varieties with improved root systems for higher yield.

  17. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.

  18. Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region

    NASA Astrophysics Data System (ADS)

    Nazarieh, F.; Ansari, H.; Ziaei, A. N.; Izady, A.; Davari, K.; Brunner, P.

    2018-05-01

    The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.

  19. Magma Transport from Deep to Shallow Crust and Eruption

    NASA Astrophysics Data System (ADS)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  20. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    USGS Publications Warehouse

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca

  1. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.

  2. Leaching of pesticides from biobeds: effect of biobed depth and water loading.

    PubMed

    Fogg, Paul; Boxall, Alistair B A; Walker, Allan; Jukes, Andrew

    2004-10-06

    Pesticides may be released to farmyard surfaces as a result of spillages, leakages, and the decontamination of tractors and sprayers. Biobeds can be used to intercept and treat contaminated runoff, thus minimizing losses to the environment. Previous studies using lined and unlined biobeds showed that water management was the limiting factor for both systems. While lined biobeds effectively retained pesticides, the system rapidly became water logged and degradation was slow. Studies using unlined biobeds showed that >99% of the applied pesticides were removed by the system, with a significant proportion degraded within 9 months. However, peak concentrations of certain pesticides (Koc < 125) were unacceptable to the regulatory authorities. These experiments were designed to optimize the design and management of unlined biobeds. Experiments performed to investigate the relationship between biobed depth and water loading showed that biobeds need to have a minimum depth of 1-1.5 m. The surface area dimension of the biobed depends on the water loading, which is controlled by the nature and frequency of pesticide handling activities on the farm. Leaching losses of all but the most mobile (Koc < 15) pesticides were <0.32% of the applied dose from 1.5 m deep biobeds subject to a water loading of 1175 L m(-2). These were reduced to <0.06% when a water loading of 688 L m(-2) was applied and down to <0.0001% for a water loading of 202 L m(-2). On the basis of these data, a 1.5 m deep biobed, subject to a maximum water loading of 1121 L m(-2) and with a surface area of 40 m(2) should be able to treat < or =44000 L of pesticide waste and washings such that the average concentration of all pesticides, other than those classified as very mobile, does not exceed 5 microg L(-1). This level of treatment can be improved by further reduction in the hydraulic loading.

  3. Some new cave diving exploration results from Croatian karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Davor; Garasic, Mladen

    2017-04-01

    In the recent years, several international cave diving expeditions took place in the Dinaric karst of Croatia. The objectives were conducting a new research of previously known karstic springs and also exploring new ones. The deepest karst cave in Croatia filled with water is Crveno jezero (lake) near Imotski town, with water depth of 281 meters and total cave depth of 528 meters. Volume of water in this cave is about 16 millions m3. Diving expeditions were held in 1997 and 1998.The deepest karst spring in the Dinaric karst of Croatia is Vrelo of Una River (with max discharge about 100 m3/s), where divers measured depth of -248 meters. Explorations were made in 2007 and 2016. Sinac spring in Pla\\vsko Polje has been dived to the depth of -203 meters. Cave diving was done in 1984, 1999, 2003, 2007 - 2016. Furthermore, very popular springs of the river Kupa (-155 m) in Gorski Kotar (explored since1995 till 2015), river Gacka (-105 in depth, 1150m in length) in Lika, explored from 1992 to 2016, river Cetina (-110 m in depth, 1300 m in length), cave diving explored from 2000 to 2016 in the Dalmatinska Zagora, Rumin Veliki spring (- 150 m in depth) in the Sinjska Krajina (explored and dived in 2006 and 2010), than rivers Krnjeza and Krupa in Ravni kotari with diving depths of over 100 meters (in 2004 and 2005) and so on. Along the Adriatic coast in Croatia there are many deep and long submarine springs (vrulje), ie. caves under seawater springs. called - vruljas for example Vrulja Zecica with over 900 meters ine length and Vrulja Modrič with completely flooded cave channels that extend over 2300 meters in length. Cave diving was conducted from 2010 to 2016. Vrulja Dubci is also worth mentioning (dived and explored in 2000), 161 meters deep and so on. Tectonic activity plays a dominant role in the creation and function of these caves. Geological, hydrogeological and lithostratigraphic conditions are also very important in speleogenesis of these caves in Croatian karst system.

  4. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    NASA Astrophysics Data System (ADS)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  5. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  6. Earth observations taken by the STS-112 crew

    NASA Image and Video Library

    2002-10-10

    STS112-705-011 (7-18 October 2002) --- The light-blue region in the middle of this view, photographed from the Space Shuttle Atlantis, is the shallow flat platform known as the Great Bahama Bank. The platform is covered by less than 100 feet of water. Andros Island, the biggest island in the Bahamas chain, is the highest part of this platform and appears partly under cloud cover in the center of the view. The edges of the platform are steep, dropping off thousands of feet into the ocean depths, the deepest water indicated by deep blues. The 50-mile-wide Strait of Florida is the deep water along the left and lower sides of the view. The Key Largo part of the Florida Peninsula appears in the extreme lower left.

  7. The intensification of deep-water mass changes in the deep Atlantic Ocean throughout the Mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Billups, K.

    2012-12-01

    We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).

  8. Variations in Soil Carbon and Nitrogen Stocks of Deep Profile Following Re-vegetation along Precipitation Gradient in the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Tuo, D.; Gao, G.; Fu, B.

    2017-12-01

    Precipitation is one of the most important limit factor affect soil organic carbon (SOC) and total nitrogen (TN) following re-vegetation; however, the effect of precipitation on the C and N cycling in deep soils is poorly understood. This study was designed to measure SOC and TN stocks and C/N ratio to a depth of 300 cm following re-vegetation along a precipitation gradient (280 to 540 mm yr-1) on the Loess Plateau of China. The results showed that the relationship of soil C-N coupling after cropland abandoned was related to mean annual precipitation (MAP) and soil depth. SOC and TN stocks in the shallow layers of 0-100 cm were 3.8 and 0.41 kg m-2, respectively, and that in the deep layers of 100-300 cm can represent about 62.7-72.5% and 60.2-88.7% to a depth of 0-300 cm, respectively. Positive linearly relationships were obtained between MAP and SOC and TN stocks at most soil layers of 0-300 cm (p < 0.05). The relationships between the MAP and changes of SOC and TN stocks following short-term restoration were highly dependent on soil depth. Changes of SOC and TN stocks after re-vegetation in shallow soils (0-100 cm) were gaining at regional scale, but in deep soils (100-300 cm), which were losing at wetter sites (MAP > 400 mm). The initial soil C loss may be attributed to greater C decomposition and lower belowground C input. The change of C/N ratio had significantly negatively correlation with MAP in each soil depth, except for 0-20 cm, indicating the effect of soil N on C accumulation is higher at drier areas rather than wetter sites. Based on the investigated factors, precipitation, soil water and clay had a dominant control over the spatial distribution of SOC, TN and C/N ratio to a 300 cm soil depth. This information is helpful our understanding of the dynamics of soil C and N of deep soils following re-vegetation in the semiarid regions.

  9. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koenig, Samuel; Fernández, Pilar; Company, Joan B.; Huertas, David; Solé, Montserrat

    2013-11-01

    Due to their geomorphological structure and proximity to the coastline, submarine canyons may act as natural conduit routes for anthropogenic contaminants that are transported from surface waters to the deep-sea. Organisms dwelling in these canyon environments might thus be at risk of experiencing adverse health effects due to higher pollution exposure. To address this question, chemical and biochemical analyses were conducted on two of the most abundant deep-sea fish species in the study area, namely Alepocephalus rostratus and Lepidion lepidion, and the most abundant deep-sea commercial decapod crustacean Aristeus antennatus sampled inside Blanes canyon (BC) and on the adjacent open slope (OS). Persistent organic pollutants (POPs) levels, including polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and derivatives, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were determined in muscle tissue of selected samples from 900 m and 1500 m depth. Potential effects resulting from contaminant exposure were determined using hepatic biomarkers such as ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-deethylase (PROD), catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX), glutathione reductase (GR) and superoxide-dismutase (SOD) enzyme activities and lipid peroxidation levels (LP). L. lepidion and A. antennatus tissues exhibited higher POP levels inside BC compared to the OS at 900 m depth. These findings were consistent with biomarker data (i.e. enzymatic response to presence of contaminant agents). Elevated xenobiotic-metabolizing (EROD and PROD) and antioxidant enzymes (CAT and GPX) indicated higher contaminant exposure in both species caught within BC. No difference in POP accumulation between sites was observed in L. lepidion at 1500 m depth, nor in biomarker data, suggesting that the pollution gradient was less pronounced at greater depths. This trend was further corroborated by the results obtained for A. rostratus at 1500 m depth. Hence, the present findings suggest the, at least temporary, existence of a pollution gradient between Blanes canyon and the open slope at shallower depths and this resulted in alterations of the physiology of deep-sea organisms dwelling within this area.

  10. Deep oceans may acidify faster than anticipated due to global warming

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  11. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  12. Vertical ecology of the pelagic ocean: classical patterns and new perspectives.

    PubMed

    Sutton, T T

    2013-12-01

    Applications of acoustic and optical sensing and intensive, discrete-depth sampling, in concert with collaborative international research programmes, have substantially advanced knowledge of pelagic ecosystems in the 17 years since the 1996 Deepwater Fishes Symposium of the Fisheries Society of the British Isles. Although the epipelagic habitat is the best-known, and remote sensing and high-resolution modelling allow near-synoptic investigation of upper layer biophysical dynamics, ecological studies within the mesopelagic and deep-demersal habitats have begun to link lower and upper trophic level processes. Bathypelagic taxonomic inventories are far from complete, but recent projects (e.g. MAR-ECO and CMarZ, supported by the Census of Marine Life programme) have quantitatively strengthened distribution patterns previously described for fishes and have provided new perspectives. Synthesis of net and acoustic studies suggests that the biomass of deep-pelagic fishes may be two to three orders of magnitude greater than the total global commercial fisheries landings. Discrete-depth net sampling has revealed relatively high pelagic fish biomass below 1000 m in some regions, and that gelatinous zooplankton may be key energy vectors for deep-pelagic fish production. Lastly, perhaps, the most substantive paradigm shift is that vertical connectivity among fishes across classical depth zones is prevalent- suggesting that a whole-water column approach is warranted for deep ocean conservation and management. © 2013 The Fisheries Society of the British Isles.

  13. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    NASA Astrophysics Data System (ADS)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening of pore waters in continental margin settings has been reported in association with dissociating gas hydrate deposits (Hesse, 2003), but neither seismic profiles nor sediment records showed any indications for the presence of gas hydrates at the Gulf of Alaska sites. An alternative and intriguing explanation for these almost brackish waters in the glaciomarine shelf and slope deposits is the presence of glacial meltwater that could either be "fossil" (stored in the glaciomarine sediments since the last glacial termination) or "recent" (i.e., actively flowing from currently melting glaciers of the St. Elias Mountain Range along permeable layers within the shelf deposits). As these relatively fresh waters are found at three distinct drill sites, it can be assumed that they are distributed all along the Gulf of Alaska shelf and slope, and similar findings have been reported at other glaciated continental margins, e.g., off East Greenland (DeFoor et al., 2011) and Antarctica (Mann and Gieskes, 1975; Chambers, 1991; Lu et al., 2010). While a recent review has highlighted the importance of fresh and brackish water reservoirs in continental shelf deposits worldwide (Post et al., 2013), we suggest that climatic and depositional processes affecting glaciated continental margins (e.g., the release of huge amounts of fresh water from ice sheets and glaciers during glacial terminations, and the rapid deposition of unconsolidated sediments on the adjacent shelf) are particularly favourable for the storage and/or flow of meltwater below the present sea floor. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 1769-1773. Chambers SR (1991) Solute distributions and stable isotope chemistry of interstitial waters from Prydz Bay, Antarctica. Proceedings of the Ocean Drilling Program 119, 375-392. DeFoor W, Person M, Larsen HC, Lizarralde D, Cohen D, Dugam B (2011) Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resources Research 47, W07549. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Science Reviews 61, 149-179. Lu Z, Rickaby REM, Wellner J, Georg B, Charnley N, Anderson JB, Hensen C (2010) Pore fluid modeling approach to identify recent meltwater signals on the West Antarctic Peninsula. Geochemistry, Geophysics, Geosystems 11, doi: 10.1029/2009GC002949. Mann R, Gieskes JM (1975) Interstitial water studies, Leg 28. Deep Sea Drilling Project Initial Reports 28, 805-814. Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds M (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71-78.

  14. Slowing of the Atlantic meridional overturning circulation at 25 degrees N.

    PubMed

    Bryden, Harry L; Longworth, Hannah R; Cunningham, Stuart A

    2005-12-01

    The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.

  15. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    PubMed

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  16. Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites

    NASA Astrophysics Data System (ADS)

    Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.

    2003-12-01

    We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.

  17. Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico

    PubMed Central

    Pierce, Simon J.; Humphries, Nicolas E.; Sims, David W.

    2017-01-01

    Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14–134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity. PMID:28484673

  18. Distribution and Downward Movement of Pasteuria penetrans in Field Soil.

    PubMed

    Cetintas, R; Dickson, D W

    2005-06-01

    Endospores of Pasteuria penetrans were evaluated for their vertical distribution in field soil and their downward movement through soil in the laboratory. In the field trial, the number of endospores attached to second-stage juveniles (J2) of Meloidogyne arenaria race 1 varied greatly in different soil depths. There were higher percentages of J2 with endospores attached in former weed fallow plots during the first 3 years of growing peanut than in former bahiagrass and rhizomal peanut plots (P 0.05). In laboratory trials, P. penetrans endospores were observed to move throughout the soil through the percolation of water. After one application of water, some endospores were detected 25 to 37.5 cm deep. Endospores were present at the greatest depth, 37.5 to 50 cm, after the third application of water. These results indicate that rain or water applications by irrigation are likely to move endospores to deeper levels of the soil, but the majority of endospores remain in the upper 0-to-30-cm depth.

  19. Trimethylamine oxide accumulation as a function of depth in Hawaiian mid-water fishes

    NASA Astrophysics Data System (ADS)

    Bockus, Abigail B.; Seibel, Brad A.

    2016-06-01

    Trimethylamine oxide (TMAO) is a common osmolyte and counteracting solute. It is believed to combat the denaturation induced by hydrostatic pressure as some deep-sea animals contain higher TMAO levels than their shallow water counterparts. It has also been proposed that TMAO may accumulate passively during lipid storage resulting in a correlation between lipid content and TMAO levels in some groups. Previous research showed that lipid content decreased with depth in species of Hawaiian fishes presenting a novel test of these competing hypotheses. TMAO ranged from 20.4 to 92.8 mmol/kg. Lipid content ranged from 0.50 to 4.7% WW. After completing a comprehensive search for depths available in the literature, provided here, we analyzed TMAO and lipid as a function of average, minimum and maximum depth of occurrence for 27 species of fishes from nine orders. We found that TMAO is positively correlated with all measures of habitat depth (hydrostatic pressure) but the relationship is strongest with average depth. We further showed using phylogenetic independent contrasts that this relationship was not influenced by the evolutionary relatedness of these species. Interestingly, we found that lipid content increased with depth, in direct contrast to previous studies. TMAO is thus also positively correlated with lipid content. While we are unable to distinguish between these hypotheses, we show that TMAO is strongly correlated with depth in mid-water fishes.

  20. Ocean water color assessment from ERTS-1 RBV and MSS imagery

    NASA Technical Reports Server (NTRS)

    Ross, D. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photo-optical and electronic density slicing were applied to ERTS-1 E 1007-151651-4, 30 July 1972, an area in the Caribbean showing deep ocean water, and shallow areas on the Great Baham Bank ranging from 0.5 meter or less to 18 meters. The density slicing processes were adjusted to correlate water radiance to bathmetric contours shown on C and GS Chart 1112. A number of large areas corresponding to water depths of 2 meters or less, 5 to 10 meters, and 10 to about 20 meters were isolated by both processes. Where clear water and uniformly reflective bottom was found, clear of marine growths, the photo-optical and electronic image density slicing processes proved effective in delineating areas where the depth was in the order of 5 meters, plus or minus 1 meter.

Top