DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Jimmy
2014-05-31
In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meantmore » to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.« less
Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example
NASA Astrophysics Data System (ADS)
Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing
2017-11-01
Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.
Water Treatment Technology - Wells.
ERIC Educational Resources Information Center
Ross-Harrington, Melinda; Kincaid, G. David
One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…
The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology
2015-09-30
localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored
NASA Astrophysics Data System (ADS)
Sant, T.; Buhagiar, D.; Farrugia, R. N.
2014-06-01
A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.
Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure
Scoma, Alberto; Yakimov, Michail M.; Boon, Nico
2016-01-01
The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290
Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouratiadou, I.; Bevione, M.; Bijl, D. L.
This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures onmore » the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.« less
Clean subglacial access: prospects for future deep hot-water drilling
Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John
2016-01-01
Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913
Model-Based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, Elizabeth M.; Moore, David Roger; Li, Li
Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site andmore » a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to FF-MVR. High pressure reverse osmosis was found to a be a promising alternative desalination technology. A deep-dive technoeconomic analysis of HPRO was performed, including Capex and Opex estimates, for seawater RO (SWRO). Additionally, two additional cases were explored: 1) a comparison of a SWRO plus HPRO system to the option of doubling the size of a standard seawater RO system to achieve the same total pure water recovery rate; and 2) a flue gas desulfurization wastewater treatment zero-liquid discharge (ZLD) application, where preconcentration with RO (SWRO or SWRO + HPRO) before evaporation and crystallization was compared to FF-MVR and crystallization technologies without RO preconcentration. Pre-pilot process validation Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Smaller quantities were processed through microclarification. In addition, analytical methods (purge-and-trap gas chromatography and Hach TOC analytical methods) were validated. Lab-scale HPRO elements were constructed and tested at high pressures, to identify and mitigate technical risks of the technology. Lastly, improvements in RO membrane materials were identified as the necessary next step to achieve further improvement in element performance at high pressure. Scope of Field Pilot A field pilot for extracted water pretreatment was designed.« less
Using a Water Purification Activity to Teach the Philosophy and Nature of Technology
ERIC Educational Resources Information Center
Kruse, Jerrid; Wilcox, Jesse
2017-01-01
Next Generation Science Standards (NGSS), with new emphasis on engineering, reflects broadening definitions of scientific and technological literacy. However, engaging in science and engineering practices is necessary, but insufficient, for developing technological literacy. Just as robust scientific literacy includes a deep understanding of the…
Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers
NASA Astrophysics Data System (ADS)
Zoccarato, Luca; Pallavicini, Alberto; Cerino, Federica; Fonda Umani, Serena; Celussi, Mauro
2016-12-01
Deep-sea environments host the largest pool of microbes and represent the last largely unexplored and poorly known ecosystems on Earth. The Ross Sea is characterized by unique oceanographic dynamics and harbors several water masses deeply involved in cooling and ventilation of deep oceans. In this study the V9 region of the 18S rDNA was targeted and sequenced with the Ion Torrent high-throughput sequencing technology to unveil differences in protist communities (>2 μm) correlated with biogeochemical properties of the water masses. The analyzed samples were significantly different in terms of environmental parameters and community composition outlining significant structuring effects of temperature and salinity. Overall, Alveolata (especially Dinophyta), Stramenopiles and Excavata groups dominated mesopelagic and bathypelagic layers, and protist communities were shaped according to the biogeochemistry of the water masses (advection effect and mixing events). Newly-formed High Salinity Shelf Water (HSSW) was characterized by high relative abundance of phototrophic organisms that bloom at the surface during the austral summer. Oxygen-depleted Circumpolar Deep Water (CDW) showed higher abundance of Excavata, common bacterivores in deep water masses. At the shelf-break, Antarctic Bottom Water (AABW), formed by the entrainment of shelf waters in CDW, maintained the eukaryotic genetic signature typical of both parental water masses.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Advisory Board can be found at the EPA SAB Web site at http://www.epa.gov/sab . SUPPLEMENTARY INFORMATION..., and human health effects. The Deep Water Horizon spill identified the need for additional research on alternative spill response technologies; environmental impacts of chemical dispersants under deep sea...
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
NASA Astrophysics Data System (ADS)
Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.
1997-09-01
Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.
Deep Aquifer Remediation Tools (DARTs): A new technology for ground-water remediation
Naftz, David L.; Davis, James A.
1999-01-01
Potable ground-water supplies throughout the world are contaminated or threatened by advancing plumes containing radionuclides, metals, and organic compounds. Currently (1999), the most widely used method of ground-water remediation is a combination of extraction, ex-situ treatment, and discharge of the treated water, commonly known as pump and treat. Pump-and-treat methods are costly and often ineffective in meeting long-term protection standards (Travis and Doty, 1990; Gillham and Burris, 1992; National Research Council, 1994). This fact sheet describes a new and potentially cost-effective technology for removal of organic and inorganic contaminants from ground water. The U.S. Geological Survey (USGS) is currently exploring the possibilities of obtaining a U.S. Patent for this technology.
USGS advances in integrated, high-resolution sea-floor mapping: inner continental shelf to estuaries
Denny, J.F.; Schwab, W.C.; Twichell, D.C.; O'Brien, T.F.; Danforth, W.W.; Foster, D.S.; Bergeron, E.; Worley, C.W.; Irwin, B.J.; Butman, B.; Valentine, P.C.; Baldwin, W.E.; Morton, R.A.; Thieler, E.R.; Nichols, D.R.; Andrews, B.D.
2007-01-01
The U.S. Geological Survey (USGS) has been involved in geological mapping of the sea floor for the past thirty years. Early geophysical and acoustic mapping efforts using GLORIA (Geologic LOng Range Inclined ASDIC) a long-range sidescan-sonar system, provided broad-scale imagery of deep waters within the U.S. Exclusive Economic Zone (EEZ). In the early 1990's, research emphasis shifted from deep- to shallow-water environments to address pertinent coastal research and resource management issues. Use of shallow-water, high-resolution geophysical systems has enhanced our understanding of the processes shaping shallow marine environments. However, research within these shallow-water environments continues to present technological challenges.
NASA Astrophysics Data System (ADS)
Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.
2007-12-01
Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries shed new light on the nature of volcanic and hydrothermal processes in the Arctic basin, and also demonstrate the importance of new technologies for advancing science beneath ice-covered oceans. Operationally, the AUV missions pushed the envelope of deep-sea technology. The recoveries were particularly difficult as it was necessary to have the vehicle find small pools of open water next to the ship, but in some cases the ice was in a state of regional compression such that no open water could be found or created. In these cases a well-calibrated, ship-based, short-baseline acoustic system was essential for successful vehicle recoveries. In all we were able to achieve a variety of operational and technological advances that provide stepping stones for future under-ice robotic missions, both on Earth and perhaps eventually on Europa.
Dive Europa: a search-for-life initiative.
Naganuma, T; Uematsu, H
1998-06-01
Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.
NASA Astrophysics Data System (ADS)
Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists
2016-06-01
The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.
Determining Changes in Groundwater Quality during Managed Aquifer Recharge
NASA Astrophysics Data System (ADS)
Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.
2016-12-01
Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.
Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris
2017-10-01
Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that affect growth and/or reproductive output, potentially impacting fecundity and/or offspring fitness, and thus influencing source-sink dynamics and persistence of wider deep-sea populations. Copyright © 2017 Elsevier B.V. All rights reserved.
Brown, Alastair; Thatje, Sven; Hauton, Chris
2017-09-05
Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.
Risk Assessment of Arsenic Mitigation Options in Bangladesh
Ahmed, M. Feroze; Shamsuddin, Abu Jafar; Mahmud, Shamsul Gafur; Deere, Daniel
2006-01-01
The provision of alternative water sources is the principal arsenic mitigation strategy in Bangladesh, but can lead to risk substitution. A study of arsenic mitigation options was undertaken to assess water quality and sanitary condition and to estimate the burden of disease associated with each technology in disability-adjusted life years (DALYs). Dugwells and pond-sand filters showed heavy microbial contamination in both dry and monsoon seasons, and the estimated burden of disease was high. Rainwater was of good quality in the monsoon but deteriorated in the dry season. Deep tubewells showed microbial contamination in the monsoon but not in the dry season and was the only technology to approach the World Health Organization's reference level of risk of 10-6 DALYs. A few dugwells and one pond-sand filter showed arsenic in excess of 50 μg/L. The findings suggest that deep tubewells and rainwater harvesting provide safer water than dugwells and pond-sand filters and should be the preferred options. PMID:17366776
NASA Astrophysics Data System (ADS)
Wang, Hua
2018-02-01
In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.
Deep-sea geohazards in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Shiguo; Wang, Dawei; Völker, David
2018-02-01
Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.
NASA Astrophysics Data System (ADS)
Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.
2011-12-01
Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of deep-water ecosystems and bottom currents confirm the need for this field to be investigated and mapped in detail. Likewise, it is confirmed that deep-water contourites are not only of academic interest but also potential resources of economic value. Cumulatively, both the congress and the present volume serve to demonstrate that the role of bottom currents in shaping the seafloor has to date been generally underestimated, and that our understanding of such systems is still in its infancy. Future research on contourites, using new and more advanced techniques, should focus on a more detailed visualization of water-mass circulation and its variability, in order to decipher the physical processes involved and the associations between drifts and other common bedforms. Moreover, contourite facies models should be better established, including their associations with other deep-water sedimentary environments both in modern and ancient submarine domains. The rapid increase in deep-water exploration and the new deep-water technologies available to the oil industry and academic institutions will undoubtedly lead to spectacular advances in contourite research in terms of processes, morphology, sediment stacking patterns, facies, and their relationships with other deep-marine depositional systems.
Sustainable Life on the Blue Frontier
NASA Astrophysics Data System (ADS)
Helvarg, D.
2002-05-01
Environmental trends such as declining sources of potable fresh-water and the recognized need to restore and give full economic value to natural water recharging services derived from watersheds, forests, wetlands, etc. pose global security issues. Fifty years ago top White House Science and technology advisors saw the solution to future water shortages, not in water conservation but rather in building a series of nuclear powered desalination plants along America's shorelines. This reflected the popular belief that we could compensate for any land-based resource shortfalls in protein, energy and fresh water by turning to the seas, while also using these same waters as dumping sites for our wastes and toxins. The world's largest habitat, the deep seas, are threatened by commercial trawling and deep-drilling for oil and gas, as well as revived interest in deep ocean mineral mining. The collapse of global fisheries suggests a need for restoration of marine wildlife and limited sustainable wild harvests (from a vastly decapitalized fishing fleet) combined with sustainable forms of aquaculture. Ocean mineral mining has proven environmental risks, and we have now begun the shift to mineral substitution using various composites and petrochemical derivatives. My old metal bathtub for example, rather than being replaced, was recently covered with a plastic liner, extending its life for years to come. This would suggest that petroleum is far too valuable a substance needed for the manufacture of things like sailcloth and hot-tubs, to be frittered away as a (climate altering) fuel. Deep ocean drilling technology in the Gulf of Mexico and elsewhere is extending projected oil resources even as it creates new and unmanageable risks both to climate and to the marine environment (as does oil industry interest in mining methane hydrates from the abyssal depths). The role of whale oil in the US economy of the 1850s (as the lubricant of the machine age) and "rock oil" (petroleum) in the 1950s suggest we now have the technological capacity for a new energy transition to non-carbon systems including photovoltaics, wind-turbines, biofuels and hydrogen fuel-cells. A (largely) hydrogen based economy could also lead to a decentralized power grid less vulnerable to terrorism and the increased natural disasters we can expect in the coming greenhouse century. Sustainable development of limited resources and the shift to renewable forms of agriculture, water-planning, energy and other technologies will ultimately depend not simply on earth science, but on a highly political process which will (hopefully) combine the best-available science, and society's values to determine public policy that benefits the long-term interests of our blue planet's varied residents, recognizing that our economy is a fully owned subsidiary of our environment.
Xu, Peng-cheng; Hao, Rui-xia; Zhang, Ya; Wang, Dong-yue; Zhong, Li-yan; Xu, Hao-dan
2016-02-15
In order to investigate the feasibility of deep denitrification and simultaneous removing phthalate esters (PAEs) in the process of reclaimed water treatment uses three-dimensional biofilm-electrode reactor coupled with sulfur autotrophic deep denitrification technology (3BER-S), the technological characteristics and mechanisms were analyzed based on determining the static adsorption capacity of biofilm cultured active carbon fillers in 3BER-S reactor together with the operation results of dynamic denitrification and simultaneous PAEs removing. The results showed that the average adsorption rates of DBP, DEHP were 85.84% and 97.12% in the biofilm cultured active carbon fillers, the equilibrium adsorption capacities were 0.1426 mg x g(-1) and 0.162 mg(-1) and the time spans of reaching adsorption saturation were 120 min and 60 min, respectively; The existence of PAEs had no obvious effect on denitrification, the reactor effluent concentration of TN was in range of 1-2 mg x L(-1) before and after the addition of PAEs, and the average removal rate of TN reached above 94%; 3BER-S denitrification system showed significant ability in removing PAEs, leading to effluent concentrations of DBP and DEHP of no more than 6 microg x L(-1) with removal rates of above 96%; this was due to the synergistic effect of absorption, biodegradation and electrochemistry. After treatment with 3BER-S technology, DBP and DEHP in simulative municipal secondary effluent met the regulated limitation of The Reuse of Urban Recycling Water Quality Standard for Groundwater Recharge (GB/T 19772-2005).
International Collaboration on Offshore Wind Energy Under IEA Annex XXIII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musial, W.; Butterfield, S.; Lemming, J.
This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.
Technological challenges for hydrocarbon production in the Barents Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudmestad, O.T.; Strass, P.
1995-02-01
Technological challenges for hydrocarbon production in the Barents Sea relate mainly to the climatic conditions (ice and icebergs), to the relatively deep water of the area, and to the distance to the market for transportation of gas. It is suggested that environmental conditions must be carefully mapped over a sufficiently long period to get reliable statistics for the area.
How to study deep roots—and why it matters
Maeght, Jean-Luc; Rewald, Boris; Pierret, Alain
2013-01-01
The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques. PMID:23964281
Water vapor radiometry research and development phase
NASA Technical Reports Server (NTRS)
Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.
1985-01-01
This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.
NASA Astrophysics Data System (ADS)
Zhen, Xing-wei; Huang, Yi
2017-10-01
This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.
Summaries of reports from the Congressional office of technology assessment
NASA Astrophysics Data System (ADS)
1985-11-01
A summary of reports from the Congressional office of technology assessment on the following topics is presented. (1) Residential Energy Conservation, 1979 (2) Energy Efficiency of Buildings in Cities, 1982 (3)Industrial Energy Use, 1983 (4)Increased Automobiles fuel efficiency and synthetic fuels, 1982. (5)U.S. Vulnerability to an oil import curtailment: The oil Replacement Capability, 1984. (6)Oil and Gas Technologies for the Arctic and Deep water, 1985. (7)Acid Rain and Transport Air pollutants: Implications for Public Policy. (AIP)
Lonely GPFUTV-the movement of water under the action of unknown vacuum
NASA Astrophysics Data System (ADS)
Lin, Weiyi
2013-11-01
In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. The experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under the joint action of an unknown vacuum energy and the formation of non-aerated flow the water flow is full-pipe and continuous, high-speed and non-rotational as distinguished from turbulent flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, experimental study of Torricelli's experiment phenomenon in the vacuum environment, applied study of the potential for GPFUTV to be developed for deep seawater suction technology and lifting technology for deep ocean mining, theoretical study of flow stability and flow resistance under GPFUTV condition, etc. At last, the famous GPFUTV project is illustrated. 12 years of rigorous and independent survey research.
NASA Astrophysics Data System (ADS)
Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei
2017-12-01
The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.
Deepwater seismic acquisition technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, J.
1996-09-01
Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are somemore » new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.« less
A tracer study of the deep water renewal in the European polar seas
NASA Astrophysics Data System (ADS)
Heinze, Ch.; Schlosser, P.; Koltermann, K. P.; Meincke, J.
1990-09-01
A study of the deep water renewal in the European polar seas (Norwegian Sea, Greenland Sea and Eurasian Basin) based on the distribution of tritium ( 3H), 3He, chlorofluoromethane (F-11 = CCL 3F), salinity and potential temperature is presented. Four different versions of a kinematic box model calibrated with the tracer data yield production rates and turnover times due to deep convection for Greenland Sea Deep Water (0.47-0.59 Sv, 27-34 y) and Eurasian Basin Deep Water (0.97-1.07 Sv, 83-92 y). Model calculations with different deep advective flow patterns (exchange at equal rates between each of the deep water masses or an internal circuit Eurasian Basin-Greenland Sea-Norwegian Sea-Eurasian Basin) give estimates of the deep horizontal transports, resulting in a turnover time of 13-16 years for Norwegian Sea Deep Water. The total turnover times (convection and deep advection) of the Greenland Sea and the Eurasian Basin are estimated to about 10 and 50 years, respectively. Mean hydrographic characteristics of the source water for Greenland Sea Deep Water and Eurasian Basin Deep Water are estimated from minimization of the deviations between modelled and observed hydrographic deep water values. The fractions of surface waters and intermediate waters making up the deep water of the Greenland Sea are estimated to about 80 and 20%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.
2013-09-01
A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This ismore » an interim report including about 2 years of post-desiccation monitoring data.« less
Deep, diverse and definitely different: unique attributes of the world's largest ecosystem
NASA Astrophysics Data System (ADS)
Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.
2010-04-01
The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust datasets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, is promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop conservation and management options.
Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico
NASA Astrophysics Data System (ADS)
DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.
2016-02-01
The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.
Comet Borrelly Slows Solar Wind
NASA Technical Reports Server (NTRS)
2001-01-01
Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.
Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.Deep, diverse and definitely different: unique attributes of the world's largest ecosystem
NASA Astrophysics Data System (ADS)
Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; de Mol, B.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.
2010-09-01
The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2017-01-01
Deep-space crewed missions will not have regular access to the Earth's resources or the ability to rapidly return to Earth if a system fails. As crewed missions extend farther from Earth for longer periods, habitation systems must become more self-sufficient and reliable for safe, healthy, and sustainable human exploration. For human missions to Mars, Environmental Control and Life Support Systems (ECLSS) must be able operate for up to 1,100 days with minimal spares and consumables. These missions will require capabilities to more fully recycle atmospheric gases and wastewater to substantially reduce mission costs. Even with relatively austere requirements for use, water represents one of the largest consumables by mass. Systems must be available to extract and recycle water from all sources of waste. And given that there will be no opportunity to send samples back to Earth for analysis, analytical measurements will be limited to monitoring hardware brought on board the spacecraft. The Earth Reliant phase of NASA's exploration strategy includes leveraging the International Space Station (ISS) to demonstrate advanced capabilities for a robust and reliable ECLSS. The ISS Water Recovery System (WRS) includes a Urine Processor Assembly (UPA) for distillation and recovery of water from urine and a Water Processor Assembly (WPA) to process humidity condensate and urine distillate into potable water. Possible enhancements to more fully "close the water loop" include recovery of water from waste brines and solid wastes. A possible game changer is the recovery of water from local planetary resources through use of In Situ Resource Utilization (ISRU) technologies. As part of the development and demonstration sequence, NASA intends to utilize cis-Lunar space as a Proving Ground to verify systems for deep space habitation by conducting extended duration missions to validate our readiness for Mars.
Deep Water Cooling | Climate Neutral Research Campuses | NREL
the Cornell website. Additional examples of research campus geothermal cooling projects include Deep Water Cooling Deep Water Cooling Research campuses that are located near a deep lake or deep plan for your research campus. Considerations Sample Project Related Links Deep water cooling involves
Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong
2014-08-01
As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change. The principal drawbacks of deep tubewells are that installation costs are too high for most families to own private wells, and that for various socio-cultural-religious reasons, people are not willing to walk long distances to access communal tubewells. In addition, water sector planners have reservations about greater exploitation of the deep aquifer, out of concern for current or future geogenic contamination. Groundwater models and field studies have shown that in the great majority of the affected areas, the risk of arsenic contamination of deep groundwater is small; salinity, iron, and manganese are more likely to pose problems. These constituents can in some cases be avoided by exploiting an intermediate depth aquifer of good chemical quality, which is hydraulically and geochemically separate from the arsenic-contaminated shallow aquifer. Deep tubewells represent a technically sound option throughout much of the arsenic-affected regions, and future mitigation programs should build on and accelerate construction of deep tubewells. Utilization of deep tubewells, however, could be improved by increasing the tubewell density (which requires stronger financial support) to reduce travel times, by considering water quality in a holistic way, and by accompanying tubewell installation with motivational interventions based on psychological factors. By combining findings from technical and social sciences, the efficiency and success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced. Copyright © 2013 Elsevier B.V. All rights reserved.
Deep Space Habitat ECLSS Design Concept
NASA Technical Reports Server (NTRS)
Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry
2012-01-01
Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.
Deep Space Habitat ECLS Design Concept
NASA Technical Reports Server (NTRS)
Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank
2011-01-01
Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.
Dissolution of methane bubbles with hydrate armoring in deep ocean conditions
NASA Astrophysics Data System (ADS)
Kovalchuk, Margarita; Socolofsky, Scott
2017-11-01
The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.
Davis, Linda C.
2006-01-01
Radiochemical and chemical wastes generated at facilities at the Idaho National Laboratory (INL) were discharged since 1952 to infiltration ponds at the Reactor Technology Complex (RTC) (known as the Test Reactor Area [TRA] until 2005), and the Idaho Nuclear Technology and Engineering Center (INTEC) and buried at the Radioactive Waste Management Complex (RWMC). Disposal of wastewater to infiltration ponds and infiltration of surface water at waste burial sites resulted in formation of perched ground water in basalts and in sedimentary interbeds above the Snake River Plain aquifer. Perched ground water is an integral part of the pathway for waste-constituent migration to the aquifer. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to monitor the movement of radiochemical and chemical constituents in wastewater discharged from facilities to both perched ground water and the aquifer. This report presents an analysis of water-quality and water-level data collected from wells completed in perched ground water at the INL during 1999-2001, and summarizes historical disposal data and water-level-and water-quality trends. At the RTC, tritium, strontium-90, cesium-137, dissolved chromium, chloride, sodium, and sulfate were monitored in shallow and deep perched ground water. In shallow perched ground water, no tritium was detected above the reporting level. In deep perched ground water, tritium concentrations generally decreased or varied randomly during 1999-2001. During October 2001, tritium concentrations ranged from less than the reporting level to 39.4?1.4 picocuries per milliliter (pCi/mL). Reportable concentrations of tritium during July-October 2001 were smaller than the reported concentrations measured during July-December 1998. Tritium concentrations in water from wells at the RTC were likely affected by: well's distance from the radioactive-waste infiltration ponds (commonly referred to as the warm-waste ponds); water depth below the ponds; the amount of tritium discharged to radioactive-waste infiltration ponds in the past; discontinued use of radioactive-waste infiltration ponds; radioactive decay; and dilution from disposal of nonradioactive water. During 1999-2001, the strontium-90 concentrations in two wells completed in shallow perched water near the RTC exceeded the reporting level. Strontium-90 concentrations in water from wells completed in deep perched ground water at the RTC varied randomly with time. During October 2001, concentrations in water from five wells exceeded the reporting level and ranged from 2.8?0.7 picocuries per liter (pCi/L) in well USGS 63 to 83.8?2.1 pCi/L in well USGS 54. No reportable concentrations of cesium-137, chromium-51, or cobalt-60 were present in water samples from any of the shallow or deep wells at the RTC during 1999-2001. Dissolved chromium was not detected in shallow perched ground water at the RTC during 1999-2001. Concentrations of dissolved chromium during July-October 2001 in deep perched ground water near the RTC ranged from 10 micrograms per liter (?g/L) in well USGS 61 to 82 ?g/L in well USGS 55. The largest concentrations were in water from wells north and west of the radioactive-waste infiltration ponds. During July-October 2001, dissolved sodium concentrations ranged from 7 milligrams per liter (mg/L) in well USGS 78 to 20 mg/L in all wells except well USGS 68 (413 mg/L). Dissolved chloride concentrations in shallow perched ground water ranged from 10 mg/L in wells CWP 1, 3, and 4 to 53 mg/L in well TRA A 13 during 1999-2001. Dissolved chloride concentrations in deep perched ground water ranged from 5 mg/L in well USGS 78 to 91 mg/L in well USGS 73. The maximum dissolved sulfate concentration in shallow perched ground water was 419 mg/L in well CWP 1 during July 2000. Concentrations of dissolved sulfate in water from wells USGS 54, 60
1980-12-01
40.8 Sodium 70.1 Zinc 0.01 37 The process includes the following steps (Pichat et al., 1979): - neutralization precipitation (silicates, borates...Compressive Strength of Polyester - Encapsulated Sodium Sulfate Waste Composite ....... .............. 64 9. Deep Chemical Mixer Mounted on a Barge...zinc, copper, lead, manganese and tin; sodium salts of arsenate, borate, phosphate, iodate, and sulfide; and sulfate salts. Sulfate salts form calcium
The deep-sea under global change.
Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Snelgrove, Paul V R
2017-06-05
The deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown. Some deep-sea species have very long life-spans, whereas others can tolerate toxic compounds at high concentrations; these characteristics offer an opportunity to explore the specialized biochemical and physiological mechanisms associated with these responses. Widespread symbiotic relationships play fundamental roles in driving host functions, nutrition, health, and evolution. Deep-sea organisms communicate and interact through sound emissions, chemical signals and bioluminescence. Several giants of the oceans hunt exclusively at depth, and new studies reveal a tight connection between processes in the shallow water and some deep-sea species. Limited biological knowledge of the deep-sea limits our capacity to predict future response of deep-sea organisms subject to increasing human pressure and changing global environmental conditions. Molecular tools, sensor-tagged animals, in situ and laboratory experiments, and new technologies can enable unprecedented advancement of deep-sea biology, and facilitate the sustainable management of deep ocean use under global change. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Boetius, Antje; Haeckel, Matthias
2018-01-01
As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.
DeepSurveyCam--A Deep Ocean Optical Mapping System.
Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens
2016-01-28
Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.
From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors
Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.
2008-01-01
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569
Autonomous gliders reveal features of the water column associated with foraging by adelie penguins.
Kahl, L Alex; Schofield, Oscar; Fraser, William R
2010-12-01
Despite their strong dependence on the pelagic environment, seabirds and other top predators in polar marine ecosystems are generally studied during their reproductive phases in terrestrial environments. As a result, a significant portion of their life history is understudied which in turn has led to limited understanding. Recent advances in autonomous underwater vehicle (AUV) technologies have allowed satellite-tagged Adélie penguins to guide AUV surveys of the marine environment at the Palmer Long-Term Ecological Research (LTER) site on the western Antarctic Peninsula. Near real-time data sent via Iridium satellites from the AUVs to a centralized control center thousands of miles away allowed scientists to adapt AUV sampling strategies to meet the changing conditions of the subsurface. Such AUV data revealed the water masses and fine-scale features associated with Adélie penguin foraging trips. During this study, the maximum concentration of chlorophyll was between 30 and 50 m deep. Encompassing this peak in the chlorophyll concentration, within the water-column, was a mixture of nutrient-laden Upper Circumpolar Deep (UCDW) and western Antarctic Peninsula winter water (WW). Together, data from the AUV survey and penguin dives reveal that 54% of foraging by Adélie penguins occurs immediately below the chlorophyll maximum. These data demonstrate how bringing together emerging technologies, such as AUVs, with established methods such as the radio-tagging of penguins can provide powerful tools for monitoring and hypothesis testing of previously inaccessible ecological processes. Ocean and atmosphere temperatures are expected to continue increasing along the western Antarctic Peninsula, which will undoubtedly affect regional marine ecosystems. New and emerging technologies such as unmanned underwater vehicles and individually mounted satellite tracking devices will provide the tools critical to documenting and understanding the widespread ecological change expected in polar regions.
Human Exploration Missions - Maturing Technologies to Sustain Crews
NASA Technical Reports Server (NTRS)
Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.
2012-01-01
Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.
NASA Astrophysics Data System (ADS)
Lu, G.; Ou, H.; Hu, B. X.; Wang, X.
2017-12-01
This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.
Advanced Technologies to Improve Closure of Life Support Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2016-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
Geothermal Power Generation Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Tonya
2013-12-01
Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Coolingmore » water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use...
Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining
NASA Astrophysics Data System (ADS)
Zhou, Zhi-jin; Yang, Ning; Wang, Zhao
2013-04-01
Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes
Minic, Zoran; Thongbam, Premila D.
2011-01-01
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885
The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.
Minic, Zoran; Thongbam, Premila D
2011-01-01
Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.
Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes
NASA Astrophysics Data System (ADS)
Fink, Gabriel; Wessels, Martin; Wüest, Alfred
2016-09-01
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.
A Modeling Study of Deep Water Renewal in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.
2016-02-01
Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.
Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent
Sapir, Liel; Stanley, Christopher B.; Harries, Daniel
2016-03-10
Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less
Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapir, Liel; Stanley, Christopher B.; Harries, Daniel
Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. In this paper, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure inmore » DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. Finally, the osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.« less
30 CFR 203.1 - What is MMS's authority to grant royalty relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (water less than 400 meters deep) and you produce from an ultra-deep well (top of the perforated interval... less than 400 meters deep and you produce from a deep well (top of the perforated interval is at least... from any lease if: (1) Your lease is in deep water (water at least 200 meters deep); (2) Your lease is...
Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments
Hirai, Miho; Nishi, Shinro; Tsuda, Miwako; Sunamura, Michinari; Takaki, Yoshihiro; Nunoura, Takuro
2017-01-01
Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA. PMID:29187708
Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.
2017-01-01
Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).
Effect of Minerals on Intestinal IgA Production Using Deep Sea Water Drinks.
Shiraishi, Hisashi; Fujino, Maho; Shirakawa, Naoki; Ishida, Nanao; Funato, Hiroki; Hirata, Ayumu; Abe, Noriaki; Iizuka, Michiro; Jobu, Kohei; Yokota, Junko; Miyamura, Mitsuhiko
2017-01-01
Minerals are essential for life, as they are a vital part of protein constituents, enzyme cofactors, and other components in living organisms. Deep sea water is characterized by its cleanliness and stable low temperature, and its possible health- and medical benefits are being studied. However, no study has yet evaluated the physical properties of the numerous commercially available deep sea water products, which have varying water sources and production methods. We analyzed these products' mineral content and investigated their effect on living organism, focusing on immune functions, and investigated the relation between physiological immunoactivities and mineral intake. We qualitatively analyzed the mineral compositions of the deep sea water drinks and evaluated the drinks' physical properties using principal component analysis, a type of multivariate analysis, of their mineral content. We create an iron and copper-deficient rat model and administered deep sea water drinks for 8 weeks. We then measured their fecal immunoglobulin A (IgA) to evaluate immune function. Principal component analysis suggested that physical properties of deep sea water drinks could be determined by their sources. Administration of deep sea water drinks increased fecal IgA, thus tending to stimulate immune function, but the extent of this effect varied by drink. Of the minerals contained in deep sea water, iron showed positive correlations with the fecal IgA. The principal component analysis used in this study is suitable for evaluating deep sea water containing many minerals, and our results form a useful basis for comparative evaluations of deep sea water's bioactivity.
Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation inmore » 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
.... 0910131362-0087-02] RIN 0648-XX33 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the deep-water species... Pacific halibut prohibited species catch (PSC) sideboard limit specified for the deep-water species...
NASA Astrophysics Data System (ADS)
Xu, M.; Zhong, L.; Yang, Y.
2017-12-01
Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.
DeepSurveyCam—A Deep Ocean Optical Mapping System
Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens
2016-01-01
Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
.... 111207737-2141-02] RIN 0648-XC142 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the deep-water species fishery in the GOA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
.... 120918468-3111-02] RIN 0648-XC675 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the deep-water species fishery in the GOA...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... directed fishing for the deep-water species fisheries. DATES: Effective 1200 hrs, Alaska local time (A.l.t.... 0910131362-0087-02] RIN 0648-XX32 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery for...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... directed fishing for the deep-water species fisheries. DATES: Effective 1200 hrs, Alaska local time (A.l.t.... 101126522-0640-02] RIN 0648-XA536 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
.... 0910131362-0087-02] RIN 0648-XW20 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the deep-water species fishery in the GOA...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
.... 111207737-2141-02] RIN 0648-XC001 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the deep-water species fishery in the GOA...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
.... 101126522-0640-02] RIN 0648-XA394 Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species...: NMFS is prohibiting directed fishing for species that comprise the deep-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the deep-water species fishery in the GOA...
Elixir: A history of water and humankind
NASA Astrophysics Data System (ADS)
Lakshmi, Venkat
2012-08-01
The book Elixir: A History of Water and Humankind outlines the role and profound importance of water in human civilizations and tells the story of how the human race came to discover, understand, and harness water for daily use; control it during floods; and store and use it during droughts. Elixir is based on three broad themes outlined in the preface. The first theme is gravity and the fact that humans discovered the role of gravity in the flow of water and used it to their advantage, whether to store water, divert it for agriculture, or move it away from their homes in the case of floods. The second theme is the connection between water and religious practices followed by humans over the course of history. The book discusses the symbolism that cultures and civilizations have bestowed on water as a religious icon, which heralds humankind's deep-seated respect for water as the sustenance of human life. The third theme is the connection or balance between technology and sustainability The use of water in daily activities and irrigation has spurred much technological advancement that has helped humans to harness water. The concept of sustainability was present centuries ago with the recycling of water; this helped societies to achieve more with the water they had and avoid facing shortages.
Warming trend in the western Mediterranean deep water
NASA Astrophysics Data System (ADS)
Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.
1990-10-01
THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.
Generalized scaling of seasonal thermal stratification in lakes
NASA Astrophysics Data System (ADS)
Shatwell, T.; Kirillin, G.
2016-12-01
The mixing regime is fundamental to the biogeochemisty and ecology of lakes because it determines the vertical transport of matter such as gases, nutrients, and organic material. Whereas shallow lakes are usually polymictic and regularly mix to the bottom, deep lakes tend to stratify seasonally, separating surface water from deep sediments and deep water from the atmosphere. Although empirical relationships exist to predict the mixing regime, a physically based, quantitative criterion is lacking. Here we review our recent research on thermal stratification in lakes at the transition between polymictic and stratified regimes. Using the mechanistic balance between potential and kinetic energy in terms of the Richardson number, we derive a generalized physical scaling for seasonal stratification in a closed lake basin. The scaling parameter is the critical mean basin depth that delineates polymictic and seasonally stratified lakes based on lake water transparency (Secchi depth), lake length, and an annual mean estimate for the Monin-Obukhov length. We validated the scaling on available data of 374 global lakes using logistic regression and found it to perform better than other criteria including a conventional open basin scaling or a simple depth threshold. The scaling has potential applications in estimating large scale greenhouse gas fluxes from lakes because the required inputs, like water transparency and basin morphology, can be acquired using the latest remote sensing technologies. The generalized scaling is universal for freshwater lakes and allows the seasonal mixing regime to be estimated without numerically solving the heat transport equations.
Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune
2015-08-01
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.
Davis, Linda C.
2008-01-01
Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In October 2005, reportable concentrations of tritium in ground water ranged from 0.51+or-0.12 to 11.5+or-0.6 picocuries per milliliter and the tritium plume extended south-southwestward in the general direction of ground-water flow. Tritium concentrations in water from several wells southwest of the Idaho Nuclear Technology and Engineering Center (INTEC) decreased or remained constant as they had during 1998-2001, with the exception of well USGS 47, which increased a few picocuries per milliliter. Most wells completed in shallow perched water at the Reactor Technology Complex (RTC) were dry during 2002---05. Tritium concentrations in deep perched water exceeded the reporting level in nine wells at the RTC. The tritium concentration in water from one deep perched water well exceeded the reporting level at the INTEC. Concentrations of strontium-90 in water from 14 of 34 wells sampled during October 2005 exceeded the reporting level. Concentrations ranged from 2.2+or-0.7 to 33.1+or-1.2 picocuries per liter. However, concentrations from most wells remained relatively constant or decreased since 1989. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the RTC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than the disposal well for radioactive-wastewater disposal at RTC. At the RTC, strontium-90 concentrations in water from six wells completed in deep perched ground water exceeded the reporting level during 2002-05. At the INTEC, the reporting level was exceeded in water from three wells completed in deep perched ground water. During 2002-05, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells sampled at the INL. During 2002-05, concentrations of cesium-137 in water from all wells sa
Context and Deep Learning Design
ERIC Educational Resources Information Center
Boyle, Tom; Ravenscroft, Andrew
2012-01-01
Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…
NASA Astrophysics Data System (ADS)
Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang
2015-04-01
Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the Federal State of Lower Saxony and industry partner Baker Hughes Celle.
Zhang, Jing; Song, Yanlin; Xia, Fan; Zhu, Chenjing; Zhang, Yingying; Song, Wenpeng; Xu, Jianguo; Ma, Xuelei
2017-09-01
Frozen section is widely used for intraoperative pathological diagnosis (IOPD), which is essential for intraoperative decision making. However, frozen section suffers from some drawbacks, such as time consuming and high misdiagnosis rate. Recently, artificial intelligence (AI) with deep learning technology has shown bright future in medicine. We hypothesize that AI with deep learning technology could help IOPD, with a computer trained by a dataset of intraoperative lesion images. Evidences supporting our hypothesis included the successful use of AI with deep learning technology in diagnosing skin cancer, and the developed method of deep-learning algorithm. Large size of the training dataset is critical to increase the diagnostic accuracy. The performance of the trained machine could be tested by new images before clinical use. Real-time diagnosis, easy to use and potential high accuracy were the advantages of AI for IOPD. In sum, AI with deep learning technology is a promising method to help rapid and accurate IOPD. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Effects of deep plowing and mulch in fallow period on soil water and yield of wheat in dryland].
Deng, Yan; Gao, Zhi-Qiang; Sun, Min; Zhao, Wei-Feng; Zhao, Hong-Mei; Li, Qing
2014-01-01
A field test was carried out in Qiujialing Village, Wenxi, Shanxi from 2009 to 2011 to study the soil water movement of 0-300 cm layer, yield formation and water use efficiency (WUE) of wheat with deep plowing and mulching the whole ground immediately (no mulch as control) 15 days and 45 days after harvest. The results indicated that deep plowing and mulch in fallow period could improve soil water storage of the 100-180 cm layer before sowing, the soil water storage efficiency in fallow period, and soil water storage from pre-wintering stage to booting stage. Compared with deep plowing 15 days after wheat harvest, deep plowing 45 days after wheat harvest did better in improving soil water storage and water use efficiency, as well as ear number and yield, which was more conducive in the year with more precipitation. Generally, deep plowing and mulching after raining during fallow period could benefit the soil water storage and conservation, thus would be helpful to improve wheat yield in dryland.
Fluorescence characteristics in the deep waters of South Gulf of México.
Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C
2017-10-15
Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.
Honl, M; Rentzsch, R; Müller, G; Brandt, C; Bluhm, A; Hille, E; Louis, H; Morlock, M
2000-01-01
Water-jet cutting techniques have been used in industrial applications for many different materials. Recently these techniques have been developed into a revolutionary cutting tool for soft tissues in visceral surgery. The present study investigates the usage of this cutting technology for the revision surgery of endoprostheses. In the first part of the study, samples of bovine bone and acrylic bone cement (PMMA) were cut using an industrial jet cutting device with pure water. Below 400 bar, only PMMA was cut; above 400 bar, bone was also cut, but only pressures above 800 bar resulted in clinically useful rates of material removal (cut depth 2. 4 mm at 10 mm/min traverse speed). In the second part of the study, the effect of adding biocompatible abrasives to the water in order to reduce the required pressure was investigated, resulting in a significantly higher removal of material. At 600 bar, PMMA was cut 5. 2 mm deep with plain water and 15.2 mm deep with added abrasives. The quality of the cuts was increased by the abrasive. Though there was no clear selectivity between bone and PMMA any more, the rate of material removal at similar pressures was significantly higher for PMMA than for bone (600 bar: 1.6 mm cut depth for bone samples, 15.2 mm for PMMA). The measured cut depths with either method were not influenced by a change of the cutting direction with respect to the main direction of the osteons in the bone. However, a reduction of the jet surface angle (90 degrees to 23 degrees ) resulted for bone in a significantly lower cut depth at 600 bar (plain water: 0.62 mm vs. 0.06 mm; abrasive: 1.61 mm vs. 0.60 mm). The laboratory experiments indicate that abrasive water jets may be suitable for cutting biomaterials like bone and bone cement. Copyright 2000 John Wiley & Sons, Inc.
North Atlantic Deep Water Production during the Last Glacial Maximum
Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain
2016-01-01
Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826
Southern Ocean bottom water characteristics in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.
2013-04-01
Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.
Low Gravity Issues of Deep Space Refueling
NASA Technical Reports Server (NTRS)
Chato, David J.
2005-01-01
This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2015-09-30
propagation in very fine-grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient noise research is to...forces in silts and clays and the role they play in controlling wave speeds and attenuations. On a 2 quantum mechanical level, these forces are... clays . APPROACH 1) Deep-water ambient noise Three deep-diving, autonomous instrument platforms, known as Deep Sound I, II, & III, have been
49 CFR 195.246 - Installation of pipe in a ditch.
Code of Federal Regulations, 2011 CFR
2011-10-01
... in a ditch must be installed in a manner that minimizes the introduction of secondary stresses and... waters less than 15 feet deep, all offshore pipe in water at least 12 feet deep (3.7 meters) but not more than 200 feet deep (61 meters) deep as measured from the mean low water must be installed so that the...
49 CFR 195.246 - Installation of pipe in a ditch.
Code of Federal Regulations, 2010 CFR
2010-10-01
... in a ditch must be installed in a manner that minimizes the introduction of secondary stresses and... waters less than 15 feet deep, all offshore pipe in water at least 12 feet deep (3.7 meters) but not more than 200 feet deep (61 meters) deep as measured from the mean low water must be installed so that the...
50 CFR 679.82 - Rockfish Program use caps and sideboard limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... not participate in directed fishing for arrowtooth flounder, deep-water flatfish, and rex sole in the GOA (or in waters adjacent to the GOA when arrowtooth flounder, deep-water flatfish, and rex sole... authority of all eligible LLP licenses in the catcher/processor sector. (ii) For the deep-water halibut PSC...
50 CFR 679.82 - Rockfish Program use caps and sideboard limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... not participate in directed fishing for arrowtooth flounder, deep-water flatfish, and rex sole in the GOA (or in waters adjacent to the GOA when arrowtooth flounder, deep-water flatfish, and rex sole... authority of all eligible LLP licenses in the catcher/processor sector. (ii) For the deep-water halibut PSC...
Deep prospecting electromagnetic system and its application
NASA Astrophysics Data System (ADS)
Lin, J.; Liu, C.; Zhou, F.; Zhang, W.; Chen, J.; Xue, K.; Sun, C.; Xu, W.; Hu, R.
2011-12-01
Today mineral resource is becoming the impediment to the society development because less and less mineral resource can be available. People are trying all kinds of technological tools to find the mineral deposit concealed in deep lithosphere. Unfortunately, current technology can not meet the exploration requirement completely and it is still difficult to know whether a deep mineral deposit exists and how it is presented at a considered site. In order to meet the requirement of discovering the mineral deposit in the second mine prospecting space (500-2000m under earth surface), we developed a deep prospecting electromagnetic system (DPS-I). This system consists of an electromagnetic receiver array and a high-power transmitter. The receiver array consists of 24 sub-receivers and one controller and has up to 53 electromagnetic channels. The sub-receivers can be extended conveniently if the user would like and they communicate with the controller through a cable or wireless antenna. When the channel interval is set to typical value of 50 m, the system can cover 2500 m survey line at one arrangement with two magnetic records. Since the signals are collected at the same time some disturbances, such as time variable but space invariable noise, will be suppressed because they have almost the same effect to all channels. The transmitter is designed to be 45 KW of upper power limit so that strong signals will be detected. Series transmission technology is adopted to avoid unwieldiness of transmitter. In fact it is made of three portable transmission units and each one can work independently. The system can transmit several kinds of waves and records all samples of signals in time sequences. So it can work for different electromagnetic methods. The prior methods for our application are the combination of IP, CSAMT and MT. Utilizing joint inversion and model restriction, we can obtain more refined model at large depth than conventional exploration. We have applied this system in China to detect nickel ore, iron ore, geothermic water and formation buried in deep earth successfully with high resolution power and the largest depth of investigation exceeded 2000 m. The nickel ore is located at Hongqiling hill, Jilin province. The depth of its top surface is about 600 m and that of its bottom surface is about 900 m. The iron ore is located at Dataigou, Liaoning province. Its top surface is buried about 1200 m beneath the ground and its bottom surface is still not assured because the deepest bore didn't reach its bottom. According to the known information, the bottom surface is inferred to be deeper than 2000 m. The geothermic water is buried deeply about 1600 m beneath the ground, located at Baishan, Jilin province. A bore of 2200 m depth was dilled after our exploration and hot water flowed out from the bore. Although several power lines exist nearby the survey lines, we still observed obvious signals and find low resistivity region at the place where the ore and the water exist. These experiments show that our electromagnetic system is successful.
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
NASA Astrophysics Data System (ADS)
Dunlop, Katherine M.; Jarvis, Toby; Benoit-Bird, Kelly J.; Waluk, Chad M.; Caress, David W.; Thomas, Hans; Smith, Kenneth L.
2018-04-01
Benthopelagic animals are an important component of the deep-sea ecosystem, yet are notoriously difficult to study. Multibeam echosounders (MBES) deployed on autonomous underwater vehicles (AUVs) represent a promising technology for monitoring this elusive fauna at relatively high spatial and temporal resolution. However, application of this remote-sensing technology to the study of small (relative to the sampling resolution), dispersed and mobile animals at depth does not come without significant challenges with respect to data collection, data processing and vessel avoidance. As a proof of concept, we used data from a downward-looking RESON SeaBat 7125 MBES mounted on a Dorado-class AUV to detect and characterise the location and movement of backscattering targets (which were likely to have been individual fish or squid) within 50 m of the seafloor at 800 m depth in Monterey Bay, California. The targets were detected and tracked, enabling their numerical density and movement to be characterised. The results revealed a consistent movement of targets downwards away from the AUV that we interpreted as an avoidance response. The large volume and complexity of the data presented a computational challenge, while reverberation and noise, spatial confounding and a marginal sampling resolution relative to the size of the targets caused difficulties for reliable and comprehensive target detection and tracking. Nevertheless, the results demonstrate that an AUV-mounted MBES has the potential to provide unique and detailed information on the in situ abundance, distribution, size and behaviour of both individual and aggregated deep-sea benthopelagic animals. We provide detailed data-processing information for those interested in working with MBES water-column data, and a critical appraisal of the data in the context of aquatic ecosystem research. We consider future directions for deep-sea water-column echosounding, and reinforce the importance of measures to mitigate vessel avoidance in studies of aquatic ecosystems.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
NASA Astrophysics Data System (ADS)
Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.
2014-12-01
The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)
NASA Astrophysics Data System (ADS)
Riesselman, C. R.; Scher, H.; Robinson, M. M.; Dowsett, H. J.; Bell, D. B.
2012-12-01
Earth's future climate may resemble the mid-Piacenzian Age of the Pliocene, a time when global temperatures were sustained within the range predicted for the coming century. Surface and deep water temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm surface temperature anomaly in the mid-Piacenzian (3.264 - 3.025 Ma), accompanied by increased evaporation. The anomaly is detected in deep waters at 46°S, suggesting enhanced meridional overturning circulation and more southerly penetration of North Atlantic Deep Water (NADW) during the PRISM interval. However deep water temperature proxies are not diagnostic of water mass and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy investigation of Atlantic deep ocean circulation during the warm mid-Piacenzian, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic composition of fossil fish teeth (ɛNd) as a proxy for water mass source and mixing. This reconstruction utilizes both new and previously published data from DSDP and ODP cores along equatorial (Ceara Rise), southern mid-latitude (Walvis Ridge), and south Atlantic (Meteor Rise/Agulhas Ridge) depth transects. Additional end-member sites in the regions of modern north Atlantic and Southern Ocean deep water formation provide a Pliocene baseline for comparison. δ13C throughout the Atlantic basin is remarkably homogenous during the PRISM interval. δ13C values of Cibicidoides spp. and C. wuellerstorfi largely range between 0‰ and 1‰ at North Atlantic, shallow equatorial, southern mid-latitude, and south Atlantic sites with water depths from 2000-4700 m; both depth and latitudinal gradients are generally small (~0.3‰). However, equatorial Ceara Rise sites below 3500 m diverge, with δ13C values as low as -1.2‰ at ~3.15 Ma. The uniquely negative δ13C values at deep Ceara rise sites suggest that, during PRISM warmth, the oldest Atlantic deep waters may have resided along the modern deep western boundary current, while younger deep water masses were concentrated to the south and east. In the modern Atlantic, the ɛNd value of southern-sourced waters is more radiogenic than that of northern-sourced waters, providing a complimentary means to characterize Pliocene water mass geometry. ɛNd values from shallow (2500 m) and deep (4700 m) Walvis Ridge sites average -10 and -11 respectively; the shallow site is somewhat more radiogenic than published coretop ɛNd (-12), suggesting enhanced Pliocene influence of southern-sourced water masses. Ongoing analytical efforts will fingerprint Piacenzian ɛNd from north and south deep water source regions and will target additional depth transect ɛNd, allowing us to investigate the possibility that "older" carbon isotopic signatures at western equatorial sites reflect entrainment of proto-NADW while "younger" signatures at southern and eastern sites reflect the influence of southern-sourced deep water.
Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean
NASA Astrophysics Data System (ADS)
Tamsitt, V.; Abernathey, R. P.; Mazloff, M. R.; Wang, J.; Talley, L. D.
2018-03-01
Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient-rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy-permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.
NASA Astrophysics Data System (ADS)
Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.
2017-08-01
The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.
Future Visions for Scientific Human Exploration
NASA Technical Reports Server (NTRS)
Garvin, James
2005-01-01
Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological stumbling block to moving humans on site as deep-space explorers, delivering the masses required for human spaceflight systems to LEO or other Earth orbital vantage points using the existing or projected fleet of Earth-to-orbit (ETO) launch vehicles. Without a return to Saturn V-class boosters or an alternate path, one cannot imagine emplacing the masses that would be required for any deep-space voyage without a prohibitive number of Shuttle-class launches. One futurist solution might involve mass launch systems that could be used to move the consumables, including fuel, water, food, and building materials, to LEO in pieces rather than launching integrated systems. This approach would necessitate the development of robotic assembly and fuel-storage systems in Earth orbit, but could provide for a natural separation of low-value cargo (e.g., fuel, water).
High Speed Trimaran (HST) Seatrain Experiments, Model 5714
2013-12-01
Marine Highway 1 Historical Seatrains 1 Objectives 2 Hull &: Model Description 4 Data Acquisition and Instrumentation 7 Carriage II - Deep ...Operational Demonstration Measurement System 10 Experimental Procedures 10 Carriage II - Deep Water Basin Test 10 Calm Water Resistance 11... Deep Water Basin Analysis 17 Calm Water Resistance 17 Longitudinal Flow Through The Propeller Plane 18 Body Forces & Moments 18
Han, Yucui; Lv, Peng; Hou, Shenglin; Li, Suying; Ji, Guisu; Ma, Xue; Du, Ruiheng; Liu, Guoqing
2015-01-01
Sorghum is one of the most promising bioenergy crops. Stem juice yield, together with stem sugar concentration, determines sugar yield in sweet sorghum. Bulked segregant analysis (BSA) is a gene mapping technique for identifying genomic regions containing genetic loci affecting a trait of interest that when combined with deep sequencing could effectively accelerate the gene mapping process. In this study, a dry stem sorghum landrace was characterized and the stem water controlling locus, qSW6, was fine mapped using QTL analysis and the combined BSA and deep sequencing technologies. Results showed that: (i) In sorghum variety Jiliang 2, stem water content was around 80% before flowering stage. It dropped to 75% during grain filling with little difference between different internodes. In landrace G21, stem water content keeps dropping after the flag leaf stage. The drop from 71% at flowering time progressed to 60% at grain filling time. Large differences exist between different internodes with the lowest (51%) at the 7th and 8th internodes at dough stage. (ii) A quantitative trait locus (QTL) controlling stem water content mapped on chromosome 6 between SSR markers Ch6-2 and gpsb069 explained about 34.7-56.9% of the phenotypic variation for the 5th to 10th internodes, respectively. (iii) BSA and deep sequencing analysis narrowed the associated region to 339 kb containing 38 putative genes. The results could help reveal molecular mechanisms underlying juice yield of sorghum and thus to improve total sugar yield.
North Atlantic deep water formation and AMOC in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, Céline
2017-07-01
Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.
Advanced Microelectronics Technologies for Future Small Satellite Systems
NASA Technical Reports Server (NTRS)
Alkalai, Leon
1999-01-01
Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.
Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping
2016-09-01
Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.
The Max Rover submersible is tested at the Trident pier, Port Canaveral
NASA Technical Reports Server (NTRS)
1997-01-01
Thomas Lippitt of NASA's Advanced Systems Development (ASD) laboratory observes robotic operations as Chris Nicholson, owner of Deep Sea Systems, and Bill Jones of NASA's ASD laboratory operate the unmanned robotic submersible recovery system, known as Max Rover, during a test of the system at the Trident Pier at Port Canaveral. The submersible is seen in the water with the Diver Operated Plug (DOP). Kennedy Space Center's solid rocket booster (SRB) retrieval team and ASD laboratory staff hope that the new robotic technology will make the process of inserting the plug safer and less strenuous. Currently, scuba divers manually insert the DOP into the aft nozzle of a jettisoned SRB 60 to 70 feet below the surface of the Atlantic Ocean. After the plug is installed, water is pumped out of the booster allowing it to float horizontally. It is then towed back to Hangar AF at Cape Canaveral Air Station for refurbishment. Deep Sea Systems of Falmouth, Mass., built the submersible for NASA.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
First biological measurements of deep-sea corals from the Red Sea.
Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R
2013-10-03
It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.
Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.
Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui
2017-01-01
Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...
NASA Astrophysics Data System (ADS)
Christina, M.; Laclau, J.; Nouvellon, Y.; Duursma, R. A.; Stape, J. L.; Lambais, G. R.; Le Maire, G.
2013-12-01
Little is known about the role of very deep roots to supply the water requirements of tropical forests. Clonal Eucalyptus plantations managed in short rotation on very deep Ferralsols are simple forest ecosystems (only 1 plant genotype growing on a relatively homogeneous soil) likely to provide an insight into tree water use strategies in tropical forests. Fine roots have been observed down to a depth of 6 m at age 1 year in Brazilian eucalypt plantations. However, the contribution of water stored in very deep soil layers to stand evapotranspiration over tree growth has been poorly quantified. An eco-physiological model, MAESPA, has been used to simulate half-hourly stand water balance over the first three years of growth in a clonal Eucalyptus grandis plantation in southern Brazil (Eucflux project, State of São Paulo). The water balance model in MAESPA is an equilibrium-type model between soil and leaf water potentials for individual trees aboveground, and at the stand scale belowground. The dynamics of the vertical fine root distribution have been taken into account empirically from linear interpolations between successive measurements. The simulations were compared to time series of soil water contents measured every meter down to 10m deep and to daily latent heat fluxes measured by eddy covariance. Simulations of volumetric soil water contents matched satisfactorily with measurements (RMSE = 0.01) over the three-year period. Good agreement was also observed between simulated and measured latent heat fluxes. In the rainy season, more than 75 % of tree transpiration was supplied by water withdrawn in the upper 1 m of soil, but water uptake progressed to deeper soil layers during dry periods, down to a depth of 6 m, 12 m and 15 m the first, second and third year after planting, respectively. During the second growing season, 15% of water was withdrawn below a depth of 6 m, and 5% below 10m. Most of the soil down to 12m deep was dried out the second year after planting and deep drainage was negligible after 2 years. As a consequence, during the third year after planting only 4% of water was taken up below 6m. However, during the dry season, this deep water still supplied 50% of water requirements. Our results show that deep fine roots of E. grandis play a major role in supplying tree water requirements during extended dry periods. Large amounts of water are stored in the whole soil profile after clear cutting and the fast exploration of deep soil layers by roots make it available for tree growth. After canopy closure, precipitation becomes the key limitation for the productivity of these plantations grown in deep sandy soils. Our results suggest that a territorial strategy leading to a fast exploration of very deep soil layers might provide a strong competitive advantage in regions prone to drought.
NASA Astrophysics Data System (ADS)
Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.
2007-12-01
It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...
NASA Astrophysics Data System (ADS)
Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.
2014-04-01
Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.
Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer
NASA Astrophysics Data System (ADS)
Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi
1986-07-01
A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
.... Apportionment of trawl PSC limits between the deep-water and shallow-water fisheries, limits for non-exempt... limit from the third season deep-water species fishery allowance for the GOA trawl fisheries to Rockfish... specifications. The draft 2011 SAFE reports indicate that the biomass trend for shallow-water flatfish, deep...
AUV Commercialization - Who’s Leading the Pack?
2000-09-01
the Theseus and ARCS, is designing a deep water commercial site survey AUV for Fugro GeoServices Inc. Called the Explorer, the vehicle will conduct...ISE has the ARCS and the Theseus vehicles and Perry Technologies has the MUST. These vehicles have each performed some dramatic operations including the...deployment of fiber optic cables. In the case of Theseus , the fiber optic cable was deployed under the ice pack. Mid-size vehicles include those from
NASA Astrophysics Data System (ADS)
Kerr, Joanna; Rickaby, Rosalind; Yu, Jimin; Elderfield, Henry; Sadekov, Aleksey Yu.
2017-08-01
Glacial-interglacial deep Indo-Pacific carbonate ion concentration ([CO32-]) changes were mainly driven by two mechanisms that operated on different timescales: 1) a long-term increase during glaciation caused by a carbonate deposition reduction on shelves (i.e., the coral reef hypothesis), and 2) transient carbonate compensation responses to deep ocean carbon storage changes. To investigate these mechanisms, we have used benthic foraminiferal B/Ca to reconstruct deep-water [CO32-] in cores from the deep Indian and Equatorial Pacific Oceans during the past five glacial cycles. Based on our reconstructions, we suggest that the shelf-to-basin shift of carbonate deposition raised deep-water [CO32-], on average, by 7.3 ± 0.5 (SE) μmol/kg during glaciations. Oceanic carbon reorganisations during major climatic transitions caused deep-water [CO32-] deviations away from the long-term trend, and carbonate compensation processes subsequently acted to restore the ocean carbonate system to new steady state conditions. Deep-water [CO32-] showed similar patterns to sediment carbonate content (%CaCO3) records on glacial-interglacial timescales, suggesting that past seafloor %CaCO3 variations were dominated by deep-water carbonate preservation changes at our studied sites.
Southern Ocean Bottom Water Characteristics in CMIP5 Models
NASA Astrophysics Data System (ADS)
Heuzé, Céline; Heywood, Karen; Stevens, David; Ridley, Jeff
2013-04-01
The depiction of Southern Ocean deep water properties and formation processes in climate models is an indicator of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean potential temperature and density averaged over 1986-2005 from fifteen CMIP5 climate models are compared with an observed climatology, focusing on bottom water properties. The mean bottom properties are reasonably accurate for half of the models, but the other half may not yet have approached an equilibrium state. Eleven models create dense water on the Antarctic shelf, but it does not spill off and propagate northwards, alternatively mixing rapidly with less dense water. Instead most models create deep water by open ocean deep convection. Models with large deep convection areas are those with a strong seasonal cycle in sea ice. The most accurate bottom properties occur in models hosting deep convection in the Weddell and Ross gyres.
Deep-sea bioluminescence blooms after dense water formation at the ocean surface.
Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan
2013-01-01
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
Deep-convection events foster carbonate ion reduction in deep coral reefs
NASA Astrophysics Data System (ADS)
Perez, Fiz F.; Fontela, Marcos; Garcia-Ibañez, Maribel I.; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Padín, Xose A.; Alonso-Pérez, Fernando; Velo, Anton; Guallart, Elisa F.; Mercier, Herle
2017-04-01
Since millennial times, water mass circulation and deep-convection events have been transforming warm upper waters at high latitudes into cold and well-oxygenated deep waters. These processes have filled the deep North Atlantic Ocean with waters moderately saturated in calcium carbonate, thus promoting the growth of stony corals, which are hotspots of biodiversity. During the Anthropocene, the meridional circulation has been conveying cumulative amounts of more acidified waters with lower calcium carbonate saturation levels due to the incorporation of anthropogenic carbon dioxide, with very harsh conditions for deep cold-water corals projected by 2100. We evaluate the diminution of calcium carbonate saturation levels (aragonite form) due to the increase in anthropogenic carbon dioxide during the last two decades (2002-2016). We observe a strong decrease in the aragonite saturation levels concomitant with the reduction in the volume transport of aragonite-saturated waters. We estimate a 30-35% reduction in the transport of ion carbonate excess over the saturation levels with respect to the natural carbon cycle for the period 2002-2016. This reduction is associated with an increase in the downward transport of hydrogen ions. We also observe a heaving of the aragonite saturation horizons during the last 25 years, which is estimated at 6 m year-1 for the deep waters and 12-14 m year-1 for the intermediated waters. The harsh winters of 2015 and 2016 have fostered the fast addition of more acidified water into the lower layers of the North Atlantic through deep-convection events. In the future scenario of 2oC warming, the anthropogenic carbon dioxide in the water column would be double than today and the associated transport of hydrogen ions towards the bottom water would reduce the aragonite saturation levels to 60-80% with respect to preindustrial levels. This reduction in the aragonite saturation levels would suppose a strong diminution of the North Atlantic habitats where stony corals will be able to inhabit.
Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.
Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne
2012-11-01
We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand
NASA Astrophysics Data System (ADS)
Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.
2011-11-01
The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.
Deep and intermediate mediterranean water in the western Alboran Sea
NASA Astrophysics Data System (ADS)
Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.
1986-01-01
Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... respective annual catch limit (ACLs) for the deep-water complex (including yellowedge grouper, blueline... the snapper-grouper resource. DATES: The closure for the deep-water complex as well as the porgy...-grouper fishery of the South Atlantic, which includes yellowtail snapper, gray triggerfish, the deep-water...
NASA Astrophysics Data System (ADS)
Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao
2018-03-01
The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.
Miller, Karen J.; Rowden, Ashley A.; Williams, Alan; Häussermann, Vreni
2011-01-01
Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations. PMID:21611159
Rye, Robert O.; Truesdell, Alfred Hemingway; Morgan, Lisa A.
2007-01-01
The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is problematical. The designation of source areas depends on assumptions about the age of the deep water, which in turn depend on assumptions about the nature of the deep thermal system. Modeling, based on published chloride-flux studies of thermal waters, suggests that for a 0.5- to 4-km-deep reservoir the residence time of most of the thermal water could be less than 1,900 years, for a piston-flow model, to more than 10,000 years, for a well-mixed model. For the piston-flow model, the deep system quickly reaches the isotopic composition of the recharge in response to climate change. For this model, stable-isotope data and geologic considerations suggest that the most likely area of recharge for the deep thermal water is in the northwestern part of the Park, in the Gallatin Range, where major north-south faults connect with the caldera. This possible recharge area for the deep thermal water is at least 20 km, and possibly as much as 70 km, from outflow in the thermal areas, indicating the presence of a hydrothermal system as large as those postulated to have operated around large, ancient igneous intrusions. For this model, the volume of isotopically light water infiltrating in the Gallatin Range during our sampling period is too small to balance the present outflow of deep water. This shortfall suggests that some recharge possibly occurred during a cooler time characterized by greater winter precipitation, such as during the Little Ice Age in the 15th century. However, this scenario requires exceptionally fast flow rates of recharge into the deep system. For the well-mixed model, the composition of the deep reservoir changes slowly in response to climate change, and a significant component of the deep thermal water could have recharged during Pleistocene glaciation. The latter interpretation is consistent with the recent discovery of warm waters in wells and springs in southern Idaho that have δD values 10–20 ‰ lower than the winter snow for their present-day high-level recharge. These waters have been interpreted to be Pleistocene in age (Smith and others, 2002). The well-mixed model permits a significant component of recharge water for the deep system to have δD values less negative than –150 ‰ and consequently for the deep system recharge to be closer to the caldera at a number of possible localities in the Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...
North Atlantic deep water formation and AMOC in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, Céline; Wåhlin, Anna
2017-04-01
North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.
Sustainable development of deep-water seaport: the case of Lithuania.
Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta
2011-06-01
In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the projected impact of the deep-water port on the environment. The results of the performed research allowed: (a) to reveal strengths and weaknesses of Klaipeda port development and the potential conflicts of interest among different stakeholders, (b) to identify the set of problem solutions seeking sustainable Klaipeda port development; (c) to develop the set of sustainability indicators to monitor the efficiency of the development.
Economic contribution of 'artificial upwelling' mariculture to sea-thermal power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, O.A.
1976-07-01
Deep-sea water has two valuable properties: it is uniformly cold and, compared to surface water, it is rich in nutrients such as nitrate and phosphate which are necessary for plant growth. In tropical and subtropical areas, the temperature difference between the warm surface water and the cold deep water can be used for sea-thermal power generation or other cooling applications such as air-conditioning, ice-making, desalination, and cooling of refineries, power plants, etc. Once the deep water is brought to the surface, utilization of both the cold temperature and the nutrient content is likely to be more advantageous than the usemore » of only one of them. Claude demonstrated the technical feasibility of sea-thermal power generation in Cuba in 1930. The technical feasibility of artificial upwelling mariculture in the St. Croix installation has been demonstrated. Results to date demonstrate that the gross sales value of the potential mariculture yield from a given volume of deep-sea water is many times that of the sales value of the power which can be generated by the Claude process from the same volume of deep water. Utilizing both the nutrient content and the cold temperature of the deep water may therefore make sea-thermal power generation economically feasible.« less
Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu
2011-11-01
This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.
The formation of Greenland Sea Deep Water: double diffusion or deep convection?
NASA Astrophysics Data System (ADS)
Clarke, R. Allyn; Swift, James H.; Reid, Joseph L.; Koltermann, K. Peter
1990-09-01
An examination of the extensive hydrographic data sets collected by C.S.S. Hudson and F.S. Meteor in the Norwegian and Greenland Seas during February-June 1982 reveals property distributions and circulation patterns broadly similar to those seen in earlier data sets. These data sets, however, reveal the even stronger role played by topography, with evidence of separate circulation patterns and separate water masses in each of the deep basins. The high precision temperature, salinity and oxygen data obtained reveals significant differences in the deep and bottom waters found in the various basins of the Norwegian and Greenland Seas. A comparison of the 1982 data set with earlier sets shows that the renewal of Greenland Sea Deep Water must have taken place sometime over the last decade; however there is no evidence that deep convective renewal of any of the deep and bottom waters in this region was taking place at the time of the observations. The large-scale density fields, however, do suggest that deep convection to the bottom is most likely to occure in the Greenland Basin due to its deep cyclonic circulation. The hypothesis that Greenland Sea Deep Water (GSDW) is formed through dipycnal mixing processes acting on the warm salty core of Atlantic Water entering the Greenland Sea is examined. θ-S correlations and oxygen concentrations suggest that the salinity maxima in the Greenland Sea are the product of at least two separate mixing processes, not the hypothesized single mixing process leading to GSDW. A simple one-dimensional mixed layer model with ice growth and decay demonstrates that convective renewal of GSDW would have occurred within the Greenland Sea had the winter been a little more severe. The new GSDW produced would have only 0.003 less salt and less than 0.04 ml 1 -1 greater oxygen concentration than that already in the basin. Consequently, detection of whether new deep water has been produced following a winter cooling season could be difficult even with the best of modern accuracy.
Application of Low cost Spirulina growth medium using Deep sea water
NASA Astrophysics Data System (ADS)
Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young
2017-04-01
Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."
1980-06-06
classes of objects, a basic inventory of hardware can be established to provide a remote recovery capabilily. Although these tests were performed in...decided to continue the operatio , ihe following day. Friday, 10 Aug 0600 Task team arrives at YD197. 0830 Dive team to lift module for inspection. The
Continued evolution of Europa subsurface exploration technologies
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Hecht, M. H.; Lane, A. L.; Mogensen, C.; Zimmerman, W.
2002-01-01
The Galileo results convincingly indicate that Europa has a deep salty ocean covered by a shell of water ice a few tens of kilometers thick; this physical description gives rise to a host of thoughtful speculation as to the nature of the ocean, its seafloor, and the likelihood of microbial life within it. We argue that this situation points to the high desirability of a series of in-situ missions to examine the ice and, ultimately, the ocean.
Objectives and Capabilities of the Deep Space 2 (DS2) Evolved Water Experiment
NASA Astrophysics Data System (ADS)
Yen, A. S.; Murray, B.; Zent, A. P.
1999-09-01
The New Millennium Deep Space 2 (DS2) Mars Microprobes will impact the surface of Mars at a latitude of approximately 75 degrees South on December 3, 1999. The primary objective of this mission is to demonstrate penetrator technologies for future scientific applications. Nonetheless, measurements will be obtained with the goal of characterizing the atmospheric structure during entry as well as the penetrability, thermal conductivity, and water ice content of the polar layered terrains. In addition to demonstrating the ability to collect a subsurface sample, the evolved water experiment will test models of the south polar regions which indicate that water ice is stable at depths of 4 to 20 cm and greater [Paige and Keegan, 1994]. This prediction for the presence of ice is in contrast to atmospheric circulation models which suggest that water is irreversibly lost from southern latitudes and that the only extensive, permanent ice deposits are located in the northern hemisphere [Houben et al., 1997]. Furthermore, MOC images from the 1998 aerobraking phase suggest a rougher and perhaps more devolatilized surface than inferred from Viking and Mariner 9 data. Thus, the direct determination of the presence or absence of near-surface ice by the DS2 probes is important in the resolution of the fundamental questions about Mars regarding the global inventory of water and the climate history. In pursuit of these objectives, a 160 milliliter soil sample will be actively collected by a miniature drill and analyzed for water ice both thermally and spectroscopically. Specific capabilities and detection limits for the abundance of water ice will be presented at the meeting.
The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras
García, Verónica B; Lucifora, Luis O; Myers, Ransom A
2007-01-01
We compared life-history traits and extinction risk of chondrichthyans (sharks, rays and chimaeras), a group of high conservation concern, from the three major marine habitats (continental shelves, open ocean and deep sea), controlling for phylogenetic correlation. Deep-water chondrichthyans had a higher age at maturity and longevity, and a lower growth completion rate than shallow-water species. The average fishing mortality needed to drive a deep-water chondrichthyan species to extinction (Fextinct) was 38–58% of that estimated for oceanic and continental shelf species, respectively. Mean values of Fextinct were 0.149, 0.250 and 0.368 for deep-water, oceanic and continental shelf species, respectively. Reproductive mode was an important determinant of extinction risk, while body size had a weak effect on extinction risk. As extinction risk was highly correlated with phylogeny, the loss of species will be accompanied by a loss of phylogenetic diversity. Conservation priority should not be restricted to large species, as is usually suggested, since many small species, like those inhabiting the deep ocean, are also highly vulnerable to extinction. Fishing mortality of deep-water chondrichthyans already exploited should be minimized, and new deep-water fisheries affecting chondrichthyans should be prevented. PMID:17956843
Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface
Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan
2013-01-01
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425
NASA Astrophysics Data System (ADS)
Smith, J. R.
2012-12-01
The Hawai'i Undersea Research Laboratory (HURL) is the only U.S. deep submergence facility in the Pacific Rim tasked with supporting undersea research necessary to fulfill the mission, goals, and objectives of the National Oceanic and Atmospheric Administration (NOAA), along with other national interests of importance. Over 30 years of submersible operations have resulted in nearly 1900 dives representing 9300 hours underwater, and a benthic ecology database derived from in-house video record logging of over 125,000 entries based on 1100 unique deep-sea animal identifications in the Hawaiian Archipelago. As a Regional Center within the Office of Ocean Exploration and Research (OER), HURL conducts undersea research in offshore and nearshore waters of the main and Northwestern Hawaiian Islands and waters of the central, southern, and western Pacific. HURL facilities primarily support marine research projects that require data acquisition at depths greater than wet diving methods. These consist of the research vessel Ka'imikai-o-Kanaloa (KOK), human occupied submersibles Pisces IV and Pisces V (2000 m), a new remotely operated vehicle (6000 m), and a multibeam bathymetric sonar system (11,000 m). In addition, HURL has also supported AAUS compliant wet diving since 2003, including technical mixed gas/rebreather work. While ecosystem studies of island, atoll, and seamount flanks are the largest component of the HURL science program, many other thematic research areas have been targeted including extreme and unique environments, new resources from the sea, episodic events to long term changes, and the development of innovative technologies. Several examples of HURL's contributions to marine protected areas (MPAs) include: (a) A long term presence in the pristine ecosystems of the Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands. Researchers from National Marine Fisheries have used HURL assets to study endangered Hawaiian Monk Seal habitat and, along with others, discover an estimated 80 new species of corals and sponges; (b) Supporting the research of scientists who found that deep-sea corals are some of the oldest living organisms on Earth. Their innovative approach has shown some gold corals to be over 2700 yrs old, while the ages of some deep water black corals were found to exceed 4200 yrs; (c) Developing the methodology for joint technical wet diver and submersible operations to carry out a major multi-year mesophotic coral research project in partnership with the Center for Sponsored Coastal Ocean Research; and (d) An international five-month investigation throughout the Central and Southwestern Pacific in 2005, including the Tonga-Kermadec Arc (Tonga and New Zealand), Vailulu`u Seamount and Rose Atoll (American Samoa), along with Jarvis Island, Palmyra Atoll, and Kingman Reef (U.S. Line Islands) involving 58 scientists from 12 research entities in partnership with OER and international collaborators. Because of their remote locations, many of these areas previously had little to no deep-sea investigations carried out in their waters and island flanks. Located amongst the largest MPAs in the world, HURL's capabilities will continue to play an essential role in scientific research and management decisions.
North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea
2016-06-21
the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical
Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.
Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J
2004-12-23
The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.
Wu, Jieying; Gao, Weimin; Johnson, Roger H.; Zhang, Weiwen; Meldrum, Deirdre R.
2013-01-01
Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle. PMID:24152557
2015-04-15
0 A S S PROGRESS REPORT NO. QSR-14C0172-0CEAN ACOUSTICS-033115 Contract No. N00014-14-C-0172 Office of Naval Research Task Reporting: Deep ...AND SUBTITLE Deep Water Ocean Acoustics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Cost Summary OASIS, INC. JOB STATUS RB’ORT 1172 DEEP WATER ACOUSTICS FOP. 9/27f13-316/16
Salinity driven oceanographic upwelling
Johnson, D.H.
1984-08-30
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.
Salinity driven oceanographic upwelling
Johnson, David H.
1986-01-01
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.
The "Abyssal Society". François-Alphonse Forel and the Case of Deep Fauna in Late 19th Century.
Campanella, Sara
2016-01-01
Ichthyological investigations and technological advancements, such as the laying of submarine telegraph cables, promoted new dredging methods in the second half of the 19th century. In contrast to the idea of a lifeless deep ocean (Edward Forbes' azoic hypothesis), the discovery of deep water fauna and the challenge of defining its systematics opened up new theoretical perspectives. In this frame, which was already marked by the impact of Darwin's theory, naturalistic surveys in freshwater environments in western Switzerland intertwined with those of oceanographic expeditions. The study of the fauna in the depths of subalpine lakes by the Swiss savant François-Alphonse Forel was one of the most striking examples of this turning point, because the relatively recently evolution of its freshwater fauna allowed him to investigate: (a) the role of isolation, (b) the progressive differentiation of species from a common ancestor, and (c) the constitution of a species-specific category in form transition, from a genealogical viewpoint to an ecological one.
Preface: Deep Slab and Mantle Dynamics
NASA Astrophysics Data System (ADS)
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Arsenic in Drinking Water—A Global Environmental Problem
NASA Astrophysics Data System (ADS)
Shaofen Wang, Joanna; Wai, Chien M.
2004-02-01
Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.
Scanning the Horizon: Coast Guard Strategy in a Hot, Flat, Crowded World
2010-03-12
Mexico. From 1992 to 2007, deepwater offshore rigs drilling in deep water in the Gulf of Mexico increased from three to 30, and deepwater oil production...discusses the Coast Guard’s Integrated Deepwater System program, which includes recapitalization of its deep-water vessels and aircraft.89 At the...water and ultra deep water drilling. Discussion of increased outer continental shelf activity in higher level strategic planning indicates that
Deep-sea environment and biodiversity of the West African Equatorial margin
NASA Astrophysics Data System (ADS)
Sibuet, Myriam; Vangriesheim, Annick
2009-12-01
The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.
Yasuhara, Moriaki; Cronin, T. M.; Hunt, G.; Hodell, D.A.
2009-01-01
We report changes of deep-sea ostracod fauna during the last 370,000 yr from the Ocean Drilling Program (ODP) Hole 704A in the South Atlantic sector of the Southern Ocean. The results show that faunal changes are coincident with glacial/interglacial-scale deep-water circulation changes, even though our dataset is relatively small and the waters are barren of ostracods until mid-MIS (Marine Isotope Stage) 5. Krithe and Poseidonamicus were dominant during the Holocene interglacial period and the latter part of MIS 5, when this site was under the influence of North Atlantic Deep Water (NADW). Conversely, Henryhowella and Legitimocythere were dominant during glacial periods, when this site was in the path of Circumpolar Deep Water (CPDW). Three new species (Aversovalva brandaoae, Poseidonamicus hisayoae, and Krithe mazziniae) are described herein. This is the first report of Quaternary glacial/interglacial scale deep-sea ostracod faunal changes in the Southern and South Atlantic Oceans, a key region for understanding Quaternary climate and deep-water circulation, although the paucity of Quaternary ostracods in this region necessitates further research. ?? 2009 The Paleontological Society.
NASA Astrophysics Data System (ADS)
Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna
2017-09-01
In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d-1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d-1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.
NASA Astrophysics Data System (ADS)
2010-10-01
The troubles flowing from BP's Macondo oil well in Gulf of Mexico have focused attention on the technological demands of safe deep-water drilling. European Space Agency research presented in a Space and Energy Seminar in August offers spin-off technologies that could support oil exploration and production in extreme environments, from corrosion control to better robotics. NASA and the European Space Agency have embarked on a joint programme to study the chemical composition of the atmosphere of Mars from 2016. They have just announced the providers of five scientific instruments for the first mission, including two consortia in which the Open University has a major role.
Breakup of last glacial deep stratification in the South Pacific
NASA Astrophysics Data System (ADS)
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-01
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.
Ocean science: Radiocarbon variability in the western North Atlantic during the last deglaciation
Robinson, L.F.; Adkins, J.F.; Keigwin, L.D.; Southon, J.; Fernandez, D.P.; Wang, S.-L.; Scheirer, D.S.
2005-01-01
We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The deep-ocean record supports the notion of a bipolar seesaw with increased Northern-source deep-water formation linked to Northern Hemisphere warming and the reverse. In contrast, the more frequent radiocarbon variations in the intermediate/deep ocean are associated with roughly synchronous changes at the poles.
30 CFR 203.2 - How can I obtain royalty relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 203.49). (g) Located in a designated GOM shallow water area Drill and produce gas from an ultra-deep...) Located in a designated GOM deep water area (i.e., 200 meters or greater) and acquired in a lease sale... 203.79). (c) Located in a designated GOM deep water area and acquired in a lease sale held before...
M. Bornyasz; R. Graham; M. Allen
2002-01-01
In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...
NASA Astrophysics Data System (ADS)
Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Sierro, Francisco J.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin
2017-04-01
Paleoenvironmental and paleoceanographic changes in the western Mediterranean are reconstructed for the last 24 ka using a combination of benthic foraminiferal assemblages and geochemical proxies measured on benthic foraminiferal shells (Mg/Ca-deep water temperatures and stable isotopes). The studied materials are sediment cores HER-GC-UB06 and MD95-2043recovered at 946 m and 1841 m, respectively, from the Alboran Sea. At present, both core sites are bathed by the Western Mediterranean Deep Water (WMDW), although UB06 core is close to the boundary with the overlying Levantine Intermediate Water (LIW). Therefore, past variability of both water masses can potentially be recorded by the benthic foraminiferal proxies from the studied sites. Benthic foraminiferal assemblages and geochemical data show fluctuations in bottom-water ventilation, organic matter accumulation and deep-water temperatures related to WMDW and LIW circulation. During the glacial interval, an alternation of events showing better ventilation (higher abundance of Cibicides pachyderma) with lower temperatures and events of warmer deep water temperatures with poorer ventilation (Nonionella iridea assemblage, lower abundance of C. pachyderma) are observed. This variability might reflect stronger WMDW formation during the Last Glacial Maximum (LGM) and Heinrich Stadial 1. During the Bølling-Allerød and Younger Dryas (YD) periods, cold temperatures and the lowest oxygenation rates are recorded coinciding with the highest abundance of deep infaunal taxa on both UB06 and MD95-2043 cores. This interval was coetaneous to the deposition of an Organic Rich Layer in the Alboran Sea. However, a re-ventilation trend started at the end of the YD in the shallower site (UB06 core) whereas low-oxygen conditions prevailed until the end of the early Holocene in the deep site (MD95-2043 core). During the early Holocene a significant deep water temperature increase occurred at the shallower site suggesting the replacement of WMDW by warmer water mass, likely LIW. In the middle Holocene, highly variable bottom-water oxygenation and temperatures are observed showing warmer deep waters with less oxygen content (higher deep and intermediate infaunal abundances). The late Holocene (last 4 ka) was characterized by slightly cooler deep water temperatures and enhanced oxygen levels supporting that WMDW became dominant at the shallower site. These observations reveal that Mediterranean thermohaline system has been highly variable during the studied period supporting its high sensitivity to changing climate conditions. These results open a new insight into the Mediterranean sensitivity to Holocene climate variability.
Deep Energy Retrofits - Eleven California Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Fisher, Jeremy; Walker, Iain
2012-10-01
This research documents and demonstrates viable approaches using existing materials, tools and technologies in owner-conducted deep energy retrofits (DERs). These retrofits are meant to reduce energy use by 70% or more, and include extensive upgrades to the building enclosure, heating, cooling and hot water equipment, and often incorporate appliance and lighting upgrades as well as the addition of renewable energy. In this report, 11 Northern California (IECC climate zone 3) DER case studies are described and analyzed in detail, including building diagnostic tests and end-use energy monitoring results. All projects recognized the need to improve the home and its systemsmore » approximately to current building code-levels, and then pursued deeper energy reductions through either enhanced technology/ building enclosure measures, or through occupant conservation efforts, both of which achieved impressive energy performance and reductions. The beyond-code incremental DER costs averaged $25,910 for the six homes where cost data were available. DERs were affordable when these incremental costs were financed as part of a remodel, averaging a $30 per month increase in the net-cost of home ownership.« less
NASA Astrophysics Data System (ADS)
Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.
2015-12-01
Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.
NASA Astrophysics Data System (ADS)
Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.
2013-09-01
We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.
NASA Astrophysics Data System (ADS)
Khélifi, N.; Frank, M.
2013-12-01
The global ocean-climate system has been highly sensitive to the formation and advection of deep water in the North Atlantic but its evolution over the Pliocene-Pleistocene global cooling is not fully understood. In particular, changes in the sources and mixing of prevailing deep waters are not well constrained. Here we present new records of the bottom-water radiogenic neodymium isotope (ϵNd) variability obtained from three DSDP/ODP sites at water depths between 2100 and 5000 m in the Northeast Atlantic to reconstruct changes in deep water circulation over the past 4 million years. Prior to 1.6 million years ago (Ma), we find ϵNd values primarily oscillating between -9 and -11 at all sites, consistent with enhanced vertical mixing of water masses. At 1.6 Ma, the ϵNd signatures synchronously shifted to less radiogenic values around -12 at different water depths and water mass signatures gradually became more distinct. Since then values and amplitudes of "glacial/interglacial" ϵNd oscillations have been similar to the Late Quaternary at each site. This change 1.6 Ma reflects a major reorganization of deep water circulation in the Northeast Atlantic towards a more stratified water column with distinct water masses accompanying the enhanced response of climate to the Earth's obliquity forcing during the Early Pleistocene transition.
Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.
Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart
2007-10-16
Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change.
Becker, Carol J.
2006-01-01
The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.
NASA Astrophysics Data System (ADS)
Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon
2015-09-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.
NASA Astrophysics Data System (ADS)
Lee, J. S.; An, S. U.; Park, Y. G.; Kim, E.; Kim, D.; Kwon, J. N.; Kang, D. J.; Noh, J. H.
2016-02-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) BelcII and BelpII. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge- slope-basin system in the East Sea.
Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R; Weber, Jochem W; Jenne, Dale S
The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width tomore » the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrito, E.; Ciprigno, M.
1996-12-31
Aquila oil field is located in 850 meters of water in the middle of the Otranto Channel, in the Mediterranean Sea, at about 45 km from the shore and is subject to both difficult sea and weather conditions. The many difficulties, mainly due to the very high water depth, imposed the use of advanced technology, that could be obtained only through the direct association of contractor companies, leaders in their own field. Such a solution safeguards the technological reliability and allows the maximum control of time and cost. The selection of an FPSO (Floating, Production, Storage and Offloading) comes frommore » a feasibility study indicating this solution as the only one, allowing the economical exploitation of the Aquila field. This paper deals with a series of technical solutions and contractual agreements with a Joint-Venture embracing two leading world contractors for developing, manufacturing and installing the FPSO {open_quotes}Agip Firenze{close_quotes}, permanently anchored at a world record 850 m water depth. The system includes flowlines and control lines. The ship, has been especially redesigned and purchased by contractors. They will use the vessel to manage the field development. Agip will provide the subsea production system: christmas tree and control system with artificial lift. The Aquila field development project aims to identify an economically viable, low risk method of producing hydrocarbons from a deep water location where previously the reserves were technologically and economically out of range.« less
Western USA groundwater drilling
NASA Astrophysics Data System (ADS)
Jasechko, S.; Perrone, D.
2016-12-01
Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.
Squared exponential covariance function for prediction of hydrocarbon in seabed logging application
NASA Astrophysics Data System (ADS)
Mukhtar, Siti Mariam; Daud, Hanita; Dass, Sarat Chandra
2016-11-01
Seabed Logging technology (SBL) has progressively emerged as one of the demanding technologies in Exploration and Production (E&P) industry. Hydrocarbon prediction in deep water areas is crucial task for a driller in any oil and gas company as drilling cost is very expensive. Simulation data generated by Computer Software Technology (CST) is used to predict the presence of hydrocarbon where the models replicate real SBL environment. These models indicate that the hydrocarbon filled reservoirs are more resistive than surrounding water filled sediments. Then, as hydrocarbon depth is increased, it is more challenging to differentiate data with and without hydrocarbon. MATLAB is used for data extractions for curve fitting process using Gaussian process (GP). GP can be classified into regression and classification problems, where this work only focuses on Gaussian process regression (GPR) problem. Most popular choice to supervise GPR is squared exponential (SE), as it provides stability and probabilistic prediction in huge amounts of data. Hence, SE is used to predict the presence or absence of hydrocarbon in the reservoir from the data generated.
Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake.
Markewitz, Daniel; Devine, Scott; Davidson, Eric A; Brando, Paulo; Nepstad, Daniel C
2010-08-01
*Deep root water uptake in tropical Amazonian forests has been a major discovery during the last 15 yr. However, the effects of extended droughts, which may increase with climate change, on deep soil moisture utilization remain uncertain. *The current study utilized a 1999-2005 record of volumetric water content (VWC) under a throughfall exclusion experiment to calibrate a one-dimensional model of the hydrologic system to estimate VWC, and to quantify the rate of root uptake through 11.5 m of soil. *Simulations with root uptake compensation had a relative root mean square error (RRMSE) of 11% at 0-40 cm and < 5% at 350-1150 cm. The simulated contribution of deep root uptake under the control was c. 20% of water demand from 250 to 550 cm and c. 10% from 550 to 1150 cm. Furthermore, in years 2 (2001) and 3 (2002) of throughfall exclusion, deep root uptake increased as soil moisture was available but then declined to near zero in deep layers in 2003 and 2004. *Deep root uptake was limited despite high VWC (i.e. > 0.30 cm(3) cm(-3)). This limitation may partly be attributable to high residual water contents (theta(r)) in these high-clay (70-90%) soils or due to high soil-to-root resistance. The ability of deep roots and soils to contribute increasing amounts of water with extended drought will be limited.
ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.
Hohman, Fred; Hodas, Nathan; Chau, Duen Horng
2017-05-01
Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.
NASA Astrophysics Data System (ADS)
Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang
2018-01-01
Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.
Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.
2017-07-01
We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.
Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang
2018-01-01
Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO 3 - is the dominant anion in the freshwater samples, whereas Na + and Cl - are the dominant major ions in the saline samples. According to δ 18 O, δ 2 H and 14 C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ 18 O, δ 2 H and 3 H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points. Copyright © 2017 Elsevier B.V. All rights reserved.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee
2010-01-01
The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...
First biological measurements of deep-sea corals from the Red Sea
Roder, C.; Berumen, M. L.; Bouwmeester, J.; Papathanassiou, E.; Al-Suwailem, A.; Voolstra, C. R.
2013-01-01
It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited. PMID:24091830
NASA Astrophysics Data System (ADS)
Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe
2015-04-01
The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.
Strategic Technologies for Deep Space Transport
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2016-01-01
Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.
NASA Astrophysics Data System (ADS)
Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria
2016-08-01
The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in mid-depth (1-2 km) cores of the eastern equatorial Pacific (EEP) which may suggest a stronger influence of NPDW return flow to the core sites and decreased local input in the EEP. Taken together, our Nd records do not support a dynamically slower glacial Pacific overturning circulation, and imply that the increased carbon inventory of Pacific deep water might be due to poor high latitude air-sea exchange and increased biological pump efficiency in glacial times.
NASA Astrophysics Data System (ADS)
Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei
2017-12-01
The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.
NASA Astrophysics Data System (ADS)
Umling, N. E.; Thunell, R.
2016-12-01
Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.
Novel Thermal Powered Technology for UUV Persistent Surveillance
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Chao, Yi
2006-01-01
Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Riggins, Michael
1989-04-01
An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.
NASA Astrophysics Data System (ADS)
Maier, K. L.; Fildani, A.; Romans, B.; Paull, C. K.; McHargue, T.; Graham, S. A.; Caress, D. W.
2010-12-01
The Lucia Chica, a tributary channel system of the Lucia Canyon, offshore central California, was imaged using the Monterey Bay Aquarium Research Institute’s (MBARI) Autonomous Underwater Vehicle (AUV) in order to investigate seafloor and subsurface morphologies associated with low-relief submarine channels. In larger, previously investigated seafloor channel-levee systems, initial deposits are either eroded, compacted, or below the resolution of available imaging. In this dataset from the Lucia Chica, the unprecedented high-resolution multibeam bathymetry (1 m lateral resolution) and chirp sub-bottom profiles (11 cm vertical resolution) reveal a highly irregular seafloor with scours, depressions, and discontinuous low-relief conduits over an area of ~70 km2. Sediment packages associated with channels, levees, and deposits related to less confined flows are correlated between chirp profiles and with the multibeam bathymetric image to determine the stratigraphic evolution of the Lucia Chica and the sequence of channel-levee development. In the Lucia Chica, channels appear to have initiated as trains of scours that eventually coalesced into continuous channel thalwegs carved by erosional turbidity currents. Channel incision and stepped lateral migration led to the development of terraces, complex levee stratigraphy, and distinct morphologies associated with inner and outer bends of sinuous channels. The inner bend levee stratigraphy indicates that the channel position migrated in discrete shifts, as opposed to continuous channel migration associated with lateral accretion. Discrete levee packages, formed from flow-stripped turbidity currents, later infilled abandoned portions of the channel and overbank areas. While processes of initial channel and levee development are well established in fluvial settings, detailed examples are lacking for deep-sea systems. These results highlight the differences in initiation between submarine channel systems, their fluvial counterparts, and larger submarine channel-levee systems imaged only with lower-resolution technologies. High-resolution imaging and detailed mapping made possible by cutting-edge oceanographic technology provide an unprecedented examination of deep-water channel-levee morphology and improve understanding of deep-water channel migration and levee development.
APL-UW Deep Water Propagation 2015-2017: Philippine Sea Data Analysis
2015-09-30
DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited APL-UW Deep Water Propagation 2015-2017: Philippine Sea Data...the fundamental statistics of broadband low-frequency acoustical signals evolve during propagation through a dynamically-varying deep ocean. OBJECTIVES...Current models of signal randomization over long ranges in the deep ocean were developed for and tested in the North Pacific Ocean gyre. The
Vasile, M; Bruggeman, M; Van Meensel, S; Bos, S; Laenen, B
2017-08-01
Deep geothermal energy is a local energy resource that is based on the heat generated by the Earth. As the heat is continuously regenerated, geothermal exploitation can be considered as a renewable and, depending on the techniques used, a sustainable energy production system. In September 2015, the Flemish Institute for Technological Research (VITO) started drilling an exploration well targeting a hot water reservoir at a depth of about 3km on the Balmatt site near Mol. Geothermal hot water contains naturally occurring gases, chemicals and radionuclides at variable concentrations. The actual concentrations and potentially related hazards strongly depend on local geological and hydrogeological conditions. This paper summarizes the radiological characterization of several rock samples obtained from different depths during the drilling, the formation water, the salt and the sediment fraction. The results of our analyses show low values for the activity concentration for uranium and thorium in the formation water and in the precipitate/sediment fraction. Also, the activity concentrations of 210 Pb and 210 Po are low in these samples and the activity concentration of 226 Ra is dominant. From the analysis of the rock samples, it was found that the layer above the reservoir has a higher uranium and thorium concentration than the layer of the reservoir, which on the other hand contains more radium than the layer above it. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Wen-Huang; Huang, Chi-Yue; Lin, Yen-Jun; Zhao, Quanhong; Yan, Yi; Chen, Duofu; Zhang, Xinchang; Lan, Qing; Yu, Mengming
2015-12-01
The most distinctive feature of the deep South China Sea (SCS) paleoceanography is the occurrence of long-term depleted deep-sea benthic foraminiferal δ13C values. They are lower than the global and the Pacific composite records in the last 16 Ma, especially at 13.2, 10.5, 6.5, 3.0 and 1.2-0.4 Ma. This distinct deep SCS paleoceanograhic history coincides with the subduction-collision history in the Taiwan region where waters of the West Pacific (WP) and the SCS exchange. The depleted deep-sea benthic foraminiferal δ13C events indicate that the SCS deep basin became progressively a stagnant environment in the last 16 Ma due to either closure of the connection with the WP bottom water or temporary reduction of the WP deep water flowing into the deep SCS. Both the Taiwan accretionary prism and the Luzon arc became the main tectono-morphological barriers for the WP bottom water flowing into the SCS deep basin when eastward subduction of the SCS oceanic lithosphere beneath the Philippine Sea Plate started from the Middle Miocene (18-16 Ma). This began a long-term trend of depleted SCS deep-sea benthic δ13C values in the last 16 Ma. The oblique arc-continent collision since ~6.5 Ma uplifted the Taiwan accretionary prism rapidly above sea level and further isolated the SCS from the open Pacific. The collision simultaneously causes backthrusting deformations in the North Luzon Trough forearc basin and sequentially closes interarc water gates between volcanic islands from north to south. The Loho and the Taitung interarc water gates in the advanced collision zone were closed at ~3.0 Ma and ~1.2 Ma, coinciding with the very low SCS deep-sea benthic δ13C events at 3.0 and 1.2-0.4 Ma, respectively. The Taitung Canyon between the Lutao and Lanyu volcanic islands in the incipient collision zone is semi-closed presently. These closure events also lead to the result that the WP deep water intrudes westward into the SCS principally through the Bashi Channel between the Lanyu and Batan volcanic islands in the subduction zone.
Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data
NASA Astrophysics Data System (ADS)
Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.
2017-12-01
As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.
Technology Advances Enabling a New Class of Hybrid Underwater Vehicles
NASA Astrophysics Data System (ADS)
Bowen, A.
2016-02-01
Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention
Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, J. J.; Negri, M. C.; Hinchman, R. R.
2001-03-01
Estimating the effect of phreatophytes on the groundwater flow field is critical in the design or evaluation of a phytoremediation system. Complex hydrogeological conditions and the transient water use rates of trees require the application of numerical modeling to address such issues as hydraulic containment, seasonality, and system design. In 1999, 809 hybrid poplars and willows were planted to phytoremediate the 317 and 319 Areas of Argonne National Laboratory near Chicago, Illinois. Contaminants of concern are volatile organic compounds and tritium. The site hydrogeology is a complex framework of glacial tills interlaced with sands, gravels, and silts of varying character,more » thickness, and lateral extent. A total of 420 poplars were installed using a technology to direct the roots through a 25-ft (8-m)-thick till to a contaminated aquifer. Numerical modeling was used to simulate the effect of the deep-rooted poplars on this aquifer of concern. Initially, the best estimates of input parameters and boundary conditions were determined to provide a suitable match to historical transient ground-water flow conditions. The model was applied to calculate the future effect of the developing deep-rooted poplars over a 6 year period. The first 3 years represent the development period of the trees. In the fourth year, canopy closure is expected to occur; modeling continues through the first 3 years of the mature plantation. Monthly estimates of water use by the trees are incorporated. The modeling suggested that the mature trees in the plantation design will provide a large degree of containment of groundwater from the upgradient source areas, despite the seasonal nature of the trees' water consumption. The results indicate the likely areas where seasonal dewatering of the aquifer may limit the availability of water for the trees. The modeling also provided estimates of the residence time of groundwater in the geochemically altered rhizosphere of the plantation.« less
Occurence and magnitude of methane - hydrate accumulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, R.E.; McIver, R.D.
1982-01-01
Solid, ice-like mixtures of natural gas and water have been found immobilized in rocks beneath the permafrost in Arctic basins, and in muds under deep water along the continental margins of the Americas. The muds in North America could contain almost 5.7 x 10/sup 14/ m/sup 3/, of gas, but probably only a small fraction, eg., 5.7 x 10/sup 12/ M/sup 3/, in rock porous enough to be considered reservoir rocks. None of this gas is recoverable with present technology. However, the very magnitude of the resource is so large that naturally occurring hydrates should be the object of continuingmore » study and research. 25 refs.« less
Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation
NASA Astrophysics Data System (ADS)
Xu, Songsen; Jiao, Chunshuo; Ning, Meng; Dong, Sheng
2018-04-01
To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system (SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.
Pathways of upwelling deep waters to the surface of the Southern Ocean
NASA Astrophysics Data System (ADS)
Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert
2017-04-01
Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.
Spiraling pathways of global deep waters to the surface of the Southern Ocean.
Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert
2017-08-02
Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.
GIS-based technology for marine geohazards in LW3-1 Gas Field of the South China Sea
NASA Astrophysics Data System (ADS)
Su, Tianyun; Liu, Lejun; Li, Xishuang; Hu, Guanghai; Liu, Haixing; Zhou, Lin
2013-04-01
The exploration and exploitation of deep-water oil-gas are apt to be suffered from high-risk geo-hazards such as submarine landslide, soft clay creep, shallow gas, excess pore-water pressure, mud volcano or mud diaper, salt dome and so on. Therefore, it is necessary to survey the seafloor topography, identify the unfavourable geological risks and investigate their environment and mechanism before exploiting the deep-water oil-gas. Because of complex environment, the submarine phenomenon and features, like marine geohazards, can not be recognized directly. Multi-disciplinary data are acquired and analysed comprehensively in order to get more clear understanding about the submarine processes. The data include multi-beam bathymetry data, sidescan sonar images, seismic data, shallow-bottom profiling images, boring data, etc.. Such data sets nowadays increase rapidly to large amounts, but may be heterogeneous and have different resolutions. It is difficult to make good management and utilization of such submarine data with traditional means. GIS technology can provide efficient and powerful tools or services in such aspects as spatial data management, processing, analysis and visualization. They further promote the submarine scientific research and engineering development. The Liwan 3-1 Gas Field, the first deep-water gas field in China, is located in the Zhu II Depression in the Zhujiang Basin along the continental slope of the northern South China Sea. The exploitation of this field is designed to establish subsea wellhead and to use submarine pipeline for the transportation of oil. The deep-water section of the pipeline route in the gas field is to be selected to pass through the northern continental slope of the South China Sea. To avoid huge economic loss and ecological environmental damage, it is necessary to evaluate the geo-hazards for the establishment and safe operation of the pipeline. Based on previous scientific research results, several survey cruises have been carried out with ships and AUV to collect multidisciplinary and massive submarine data such as multi-beam bathymetric data, sidescan sonar images, shallow-bottom profiling images, high-resolution multi-channel seismic data and boring test data. In order to make good use of these precious data, GIS technology is used in our research. Data model is designed to depict the structure, organization and relationship between multi disciplinary submarine data. With these data models, database is established to manage and share the attribute and spatial data effectively. The spatial datasets, such as contours, TIN models, DEM models, etc., can be generated. Some submarine characteristics, such as slope, aspects, curvature, landslide volume, etc., can be calculated and extracted with spatial analysis tools. The thematic map can be produced easily based on database and generated spatial dataset. Through thematic map, the multidisciplinary data spatial relationship can be easily established and provide helpful information for regional submarine geohazards identification, assessments and prediction. The produced thematic map of the LW3-1 Gas Field, reveal the strike of the seafloor topography to be NE to SW. Five geomorphological zones have been divided, which include the outer continental shelf margin zone with sand waves and mega-ripples, the continental slope zone with coral reefs and sand waves, the continental slope zone with a monocline shape, the continental slope zone with fault terraces and the continental slope zone with turbidity current deposits.
Kuss, Joachim; Cordes, Florian; Mohrholz, Volker; Nausch, Günther; Naumann, Michael; Krüger, Siegfried; Schulz-Bull, Detlef E
2017-10-17
The Baltic Sea is a marginal sea characterized by stagnation periods of several years. Oxygen consumption in its deep waters leads to the buildup of sulfide from sulfate reduction. Some of the microorganisms responsible for these processes also transform reactive ionic mercury to neurotoxic methylmercury. Episodic inflows of oxygenated saline water from the North Sea temporally re-establish oxic life in deep waters of the Baltic Sea. Thus, this sea is an especially important region to better understand mercury species distributions in connection with variable redox conditions. Mercury species were measured on three Baltic Sea campaigns, during the preinflow, ongoing inflow, and subsiding inflow of water, respectively, to the central basin. The inflowing water caused the removal of total mercury by 600 nmol m -2 and of methylmercury by 214 nmol m -2 in the Gotland Deep, probably via attachment of the mercury compounds to sinking particles. It appears likely that the consequences of the oxygenation of Baltic Sea deep waters, which are the coprecipitation of mercury species and the resettlement of the oxic deep waters, could lead to the enhanced transfer of accumulated mercury and methylmercury to the planktonic food chain and finally to fish.
Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.
Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi
2015-05-01
Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
NASA Astrophysics Data System (ADS)
Kitade, Y.; Keishi, S.; Yuki, O.; Aoki, S.; Kobayashi, T.; Suga, T.; Ohshima, K. I.
2016-12-01
Antarctic Bottom Water (AABW) is the densest water in the ocean and globally significant; its production at the Antarctic margin is a key component of the global overturning circulation [eg. Marshall and Speer, 2012]. AABW originating from a middle size polynya called Vincennes Bay Polynya (VBP) was discovered recently [Kitade et al., 2014]. The fact that a middle size polynya can be a formation site of AABW suggests the possibility that the unknown formation area further exists along the coast of Australian-Antarctic Basin. A deep profiling float, called "Deep NINJA" which is able to observe temperature and salinity at depths up to 4,000 m, was developed by Japan Agency for Marine-Earth Science and Technology and Tsurumi-Seiki Co. [Kobayashi et al., 2015]. Five deep floats were deployed along 110oE in Jan. 2014. One of them drifted west almost along the continental rise and has been observing 40 profiles within two years. However, no signal of newly formed AABW has been observed except in the region off VBP, which is consistent with the BROKE results [eg. Bindoff et al., 2000) and our analysis result of BROKE data. Although these observations do not completely negate the additional formation of AABW originating from middle size polynyas located west of VBP, their formation volume of AABW is suggested to be much smaller than that from VBP.
Circulation and oxygen cycling in the Mediterranean Sea: Sensitivity to future climate change
NASA Astrophysics Data System (ADS)
Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe
2016-11-01
Climate change is expected to increase temperatures and decrease precipitation in the Mediterranean Sea (MS) basin, causing substantial changes in the thermohaline circulation (THC) of both the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). The exact nature of future circulation changes remains highly uncertain, however, with forecasts varying from a weakening to a strengthening of the THC. Here we assess the sensitivity of dissolved oxygen (O2) distributions in the WMS and EMS to THC changes using a mass balance model, which represents the exchanges of O2 between surface, intermediate, and deep water reservoirs, and through the Straits of Sicily and Gibraltar. Perturbations spanning the ranges in O2 solubility, aerobic respiration kinetics, and THC changes projected for the year 2100 are imposed to the O2 model. In all scenarios tested, the entire MS remains fully oxygenated after 100 years; depending on the THC regime, average deep water O2 concentrations fall in the ranges 151-205 and 160-219 µM in the WMS and EMS, respectively. On longer timescales (>1000 years), the scenario with the largest (>74%) decline in deep water formation rate leads to deep water hypoxia in the EMS but, even then, the WMS deep water remains oxygenated. In addition, a weakening of THC may result in a negative feedback on O2 consumption as supply of labile dissolved organic carbon to deep water decreases. Thus, it appears unlikely that climate-driven changes in THC will cause severe O2 depletion of the deep water masses of the MS in the foreseeable future.
Water Table Depth and Growth of Young Cottonwood
W. M. Broadfoot
1973-01-01
Planted cottonwood grew best when the water table was about 2 feet deep, whether the tree was planted on soil with a high water table or the water table was raised 1 year after planting. Growth over a 1- foot-deep water table was about the same as over no water table, but a surface water table restricted growth of cuttings planted in the water, and killed trees planted...
A Poor Relationship Between Sea Level and Deep-Water Sand Delivery
NASA Astrophysics Data System (ADS)
Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier
2018-08-01
The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.
NASA Astrophysics Data System (ADS)
Chen, Yi
2018-03-01
The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.
Root growth and water relations of oak and birch seedlings.
Osonubi, O; Davies, W J
1981-01-01
First year seedlings of English oak (Quercus Cobur) and silver birch (Betula pendula) were subjected to pressure-volume analysis to investigate the water potential components and cell wall properties of single leaves. It was hoped that this rapid-drying technique would differentiate between reductions in plant solute potential resulting from dehydration and the effects of solute accumulation.Comparison of results from these experiments with those of slow drying treatments (over a number of days) with plants growing in tubes of soil, indicated that some solute accumulation may have occurred in drying oak leaves. High leaf turgor and leaf conductance were maintained for a significant period of the drying cycle. Roots of well-watered oak plants extended deep into the soil profile, and possibly as a result of solute regulation and therefore turgor maintenance, root growth of unwatered plants was greater than that of their well-watered counterparts. This was particularly the case deep in the profile. As a result of deep root penetration, water deep in the soil core was used by oak plants to maintain plant turgor, and quite low soil water potentials were recorded in the lower soil segments.Root growth of well-watered birch seedlings was prolific but roots of both well-watered and unwatered plants were restricted to the upper part of the profile. Root growth of unwatered plants was reduced despite the existence of high soil water potentials deep in the profile. Shallow rooting birch seedlings were unable to use this water.Pressure-volume analysis indicated that significant reductions of water potential, which are required for water uptake from drying soil, would occur in oak with only a small reduction in plant water content compared to the situation in birch. This was a result of the low solute potential in oak leaves combined with a high modulus of elasticity of cell walls. Deep rooting of oak seedlings, combined with these characteristics, which will be particularly important when soil deep in the profile begins to dry, mean that this species may be comparatively successful when growing on dry sites.
Mixing alters the lytic activity of viruses in the dark ocean.
Winter, Christian; Köstner, Nicole; Kruspe, Carl-Philip; Urban, Damaris; Muck, Simone; Reinthaler, Thomas; Herndl, Gerhard J
2018-03-01
In aquatic habitats, viral lysis of prokaryotic cells lowers the overall efficiency of the microbial loop, by which dissolved organic carbon is transfered to higher trophic levels. Mixing of water masses in the dark ocean occurs on a global scale and may have far reaching consequences for the different prokaryotic and virus communities found in these waters by altering the environmental conditions these communities experience. We hypothesize that mixing of deep ocean water masses enhances the lytic activity of viruses infecting prokaryotes. To address this hypothesis, major deep-sea water masses of the Atlantic Ocean such as North Atlantic Deep Water, Mediterranean Sea Overflow Water, Antarctic Intermediate Water, and Antarctic Bottom Water were sampled at five locations. Prokaryotic cells from these samples were collected by filtration and subsequently incubated in virus-reduced water from either the same (control) or a different water mass (transplantation treatment). Additionally, mixtures of prokaryotes obtained from two different water masses were incubated in a mixture of virus-reduced water from the same water masses (control) or in virus-reduced water from the source water masses separately (mixing treatments). Pronounced differences in productivity-related parameters (prokaryotic leucine incorporation, prokaryotic and viral abundance) between water masses caused strong changes in viral lysis of prokaryotes. Often, mixing of water masses increased viral lysis of prokaryotes, indicating that lysogenic viruses were induced into the lytic cycle. Mixing-induced changes in viral lysis had a strong effect on the community composition of prokaryotes and viruses. Our data show that mixing of deep-sea water masses alters levels of viral lysis of prokaryotes and in many cases weakens the efficiency of the microbial loop by enhancing the recycling of organic carbon in the deep ocean. © 2018 by the Ecological Society of America.
The Hydromechanics of Vegetation for Slope Stabilization
NASA Astrophysics Data System (ADS)
Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.
2018-02-01
Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.
Breakup of last glacial deep stratification in the South Pacific.
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-23
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen
2014-08-19
Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.
Deep water characteristics and circulation in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin
2018-04-01
This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.
NASA Astrophysics Data System (ADS)
Danovaro, R.; Carugati, L.; Boldrin, A.; Calafat, A.; Canals, M.; Fabres, J.; Finlay, K.; Heussner, S.; Miserocchi, S.; Sanchez-Vidal, A.
2017-08-01
Information on the dynamics of deep-sea biota is extremely scant particularly for long-term time series on deep-sea zooplankton. Here, we present the results of a deep-sea zooplankton investigation over one annual cycle based on samples from sediment trap moorings in three sub-basins along the Mediterranean Sea. Deep-sea zooplankton assemblages were dominated by copepods, as in shallow waters, only in the Adriatic Sea (>60% of total abundance), but not in the deep Ionian Sea, where ostracods represented >80%, neither in the deep Alboran Sea, where polychaetes were >70%. We found that deep-sea zooplankton assemblages: i) are subjected to changes in their abundance and structure over time, ii) are characterized by different dominant taxa in different basins, and iii) display clear taxonomic segregation between shallow and near-bottom waters. Zooplankton biodiversity decreases with increasing water depth, but the equitability increases. We suggest here that variations of zooplankton abundance and assemblage structure are likely influenced by the trophic condition characterizing the basins. Our findings provide new insights on this largely unknown component of the deep ocean, and suggest that changes in the export of organic matter from the photic zone, such as those expected as a consequence of global change, can significantly influence zooplankton assemblages in the largest biome on Earth.
NASA Astrophysics Data System (ADS)
Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David
2017-03-01
This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.
A Deep Hydrographic Section Across the Tasman Sea.
1985-09-01
the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter
2018-04-01
Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.
Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H
2017-09-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.
NASA Astrophysics Data System (ADS)
Nieminski, N.; Graham, S. A.
2014-12-01
One of the outstanding challenges of field geology is inaccessibility of exposure. The ability to view and characterize outcrops that are difficult to study from the ground is greatly improved by aerial investigation. Detailed stratigraphic architecture of such exposures is best addressed by using advances and availability of small unmanned aircraft systems (sUAS) that can safely navigate from high-altitude overviews of study areas to within a meter of the exposure of interest. High-resolution photographs acquired at various elevations and azimuths by sUAS are then used to convert field measurements to digital representations in three-dimensions at a fine scale. Photogrammetric software is used to capture complex, detailed topography by creating digital surface models with a range imaging technique that estimates three-dimensional structures from two-dimensional image sequences. The digital surface model is overlain by detailed, high-resolution photography. Pairing sUAS technology with readily available photogrammetry software that requires little processing time and resources offers a revolutionary and cost-effective methodology for geoscientists to investigate and quantify stratigraphic and structural complexity of field studies from the convenience of the office. These methods of imaging and modeling remote outcrops are demonstrated in the East Coast Basin, New Zealand, where wave-cut platform exposures of Miocene deep-water deposits offer a unique opportunity to investigate the flow processes and resulting characteristics of thin-bedded turbidite deposits. Stratigraphic architecture of wavecut platform and vertically-dipping exposures of these thin-bedded turbidites is investigated with sUAS coupled with Structure from Motion (SfM) photogrammetry software. This approach allows the geometric and spatial variation of deep-water architecture to be characterized continuously along 2,000 meters of lateral exposure, as well as to measure and quantify cyclic variations in thin-bedded turbidites at centimeter scale. Results yield a spatial and temporal understanding of a deep-water depositional system at a scale that was previously unattainable using conventional field geology techniques, and a virtual outcrop that can be used for classroom education.
NASA Technical Reports Server (NTRS)
Foster, R.; Schlutsmeyer, A.
1997-01-01
A new technology that can lower the cost of mission operations on future spacecraft will be tested on the NASA New Millennium Deep Space 1 (DS-1) Mission. This technology, the Beacon Monitor Experiment (BMOX), can be used to reduce the Deep Space Network (DSN) tracking time and its associated costs on future missions.
Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.
2014-12-01
This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.
ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng
Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.
Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A
2018-05-01
Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.
2012-06-01
Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the only sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature, and with groundwater sampling followed by determination of major ions, tracers (such as Boron and Strontium), and isotopes (Oxygen, Deuterium, Tritium). Leaching experiments on soil samples and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of highly mineralized Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Chloride (up to 800 mg l-1). The deep water inflow recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 7800-17 500 m3 yr-1). It also partly recharges the landslide body, where the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This points to a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains.
Code of Federal Regulations, 2010 CFR
2010-07-01
... is located entirely or partly in water less than 200 meters deep, or before May 3, 2013, on a lease that is located entirely in water more than 200 meters but less than 400 meters deep, the MMS Regional... entirely in water more than 200 meters but less than 400 meters deep. You must provide a credible activity...
Deep Water Ocean Acoustics (DWOA): The Philippine Sea, OBSANP, and THAAW Experiments
2015-09-30
the travel times. 4 The ocean state estimates were then re-computed to fit the acoustic travel times as integrals of the sound speed, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Deep Water Ocean Acoustics (DWOA): The Philippine Sea...deep-water acoustic propagation and ambient noise has been collected in a wide variety of environments over the last few years with ONR support
Deep and shallow water effects on developing preschoolers' aquatic skills.
Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta
2012-05-01
The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.
Deep and Shallow Water Effects on Developing Preschoolers’ Aquatic Skills
Costa, Aldo M.; Marinho, Daniel A.; Rocha, Helena; Silva, António J.; Barbosa, Tiago M.; Ferreira, Sandra S.; Martins, Marta
2012-01-01
The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher’s exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk’s method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills. PMID:23487406
Excavationless Exterior Foundation Insulation Field Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schirber, T.; Mosiman, G.; Ojczyk, C.
Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquidmore » insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.« less
Excavationless Exterior Foundation Insulation Field Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schirber, T.; Mosiman, G.; Ojczyk, C.
Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulatingmore » foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.« less
Quantification of deep percolation from two flood-irrigated alfalfa field, Roswell Basin, New Mexico
Roark, D. Michael; Healy, D.F.
1998-01-01
For many years water management in the Roswell ground-water basin (Roswell Basin) and other declared basins in New Mexico has been the responsibility of the State of New Mexico. One of the water management issues requiring better quantification is the amount of deep percolation from applied irrigation water. Two adjacent fields, planted in alfalfa, were studied to determine deep percolation by the water-budget, volumetric-moisture, and chloride mass-balance methods. Components of the water-budget method were measured, in study plots called borders, for both fields during the 1996 irrigation season. The amount of irrigation water applied in the west border was 95.8 centimeters and in the east border was 169.8 centimeters. The total amount of precipitation that fell during the irrigation season was 21.9 centimeters. The increase in soil-moisture storage from the beginning to the end of the irrigation season was 3.2 centimeters in the west border and 8.8 centimeters in the east border. Evapotranspiration, as estimated by the Bowen ratio energy balance technique, in the west border was 97.8 centimeters and in the east border was 101.0 centimeters. Deep percolation determined using the water-budget method was 16.4 centimeters in the west border and 81.6 centimeters in the east border. An average deep percolation of 22.3 centimeters in the west border and 31.6 centimeters in the east border was determined using the volumetric-moisture method. The chloride mass-balance method determined the multiyear deep percolation to be 15.0 centimeters in the west border and 38.0 centimeters in the east border. Large differences in the amount of deep percolation between the two borders calculated by the water-budget method are due to differences in the amount of water that was applied to each border. More water was required to flood the east border because of the greater permeability of the soils in that field and the smaller rate at which water could be applied.
Lemaire, Benjamin; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Stegeman, John; Mork, Jarle; Rees, Jean François
2012-09-18
While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.
Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda
Cronin, T. M.; Holtz, T.R.; Whatley, R.C.
1994-01-01
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.
Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea
NASA Astrophysics Data System (ADS)
Huang, B.
2015-12-01
The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in [CO32-] because of regression, so dissolution keeps steady. However, [CO32-] is probably more strongly controlled by regression, the decrease in [CO32-] result from more CO2 restored in deep water overwhelms the increase in [CO32-] due to regression at 17924, so more carbonate dissolved from MIS 3 to the Last Glacial Maximum (LGM).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... following methods: Government-wide rulemaking Web site: http://www.regulations.gov . Follow the instructions... irrigation system improvements outlined in this plan will provide more efficient use of this water. Deep... reduction of excess deep percolation passing below the plant root zone. Deep percolation of irrigation water...
Germino, Matthew J.; Reinhardt, Keith
2013-01-01
1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that were consistent with the two-layer hypothesis, and the contribution of shallow water to growth on these plots was consistent with the resource-pool hypothesis. However, shallow-soil water also had negative effects on sagebrush, suggesting an ecohydrological trade-off not considered in these or related theories. The interaction between precipitation timing and soil depth indicates that increased winter precipitation could lead to a mosaic of increases and decreases in A. tridentata across landscapes having variable soil depth.
Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs
NASA Astrophysics Data System (ADS)
Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.
2008-05-01
Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40,000 individual deep-water lithoherms may occur on the Blake Plateau and Straits of Florida, perhaps exceeding the areal extent of all the shallow-water reefs of the southeastern U.S. Our research program has provided data on the status of knowledge concerning these deep-reef habitats to the South Atlantic Fishery Management Council (SAFMC). Currently pending is a proposal by the SAFMC for a deep- water coral Habitat Area of Particular Concern (HAPC) that would extend from North Carolina to south Florida (78,888 km2) to protect these diverse and irreplaceable resources from destructive fishing activities such as bottom trawling. Deep-water reefs worldwide have been severely impacted by bottom trawling, including the deep-water Oculina coral reefs off central eastern Florida, which are structurally similar to the Lophelia reefs. Over a 30-year period, up to 99% of unprotected portions of the Oculina reefs were destroyed by rock shrimp trawling, whereas reefs designated as the Oculina HAPC in 1984 were protected from trawling and long-lines and are still relatively healthy. Numerous fisheries may target the deep-water Lophelia reef habitat including royal red shrimp, golden crab, and various fin fish.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... halibut PSC trawl limits between the trawl gear deep-water and the shallow-water species fishery... for pollock, sablefish, deep-water flatfish, rex sole, Pacific ocean perch, northern rockfish... less than the ABCs for Pacific cod, shallow-water flatfish, arrowtooth flounder, flathead sole, ``other...
NASA Astrophysics Data System (ADS)
Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.
2017-01-01
Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.
Tritium in the western Mediterranean Sea during 1981 Phycemed cruise
NASA Astrophysics Data System (ADS)
Andrie, Chantal; Merlivat, Liliane
1988-02-01
We report on simultaneous hydrological and tritium data taken in the western Mediterranean Sea during April 1981 and which implement our knowledge of the spatial and temporal variability of the convection process occurring in the Northern Basin (Gulf of Lion, Ligurian Sea). The renewal time of the deep waters in the Medoc area is calculated to be 11 ± 2 years using a box-model assymption. An important local phenomenon of "cascading" off the Ebro River near the Spanish coast is, noticeable by the use of tritium data. In the Sardinia Straits area tritium data indicate very active mixing between 100 and 500 m depth. The tritium subsurface maxima in Sardinia Straits suggests the influence of not only the Levantine Intermediate Water (LIW) but also an important shallower component. In waters deeper than 500m, an active mixing occurs between the deep water and the LIW via an intermediate water mass from the Tyrrhenian Sea by "salt-fingering". Assuming a two end-member mixing. We determine the deep tritium content in the Sardinia Channel to be 1.8 TU. For comparison, the deep tritium content of the Northern Basin is equal to 1.3 TU. Tritium data relative to the Alboran Sea show that a layer of high tritium content persists all along its path from Sardifia to Gibraltar on a density surface shallower than the intermediate water. The homogeneity of the deep tritium concentrations between 1200 m depth and the bottom corroborate the upward "pumping" and westward circulation of deep waters along the continental slope of the North African Shelf. From the data measured in the Sardinia Straits and in the Alboran Sea, and upper limit of the deep advection rate of the order of 0.5 cm s-1 is estimated.
Deep challenges for China's war on water pollution.
Han, Dongmei; Currell, Matthew J; Cao, Guoliang
2016-11-01
China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.
49 CFR 195.248 - Cover over buried pipeline.
Code of Federal Regulations, 2010 CFR
2010-10-01
... waters less than 15 feet (4.6 meters) deep as measured from mean low water 36 (914) 18 (457) Other offshore areas under water less than 12 ft (3.7 meters) deep as measured from mean low water 36 (914) 18... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet (30...
Observation of water mass characteristics in the southwestern Mariana Trench
NASA Astrophysics Data System (ADS)
Xu, H.; Xie, Q.; Hong, B.
2016-12-01
The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.
Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific
Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.
2012-01-01
A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.
Increasing water productivity on Vertisols: implications for environmental sustainability.
Jiru, Mintesinot; Van Ranst, Eric
2010-10-01
The availability and quality of irrigation water have become a serious concern because of global climate change and an increased competition for water by industry, domestic users and the environment. Therefore, exploring environmentally friendly water-saving irrigation strategies is essential for achieving food and environmental security. In northern Ethiopia, where traditional furrow irrigation is widely practiced, water mismanagement and its undesirable environmental impact are rampant. A 2-year field study was undertaken to compare the traditional irrigation management with surge and deficit irrigation practices on a Vertisol plot. Results have shown that surge and deficit irrigation practices increase water productivity by 62% and 58%, respectively, when compared to traditional management. The study also found out that these practices reduce the adverse environmental impacts (waterlogging and salinity) of traditional management by minimizing deep percolation and tail water losses. Total irrigation depth was reduced by 12% (for surge) and 27% (for deficit) when compared to traditional management. Based on the results, the study concluded that surge and deficit irrigation technologies not only improve water productivity but also enhance environmental sustainability. Copyright © 2010 Society of Chemical Industry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska...
NASA Astrophysics Data System (ADS)
Etnoyer, P. J.; Hourigan, T. F.; Reser, B.; Monaco, M.
2016-02-01
The growing fleet of telepresence-enabled research vessels equipped with deep-sea imaging technology provides a new opportunity to catalyze and coordinate research efforts among ships. This development is particularly useful for studying the distribution and diversity of deep-sea corals, which occur worldwide from 50 to 8600 m depth. Marine managers around the world seek to conserve these habitats, but require a clear consensus on what types of information are most important and most relevant for marine conservation. The National Oceanic and Atmospheric Administration (NOAA) seeks to develop a reproducible, non-invasive set of ROV methods designed to measure conservation value, or habitat quality, for deep-sea corals and sponges. New tools and methods will be proposed to inform ocean resource management, as well as facilitate research, outreach, and education. A new database schema will be presented, building upon the Ocean Biogeographic Information System (OBIS) and efforts of submersible and ROV teams over the years. Visual information about corals and sponges has proven paramount, particularly high-quality images with standard attributes for marine geology and marine biology, including scientific names, colony size, health, abundance, and density. Improved habitat suitability models can be developed from these data if presence and absence are measured. Recent efforts to incorporate physical sampling into telepresence protocols further increase the value of such information. It is possible for systematic observations with small file sizes to be distributed as geo-referenced, time-stamped still images with environmental variables for water chemistry and a standardized habitat classification. The technique is common among researchers, but a distributed network for this information is still in its infancy. One goal of this presentation is to make progress towards a more integrated network of these measured observations of habitat quality to better facilitate research, education, and conservation of deep-sea corals.
2006-10-19
This image shows NASA Deep Impact spacecraft being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. on July 2, 2005. The spacecraft impactor was released from Deep Impact flyby spacecraft.
Archaeal Diversity in Waters from Deep South African Gold Mines
Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.
2001-01-01
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932
Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years
van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.
2004-01-01
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, "Nova," 7219 m water depth) and southwest Pacific deep water (63KD, "Tasman," 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway. Copyright 2004 by the American Geophysical Union.
Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, G.D.; Kamath, V.A.; Godbole, S.P.
1987-10-01
Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future sourcemore » of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.« less
Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)
NASA Astrophysics Data System (ADS)
Edwards, K. J.; Wheat, C. G.
2010-12-01
The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.
NASA Astrophysics Data System (ADS)
Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie
2018-03-01
Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.
Boyle, Edward A.
1997-01-01
Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737
NASA Astrophysics Data System (ADS)
Olshanetskiy, D. M.
2015-12-01
A zonal scheme for the Lower Paleogene of the northern Pacific Ocean is proposed on the basis of the stratigraphic distribution of benthic foraminifers in the lower bathyal-abyssal beds studied in boreholes in the North and South Pacific regions. This scheme includes eight subdivisions (six zones and two subzones). The boundaries of the benthic zonal subdivisions are defined by bioevents (appearance or disappearance of stratigraphically important taxa) and are linked to the zonal scales based on planktonic foraminifers and calcareous nannoplankton. It is established that most of these bioevents are recognized subglobally. Apart from the evolutionary events, changes in the deep-water benthic foraminiferal assemblages were caused by changes in the paleooceanological environment. This allowed detailed characterization of a global mass extinction of assemblages of deep-water benthic foraminifers in the region studied. It is also established that changes in the assemblages of deep-water benthic foraminifers, observed in either change in their taxonomic composition or changes in abundance and diversity, resulted from the presence of different deep-water masses in the region.
Liquid Water Oceans in Ice Giants
NASA Technical Reports Server (NTRS)
Wiktorowicz, Sloane J.; Ingersoll, Andrew P.
2007-01-01
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.
NASA Astrophysics Data System (ADS)
Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.
2015-12-01
We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2) or 2080 (CNRM-CM5); thus, the conditions required for thermobaric instability induced mixing become rare or non-existent in these projections. The results indicate that the frequency of deep water renewal events could change substantially in a warmer future climate, potentially altering the lake ecosystem and water clarity.
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.
2017-01-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...
2017-09-13
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
NASA Astrophysics Data System (ADS)
Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.
2016-11-01
We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.
Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian
2010-04-01
Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.
Nitrate Contamination of Deep Aquifers in the Salinas Valley, California
NASA Astrophysics Data System (ADS)
Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.
2011-12-01
The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged before agricultural activity began in the valley, while some shallower intervals draw in recycled irrigation water which can have a low tritium concentration but high nitrate concentration. The irrigation return water may take a decade or more to reach the water table, given that the vadose zone in some affected areas is more than 30 m deep, but downward migration is likely enhanced by preferential flow paths, plowing, crop removal, and sprinkler irrigation in surrounding fields. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Fogg et al., 1999, in AGU Geophysical Monograph 108. Kulongoski et al., 2007. USGS Data Series Report 167 Monterey County Water Agency, 1997. Water Resources Data Report (Water Year 1994-1995) Moran et al., 2011. California GAMA Special Study: Nitrate Fate and Transport in the Salinas Valley. LLNL, in press.
Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance
NASA Astrophysics Data System (ADS)
Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut
2017-10-01
Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially important component of deep-sea microeukaryote communities.
A retrospective analysis of funding and focus in US advanced fission innovation
NASA Astrophysics Data System (ADS)
Abdulla, A.; Ford, M. J.; Morgan, M. G.; Victor, D. G.
2017-08-01
Deep decarbonization of the global energy system will require large investments in energy innovation and the deployment of new technologies. While many studies have focused on the expenditure that will be needed, here we focus on how government has spent public sector resources on innovation for a key carbon-free technology: advanced nuclear. We focus on nuclear power because it has been contributing almost 20% of total US electric generation, and because the US program in this area has historically been the world’s leading effort. Using extensive data acquired through the Freedom of Information Act, we reconstruct the budget history of the Department of Energy’s program to develop advanced, non-light water nuclear reactors. Our analysis shows that—despite spending 2 billion since the late 1990s—no advanced design is ready for deployment. Even if the program had been well designed, it still would have been insufficient to demonstrate even one non-light water technology. It has violated much of the wisdom about the effective execution of innovative programs: annual funding varies fourfold, priorities are ephemeral, incumbent technologies and fuels are prized over innovation, and infrastructure spending consumes half the budget. Absent substantial changes, the possibility of US-designed advanced reactors playing a role in decarbonization by mid-century is low.
NASA Astrophysics Data System (ADS)
Matsuzaki, Kenji M.; Itaki, Takuya; Tada, Ryuji; Kurokawa, Shunsuke
2017-04-01
The Japan Sea is a back-arc basin opened under a continental rifting during the Early to Middle Miocene (ca. 25-13 Ma). This area is characterized by active tectonism, which drastically modified the Japan Sea paleogeography such as the sill depth of its key straits. In modern condition, the Japan Sea is connected to adjacent marginal seas and the Pacific Ocean by four straits shallower than 130 m. These straits are the Tsushima Strait connecting to the East China Sea, the Tsugaru Strait connecting to the Pacific, and the Soya and Mamiya Straits connecting to the Sea of Okhotsk. Therefore, the intermediate and deep water of the Japan Sea is isolated, leading the formation of a unique and regional deep sea water, known as the Japan Sea Proper Water. However, past studies show that during the late Miocene and Pliocene, only the Tsugaru Strait connecting to the North Pacific was opened. This strait was deeper during Plio-Miocene and have likely enable inflow of deep to intermediate water of the North Pacific in the Japan Sea. Radiolarians are one of the planktic micro-organisms group bearing siliceous skeletons. Their species comprise shallow to deep water dwellers, sensitive to changes in sea water physical/ecological properties forced by climate changes. Their fossils are known for be well preserved in the deep-sea sediments of the North Pacific. Therefore, in this study we propose to monitor changes in intermediate to deep water hydrography of the Japan Sea since the late Miocene, using radiolarian as an environmental proxy. In 2013 the IODP Expedition 346 retrieved sediment cores at different sites in the Japan Sea. In this study, we have analyzed 139 core sediments samples collected at Site U1425. This site is situated in the middle of the Yamato Bank. We selected this site because the past 10 Myr could be recovered continuously without hiatuses. Changes in radiolarian assemblages reveal that the oceanographic setting of the Japan Sea changed drastically at ca. 2.7 Ma. For older interval (2.7- 10 Ma), deep water species of the North Pacific could be identified at site U1425, inferring influences of deep water from the North Pacific and consequently a deeper sill depths of the connecting strait. Radiolarian assemblages also show that the intermediate water of the Japan sea is characterized by taxa living in equatorial to mid latitude area of the Northwest Pacific during the time interval between 2.7-10 Ma. While between 4 and 5 Ma, taxa related to the Sea of Okhotsk show very high abundances, inferring also inflow of intermediate water from the Sea of Okhotsk in the Japan Sea.
Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.
2003-01-01
The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.
Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California
Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.
2002-01-01
In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring wells are similar, even though the wells are completed in different geologic formations.Geophysical logs collected at the DMW1 site indicate saline water in most water-bearing zones shallower than 720 feet below land surface and from about 1,025 to 1,130 feet below land surface, and indicate fresher water from about 910 to 950 feet below land surface (DMW1-4), 1,130 to 1,550 feet below land surface, and below 1,650 feet below land surface. Temporal differences between electromagnetic induction logs indicate possible seasonal seawater intrusion in five water-bearing zones from 350 to 675 feet below land surface in the upper-aquifer system.The water-chemistry analyses from the deep-aquifer system monitoring and supply wells indicate that these deep aquifers in the Marina area contain potable water with the exception of the saline water in well DMW1-3. The saline water from well DMW1-3 has a chloride concentration of 10,800 milligrams per liter and dissolved solids concentration of 23,800 milligrams per liter. The source of this water was determined not to be recent seawater based on geochemical indicators and the age of the ground water. The high salinity of this ground water may be related to the dissolution of salts from the saline marine clays that surround the water-bearing zone screened by DMW1-3. The major ion water chemistry of the monitoring wells and the nearby MCWD water-supply wells are similar, which may indicate they are in hydraulic connection, even though the stratigraphic layers differ below 955 feet below land surface.No tritium was detected in samples from the deep monitoring wells. The lack of tritium suggest that there is no recent recharge water (less than 50 years old) in the deep-aquifer system at the DMW1 site. The carbon-14 analyses of these samples indicate ground water from the monitoring site was recharged thousands of years ago.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Extreme Longevity in Proteinaceous Deep-Sea Corals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roark, E B; Guilderson, T P; Dunbar, R B
2009-02-09
Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelrymore » trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.« less
VSAT: opening new horizons to oil and gas explorations
NASA Astrophysics Data System (ADS)
Al-Dhamen, Muhammad I.
2002-08-01
Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts
Diverless tie-in tool gets first test on deepwater line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knott, D.
1997-03-24
A diverless, deepwater tie-in and repair tool has been developed and successfully tested on the Norwegian Sea`s Haltenpipe project. Den Norske stats oljeselskap AS (Statoil) and Hydratight Ltd., Wolverhampton, U.K., have disclosed details of the technique and installation. Statoil funded development by Hydra-tight of its Morgrip mechanical connector as a diverless pipeline tie-in and repair system for use in water too deep for existing technologies. The paper discusses welding restrictions underwater, metal-to-metal sealing, the Haltenpipe tie-in, and further development plans.
Preparing for Orion Recovery Test on This Week @NASA - August 1, 2014
2014-08-01
NASA and the U.S. Navy were busy recently – preparing for tests scheduled off the coast of San Diego, California. Crews will run through the procedures to recover NASA's Orion spacecraft from the ocean, following its water landing from deep space missions. Kennedy Space Center, Johnson Space Center, and Lockheed Martin Space Operations are all involved in the recovery effort. Also, Mars 2020 rover and beyond, Opportunity: 25 miles and counting, Updated K-Rex rover, Automated Transfer Vehicle launch and NASA Technology Days!
50 CFR 679.21 - Prohibited species bycatch management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Region Web site (http://alaskafisheries.noaa.gov/). (c) Salmon taken in the BS pollock fisheries... GOA groundfish species or species group. (B) Deep-water species fishery. Fishing with trawl gear... combine management of available trawl halibut PSC limits in the second season deep-water and shallow-water...
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015
NASA Astrophysics Data System (ADS)
Holbourn, A.; Kuhnt, W.; Schulz, M.
2003-04-01
The enigmatic long-term positive carbon isotope excursion ("Monterey excursion") in the middle Miocene exhibits an apparent 400 ky cyclicity (long eccentricity cycle of the Milankovitch frequency band). Similar isotope excursion are known from the mid-Cretaceous and may be a characteristic feature of a greenhouse world with extreme warm climate, high sealevel, and a dominantly zonal circulation pattern in the world ocean. This period of extreme warmth (the mid-Miocene climate optimum) ended between 14.2 and 13.8 Ma, when a significant increase in deep-water oxygen isotopic values occurred that was related to the growth of the East Antarctic ice sheet. Plate tectonic movements between Australia and SE Asia, ultimately leading to the closure of the deep water gateway connecting the Indian and Pacific Oceans, started prior to this paleoceanographic change. We used benthic deep water oxygen and carbon isotope curves in combination with new age models at critical locations along the northern margin of the Indonesian Gateway (South China Sea, ODP Site 1146), at the western end of the gateway (NW Australian margin, ODP Site 761) and at the eastern end of the gateway (Ontong Java Plateau, ODP Site 806) to investigate the frequency and amplitude of deep water isotope fluctuations during the middle Miocene. High resolution sediment color reflectance data, benthic carbon isotopes and foraminiferal assemblages are used as proxies of deep-water ventilation and carbon flux. Our results indicate Milankovitch forcing on virtually all proxies and a change from eccentricity to precession driven cyclicity at approximately 15 Ma. Our data reveal increased carbon flux and a restricted deep water exchange between the Pacific Ocean and Indian Ocean through the Indonesian Gateway during the middle Miocene climate optimum. After 13.6 Ma, the decrease in d13C was strongest at Site 806, indicating a marked change in the deep-water circulation of the equatorial West Pacific and a switch to a more distant deep-water source.
A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene
NASA Astrophysics Data System (ADS)
Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.
2011-12-01
The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation
NASA Astrophysics Data System (ADS)
Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.
2017-12-01
The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation
NASA Astrophysics Data System (ADS)
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith
2017-10-01
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
Veley, Ronald J.; Moran, Michael J.
2012-01-01
The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.
Deep Stimulation at Newberry Volcano EGS Demonstration
NASA Astrophysics Data System (ADS)
Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.
2014-12-01
The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.
Using DSP technology to simplify deep space ranging
NASA Technical Reports Server (NTRS)
Bryant, S.
2000-01-01
Commercially available Digital Signal Processing (DSP) technology has enabled a new spacecraft ranging design. The new design reduces overall size, parts count, and complexity. The design implementation will also meet the Jet Propulsion Laboratory (JPL) requirements for both near-Earth and deep space ranging.
NASA Astrophysics Data System (ADS)
Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.
2013-12-01
KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.
NASA Astrophysics Data System (ADS)
Han, D.; Cao, G.; Currell, M. J.
2016-12-01
Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.
Life-Cycle environmental impact assessment of mineral industries
NASA Astrophysics Data System (ADS)
Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.
2018-05-01
Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.
GPS water level measurements for Indonesia's Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.
2011-03-01
On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.
NASA Astrophysics Data System (ADS)
Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.
2016-02-01
Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is more affected by bubble injection, and reacts differently to temperature change. Oxygen is also produced and consumed by photosynthesis and respiration respectively at a specific ratio to CO2. These properties enable us to use oxygen as a separate constraint from carbon to determine the effect these various processes have on gas cycling, and the global ocean circulation.
Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas
Gibson, T.G.; Schlee, J.
1967-01-01
In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.
Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean
NASA Astrophysics Data System (ADS)
Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.
2014-05-01
As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.
NASA Astrophysics Data System (ADS)
Seyfried, Léo; Marsaleix, Patrick; Richard, Evelyne; Estournel, Claude
2017-12-01
In the north-western Mediterranean, the strong, dry, cold winds, the Tramontane and Mistral, produce intense heat and moisture exchange at the interface between the ocean and the atmosphere leading to the formation of deep dense waters, a process that occurs only in certain regions of the world. The purpose of this study is to demonstrate the ability of a new coupled ocean-atmosphere modelling system based on MESONH-SURFEX-SYMPHONIE to simulate a deep-water formation event in real conditions. The study focuses on summer 2012 to spring 2013, a favourable period that is well documented by previous studies and for which many observations are available. Model results are assessed through detailed comparisons with different observation data sets, including measurements from buoys, moorings and floats. The good overall agreement between observations and model results shows that the new coupled system satisfactorily simulates the formation of deep dense water and can be used with confidence to study ocean-atmosphere coupling in the north-western Mediterranean. In addition, to evaluate the uncertainty associated with the representation of turbulent fluxes in strong wind conditions, several simulations were carried out based on different parameterizations of the flux bulk formulas. The results point out that the choice of turbulent flux parameterization strongly influences the simulation of the deep-water convection and can modify the volume of the newly formed deep water by a factor of 2.
Deep Space Systems Technology Program (DSST-X2000) Future Deliveries
NASA Technical Reports Server (NTRS)
Salvo, Christopher G.
1999-01-01
The number of deep space missions is increasing as we embark on a new era of exploration. New missions are "faster-better-cheaper" and cannot afford large individual investments in technology. A new process is needed fo allow these missions to take advantage of the technological breakthroughs that are critical to getting the cost down while increasing the science. The key is multimission technology development. NASA will make institutional investments in technology to benefit sets of missions. Continuous investment will provide a series of revolutions in technology to address common challenges in mission design and execution.
Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions
2014-01-01
Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations, bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular methods for detecting low frequency variants in the context of sequencing error and reconstructing individual haplotypes from short reads. PMID:24428920
Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro
2015-12-01
The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 200 meters deep and entirely less than 400 meters deep. (3) $4.08 per MMBtu (i) The first 20 BCF of... less than 400 meters of water, the $4.55 per MMBtu price threshold applies to the whole RSV (see... that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008...
NASA Astrophysics Data System (ADS)
Pawson, David L.; Pawson, Doris J.
2013-08-01
In a survey of the bathyal echinoderms of the Bahama Islands region using manned submersibles, approximately 200 species of echinoderms were encountered and documented; 33 species were echinoids, most of them widespread in the general Caribbean area. Three species were found to exhibit covering behavior, the piling of debris on the upper surface of the body. Active covering is common in at least 20 species of shallow-water echinoids, but it has been reliably documented previously only once in deep-sea habitats. Images of covered deep-sea species, and other species of related interest, are provided. Some of the reasons adduced in the past for covering in shallow-water species, such as reduction of incident light intensity, physical camouflage, ballast in turbulent water, protection from desiccation, presumably do not apply in bathyal species. The main reasons for covering in deep, dark, environments are as yet unknown. Some covering behavior in the deep sea may be related to protection of the genital pores, ocular plates, or madreporite. Covering in some deep-sea species may also be merely a tactile reflex action, as some authors have suggested for shallow-water species.
Advanced Life Support Technologies and Scenarios
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2011-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Resch, G. M.
2000-01-01
The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.
Richter, Claudio
2013-01-01
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810
Fillinger, Laura; Richter, Claudio
2013-01-01
Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.
Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P
2017-05-02
Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.
The Secret to Successful Deep-Sea Invasion: Does Low Temperature Hold the Key?
Smith, Kathryn E.; Thatje, Sven
2012-01-01
There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients. PMID:23227254
The secret to successful deep-sea invasion: does low temperature hold the key?
Smith, Kathryn E; Thatje, Sven
2012-01-01
There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.
Dense water plumes modulate richness and productivity of deep sea microbes.
Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E
2016-12-01
Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A
2015-08-17
Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts.
York, Paul H.; Carter, Alex B.; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A.
2015-01-01
Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474
One hundred years of hydrographic measurements in the Baltic Sea
NASA Astrophysics Data System (ADS)
Fonselius, Stig; Valderrama, Jorge
2003-06-01
The first measurements of salinity of the deep water in the open Baltic Sea were made in the last decades of the 1800s. At a Scandinavian science meeting in Copenhagen in 1892, Professor Otto Pettersson from Sweden suggested that regular measurements of hydrographic parameters should be carried out at some important deep stations in the Baltic Sea. His suggestion was adopted and since that time we have rather complete hydrographical data from the Bornholm Deep, the Gotland Deep, and the Landsort Deep and from some stations in the Gulf of Bothnia. The measurements were interrupted in the Baltic Proper during the two World Wars. At the beginning only salinity, temperature and dissolved oxygen were measured and one or two expeditions were carried out annually, mostly in summer. In the 1920s also alkalinity and pH were occasionally measured and total carbonate was calculated. A few nutrient measurements were also carried out. After World War II we find results from four or more expeditions every year and intercalibration of methods was arranged. Results of temperature, salinity and dissolved oxygen measurements from the Bornholm Deep, the Gotland Deep, the Landsort Deep and salinity measurements from three stations in the Gulf of Bothnia, covering the whole 20th century are presented and discussed. The salinity distribution and the variations between oxygen and hydrogen sulphide periods in the deep water of the Gotland Deep and the Landsort Deep are demonstrated. Series of phosphate and nitrate distribution in the Gotland Deep are shown from the 1950s to the present and the effects of the stagnant conditions are briefly discussed. Two large inflows of highly saline water, the first during the First World War and the second in 1951, are demonstrated. The 20th century minimum salinity of the bottom water in the Baltic Proper in 1992 is discussed.
Deep water recycling through time
Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen
2014-01-01
We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881
Deep water recycling through time.
Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen
2014-11-01
We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.
How Stressful Is "Deep Bubbling"?
Tyrmi, Jaana; Laukkanen, Anne-Maria
2017-03-01
Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
O'Reilly, Andrew M.
2004-01-01
A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.
Model development for prediction of soil water dynamics in plant production.
Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng
2015-09-01
Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.
Lee, Roger W.
1980-01-01
Shallow water in the coal-bearing Fort Union Formation of southeastern Montana was investigated to provide a better understanding of the geochemistry. Springs, wells less than 200 feet deep, and wells greater then 200 feet deep were observed to have different water qualities. Overall, the ground water exists as two systems: a mosaic of shallow, chemically dynamic, and localized recharge-discharge cells superimposed on a deeper, chemically static regional system. Water chemistry is highly variable in the shallow system, whereas sodium and bicarbonate waters characterize the deeper system. Within the shallow system , springs, and wells less than 200 feet deep show predominantly sodium and sulfate enrichment processes from recharge to discharge. These processes are consistent with the observed aquifer mineralogy and aqueous chemistry. However, intermittent mixing with downward moving recharge waters or upward moving deeper waters, and bacterially catalyzed sulfate reduction, may cause apparent reversals in these processes. (USGS)
Lee, Roger W.
1981-01-01
Shallow water in the coal-bearing Paleocene Fort Union Formation of southeastern Montana was investigated to provide a better understanding of its geochemistry. Springs, wells less than 200 feet deep, and wells greater than 200 feet deep were observed to have different water qualities. Overall, the ground water exists as two systems: a mosaic of shallow, chemically dynamic, and localized recharge-discharge cells superimposed on a deeper, chemically static regional system. Water chemistry is highly variable in the shallow system; whereas, waters containing sodium and bicarbonate characterize the deeper system. Within the shallow system, springs and wells less than 200 feet deep show predominantly sodium and sulfate enrichment processes from recharge to discharge. These processes are consistent with the observed aquifer mineralogy and aqueous chemistry. However, intermittent mixing with downward moving recharge waters or upward moving deeper waters, and bacterially catalyzed sulfate reduction, may cause apparent reversals in these processes.
The groundwater subsidy to vegetation: groundwater exchanges between landcover patches
NASA Astrophysics Data System (ADS)
Steven, L. I.; Gimenez, R.; Jobbagy, E. G.
2015-12-01
The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.
NASA Astrophysics Data System (ADS)
Beazley, Lindsay I.; Kenchington, Ellen L.
2012-10-01
Knowledge of the reproductive life-history of deep-water corals is important for assessing their vulnerability to anthropogenic impacts. Yet, the reproductive biology of many deep-water corals, especially members of the subclass Octocorallia, has not been examined. We used histological techniques to describe the reproductive biology of the deep-water gorgonian coral Acanella arbuscula from the northwest Atlantic. All colonies examined were gonochoric, and no embryos or planula larvae were observed in the polyps. Mean polyp-level fecundity (females: 21.0±17.5 oocytes polyp-1, and males: 13.9±13.5 sperm sacs polyp-1) is high compared to other deep-water gorgonians, and polyps closer to the branch tips had the highest fecundities in both females and males. The presence of large oocytes (maximum diameter 717.8 μm) suggests that A. arbuscula produces lecithotrophic larvae. Despite the potentially high fecundity and small size at first reproduction, the paucity of information on dispersal and recruitment, combined with its longevity, vulnerability to bottom fishing gear, and ecological role as a structure-forming species, still warrants the classification of A. arbuscula as a vulnerable marine ecosystem indicator.
Geochemical modelling of EGS fracture stimulation applying weak and strong acid treatments
NASA Astrophysics Data System (ADS)
Sigfusson, Bergur; Sif Pind Aradottir, Edda
2015-04-01
Engineered Geothermal systems (EGS) provide geothermal power by tapping into the Earth's deep geothermal resources that are otherwise not exploitable due to lack of water and fractures, location or rock type. EGS technologies have the potential to cost effectively produce large amounts of electricity almost anywhere in the world. The EGS technology creates permeability in the rock by hydro-fracturing the reservoir with cold water pumped into the first well (the injection well) at a high pressure. The second well (the production well) intersects the stimulated fracture system and returns the hot water to the surface where electricity can be generated. A significant technological hurdle is ensuring effective connection between the wells and the fracture system and to control the deep-rooted fractures (can exceed 5 000 m depth). A large area for heat transfer and sufficient mass flow needs to be ensured between wells without creating fast flowing paths in the fracture network. Maintaining flow through the fracture system can cause considerable energy penalty to the overall process. Therefore, chemical methods to maintain fractures and prevent scaling can be necessary to prevent excessive pressure build up in the re-injection wells of EGS systems. The effect of different acid treatments on the porosity development of selected rock types was simulated with the aid of the Petrasim interface to the Toughreact simulation code. The thermodynamic and kinetic database of Aradottir et al. (2014) was expanded to include new minerals and the most important fluoride bearing species involved in mineral reactions during acid stimulation of geothermal systems. A series of simulations with injection waters containing fluoric acid, hydrochloric acid and CO2 or mixtures thereof were then carried out and porosity development in the fracture system monitored. The periodic injection of weak acid mixtures into EGS systems may be cost effective in some isolated cases to prevent pressure build-up and therefore lowering pumping costs during operation. Selection of the acid is though highly dependent on the chemistry of the reservoir in question. Reference Aradottir, E. S. P., Gunnarsson, I., Sigfusson, B., Gunnarsson, G., Juliusson, B. M., Gunnlaugsson, E., Sigurdardóttir, H., Arnarson, M. T., Sonnenthal, E., 2014. Toward Cleaner Geothermal Energy Utilization: Capturing and Sequestering CO2 and H2S Emissions from Geothermal Power Plants. Transport in Porous Media. DOI 10.1007s/11242-014-0316-5
Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie
NASA Technical Reports Server (NTRS)
Massa, Gioia; Romeyn, Matt; Fritsche, Ralph
2017-01-01
Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.
Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie
NASA Technical Reports Server (NTRS)
Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.
2017-01-01
Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production.
Life Support for Deep Space and Mars
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.
2014-01-01
How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.
Man and the Last Great Wilderness: Human Impact on the Deep Sea
Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.
2011-01-01
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods. PMID:21829635
Telepresence-Enabled Remote Fieldwork: Undergraduate Research in the Deep Sea
ERIC Educational Resources Information Center
Stephens, A. Lynn; Pallant, Amy; McIntyre, Cynthia
2016-01-01
Deep-sea research is rarely available to undergraduate students. However, as telepresence technology becomes more available, doors may open for more undergraduates to pursue research that includes remote fieldwork. This descriptive case study is an initial investigation into whether such technology might provide a feasible opportunity for…
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
NASA Astrophysics Data System (ADS)
Alauddin, M.; Bhattacharjee, M.; Zakaria, A. B.; Rahman, M. M.; Seraji, M. S.
2008-05-01
Arsenic contamination of groundwater in Gangetic plain of Bihar, West Bengal in India and Bengal delta plain Bangladesh is shaping up as the greatest environmental health disaster in the current century. About 450 million combined population in these regions are at risk of developing adverse health effects due to arsenic contamination in groundwater. For an effective and sustainable mitigation, it is essential that we improve our understanding of fundamental processes of arsenic mobilization in sediments, biogeochemistry of arsenic in aquifer sediments and weigh a wide range of options for arsenic safe water for the vast population. In this paper, aspects of arsenic removal technology from groundwater in affected areas, sustainable development of household water filtration systems, deep aquifer water as potential arsenic safe water will be presented. In addition, sustainable development of water purification systems such as pond sand filtration (PSF), river sand filtration (RSF), rain water harvesting (RWH), dug well and their acceptability by the community will be discussed. A recent development of indigenous technology by local masons involves searching safe water through bore hole sediment color. The viability of this option in certain areas of Bangladesh will be discussed. Also, one of the household filtration systems approved by the government and locally known as SONO filter was recognized recently by the National Academy of Engineering -Grainger Challenge Prize for sustainability. Over 30, 000 of this unit were deployed in arsenic affected areas of Bangladesh. The affordability, ease of maintenance, social acceptability and environmental friendliness of all options will be addressed in the presentation.
Will Deep Impact Make a Splash?
NASA Technical Reports Server (NTRS)
Sheldon, Robert B.; Hoover, Richard B.
2005-01-01
Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.
Innovations in deep brain stimulation methodology.
Kühn, Andrea A; Volkmann, Jens
2017-01-01
Deep brain stimulation is a powerful clinical method for movement disorders that no longer respond satisfactorily to pharmacological management, but its progress has been hampered by stagnation in technological procedure solutions and device development. Recently, the combined research efforts of bioengineers, neuroscientists, and clinicians have helped to better understand the mechanisms of deep brain stimulation, and solutions for the translational roadblock are emerging. Here, we define the needs for methodological advances in deep brain stimulation from a neurophysiological perspective and describe technological solutions that are currently evaluated for near-term clinical application. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
NASA Astrophysics Data System (ADS)
Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.
2012-11-01
Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the main sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature and with groundwater sampling followed by determination of major ions (Na+, K+, Mg2+, Ca2+, Cl-, HCO3-, SO42-), tracers (such as Btot and Sr2+), and isotopes (δ18O, δ2H and 3H). Leaching experiments on soil samples, hydrochemical modelling and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of deep and highly mineralised Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Cl- (up to 800 mg l-1). The chemical and isotopic fingerprint of this water points to oilfield water hosted at large depths in the Apennine chain and that uprises through a regional fault line crossing the landslide area. It recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 49 000-85 700 m3 yr-1) and it also partly recharges the landslide body. In both the aquifers, the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This indicates a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains. The paper demonstrates that hydrochemistry should, therefore, be considered as a valuable investigation method to define hydrogeological limits and the groundwater sources in hillslope and to assess groundwater flow patterns in deep-seated landslides.
NASA Astrophysics Data System (ADS)
Qi, Jihong; Xu, Mo; An, Chenjiao; Zhang, Yunhui; Zhang, Qiang
2017-04-01
The Xianshuihe Fault with frequent earthquakes activities is the regional deep fault in China. The Moxi Fault is the southern part of the Xianshuihe Fault, where the strong activities of geothermal water could bring abundant information of deep crust. In this article, some typical geothermal springs were collected along the Moxi fault from Kangding to Shimian. Using the the Na-K-Mg equilibrium diagram, it explains the state of water-rock equilibrium, and estimates the reservoir temperature basing appropriate geothermometers. Basing on the relationship between the enthalpy and chlorine concentration of geothermal water, it analyze the mixing progress of thermal water with shallow groundwater. Moreover, the responses of variation of geothermal water to the solid tides are considered to study the hydrothermal activities of this fault. The Guanding in Kangding are considered as the center of the geothermal system, and the hydrothermal activities decrease southward extending. Geothermal water maybe is heated by the deep heat source of the Himalayan granites, while the springs in the south area perform the mixture with thermal water in the sub-reservoir of the Permian crystalline limestone. It improves the research of hydrothermal activities in the Moxi Fault, meanwhile using the variation of geothermal water maybe become a important method to study the environment of deep earth in the future.
Possible Sea Ice Impacts on Oceanic Deep Convection
NASA Technical Reports Server (NTRS)
Parkinson, C. L.
1984-01-01
Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.
Deep Undercooling of Tissue Water and Winter Hardiness Limitations in Timberline Flora 1
Becwar, Michael R.; Rajashekar, Channa; Bristow, Katherine J. Hansen; Burke, Michael J.
1981-01-01
Deep undercooled tissue water, which froze near −40 C, was found in winter collected stem and leaf tissue of the dominant timberline tree species of the Colorado Rocky Mountains, Engelmann spruce (Picea engelmannii (Parry) Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and in numerous other woody species in and below the subalpine vegetation zone. Previous work on numerous woody plants indicates that deep undercooling in xylem makes probable a −40 C winter hardiness limit in stem tissue. Visual injury determinations and electrolyte loss measurements on stem tissue revealed injury near −40 C associated with the freezing of the deep undercooled stem tissue water. These results suggest that the winter hardiness limit of this woody flora is near −40 C. The relevance of deep undercooling in relation to timberline, the upper elevational limit of the subalpine forest, is discussed. PMID:16661852
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... and gas exploration and production in deep and ultra-deep OCS waters. Through this workshop, BSEE will... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...
Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea
NASA Astrophysics Data System (ADS)
Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika
2002-08-01
Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.
Mayo, John W.
2008-01-01
The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance being impermeable surfaces).
NASA Astrophysics Data System (ADS)
Poirier, R. K.; Billups, K.
2012-12-01
We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).
Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.
2011-01-01
1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.
Langeneck, Joachim; Musco, Luigi; Busoni, Giulio; Conese, Ilaria; Aliani, Stefano; Castelli, Alberto
2018-01-03
Despite almost two centuries of research, the diversity of Mediterranean deep-sea environments remain still largely unexplored. This is particularly true for the polychaete family Syllidae. We report herein 14 species; among them, we describe Erinaceusyllis barbarae n. sp., Exogone sophiae n. sp. and Prosphaerosyllis danovaroi n. sp. and report Parexogone wolfi San Martín, 1991, Exogone lopezi San Martín, Ceberio Aguirrezabalaga, 1996 and Anguillosyllis Day, 1963 for the first time from the Western Mediterranean, the latter based on a single individual likely belonging to an undescribed species. Moreover, we re-establish Syllis profunda Cognetti, 1955 based on type and new material. Present data, along with a critical analysis of available literature, show that Syllidae are highly diverse in deep Mediterranean environments, even though they are rarely reported, probably due to the scarce number of studies devoted to the size-fraction of benthos including deep-sea syllids. Most deep-sea Syllidae have wide distributions, which do not include shallow-waters. 100 m depth apparently represents the boundary between the assemblages dominated by generalist shallow water syllids like Exogone naidina Ørsted, 1843 and Syllis parapari San Martín López, 2000, and those deep-water assemblages characterised by strictly deep-water species like Parexogone campoyi San Martín, Ceberio Aguirrezabalaga, 1996, Parexogone wolfi San Martín, 1991 and Syllis sp. 1 (= Langerhansia caeca Katzmann, 1973).
Nematoda from the terrestrial deep subsurface of South Africa.
Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C
2011-06-02
Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.
Bergstad, O A
2013-12-01
This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has only been studied for few deep-water species. A time series of roundnose grenadier Coryphaenoides rupestris recruitment spanning three decades of fisheries-independent data suggests that abundant year classes occur rarely and may influence size structure and abundance even for this long-lived species. © 2013 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Gottschalk, J.; Skinner, L. C.; Lippold, J. A.; Jaccard, S.; Vogel, H.; Frank, N.; Waelbroeck, C.
2014-12-01
The Southern Ocean is thought to have played a key role in atmospheric CO2 (CO2,atm) variations, both via its role in bringing carbon-rich deep-waters into contact with the atmosphere, and via its capacity for enhanced biologically mediated carbon export into the deep sea. The governing mechanisms of millennial scale rises in CO2,atm during the last deglacial and glacial periods have been linked controversially either with variations in biological export productivity, possibly driven by fluctuations in airborne dust supply, or to variations in southern high-latitude vertical mixing, possibly driven by changes in westerly wind stress or density stratification across the Southern Ocean water column. However, the impact of these processes on deep, southern high-latitude carbon sequestration and ocean-atmosphere CO2 exchange remain ambiguous. We present proxy evidence for the link between deep carbon storage in the sub-Antarctic Atlantic with changes in CO2,atm during the last 70 ka from sub-millennially resolved changes in bottom water oxygenation based on the uranium accumulation in authigenic coatings on foraminiferal shells and the δ13C offset between epibenthic and infaunal foraminifera (Δδ13C). We compare our results with reconstructed opal fluxes and sediment model output data to assess the impact of physical and biological processes on Southern Ocean carbon storage. While variations in sub-Antarctic Atlantic export production are intrinsically linked with changes in airborne dust supply supporting the major impact of dust on the biological soft-tissue pump, they cannot account for observed changes in pore water organic carbon respiration indicated by increasing Δδ13C and therefore, bottom water oxygen changes in the deep sub-Antarctic Atlantic. This is in strong support of millennial-scale fluctuations in deep Southern Ocean carbon storage primarily controlled by the ventilation of the deep ocean by southern-sourced water masses, which emphasize the strong control of vertical mixing and upwelling of CO2-rich water masses in the Southern Ocean on the ocean-atmosphere exchange of CO2 and variation in CO2,atm over both glacial-interglacial and millennial time scales.
Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith
2017-10-17
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.
Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...
2017-10-02
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NorthernSTAR
Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquidmore » insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.« less
Study of the potential of wave energy in Malaysia
NASA Astrophysics Data System (ADS)
Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin
2017-07-01
Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.
Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance
Hill, Daniel J.; Bolton, Kevin P.; Haywood, Alan M.
2017-01-01
The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source. PMID:28252023
NASA Technical Reports Server (NTRS)
Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.
2006-01-01
The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.
The Gateway Garden — A Prototype Food Production Facility for Deep Space Exploration
NASA Astrophysics Data System (ADS)
Fritsche, R. F.; Romeyn, M. W.; Massa, G.
2018-02-01
CIS-lunar space provides a unique opportunity to perform deep space microgravity crop science research while also addressing and advancing food production technologies that will be deployed on the Deep Space Transport.
Kong, Xiao-le; Wang, Shi-qin; Zhao, Huan; Yuan, Rui-qiang
2015-11-01
There is an obvious regional contradiction between water resources and agricultural produce in lower plain area of North China, however, excessive fluorine in deep groundwater further limits the use of regional water resources. In order to understand the spatial distribution characteristics and source of F(-) in groundwater, study was carried out in Nanpi County by field survey and sampling, hydrogeochemical analysis and stable isotopes methods. The results showed that the center of low fluoride concentrations of shallow groundwater was located around reservoir of Dalang Lake, and centers of high fluoride concentrations were located in southeast and southwest of the study area. The region with high fluoride concentration was consistent with the over-exploitation region of deep groundwater. Point source pollution of subsurface drainage and non-point source of irrigation with deep groundwater in some regions were the main causes for the increasing F(-) concentrations of shallow groundwater in parts of the sampling sites. Rock deposition and hydrogeology conditions were the main causes for the high F(-) concentrations (1.00 mg x L(-1), threshold of drinking water quality standard in China) in deep groundwater. F(-) released from clay minerals into the water increased the F(-) concentrations in deep groundwater because of over-exploitation. With the increasing exploitation and utilization of brackish shallow groundwater and the compressing and restricting of deep groundwater exploitation, the water environment in the middle and east lower plain area of North China will undergo significant change, and it is important to identify the distribution and source of F(-) in surface water and groundwater for reasonable development and use of water resources in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.
An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less
NASA Astrophysics Data System (ADS)
Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.
2006-12-01
The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds, and sea bed morphology in water depths less than 5-m. The ASV is a catamaran-based platform, 10 feet in length, 4 feet in width, and approximately 260 lbs in weight. The vehicle is operated remotely through a wireless modem network enabling real-time monitoring of data acquisition. The ASV is navigated using RTK, and heave, pitch and roll are recorded with onboard motion sensors. Additional sensors, such as ADCPs, can also be housed within the vehicle. The ASV is able to operate in previously inaccessible areas, and will not only augment existing shallow-water research capabilities, but will also improve our understanding of the geologic controls to modern beach behavior and coastal evolution.
NASA Astrophysics Data System (ADS)
Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.
2016-02-01
Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.
Design and Analysis of a Flexible, Reliable Deep Space Life Support System
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.
NASA Astrophysics Data System (ADS)
Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro
2018-03-01
Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.
Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio
2000-01-01
We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.
Seamount mineral deposits: A source of rare metals for high technology industries
Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert
2010-01-01
The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.
NASA Astrophysics Data System (ADS)
Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander
2017-05-01
Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.
Change in Dense Shelf Water and Adélie Land Bottom Water Precipitated by Iceberg Calving
NASA Astrophysics Data System (ADS)
Snow, K.; Rintoul, S. R.; Sloyan, B. M.; Hogg, A. McC.
2018-03-01
Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adélie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean.
Architectural Options for a Future Deep Space Optical Communications Network
NASA Technical Reports Server (NTRS)
Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.
2004-01-01
This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.
Swarzenski, Christopher M.; Mize, Scott V.; Lovelace, John K.
2012-01-01
The Mississippi River-Gulf Outlet navigation channel (MRGO) was constructed in the early 1960s to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for deep-draft, ocean-going vessels and to promote the economic development of the Port of New Orleans. In 2006, the U.S. Army Corps of Engineers developed a plan to de-authorize the MRGO. The plan called for a rock barrier to be constructed across the MRGO near Bayou La Loutre. In 2008, the U.S. Geological Survey, in cooperation with the Louisiana Coastal Area Science and Technology Program began a study to document the impacts of the rock barrier on water-quality and flow before, during, and after its construction. Water-quality, bed-sediment, and discharge data were collected in the MRGO and adjacent water bodies from August 2008 through December 2009.
(abstract) Deep Space Network Radiometric Remote Sensing Program
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1994-01-01
Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.
None Available
2018-02-06
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
30 CFR 203.62 - How do I apply for relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Deep Water Leases and for Development and Expansion Projects § 203.62 How do I apply for relief? (a.... (b) Your application for royalty relief offshore Alaska or in deep water in the GOM must include an...
Role of Southern Ocean stratification in glacial atmospheric CO2 reduction
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Oka, A.
2014-12-01
Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger reduction in atmospheric CO2 concentration than previous studies. However, we still fail to explain the full amplitude of recorded glacial reduction of atmospheric CO2 concentration. The carbonate compensation process, which is not incorporated in our simulations, might be required for further reduction in atmospheric CO2 concentration.
North Atlantic Deep Water and the World Ocean
NASA Technical Reports Server (NTRS)
Gordon, A. L.
1984-01-01
North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.
Water resources data of the Seward area, Alaska
Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester
1979-01-01
Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)
Beyond public perceptions of gene technology: community participation in public policy in Australia.
Dietrich, Heather; Schibeci, Renato
2003-10-01
Public policy assumptions, which view "the public" as passive consumers, are deeply flawed. "The public" are, in fact, active citizens, who constitute the innovation end of the seamless web of relationships, running from research and development laboratory to shop, hospital or farm, or local neighborhood. "The public" do not receive the impact of technology; they are the impact, in that they determine with gene technology (GT) developers and sellers what happens to the technology in our society. In doing so, they, or more rightly we, exercise particular, contextual knowledges and actions. We suggest that it is the ignorance of this aspect of innovation in policy processes that produces the distrust and resentment that we found in our interviews with "publics" interested in gene technology. This is consistent with Beck's description of the deep structural states of risk and fear in modern advanced societies with respect to new technologies, such as gene technology. Only policy processes that recognize the particular, local and contextual knowledges of "the public", which co-construct innovation, can achieve deep, social structural consideration of gene technology. And only such a deep consideration can avoid the polarized attitudes and deep suspicions that we have seen arise in places such as Britain. Such consideration needs the type of processes that involve active consultation and inclusion of "the public" in government and commercial innovation, the so-called deliberative and inclusionary processes (DIPs), such as consensus conferences and citizen juries. We suggest some measures that could be tried in Australia, which would take us further down the path of participation toward technological citizenship.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Dynamic Autoinoculation and the Microbial Ecology of a deep Water Hydrocarbon Irruption
2012-12-11
gas hydrate) likely altered plume com- position near the source, leavrngintruswrscknimatedbythemost soluble compounds, such as gases (2-4, 9, 10, 12...well. These results may reconcile disparate observations of the physical dynamics and microbial community structure of the deep plume . Model...feeds bacterial metabolism and cellular growth. We focused entirely on the deep plume horizon spanning 1,000-1,300 m water depth, applying
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
...-grouper species into the complexes for: Deep-water species (yellowedge grouper, blueline tilefish, silk snapper, misty grouper, sand tilefish, queen snapper, black snapper, and blackfin snapper); shallow-water... caught in very deep water (1,476-1,969 ft (450- 600 m)), it is assumed that all incidentally caught...
Code of Federal Regulations, 2010 CFR
2010-10-01
... water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows: (1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66... under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below...
Pitt, William A.; Meyer, Frederick W.
1976-01-01
The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.
NASA Astrophysics Data System (ADS)
Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state controls on deep system behavior in all deep accretionary wedge and basin environments where clays are abundant. This research used samples provided by the International Ocean Discovery Program (IODP).
Cost-benefit comparisons of investments in improved water supply and cholera vaccination programs.
Jeuland, Marc; Whittington, Dale
2009-05-18
This paper presents the first cost-benefit comparison of improved water supply investments and cholera vaccination programs. Specifically, we compare two water supply interventions -- deep wells with public hand pumps and biosand filters (an in-house, point-of-use water treatment technology) -- with two types of cholera immunization programs with new-generation vaccines -- general community-based and targeted and school-based programs. In addition to these four stand-alone investments, we also analyze five combinations of water and vaccine interventions: (1) borehole+hand pump and community-based cholera vaccination, (2) borehole+hand pump and school-based cholera vaccination, (3) biosand filter and community-based cholera vaccination, (4) biosand filter and school-based cholera vaccination, and (5) biosand filter and borehole+hand pump. Using recent data applicable to developing country locations for parameters such as disease incidence, the effectiveness of vaccine and water supply interventions against diarrheal diseases, and the value of a statistical life, we construct cost-benefit models for evaluating these interventions. We then employ probabilistic sensitivity analysis to estimate a frequency distribution of benefit-cost ratios for all four interventions, given a wide variety of possible parameter combinations. Our results demonstrate that there are many plausible conditions in developing countries under which these interventions will be attractive, but that the two improved water supply interventions and the targeted cholera vaccination program are much more likely to yield attractive cost-benefit outcomes than a community-based vaccination program. We show that implementing community-based cholera vaccination programs after borehole+hand pump or biosand filters have already been installed will rarely be justified. This is especially true when the biosand filters are already in place, because these achieve substantial cholera risk reductions on their own. On the other hand, implementing school-based cholera vaccination programs after the installation of boreholes with hand pump is more likely to be economically attractive. Also, if policymakers were to first invest in cholera vaccinations, then subsequently investing in water interventions is still likely to yield positive economic outcomes. This is because point-of-use water treatment delivers health benefits other than reduced cholera, and deep boreholes+hand pumps often yield non-health benefits such as time savings. However, cholera vaccination programs are much cheaper than the water supply interventions on a household basis. Donors and governments with limited budgets may thus determine that cholera vaccination programs are more equitable than water supply interventions because more people can receive benefits with a given budget. Practical considerations may also favor cholera vaccination programs in the densely crowded slums of South Asian and African cities where there may be insufficient space in housing units for some point-of-use technologies, and where non-networked water supply options are limited.
Deep water circulation, residence time, and chemistry in a karst complex.
Aquilina, L; Ladouche, B; Doerfliger, N; Bakalowicz, M
2003-01-01
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36Cl, 14C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 m) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of approximately 2500 m, which represents the thermal reservoir in the Jurassic units with residence time of approximately 100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system, and by water flow from the surface to the deep parts of the carbonate formations.
Keen, Douglas A; Constantopoulos, Eleni; Konhilas, John P
2016-01-01
Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.
Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean
NASA Astrophysics Data System (ADS)
Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.
2013-12-01
As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.
Atlantic meridional overturning circulation during the Last Glacial Maximum.
Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer
2007-04-06
The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.
Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue
2016-12-01
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
NASA Astrophysics Data System (ADS)
Coppola, L.; Prieur, L.; Taupier-Letage, I.; Estournel, C.; Testor, P.; Lefevre, D.; Belamari, S.; LeReste, S.; Taillandier, V.
2017-08-01
During the winter 2013, an intense observation and monitoring was performed in the north-western Mediterranean Sea to study deep water formation process that drives thermohaline circulation and biogeochemical processes (HYMEX SOP2 and DEWEX projects). To observe intensively and continuously the impact of deep convection on oxygen (O2) ventilation, an observation strategy was based on the enhancement of the Argo-O2 floats to monitor the offshore dense water formation area (DWF) in the Gulf of Lion prior to and at the end of the convective period (December 2012 to April 2013). The intense O2 measurements performed through shipborne CTD casts and Argo-O2 floats deployment revealed an O2 inventory rapidly impacted by mixed layer (ML) deepening on the month scale. The open-sea convection in winter 2013 ventilated the deep waters from mid-February to the end of May 2013. The newly ventilated dense water volume, based on an Apparent Oxygen Utilization (AOU) threshold, was estimated to be about 1.5 × 1013 m3 during the DWF episode, increasing the deep O2 concentrations from 196 to 205 µmol kg-1 in the north-western basin.
NASA Astrophysics Data System (ADS)
Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko
2018-02-01
North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.
Slade, R.M.; Buszka, P.M.
1994-01-01
The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.
Ancient origin of the modern deep-sea fauna.
Thuy, Ben; Gale, Andy S; Kroh, Andreas; Kucera, Michal; Numberger-Thuy, Lea D; Reich, Mike; Stöhr, Sabine
2012-01-01
The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000-1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales.
Development of Vertical Cable Seismic System (3)
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.
2013-12-01
The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.
NASA Astrophysics Data System (ADS)
Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping
2017-02-01
Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The approach of hot spring variation research also has potential benefits for earthquake monitoring and prediction.
Optimization of remediation strategies using vadose zone monitoring systems
NASA Astrophysics Data System (ADS)
Dahan, Ofer
2016-04-01
In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.
NASA Astrophysics Data System (ADS)
Hammond, S. R.; Baker, E. T.; Embley, R. W.
2015-12-01
Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.
Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica
NASA Astrophysics Data System (ADS)
Carlson, Catherine A.; Phillips, Fred M.; Elmore, David; Bentley, Harold W.
1990-02-01
Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic 36Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. 36Cl /Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl - < 100 mg/l) were found to have 36Cl /Cl ratios in the range 100 × 10 -15 to 1,700 × 10 -15, whereas saline waters (Cl - > 1000 mg/l) had ratios in the range 9 × 10 -15 to 40 × 10 -15. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal source of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant source of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.
NASA Technical Reports Server (NTRS)
1984-01-01
Deep-space exploration; information systems and space technology development; technology applications; energy and energy conversion technology; and earth observational systems and orbital applications are discussed.
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
Wang, Yong; Zhang, Guang J.
2016-09-29
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Zhang, Guang J.
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
NASA Technical Reports Server (NTRS)
1980-01-01
Shell Oil Company started oil and gas production from a new offshore platform called Cognac located in the Gulf of Mexico. It is the world's tallest oil platform, slightly taller than the Empire State Building. The highly complex job of installing Cognac's support "jacket" under water more than a thousand feet deep was directed from a barge-based control center. To enable crews to practice in advance difficult tasks never before accomplished, Honeywell, adapting NASA's Apollo technology, developed a system for simulating the various underwater operations. In training sessions, displays and controls reacted exactly as they would in real operation.
The Algorithm of Development the World Ocean Mining of the Industry During the Global Crisis
NASA Astrophysics Data System (ADS)
Nyrkov, Anatoliy; Budnik, Vladislav; Sokolov, Sergei; Chernyi, Sergei
2016-08-01
In the article reviewed extraction effect of hydrocarbons on the general country's developing, under the impact of economical, demographical and technological factors, as well as it's future role in the world energy balance. Also adduced facts which designate offshore and deep water production of unconventional and conventional hydrocarbons including mining of marine mineral resources as perspective area of development in the future, despite all the difficulties of this sector. In the article considered the state and prospects of the Russian continental shelf, in consideration of its geographical location and its all existing problems.
Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems
Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo
2014-01-01
Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718
NSTAR Ion Thrusters and Power Processors
NASA Technical Reports Server (NTRS)
Bond, T. A.; Christensen, J. A.
1999-01-01
The purpose of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) project is to validate ion propulsion technology for use on future NASA deep space missions. This program, which was initiated in September 1995, focused on the development of two sets of flight quality ion thrusters, power processors, and controllers that provided the same performance as engineering model hardware and also met the dynamic and environmental requirements of the Deep Space 1 Project. One of the flight sets was used for primary propulsion for the Deep Space 1 spacecraft which was launched in October 1998.
Code of Federal Regulations, 2010 CFR
2010-07-01
... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... than 200 meters and entirely less than 400 meters deep. (c) In the case of a lease located partly or... less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and not...
Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts
Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.
1996-01-01
The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be addition. Due to the particle-reactive nature of Be, these would also be the primary sites of Be removal. A possible net result of horizontal water masses passing through these marginal areas might be a decrease in seawater 10Be/9Be, and establishment of a relatively constant 9Be concentration. As ??10Be ( ??? 600 a) is less than the apparent age of deep water in the Pacific ( ??? 1500 a), the Pacific record of 10Be/ 9Be is not expected to show secular variations due to changes in deep-water flow, despite the large variations in 10Be/ 9Be between different water masses. Because of this insensitivity to deep-water flow, however, it is suggested that the 10Be/ 9Be ratio, determined in the authigenic phase of marine sediments or hydrogenetic precipitates, should be a suitable tool for monitoring changes in continental input or cosmic ray intensity on longer time scales.
Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Chronister, Glen B.; Strickland, Christopher E.
Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zonemore » treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.« less
Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR.
Scholes, Grant C; Gerhard, Jason I; Grant, Gavin P; Major, David W; Vidumsky, John E; Switzer, Christine; Torero, Jose L
2015-12-15
Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.
NASA Astrophysics Data System (ADS)
Chabaux, François; Viville, Daniel; Pierret, Marie-Claire; Stille, Peter; Lerouge, Catherine; Wyns, Robert; Dezayes, Chrystel; Labasque, Thierry; Aquilina, Luc; Ranchoux, Coralie; Négrel, Philippe
2017-04-01
The characterization of the critical zone along depth profiles remains a major scientific issue for understanding and modelling the response of continental surfaces to climatic, tectonic and anthropogenic forcings. Besides characterization it requires the modelling of the water circulations within the substratum of the critical zone. A series of boreholes drilled along the north and the south slopes of the Strengbach watershed makes it possible to characterize the critical zone to depths of ≈100 to 150 m within this critical zone observatory. In this study we attempt to combine mineralogical and petrological observations of the cores recovered through the drilling with chemical data of waters collected in each of these wells and hydro-geophysical data in order to characterize processes of water-rock interactions, visualize the water arrivals within the boreholes and bring new information on the deep water circulations within the watershed. Mineralogical, petrological and hydrogeophysical data suggest that deepwater circulation in the watershed likely occurs along fractures, concentrated in relatively narrow areas, several centimeters wide, interspersed with areas where the granite is much less fractured. This points to the occurrence of deep waters circulating in a network of more or less independent conduits, which could extend over several tens to hundreds of meters deep. The hydrochemical data from the boreholes, show contrasting characteristics for surface waters collected at 10 to 15 m depth and the deeper waters collected between 50 to 80m depth; the surface waters are very similar to those of the spring waters collected in the watershed (Pierret et al., 2014), and the deeper waters collected between 50 to 80m depth. The residence times of the circulating waters are also very variable, with ages of up to a few months for surface and subsurface waters and ages exceeding several decades for the deep waters. These differences suggest that the subsurface circulation systems are quite different from the deeper circulation ones. They also point to the importance to focus future studies on deep-water circulations in order to properly characterize the functioning of the critical zone in watersheds, especially in mountainous areas, such as the Strengbach watershed.
Deep Space 2: The Mars Microprobe Mission
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana
The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.
NASA Astrophysics Data System (ADS)
Filippova, Alexandra; Frank, Martin; Kienast, Markus; Rickli, Jörg; Hathorne, Ed; Yashayaev, Igor M.; Pahnke, Katharina
2017-02-01
The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf-Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between -16.8 and -14.9 at the surface to more radiogenic values near -11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to -11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ -4) and North East Atlantic Deep Water (ɛHf ∼ -0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ -2) and deep Labrador Sea Water (ɛHf ∼ -4.5). The latter layer was formed between the late 1980's and mid 1990's during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... reduce the commercial quota for gag and, thus, the combined commercial quota for shallow-water grouper... IFQ account holder's deep-water grouper (DWG) allocation has been landed and sold, or transferred, or... percent of their gross revenue in 2008 and 2009 respectively. Revenue from deep-water grouper (DWG...
NASA Astrophysics Data System (ADS)
Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.
2017-12-01
Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the deglaciation.
NASA Astrophysics Data System (ADS)
Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.
2008-06-01
Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the Caribbean.
NASA Astrophysics Data System (ADS)
Gutjahr, M.; Vance, D.; Foster, G. L.; Hillenbrand, C.; Kuhn, G.
2010-12-01
There is a great deal of current interest in the chemistry of the deep glacial Southern Ocean, and the degree to which it communicated with the surface ocean and atmosphere. Recent findings that include high surface water radiocarbon ages [1] and renewed upwelling during the deglacial [2], suggest a re-organisation in Southern Ocean circulation that led to the demise of a deep water mass rich in dissolved inorganic carbon (DIC), leading to its renewed equilibration with the atmosphere and the deglacial rise in atmospheric CO2. However, conclusive evidence for higher Southern Ocean deep water DIC during the glacial is scarce, largely due to the lack of suitable substrates for recording it. Boron isotopic compositions measured in deep marine organisms may help to provide records of intermediate water pH, and hence DIC changes [3]. We will present boron isotope compositions of a selection of radiocarbon-dated, calcitic, deep-sea octocorals from the Amundsen Sea sector of the Southern Ocean (˜123°W, ˜69°S, 2500 m to 1430 m water depth), with the aim of resolving deglacial intermediate water pH changes. Since boron isotopic studies have not been carried out on these types of octocorals before, we will first present the δ11B distribution within a modern sample in order to examine biological fractionation that may potentially compromise the coral δ11B (cf. [4, 5]). Contrary to previously employed scleractinia [6], the corals analysed here appear to be internally homogenous and have only slightly elevated δ11B compared to that of ambient intermediate water borate ion. Moreover, modern and early Holocene coral δ11B display fairly constant compositions, whereas deglacial coral δ11B are higher. These boron isotopic changes are accompanied by corresponding deglacial changes in the coral Nd isotopic composition (expressed in ɛNd), which has been determined on the same specimens. Together, the striking co-variation between the deep-water coral δ11B and ɛNd suggest that changes in dissolved DIC accompanied changes in Circumpolar Deep Water ɛNd, lending further support for deglacial deep ocean-atmosphere re-adjustments through elevated dissolved CO2 outgassing during a re-invigoration of Southern Ocean circulation. References [1] Skinner, L.C., et al., Science, 2010. 328 (5982): p. 1147-1151. [2] Anderson, R.F., et al., Science, 2009. 323 (5920): p. 1443-1448. [3] Yu, J.M., et al., Earth Planet. Sci. Lett., 2010. 293 (1-2): p. 114-120. [4] Hönisch, B., et al., Geochim. Cosmochim. Acta, 2004. 68 (18): p. 3675-3685. [5] Krief, S., et al., Geochim. Cosmochim. Acta, 2010. 74 (17): p. 4988-5001. [6] Allison, N., A.A. Finch, and Eimf, Geochim. Cosmochim. Acta, 2010. 74 (6): p. 1790-1800.
The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change
NASA Astrophysics Data System (ADS)
Watson, Andrew J.; Naveira Garabato, Alberto C.
2006-02-01
Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO2. Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and ~2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air-sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO2 could then be explained as a natural consequence of the connection between the air-sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO2. Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO2 in such a formulation.
Human impacts on soil carbon dynamics of deep-rooted Amazonian forests
NASA Technical Reports Server (NTRS)
Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.
1994-01-01
Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.
Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.
2010-01-01
Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613
Maryanne Wolf: Balance Technology and Deep Reading to Create Biliterate Children
ERIC Educational Resources Information Center
Richardson, Joan
2014-01-01
Reading scholar Maryanne Wolf believes that every child needs an array of digital skills in their learning repertoire. Her research focuses on how best to introduce technology in terms of reading acquisition so children can develop deep reading skills over time. Educators must focus on a carefully considered trajectory in order to develop a truly…
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
Technology Development for High Efficiency Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2012-01-01
Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.
Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica
NASA Astrophysics Data System (ADS)
Denis, Delphine; Crosta, Xavier; Schmidt, Sabine; Carson, Damien S.; Ganeshram, Raja S.; Renssen, Hans; Bout-Roumazeilles, Viviane; Zaragosi, Sebastien; Martin, Bernard; Cremer, Michel; Giraudeau, Jacques
2009-06-01
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier-sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier-sea ice-ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice-ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier-sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier-sea ice-ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
NASA Astrophysics Data System (ADS)
Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.
2016-02-01
The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological conditions of the water column.
Deep Space 1 Ion Engine Completed a 3-Year Journey
NASA Technical Reports Server (NTRS)
Sovey, James S.; Patterson, Michael J.; Rawlin, Vincent K.; Hamley, John A.
2001-01-01
A xenon ion engine and power processor system, which was developed by the NASA Glenn Research Center in partnership with the Jet Propulsion Laboratory and Boeing Electron Dynamic Devices, completed nearly 3 years of operation aboard the Deep Space 1 spacecraft. The 2.3-kW ion engine, which provided primary propulsion and two-axis attitude control, thrusted for more than 16,000 hr and consumed more than 70 kg of xenon propellant. The Deep Space 1 spacecraft was launched on October 24, 1998, to validate 12 futuristic technologies, including the ion-propulsion system. After the technology validation process was successfully completed, the Deep Space 1 spacecraft flew by the small asteroid Braille on July 29, 1999. The final objective of this mission was to encounter the active comet Borrelly, which is about 6 miles long. The ion engine was on a thrusting schedule to navigate the Deep Space 1 spacecraft to within 1400 miles of the comet. Since the hydrazine used for spacecraft attitude control was in short supply, the ion engine also provided two-axis attitude control to conserve the hydrazine supply for the Borrelly encounter. The comet encounter took place on September 22, 2001. Dr. Marc Rayman, project manager of Deep Space 1 at the Jet Propulsion Laboratory said, "Deep Space 1 plunged into the heart of the comet Borrelly and has lived to tell every detail of its spinetingling adventure! The images are even better than the impressive images of comet Halley taken by Europe's Giotto spacecraft in 1986." The Deep Space 1 mission, which successfully tested the 12 high-risk, advanced technologies and captured the best images ever taken of a comet, was voluntarily terminated on December 18, 2001. The successful demonstration of the 2-kW-class ion propulsion system technology is now providing mission planners with off-the-shelf flight hardware. Higher power, next generation ion propulsion systems are being developed for large flagship missions, such as outer planet explorers and sample-return missions.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.
2012-01-01
Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.
Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation
NASA Astrophysics Data System (ADS)
Coxall, Helen K.; Huck, Claire E.; Huber, Matthew; Lear, Caroline H.; Legarda-Lisarri, Alba; O'Regan, Matt; Sliwinska, Kasia K.; van de Flierdt, Tina; de Boer, Agatha M.; Zachos, James C.; Backman, Jan
2018-03-01
The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.
Zhang, Lijin; Wang, Maoshan
2017-02-01
In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Cobain, S L; Hodgson, D M; Peakall, J; Wignall, P B; Cobain, M R D
2018-01-10
Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Study of alternative probe technologies
NASA Technical Reports Server (NTRS)
1977-01-01
A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.
Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph
2017-04-01
The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting enhanced basal melt rates may explain the observed thinning of the glacier tongue.
Deep-Sea coral evidence for rapid change in ventilation of the deep north atlantic 15,400 years Ago
Adkins; Cheng; Boyle; Druffel; Edwards
1998-05-01
Coupled radiocarbon and thorium-230 dates from benthic coral species reveal that the ventilation rate of the North Atlantic upper deep water varied greatly during the last deglaciation. Radiocarbon ages in several corals of the same age, 15.41 +/- 0.17 thousand years, and nearly the same depth, 1800 meters, in the western North Atlantic Ocean increased by as much as 670 years during the 30- to 160-year life spans of the samples. Cadmium/calcium ratios in one coral imply that the nutrient content of these deep waters also increased. Our data show that the deep ocean changed on decadal-centennial time scales during rapid changes in the surface ocean and the atmosphere.
NASA Astrophysics Data System (ADS)
Hays, J. D.
2009-12-01
Shallow (0-200m) and deep (200 to1000m) living radiolarian flux is used to measure past production from within discrete intervals of the ocean’s water column. Deep-living faunas can also be used as proxies for export production, for they remineralize it and respond geographically and temporally to varying export. Few members of the mesopelagic community leave a fossil record, but of those that do, radiolarians are the most abundant and diverse group. In northwest Pacific late Pleistocene (glacial) sediments, deep-living radiolarian flux dominates over shallow-living flux, but the reverse is true in Holocene sediments, with the dramatic dominance change occurring across the Pleistocene-Holocene boundary. Changing primary productivity can’t cause these flux changes, for shallow-living faunas have access to the same carbon flux as do deep-living faunas, but rather they signal a major reorganization of the radiolarian fauna within the water column and suggest greater glacial than Holocene carbon export. In the Holocene world-ocean, the only region where deep-living radiolarian flux dominates over shallow-living flux is in the Sea of Okhotsk, suggesting environmental similarities between this sea and the northwest Pacific. In winter, cold Siberian air chills the upper hundred meters of the Sea of Okhotsk, promoting the spread of vast sea ice fields. High productivity in a thin (10-15m) summer mixed layer depletes nutrients Between 15 and about 150m exists a layer of cold (-1 to 0 degrees C.) intermediate water, within which radiolarian concentrations are low, but these concentrations increase between 200 and 500m in warmer intermediate water (Nimmergut and Abelmann, 2002). This radiolarian stratification results in greater deep- than shallow-living radiolarian flux to the sea floor. A similar water structure in the glacial northwest Pacific is the probable cause of similar flux patterns between the glacial northwest Pacific and Holocene Sea of Okhotsk. If so then cold glacial northwest Pacific intermediate water promoted the southward spread of sea ice. This inference is supported by the near coincidence of the southern limit of deep-living species dominated glacial sediments and extensive ice rafting. It also explains nutrient depleted glacial northwest Pacific surface waters inferred from isotopic data.
NASA Technical Reports Server (NTRS)
1977-01-01
Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1975-01-01
Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Rotzoll, Kolja
2010-01-01
Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not provide an accurate indication of water quality in the adjacent aquifer. Hence, the measured midpoint in boreholes is a better proxy for freshwater-lens thickness. Brackish water transported upward in a deep monitor well can exit the borehole in the upper, freshwater part of the aquifer and affect the water quality in nearby production wells. Piezometers installed at different depths will provide the best information on aquifer salinity because they are unaffected by borehole flow. Despite the effects of borehole flow, monitoring the midpoint in deep monitor wells is still useful to identify long-term trends in the movement of the transition zone.
Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application
NASA Astrophysics Data System (ADS)
Gerhard, J.; Kinsman, L.; Torero, J. L.
2015-12-01
STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition points and two treatment (air distribution and vapor collection / treatment) systems to remediate an approximately 14-acre footprint of contaminated soils within the project timelines (i.e., by mid-2016). Field activities began in 2014 and progress is currently on-schedule.
Origin of the lethal gas burst from Lake Monoun, Cameroun
NASA Astrophysics Data System (ADS)
Sigurdsson, H.; Devine, J. D.; Tchua, F. M.; Presser, F. M.; Pringle, M. K. W.; Evans, W. C.
1987-03-01
On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe 2+ (˜600 mg/l) and HCO 3- (≥ 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe 2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO 2 with minor CH 4, having δ 13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO 2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO 3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO 2 in the deep water. The resultant ebullition of CO 2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO 2, and suffered skin discoloration from unidentified components.
Origin of the lethal gas burst from Lake Monoun, Cameroun
Sigurdsson, Haraldur; Devine, J.D.; Tchua, F.M.; Presser, F.M.; Pringle, M.K.W.; Evans, William C.
1987-01-01
On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe2+ (???600 mg/l) and HCO3- (??? 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO2 with minor CH4, having ??13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO2 in the deep water. The resultant ebullition of CO2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO2, and suffered skin discoloration from unidentified components. ?? 1987.
NASA Technical Reports Server (NTRS)
1974-01-01
The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.
A Conceptual Model to be Used for Community-based Drinking-water Improvements
Ahmed, Mushfique
2006-01-01
A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate ‘externally-imposed’ processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic-contaminated wells with inter-regional linking, and national expansion within national drinking-water policy frameworks. PMID:17366766
A conceptual model to be used for community-based drinking-water improvements.
Anstiss, Richard G; Ahmed, Mushfique
2006-09-01
A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate 'externally-imposed' processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic-contaminated wells with inter-regional linking, and national expansion within national drinking-water policy frameworks.
Impacts on the deep-sea ecosystem by a severe coastal storm.
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
...NMFS is prohibiting directed fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to limit incidental catch of Pacific ocean perch by vessels fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the GOA.
Estimating the recharge properties of the deep ocean using noble gases and helium isotopes
NASA Astrophysics Data System (ADS)
Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.
2016-08-01
The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.
A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone
NASA Astrophysics Data System (ADS)
Filipot, J.
2010-12-01
A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.
The effects of agriculture on the volcanic aquifers of the canary islands
NASA Astrophysics Data System (ADS)
Custodio, E.; Guerra, J. A.; Jiménez, J.; Medina, J. A.; Soler, C.
1983-12-01
Agriculture is a basic economic activity in the Canary Islands, a Spanish region in the Atlantic Ocean, facing the Sahara. The main crops are bananas, tomatoes, and other special ones suitable for exportation. Fertilizers are applied in high quantities on the scarce land available. The relatively good vertical permeability of the soils favors the deep infiltration of irrigation return flows. Water is obtained by an extraordinary net of shaft wells and water galleries, supplemented when possible by surface reservoirs in the deep gullies. Water is distributed by an extensive network of pipes and canals, allowing the transportation of water to virtually any point from any water source. Water quality is widely variable, from almost rain water to brackish, with a high frequency of sodium bicarbonate types. Return flows, especially when water is applied with good irrigation techniques and the original quality is poor, are saline and contain chemicals leached from the fertilizers. On Tenerife Island, most of the return flows go to coastal aquifers, while most of the water comes from high-altitude water galleries. Agricultural pollution is not generally appraised, but it exists. It can be masked by the frequent, high natural nitrate content in groundwater. On Gran Canaria Island, since water comes mainly from deep shaft wells near the irrigated areas, the nitrate pollution is much more clear. On La Palma Island, besides the nitrate pollution, a potassium pollution of agricultural origin has been mentioned. Other situations on the remaining islands are also discussed. It can be concluded that agriculture is a big concern for the water quality in many areas and impairs its suitability for other uses. Because of the great depth of the water table, the nitrate pollution may not become obvious for many years, especially for the deep-water galleries.
Burkholder, William F; Newell, Evan W; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop "Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes" was held in Singapore on 13-14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis.
Burkholder, William F.; Newell, Evan W.; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop “Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes” was held in Singapore on 13–14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis. PMID:28620372
NASA Astrophysics Data System (ADS)
Itaki, Takuya
2016-12-01
Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5-2.7 Ma) surface-water assemblages were characterized mainly by cold-temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical surface fauna suggests that the inflow of the Tsushima Warm Current into the Japan Sea via a southern strait began at 1.7 Ma. The opening of the southern strait may have occurred after the subsidence of southwestern Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Operators Offshore, Inc.
The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less
Deep ocean corrosion research in support of Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, F.W.; McKeehan, D.S.
1995-12-01
The increasing interest in deepwater exploration and production has motivated the development of technologies required to accomplish tasks heretofore possible only onshore and in shallow water. The tremendous expense of technology development and the cost of specialized equipment has created concerns that the design life of these facilities may be compromised by corrosion. The requirements to develop and prove design parameters to meet these demands will require an ongoing environmental testing and materials evaluation and development program. This paper describes a two-fold corrosion testing program involving: (1) the installation of two corrosion test devices installed in-situ, and (2) a laboratorymore » test conducted in simulated site-specific seawater. These tests are expected to qualify key parameters necessary to design a cathodic protection system to protect the Oman-to-India pipeline.« less
Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments
NASA Astrophysics Data System (ADS)
Hammond, J. C.; Harpold, A. A.; Kampf, S. K.
2017-12-01
Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.
NASA Astrophysics Data System (ADS)
Desilets, D.
2012-12-01
Secondary cosmic-ray neutrons are attenuated strongly by water in either solid or liquid form, suggesting a method for measuring snow water equivalent that has several advantages over alternative technologies. The cosmic-ray attenuation method is passive, portable, highly adaptable, and operates over an exceptionally large range of snow pack thicknesses. But despite promising initial observations made in the 1970s, the technique today remains practically unknown to snow hydrologists. Side-by-side measurements performed over the past several years with a snow pillow and a submerged cosmic-ray probe demonstrate that the cosmic-ray attenuation method merits consideration for a wide range of applications—especially those where alternative methods are made problematic by dense vegetation, rough terrain, deep snowpack or a lack of vehicular access. During the snow-free season, the instrumentation can be used to monitor soil moisture, thus providing another widely sought field measurement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
Fixation filter, device for the rapid in situ preservation of particulate samples
NASA Astrophysics Data System (ADS)
Taylor, C. D.; Edgcomb, V. P.; Doherty, K. W.; Engstrom, I.; Shanahan, T.; Pachiadaki, M. G.; Molyneaux, S. J.; Honjo, S.
2015-02-01
Niskin bottle rosettes have for years been the workhorse technology for collection of water samples used in biological and chemical oceanography. Studies of marine microbiology and biogeochemical cycling that aim to analyze labile organic molecules including messenger RNA, must take into account factors associated with sampling methodology that obscure an accurate picture of in situ activities/processes. With Niskin sampling, the large and often variable times between sample collection and preservation on deck of a ship, and the sometimes significant physico-chemical changes (e.g., changes in pressure, light, temperature, redox state, etc.) that water samples and organisms are exposed to, are likely to introduce artifacts. These concerns are likely more significant when working with phototrophs, deep-sea microbes, and/or organisms inhabiting low-oxygen or anoxic environments. We report here the development of a new technology for the in situ collection and chemical preservation of particulate microbial samples for a variety of downstream analyses depending on preservative choice by the user. The Fixation Filter Unit, version 3 (FF3) permits filtration of water sample through 47 mm diameter filters of the user's choice and upon completion of filtration, chemically preserves the retained sample within 10's of seconds. The stand-alone devices can be adapted to hydrocasting or mooring-based platforms.
Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera
NASA Astrophysics Data System (ADS)
Bova, S. C.; Herbert, T.; Fox-Kemper, B.
2015-12-01
Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.
A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics
NASA Astrophysics Data System (ADS)
Adams, D. K.
2014-12-01
The complex interactions/feedbacks between water vapor fields and deep atmospheric convection remains one of the outstanding problems in Tropical Meteorology. The lack of high spatial/temporal resolution, all-weather observations in the Tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. GNSS (Global Navigation Satellite System) meteorology, which provides all-weather, high frequency (5 minutes), precipitable water vapor, can help. From 3.5 years of GNSS meteorological data in Manaus, (Central Amazonia), 320 convective events were analyzed. Results reveal two characteristic time scales of water vapor convergence; an 8 h time scale of weak convergence and 4 h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4 h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. We also present a summary of the Amazon Dense GNSS Meteorological Network experiment, the first ever in the Tropics, was created with the explicit aim of examining the wv/deep convection relationships at the mesoscale. This innovative, international experiment, consisted of two mesoscale (100km x100km) networks: (1) a one-year (April 2011 to April 2012) campaign (20 GNSS meteorological sites) in and around Manaus , and (2) a 6 week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, this latter in collaboration with the CHUVA GPM in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor: for sea breeze convection in Belem and, for assessing the influence seasonal and topographic influences for Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor spatial and temporal evolution in high resolution models.
AURORA BOREALIS - Development of a New Research Icebreaker with Drilling Capability
NASA Astrophysics Data System (ADS)
Thiede, J.; Biebow, N.; Egerton, P.; Kunz-Pirrung, M.; Lembke-Jene, L.
2007-12-01
Polar research both on land and in the sea cannot achieve the needed progress without novel and state of the art technologies and infrastructure. In addition, we have the obligation to equip the upcoming young and courageous generation of polar researchers with the most modern and safest research platforms the 21st century can provide. This effort will require major investments, both in terms of generating new tools, as well as maintaining and renovating existing infrastructure. There are many different novel tools under development for polar research, we will concentrate on the presently largest one, the planning for a new type of research icebreaker, the AURORA BOREALIS with an all-season capability of operations in permanently ice-covered waters and with the possibility to carry out deep-sea drilling in ice-covered deep-sea basins. AURORA BOREALIS will be the most advanced Polar Research Vessel in the world with a multi-functional role of drilling in deep ocean basins and supporting climate and environmental research and decision support for stakeholder governments for the next 35 to 40 years. The vessel is planned as a large research icebreaker with 44,000 tons displacement and a length of up to 196 m, with about 50 Megawatt propulsion power. Advanced technological features will include azimuth propulsion systems, extensive instrumental and airborne ice- management support, and the routine operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from two moon-pools. An unique feature of this icebreaker will be the drilling rig that will enable sampling of the ocean floor and sub-sea down to 5000 m water depth and 1000 m penetration at the most inhospitable places on earth. The possibility to flexibly equip the ship with laboratory and supply containers, and the variable arrangement of other modular infrastructure (in particular, winches, cranes, etc.), free deck- space, and separate protected deck areas, will allow the planned research vessel to cover the needs of most disciplines in marine research. aurora-borealis.eu/en/about_aurora_borealis/
Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less
NASA Technical Reports Server (NTRS)
Kermode, A. W.; Boreham, J. F.
1974-01-01
This paper discusses the utilization of acoustic surface wave filters, beam lead components, and thin film metallized ceramic substrate technology as applied to the design of deep space, long-life, multimission transponder. The specific design to be presented is for a second mixer local oscillator module, operating at frequencies as high as 249 MHz.
Water-rich planets: How habitable is a water layer deeper than on Earth?
NASA Astrophysics Data System (ADS)
Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.
2016-10-01
Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.
NASA Technical Reports Server (NTRS)
1977-01-01
A Deep Space Network progress report is presented dealing with in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Hydrogeochemical signatures of thermal springs compared to deep formation water of North Germany
NASA Astrophysics Data System (ADS)
Bozau, Elke; van Berk, Wolfgang
2014-05-01
Thermal springs and hot deep formation waters can be used for geothermal energy production. Depending on the chemical composition of the used waters, geothermal power plants have to deal with scaling and corrosion effects. Therefore, the understanding of the hydrogeochemical behaviour of such waters can be helpful to enhance the efficiency of the energy production. This study is comparing hydrogeochemical characteristics of thermal springs in the Harz Mountains (North Germany) and deep formation water of the North German Basin. The Harz Mountains consist of uplifted Palaeozoic rocks, whereas the North German Basin consists of sedimentary layers of Permian, Mesozoic and Cenozoic age. Volcanic rocks are included in the Permian layers. The thickness of the sedimentary basin varies between 2 km and more than 8 km. The deep aquifers of the North German Basin are mostly not involved in the recent meteoric water cycle. Their waters have contents of Total Dissolved Solids (TDS) up to about 400 g/L. Thermal springs of the Harz Mountains are situated close to the main fracture system of the region. These springs are connected to the meteoric water cycle and display lower contents of TDS (< 25 g/L). In both geological systems the TDS content is increasing with depth and temperature. The elemental ratios of the waters (e.g., Na/Cl, Cl/Br, Na/Ca) indicate similar hydrogeochemical formation processes in the Harz Mountains and the North German Basin. The concentrations of calcium, sodium, and chloride differ due to salt dissolution and feldspar transformation (albitisation) in the thermal springs as well as in the deep formation waters. Based on today's knowledge hydrochemical and stratigraphical data from the North German Basin can be used to elucidate the geological origin of the thermal springs in the Harz Mountains. Acknowledgements. The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the State of Lower Saxony and the company Baker Hughes.
The Sulu Sea as Carbon Dioxide Sink
NASA Astrophysics Data System (ADS)
Ferrera, C. M.; Jacinto, G. S.; Chen, C. T. A.
2016-12-01
The Sulu Sea, one of the marginal seas in the West Pacific and the largest internal sea in the Philippines, is characterized by its unique deep water ventilation pattern and high sediment organic carbon and CaCO3 content. Studies on the dissolved CO2 system in the Sulu Sea have remarkably shown that anthropogenic CO2 has already penetrated to the bottom of this 5km-deep basin, albeit limited to a dataset from a single station in December 1996. To further understand the role of this tropical marginal sea as CO2 sink and to assess its behavior as a CO2 sink during the 11-year period, water samples for dissolved CO2 parameters from two deep stations of high productivity and low productivity were collected in December 2007/January 2008 and were compared with the 1996 data. Results suggest that the surface waters in the low productivity region might have been acidifying at a rate of -0.0012 pH unit yr-1. Atmospheric CO2 increased at +1.9 ppmv yr-1 and seawater fCO2 at +3.30 μatm yr-1. Through deep water ventilation, anthropogenic CO2 has penetrated the water column thereby making the deeper waters a sink of anthropogenic CO2. But then the presence and dissolution of CaCO3 deposits at the sea floor and along the Sulu Sea slopes as a result of the reaction with this anthropogenic CO2 probably neutralizes the acidification at depths as shown by the increase in total alkalinity (+0.57 μmol kg-1 yr-1), and facilitates further uptake of CO2 from the atmosphere. Therefore, productivity at Sulu Sea surface waters results to sequestration of CO2 from the atmosphere to the sediment sink through organic carbon and CaCO3 deposits. While high temperature and low productivity surface waters make the Sulu Sea a source of CO2 to the atmosphere, ventilation patterns make the deep waters of the Sulu Sea an efficient sink for anthropogenic CO2. Given the larger area occupied by the CO2 sink deep waters compared to the CO2 source surface waters including an upwelling area, the Sulu Sea could possibly be a "net" CO2 sink, an important contribution to the otherwise underestimated inventory of CO2 from marginal seas.
Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott
2013-08-20
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.
Erban, Laura E.; Gorelick, Steven M.; Zebker, Howard A.; Fendorf, Scott
2013-01-01
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km2) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene–Miocene-age aquifers, where nearly 900 wells at depths of 200–500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water. PMID:23918360
In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs
NASA Astrophysics Data System (ADS)
Pachiadaki, Maria G.; Taylor, Craig; Oikonomou, Andreas; Yakimov, Michail M.; Stoeck, Thorsten; Edgcomb, Virginia
2016-07-01
Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prokaryotes in mesopelagic and bathypelagic realms are largely obscured. Further complicating matters, examinations of trophic interactions using water samples that have been exposed to upwards of hundreds of atmospheres of pressure change prior to initiating experiments can potentially introduce significant artifacts. Here we present results of the first study of protistan grazing in water layers ranging from the euphotic zone to the bathypelagic, utilizing the Microbial Sampler-Submersible Incubation Device (MS-SID) that makes possible in situ studies of microbial activities. Protistan grazing in the mesopelagic and bathypelagic realm of the East Mediterranean Sea was quantified using fluorescently labeled prokaryotes (FLP) prepared from the naturally-occurring prokaryotic assemblages. These studies reveal daily prokaryotic removal due to grazing ranging from 31.3±5.9% at 40 m depth to 0.5±0.3% at 950 m. At 3540 m depth, where a chemocline habitat exists with abundant and active prokaryotes above Urania basin, the daily consumption of prokaryotes by protists was 19.9±6.6% of the in situ abundance.
Chlorine-36 tracing of salinity sources in the dry valleys of Victoria land, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, C.A.; Phillips, F.M.; Elmore, D.
1990-02-01
Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic {sup 36}Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. {sup 36}Cl/Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl{sup {minus}} < 100 mg/l) were found to have {sup 36}Cl/Cl ratios in the range 100 {times} 10{sup {minus}15} to 1,700 {times} 10{sup {minus}15}, whereas saline waters (Cl{sup {minus}} > 1000 mg/l) had ratios in the range 9more » {times} 10{sup {minus}15} to 40 {times} 10{sup {minus}15}. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal sources of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant sources of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.« less
Today's Leaders for a Sustainable Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Bryan
2013-02-27
Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less
Ecohydrological control of deep drainage in arid and semiarid regions
Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.
2005-01-01
The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological processes (such as hydraulic redistribution), and evaluate the role of deep roots in terms of carbon costs, nutrient uptake, and whole‐plant development.
Optical Communications in Support of Science from the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.
2005-01-01
Optical communications can provide high speed communications throughout the solar system. Enable new science missions and human exploration. The technology suitable for near-earth optical communications, including communications to and from the Moon, is different than for deep space optical. NASA could leverage DoD investments for near-earth applications, including the moon. NASA will have to develop its own technology for deep space. The Mars laser communication demonstration is a pathfinder. NASA,s science mission directorate, under the leadership of Dr. Barry Geldzahler, is developing a roadmap for the development of deep space optical communications.
NASA light emitting diode medical applications from deep space to deep sea
NASA Astrophysics Data System (ADS)
Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James
2001-02-01
This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .
Bahama Banks, Tongue of the Ocean, Bahamas
NASA Technical Reports Server (NTRS)
1992-01-01
Most of the Western Bahama Banks, the Tongue of the Ocean and Andros Island (24.0N, 77.0W) as well as north central Cuba with its fringing reefs can be seen in this one view. The green water over the banks is less than 30 ft. deep but the deep blue of the Tongue is 4000 to 6000 ft. deep. All the sediment on the banks, including the material that forms the islands, is calcium carbonate (lime) precipitated from sea water by animals and plants.
Bahama Banks, Tongue of the Ocean, Bahamas
NASA Technical Reports Server (NTRS)
1993-01-01
Most of the Western Bahama Banks, the Tongue of the Ocean and Andros Island (25.0N, 77.0W) as well as north central Cuba with its fringing reefs can be seen in this one view. The green water over the banks is less than 30 ft. deep but the deep blue of the Tongue is 4000 to 6000 ft. deep. All the sediment on the banks, including the material that forms the islands, is calcium carbonate (lime) precipitated from sea water by animals and plants.
Investigation of Deep Ocean Circulation and Mixing Using Ar-39 (Invited)
NASA Astrophysics Data System (ADS)
Smethie, W. M.; Schlosser, P.
2013-12-01
Ar-39 is a radioactive noble gas that forms in the atmosphere by cosmic ray interaction with Ar-40. It has a half-life of 269 years and its production rate in the atmosphere has varied no more than 7% during the past 1000 years. It enters the surface ocean with an average equilibration time of about one month and thus the entire surface ocean, except for ice covered regions at high latitudes, is in quasi-equilibrium with the atmospheric Ar-39:Ar ratio. The well known input to the ocean, radioactive decay constant and chemical inertness make Ar-39 an ideal tracer of circulation and mixing in the deep ocean, where anthropogenic transient tracers such as CFCs and tritium have not yet penetrated. However, due to the difficult measurement, only about 125 oceanic Ar-39 samples have been measured to date. This was done by counting the decays of Ar-39 atoms and required a half liter of argon gas per sample, extracted from about 1500 liters of water. The 125 samples that have been measured provide a glimpse of the information that can be gained from Ar-39 observations. In the Pacific Ocean three vertical profiles show a decrease in Ar-39 from the surface mixed layer through the thermocline to a minimum at intermediate depths and an increase from there to the bottom. This reflects formation of bottom water around the Antarctic continent, spreading of this water northward and upwelling and mixing into intermediate depths. The lowest concentration was 6×4% modern which is equivalent to a 900-1600 year isolation time from the surface. In the Atlantic Ocean newly formed North Atlantic Deep Water has an Ar-39 concentration of about 85% modern compared to 55% modern for newly formed Antarctic Bottom Water and reach values as low as about 40% modern in the interior reflecting the more rapid ventilation of the deep Atlantic Ocean relative to the deep Pacific Ocean. In the Arctic Ocean the mean residence time of deep water in the Nansen, Amundsen and Makarov Basins based on Ar-39 are about 270, 190, and 330 years respectively. Radiocarbon also provides information on circulation and mixing in the deep ocean and thousands of measurements have been made. However, the distributions of Ar-39 and C-14 are different due to the large difference in their half-lives (269 years and 5730 years respectively). Measurement of both tracers provides information on the relative importance of advection and mixing in the deep ocean and provides more accurate transit times than can be obtained with only one of these tracers. In the Atlantic Ocean, where the deep water is roughly a two-end member mixture of northern component and southern component water, the age of the two components can be estimated from simultaneous measurement of Ar-39 and C-14. The few existing measurements suggest that the northern component water has an age range of 40-200 years and the southern component water a range of 60-600 years. Development of the ATTA method for measuring radioactive noble gases offers great potential to dramatically increase the number of samples that can be measured for Ar-39, which could greatly improve our understanding of mixing and circulation in the deep ocean.
Towards testing quantum physics in deep space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
2016-07-01
MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.
Sanda, M-A; Johansson, J; Johansson, B; Abrahamsson, L
2011-10-01
The purpose of this article is to develop knowledge and learning on the best way to automate organisational activities in deep mines that could lead to the creation of harmony between the human, technical and the social system, towards increased productivity. The findings showed that though the introduction of high-level technological tools in the work environment disrupted the social relations developed over time amongst the employees in most situations, the technological tools themselves became substitute social collaborative partners to the employees. It is concluded that, in developing a digitised mining production system, knowledge of the social collaboration between the humans (miners) and the technology they use for their work must be developed. By implication, knowledge of the human's subject-oriented and object-oriented activities should be considered as an important integral resource for developing a better technological, organisational and human interactive subsystem when designing the intelligent automation and digitisation systems for deep mines. STATEMENT OF RELEVANCE: This study focused on understanding the social collaboration between humans and the technologies they use to work in underground mines. The learning provides an added knowledge in designing technologies and work organisations that could better enhance the human-technology interactive and collaborative system in the automation and digitisation of underground mines.
Abrupt climate shift in the Western Mediterranean Sea.
Schroeder, K; Chiggiato, J; Bryden, H L; Borghini, M; Ben Ismail, S
2016-03-11
One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.
Abrupt climate shift in the Western Mediterranean Sea
Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.
2016-01-01
One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.43 To... less than 200 meters deep, you began drilling an original deep well with a perforated interval the top...
Optical Communications from Planetary Distances
NASA Technical Reports Server (NTRS)
Davarian, F.; Farr, W.; Hemmati, H.; Piazzolla, S.
2008-01-01
Future planetary campaigns, including human missions, will require data rates difficult to realize by microwave links. Optical channels not only provide an abundance of bandwidth, they also allow for significant size, weight, and power reduction. Moreover, optical-based tracking may enhance spacecraft navigation with respect to microwave-based tracking. With all its advantages, optical communications from deep space is not without its challenges. Due to the extreme distance between the two ends of the link, specialized technologies are needed to enable communications in the deep space environment. Although some of the relevant technologies have been developed in the last decade, they remain to be validated in an appropriate domain. The required assets include efficient pulsed laser sources, modulators, transmitters, receivers, detectors, channel encoders, precise beam pointing technologies for the flight transceiver and large apertures for the ground receiver. Clearly, space qualification is required for the systems that are installed on a deep space probe. Another challenge is atmospheric effects on the optical beam. Typical candidate locations on the ground have a cloud-free line of sight only on the order of 60-70% of the time. Furthermore, atmospheric losses and background light can be problematic even during cloud-free periods. Lastly, operational methodologies are needed for efficient and cost effective management of optical links. For more than a decade, the National Aeronautics and Space Administration (NASA) has invested in relevant technologies and procedures to enable deep space optical communications capable of providing robust links with rates in the order of 1 Gb/s from Mars distance. A recent publication indicates that potential exists for 30-dB improvement in performance through technology development with respect to the state-of-the-art in the early years of this decade. The goal is to fulfill the deep space community needs from about 2020 to the foreseeable future. It is envisioned that, at least initially, optical links will be complemented by microwave assets for added robustness, especially for human missions. However, it is expected that as optical techniques mature, laser communications may be operated without conventional radio frequency links. The purpose of this paper is to briefly review the state-of-the-art in deep space laser communications and its challenges and discuss NASA-supported technology development efforts and plans for deep space optical communications at JPL.
Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable
Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios
2010-01-01
Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848
Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.
Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios
2010-08-02
Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None Available
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
Detection and quantification of hydrocarbons in sediments
Wynn, Jeff; Williamson, Mike; Frank, Jeff
2016-01-01
A new technology developed by the US Geological Survey now allows for fast, direct detection of hydrocarbon plumes both in rivers and drifting in the deep ocean. Recent experiments show that the method can also detect and quantify hydrocarbons buried in river sediments and estuaries. This approach uses a variant of induced polarization, a surface-sensitive physical property of certain polarizable materials immersed in an electrolyte that can accept and adsorb charge under an inducing voltage. Known polarizable materials include most sulfides, ilmenite (FeTiO3), metallic objects such as buried wrecks and pipelines, and now hydrocarbons. The hydrocarbon-in-water response to induced polarization is in fact nearly two orders of magnitude greater than the IP response of any of the hard minerals. The oil:water detection limit for hydrocarbons so far is down to 0.0002% in the laboratory.
NASA Technical Reports Server (NTRS)
Frewing, K.
1980-01-01
Deep sea processes of flow-sediment interaction, particularly the role of high energy ocean bottom current events in forming the seafloor topography, transporting material, and mixing the bottom of the water column are examined. A series of observations at and near the sea bottom, in water depths of 4 to 5 km, in areas of the western North Atlantic where high energy current events occur, include site surveys and physical reconnaissance to identify suitable areas and positions, and one or more six month experiments to investigate temporal and spatial variations of high energy events within the boundary layer and their interaction with the seabed. Descriptions of proposed HEBBLE activities are included, with emphasis on technology transfer to the oceanographic community through design, fabrication, testing, and operation of an instrumented ocean bottom lander.
Nanobubbles at Hydrophilic Particle-Water Interfaces.
Pan, Gang; He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Tyliszczak, Tolek; Tai, Renzhong; Guo, Jinghua; Bi, Lei; Wang, Lei; Zhang, Honggang
2016-11-01
The puzzling persistence of nanobubbles breaks Laplace's law for bubbles, which is of great interest for promising applications in surface processing, H 2 and CO 2 storage, water treatment, and drug delivery. So far, nanobubbles have mostly been reported on hydrophobic planar substrates with atomic flatness. It remains a challenge to quantify nanobubbles on rough and irregular surfaces because of the lack of a characterization technique that can detect both the nanobubble morphology and chemical composition inside individual nanobubble-like objects. Here, by using synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution, we discern nanoscopic gas bubbles of >25 nm with direct in situ proof of O 2 inside the nanobubbles at a hydrophilic particle-water interface under ambient conditions. We find a stable cloud of O 2 nanobubbles at the diatomite particle-water interface hours after oxygen aeration and temperature variation. The in situ technique may be useful for many surface nanobubble-related studies such as material preparation and property manipulation, phase equilibrium, nucleation kinetics, and relationships with chemical composition within the confined nanoscale space. The oxygen nanobubble clouds may be important in modifying particle-water interfaces and offering breakthrough technologies for oxygen delivery in sediment and/or deep water environments.
Mercury on a landscape scale—Balancing regional export with wildlife health
Marvin-DiPasquale, Mark C.; Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; McQuillen, Harry
2018-06-26
The Cosumnes River watershed requires a 57–64 percent reduction in loads to meet the new Delta methylmercury (MeHg) total maximum daily load allocation, established by the Central Valley Regional Water Quality Control Board. Because there are no large point sources of MeHg in the watershed, the focus of MeHg load reductions will fall upon non-point sources, particularly the expansive wetlands considered to be a primary source of MeHg in the region. Few management practices have been implemented and tested in order to meet load reductions in managed wetlands, but recent efforts have shown promise. This project examines a treatment approach to reduce MeHg loads to the Sacramento-San Joaquin River Delta by creating open-water deep cells with a small footprint at the downstream end of wetlands to promote net demethylation of MeHg and to minimize MeHg and Hg loads exiting wetlands at the Cosumnes River Preserve. Specifically, the deep cells were were located immediately up gradient of the wetland’s outflow weir and were deep enough (75–91 centimeter depth) to be vegetation-free. The topographic and hydrologic structure of each treatment wetland was modified to include open-water deep cells so that the removal of aqueous MeHg might be enhanced through (1) particle settling, (2) photo-degradation, and (3) benthic microbial demethylation. These deep cells were, therefore, expected to clean MeHg from surface water prior to its discharge to the Cosumnes River and the downstream Delta.Our goal was to test whether the implementation of the deep cells within wetlands would minimize MeHg and total Hg export. Further, we sought to test whether continuous flow-through hydrology, would lower MeHg concentrations in resident biota, compared to traditional wetland management operations. The dominant practice in seasonal wetlands management is the “fill-and-maintain” approach, in which wetlands are filled with water and the water levels maintained without substantial draining until drawdown. Our approach was to create and characterize replicate treatment wetland complexes, in conjunction with monitoring of hydrologic, biologic, and chemical indicators of MeHg exposure for two full annual cycles within winter-spring flooded seasonal wetlands. In addition to the creation of deep cells within treatment wetlands, hydrology was manipulated so that there was a constant flow-through of water, while the control wetlands utilized the fill-and-maintain approach. Specifically, the treatment wetlands were maintained in a flow-through manner, while the control wetlands were maintained in a fill-and-maintain manner from September through May, to test the hypothesis that the flow of water through the seasonal wetland can lower fish bioaccumulation through dilution of MeHg-concentrated water within the wetland by constant inflows of water into the wetland.The major tasks of this study included: (1) field design and implementation, (2) water and wetland management, (3) hydrologic monitoring and water quality sampling, (4) MeHg export and load estimates, (5) caged fish experiments for examining MeHg bioaccumulation, (6) site and process characterization to improve understanding and transferability of results, (7) adaptive management, transferability, and outreach, and (8) reporting of results and conclusions. This report summarizes the key findings of this study, which focuses on MeHg load estimates from control and treatment wetlands, quantification of three MeHg removal mechanisms (particulate settling, benthic demethylation, and photo-demethylation) in the deep cells within the treatment wetlands, and MeHg bioaccumulation in wetland fishes.Key findings include:Over two years of study, mean whole-water MeHg load decreased 37 percent in deep cells, when comparing inlet of check weir flows to outlet.Of the 37 percent MeHg load removed within the deep cell, photodegradation accounted for 7 percent and particle flux to the benthos accounted for 24 percent of the mass removed, with the remaining 6 percent apparent MeHg loss unexplained.Benthic MeHg degradation did not appear to be a major MeHg removal process in the deep cells, as changes in the ambient MeHg pool over 7-day bottle incubations showed that the surface sediment exhibited net MeHg production in the majority (87 percent) of incubation experiments. In only 13 percent of the incubations (3 out of 24) was net MeHg degradation observed.Estimates of benthic diffusive flux of MeHg across the sediment/water interface were small relative to particulate flux and variable (positive or negative), suggesting this is likely a minor term in the overall MeHg budget within the deep cells.Although the deep cells served as net MeHg sink overall, MeHg export from the flow-through treatment wetlands (shallow and deep combined) exceeded export from the fill-and-maintain managed control wetlands, because of the differences in hydrologic management between the two wetland types.Shallow wetlands under flow-through conditions generated a net export of MeHg.Most of the annual MeHg export from the treatment wetlands occurred within the first 3 months of flood up (September to November), shortly after hydrologic management began.Despite the effectiveness of the deep cell in lowering MeHg export concentrations, total mercury (THg) concentration did not decrease in biosentinel fish (Gambusia affinis, Mosquitofish) between the deep cell inlet and outlet.Mosquitofish THg concentrations were higher in treatment wetlands than in control wetlands during the first year of study, likely because of an associated increase in MeHg availability immediately following wetland construction activities. Mosquitofish THg concentrations declined in the treatment wetlands during the second year of study, and fish THg concentrations in treatment wetlands were no different from those in the control.Similarly, the increased hydrologic flow rates in the treatment wetlands did not lower fish THg concentrations nor aqueous MeHg concentrations in the shallow cells, suggesting that MeHg flux from the sediment to water column exceeded the flow-through flushing rate in the shallow portion of the treatment wetlands.Reductions in MeHg concentrations of surface water and fish may require higher flow rates than used in the study to achieve the region’s regulatory goals. However, the flow rates necessary may not be feasible for these managed wetlands because of limited water supply and the associated costs for water and pumping.The use of deep cells in seasonal wetlands were effective in lowering MeHg exports under continuous water flow-through hydrology. However, fill-and-maintain hydrology had lower exports overall, because of a single major drainage event at the end of the flood season.Future studies focused on limiting MeHg export should consider combining deep cells with the fill-and-maintain or fill-and-trickle hydrologic management approach.
Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, C.J.; Nathenson, M.; Scholl, M.A.
1994-12-31
Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal watermore » from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.« less
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-12-03
STS080-742-070 (19 Nov.-7 Dec. 1996) --- A view of the Tongue of the Ocean in the Bahama Islands east of Florida. The lines leading from the flat bottom of the Great Bahama Bank, leading into the Tongue, are caused by rapid transfer of ocean water caused by both temperature changes in the water and hurricanes that periodically cross the area. The water is about 30 feet deep on the Great Bahama Bank, and nearly a mile deep in the tongue. To the left is the Exuma Sound, over a mile deep, and a series of islands along its edge with Great Exuma Island the easiest to see. Green Cay, the small dot lower left, leaving a wake to the southeast of light colored coral. The deep blue area to the top right center is the southeastern edge of the Great Bahama Bank.