Science.gov

Sample records for deep-inspiration breath-hold perfusion

  1. Review of deep inspiration breath-hold techniques for the treatment of breast cancer

    SciTech Connect

    Latty, Drew; Stuart, Kirsty E; Wang, Wei; Ahern, Verity

    2015-03-15

    Radiation treatment to the left breast is associated with increased cardiac morbidity and mortality. The deep inspiration breath-hold technique (DIBH) can decrease radiation dose delivered to the heart and this may facilitate the treatment of the internal mammary chain nodes. The aim of this review is to critically analyse the literature available in relation to breath-hold methods, implementation, utilisation, patient compliance, planning methods and treatment verification of the DIBH technique. Despite variation in the literature regarding the DIBH delivery method, patient coaching, visual feedback mechanisms and treatment verification, all methods of DIBH delivery reduce radiation dose to the heart. Further research is required to determine optimum protocols for patient training and treatment verification to ensure the technique is delivered successfully.

  2. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    SciTech Connect

    Conroy, L; Quirk, S; Smith, WL; Yeung, R; Phan, T; Hudson, A

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  3. Clinical Results of Image-Guided Deep Inspiration Breath Hold Breast Irradiation

    SciTech Connect

    Borst, Gerben R.; Sonke, Jan-Jakob; Hollander, Suzanne den; Betgen, Anja; Remeijer, Peter; Giersbergen, Aline van; Russell, Nicola S.; Elkhuizen, Paula H.M.; Bartelink, Harry; Vliet-Vroegindeweij, Corine van

    2010-12-01

    Purpose: To evaluate the feasibility, cardiac dose reduction, and the influence of the setup error on the delivered dose for fluoroscopy-guided deep inspiration breath hold (DIBH) irradiation using a cone-beam CT for irradiation of left-sided breast cancer patients. Methods and Materials: Nineteen patients treated according to the DIBH protocol were evaluated regarding dose to the ipsilateral breast (or thoracic wall), heart, (left ventricle [LV]and left anterior descending artery [LAD]), and lung. The DIBH treatment plan was compared to the free-breathing (FB) treatment planning and to the dose data in which setup error was taken into account (i.e., actual delivered dose). Results: The largest setup variability was observed in the direction perpendicular to the RT field ({mu} = -0.8 mm, {Sigma} = 2.9 mm, {sigma} = 2.0 mm). The mean (D{sub mean}) and maximum (D{sub max}) doses of the DIBH treatment plan was significantly lower compared with the FB treatment plan for the heart (34% and 25%, p < 0.001), LV (71% and 28%, p < 0.001), and LAD (52% and 39.8%, p < 0.001). For some patients, large differences were observed between the heart D{sub max} according to the DIBH treatment plan and the actual delivered dose (up to 71%), although D{sub max} was always smaller than the planned FB dose (mean group reduction = 29%, p < 0.001). Conclusion: The image-guided DIBH treatment protocol is a feasible irradiation method with small setup variability that significantly reduces the dose to the heart, LV, and LAD.

  4. SU-C-19A-01: A Simple Deep Inspiration Breath Hold System

    SciTech Connect

    Rasmussen, B; Kaznowski, L; Blackburn, J; Chu, K; Duelge, J; Baldwin, B; Valenti, M; Hunsader, A

    2014-06-15

    Purpose: Deep Inspiration Breath Hold (DIBH) Radiation therapy for left sided breast can reduce dose to the lungs and heart. The purpose of this work is to illustrate how to implement a simple method of DIBH for simulation and treatment using equipment readily available in most radiation oncology clinics. Methods: For simulation and treatment, a foam block is placed on the patient's abdomen or chest and a horizontal laser mounted on a movable slide is aimed at the center of the foam block. After a coaching session the block is marked at the average free breathing position and average DIBH position. The position of block relative to laser can be seen by the patient via prism glasses as well as the radiation therapists via a video camera system. Simulation CT scans and treatment delivery are performed under DIBH conditions. Imaging and treatment are performed by manually turning the beam on once the patient has achieved DIBH after being given verbal instructions. Results: Manually triggered imaging was used daily to verify DIBH reproducibility for all patients treated using this system. Sets of before and during port images were used to ensure patient position was appropriate for treatment. Results of the laser on block method were compared to a sister facility using surface mapping techniques for DIBH and the two methods were found to have clinically equivalent reproducibility. Conclusion: The laser and block system was found to be simple to implement and robust during patient treatment. This system can be created from readily available materials at low cost and provides adequate feedback to patient and therapists. During treatment images document the reproducibility of setup and give confidence to clinicians that this method is reproducible from day to day.

  5. Cardiac Motion During Deep-Inspiration Breath-Hold: Implications for Breast Cancer Radiotherapy

    SciTech Connect

    Wang Xiaochun; Pan Tinsu; Pinnix, Chelsea; Zhang, Sean X.; Salehpour, Mohammad; Sun, Tzouh Liang; Gladish, Gregory; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Woodward, Wendy; Hoffman, Karen E.; Buchholz, Thomas A.; Yu, T. Kuan

    2012-02-01

    Purpose: Many patients with left-sided breast cancer receive adjuvant radiotherapy during deep-inspiration breath hold (DIBH) to minimize radiation exposure to the heart. We measured the displacement of the left anterior descending artery (LAD) and heart owing to cardiac motion during DIBH, relative to the standard tangential fields for left breast cancer radiotherapy. Methods and Materials: A total of 20 patients who had undergone computed tomography-based coronary angiography with retrospective electrocardiographic gating were randomly selected for the present study. The patients underwent scanning during DIBH to control the influence of respiration on cardiac motion. Standard medial and lateral tangential fields were placed, and the LADs were contoured on the systolic- and diastolic-phase computed tomography data sets by the clinicians. Displacement of the LAD during cardiac contractions was calculated in three directions: toward the posterior edge of the treatment fields, left-right, and anteroposterior. Displacement of the entire heart was measured on the maximal and minimal intensity projection computed tomography images. Results: The mean displacement of the LAD from cardiac contraction without the influence of respiration for 20 patients was 2.3 mm (range, 0.7-3.8) toward the posterior edge of the treatment fields, 2.6 mm (range, 1.0-6.8) in the left-right direction, and 2.3 mm (range, 0.6-6.5) in the anteroposterior direction. At least 30% of the LAD volume was displaced >5 mm in any direction in 2 patients (10%), and <10% of the LAD volume was displaced >5 mm in 10 patients (50%). The extent of displacement of the heart periphery during cardiac motion was negligible near the treatment fields. Conclusions: Displacement of the heart periphery near the treatment fields was negligible during DIBH; however, displacement of the LAD from cardiac contraction varied substantially between and within patients. We recommend maintaining {>=}5 mm of distance between

  6. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    SciTech Connect

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van; Remeijer, Peter

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  7. The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: a systematic review

    SciTech Connect

    Smyth, Lloyd M; Knight, Kellie A; Aarons, Yolanda K; Wasiak, Jason

    2015-03-15

    Despite technical advancements in breast radiation therapy, cardiac structures are still subject to significant levels of irradiation. As the use of adjuvant radiation therapy after breast-conserving surgery continues to improve survival for early breast cancer patients, the associated radiation-induced cardiac toxicities become increasingly relevant. Our primary aim was to evaluate the cardiac-sparing benefits of the deep inspiration breath-hold (DIBH) technique. An electronic literature search of the PubMed database from 1966 to July 2014 was used to identify articles published in English relating to the dosimetric benefits of DIBH. Studies comparing the mean heart dose of DIBH and free breathing treatment plans for left breast cancer patients were eligible to be included in the review. Studies evaluating the reproducibility and stability of the DIBH technique were also reviewed. Ten studies provided data on the benefits of DIBH during left breast irradiation. From these studies, DIBH reduced the mean heart dose by up to 3.4 Gy when compared to a free breathing approach. Four studies reported that the DIBH technique was stable and reproducible on a daily basis. According to current estimates of the excess cardiac toxicity associated with radiation therapy, a 3.4 Gy reduction in mean heart dose is equivalent to a 13.6% reduction in the projected increase in risk of heart disease. DIBH is a reproducible and stable technique for left breast irradiation showing significant promise in reducing the late cardiac toxicities associated with radiation therapy.

  8. SU-E-J-33: Cardiac Movement in Deep Inspiration Breath-Hold for Left-Breast Cancer Radiotherapy

    SciTech Connect

    Kim, M; Lee, S; Suh, T

    2014-06-01

    Purpose: The present study was designed to investigate the displacement of heart using Deep Inspiration Breath Hold (DIBH) CT data compared to free-breathing (FB) CT data and radiation exposure to heart. Methods: Treatment planning was performed on the computed tomography (CT) datasets of 20 patients who had received lumpectomy treatments. Heart, lung and both breasts were outlined. The prescribed dose was 50 Gy divided into 28 fractions. The dose distributions in all the plans were required to fulfill the International Commission on Radiation Units and Measurement specifications that include 100% coverage of the CTV with ≥ 95% of the prescribed dose and that the volume inside the CTV receiving > 107% of the prescribed dose should be minimized. Displacement of heart was measured by calculating the distance between center of heart and left breast. For the evaluation of radiation dose to heart, minimum, maximum and mean dose to heart were calculated. Results: The maximum and minimum left-right (LR) displacements of heart were 8.9 mm and 3 mm, respectively. The heart moved > 4 mm in the LR direction in 17 of the 20 patients. The distances between the heart and left breast ranged from 8.02–17.68 mm (mean, 12.23 mm) and 7.85–12.98 mm (mean, 8.97 mm) with DIBH CT and FB CT, respectively. The maximum doses to the heart were 3115 cGy and 4652 cGy for the DIBH and FB CT dataset, respectively. Conclusion: The present study has demonstrated that the DIBH technique could help to reduce the risk of radiation dose-induced cardiac toxicity by using movement of cardiac; away from radiation field. The DIBH technique could be used in an actual treatment room for a few minutes and could effectively reduce the cardiac dose when used with a sub-device or image acquisition standard to maintain consistent respiratory motion.

  9. Minimizing Late Effects for Patients With Mediastinal Hodgkin Lymphoma: Deep Inspiration Breath-Hold, IMRT, or Both?

    SciTech Connect

    Aznar, Marianne C.; Maraldo, Maja V.; Schut, Deborah A.; Lundemann, Michael; Brodin, N Patrik; Vogelius, Ivan R.; Berthelsen, Anne K.; Specht, Lena; Petersen, Peter M.

    2015-05-01

    Purpose: Hodgkin lymphoma (HL) survivors have an increased risk of cardiovascular disease (CD), lung cancer, and breast cancer. We investigated the risk for the development of CD and secondary lung, breast, and thyroid cancer after radiation therapy (RT) delivered with deep inspiration breath-hold (DIBH) compared with free-breathing (FB) using 3-dimensional conformal RT (3DCRT) and intensity modulated RT (IMRT). The aim of this study was to determine which treatment modality best reduced the combined risk of life-threatening late effects in patients with mediastinal HL. Methods and Materials: Twenty-two patients with early-stage mediastinal HL were eligible for the study. Treatment plans were calculated with both 3DCRT and IMRT on both DIBH and FB planning computed tomographic scans. We reported the estimated dose to the heart, lung, female breasts, and thyroid and calculated the estimated life years lost attributable to CD and to lung, breast, and thyroid cancer. Results: DIBH lowered the estimated dose to heart and lung regardless of delivery technique (P<.001). There was no significant difference between IMRT-FB and 3DCRT-DIBH in mean heart dose, heart V20Gy, and lung V20Gy. The mean breast dose was increased with IMRT regardless of breathing technique. Life years lost was lowest with DIBH and highest with FB. Conclusions: In this cohort, 3DCRT-DIBH resulted in lower estimated doses and lower lifetime excess risks than did IMRT-FB. Combining IMRT and DIBH could be beneficial for a subgroup of patients.

  10. Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system

    SciTech Connect

    Mittauer, Kathryn E.; Deraniyagala, Rohan; Li, Jonathan G.; Lu, Bo; Liu, Chihray; Samant, Sanjiv S.; Lightsey, Judith L.; Yan, Guanghua

    2015-01-15

    Purpose: Recent knowledge on the effects of cardiac toxicity warrants greater precision for left-sided breast radiotherapy. Different breath-hold (BH) maneuvers (abdominal vs thoracic breathing) can lead to chest wall positional variations, even though the patient’s tidal volume remains consistent. This study aims to investigate the feasibility of using optical tracking for real-time quality control of active breathing coordinator (ABC)-assisted deep inspiration BH (DIBH). Methods: An in-house optical tracking system (OTS) was used to monitor ABC-assisted DIBH. The stability and localization accuracy of the OTS were assessed with a ball-bearing phantom. Seven patients with left-sided breast cancer were included. A free-breathing (FB) computed tomography (CT) scan and an ABC-assisted BH CT scan were acquired for each patient. The OTS tracked an infrared (IR) marker affixed over the patient’s xiphoid process to measure the positional variation of each individual BH. Using the BH within which the CT scan was performed as the reference, the authors quantified intra- and interfraction BH variations for each patient. To estimate the dosimetric impact of BH variations, the authors studied the positional correlation between the marker and the left breast using the FB CT and BH CT scans. The positional variations of 860 BHs as measured by the OTS were retrospectively incorporated into the original treatment plans to evaluate their dosimetric impact on breast and cardiac organs [heart and left anterior descending (LAD) artery]. Results: The stability and localization accuracy of the OTS was within 0.2 mm along each direction. The mean intrafraction variation among treatment BHs was less than 2.8 mm in all directions. Up to 12.6 mm anteroposterior undershoot, where the patient’s chest wall displacement of a BH is less than that of a reference BH, was observed with averages of 4.4, 3.6, and 0.1 mm in the anteroposterior, craniocaudal, and mediolateral directions

  11. Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking

    SciTech Connect

    Stock, Markus; Kontrisova, Kristina; Dieckmann, Karin; Bogner, Joachim; Poetter, Richard; Georg, Dietmar

    2006-08-15

    Respiration can cause tumor movements in thoracic regions of up to 3 cm. To minimize motion effects several approaches, such as gating and deep inspiration breath hold (DIBH), are still under development. The goal of our study was to develop and evaluate a noninvasive system for gated DIBH (GDIBH) based on external markers. DIBH monitoring was based on an infrared tracking system and an in-house-developed software. The in-house software provided the breathing curve in real time and was used as on-line information for a prototype of a feedback device. Reproducibility and stability of the breath holds were evaluated without and with feedback. Thirty-five patients undergoing stereotactic body radiotherapy (SBRT) performed DIBH maneuvers after each treatment. For 16 patients dynamic imaging sequences on a multislice CT were used to determine the correlation between tumor and external markers. The relative reproducibility of DIBH maneuvers was improved with the feedback device (74.5%{+-}17.1% without versus 93.0%{+-}4.4% with feedback). The correlation between tumor and marker was good (Pearson correlation coefficient 0.83{+-}0.17). The regression slopes showed great intersubject variability but on average the internal margin in a DIBH treatment situation could be theoretically reduced by 3 mm with the feedback device. DIBH monitoring could be realized in a noninvasive manner through external marker tracking. We conclude that reduction of internal margins can be achieved with a feedback system but should be performed with great care due to the individual behavior of target motion.

  12. Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking.

    PubMed

    Stock, Markus; Kontrisova, Kristina; Dieckmann, Karin; Bogner, Joachim; Poetter, Richard; Georg, Dietmar

    2006-08-01

    Respiration can cause tumor movements in thoracic regions of up to 3 cm. To minimize motion effects several approaches, such as gating and deep inspiration breath hold (DIBH), are still under development. The goal of our study was to develop and evaluate a noninvasive system for gated DIBH (GDIBH) based on external markers. DIBH monitoring was based on an infrared tracking system and an in-house-developed software. The in-house software provided the breathing curve in real time and was used as on-line information for a prototype of a feedback device. Reproducibility and stability of the breath holds were evaluated without and with feedback. Thirty-five patients undergoing stereotactic body radiotherapy (SBRT) performed DIBH maneuvers after each treatment. For 16 patients dynamic imaging sequences on a multislice CT were used to determine the correlation between tumor and external markers. The relative reproducibility of DIBH maneuvers was improved with the feedback device (74.5% +/- 17.1% without versus 93.0% +/- 4.4% with feedback). The correlation between tumor and marker was good (Pearson correlation coefficient 0.83 +/- 0.17). The regression slopes showed great intersubject variability but on average the internal margin in a DIBH treatment situation could be theoretically reduced by 3 mm with the feedback device. DIBH monitoring could be realized in a noninvasive manner through external marker tracking. We conclude that reduction of internal margins can be achieved with a feedback system but should be performed with great care due to the individual behavior of target motion.

  13. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p < 0.001 for reproducibility, p < 0.01 for stability). Significant changes (>2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  14. Dosimetric Benefits of Intensity-Modulated Radiotherapy Combined With the Deep-Inspiration Breath-Hold Technique in Patients With Mediastinal Hodgkin's Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Gilmore, Jennifer; Beaudre, Anne; Blanchard, Pierre; El Nemr, Mohammed; Azoury, Farez; Al Hamokles, Hweej; Lefkopoulos, Dimitri; Girinsky, Theodore

    2012-03-15

    Purpose: To assess the additional benefits of using the deep-inspiration breath-hold (DIBH) technique with intensity-modulated radiotherapy (IMRT) in terms of the protection of organs at risk for patients with mediastinal Hodgkin's disease. Methods and Materials: Patients with early-stage Hodgkin's lymphoma with mediastinal involvement were entered into the study. Two simulation computed tomography scans were performed for each patient: one using the free-breathing (FB) technique and the other using the DIBH technique with a dedicated spirometer. The clinical target volume, planning target volume (PTV), and organs at risk were determined on both computed tomography scans according to the guidelines of the European Organization for Research and Treatment of Cancer. In both cases, 30 Gy in 15 fractions was prescribed. The dosimetric parameters retrieved for the statistical analysis were PTV coverage, mean heart dose, mean coronary artery dose, mean lung dose, and lung V20. Results: There were no significant differences in PTV coverage between the two techniques (FB vs. DIBH). The mean doses delivered to the coronary arteries, heart, and lungs were significantly reduced by 15% to 20% using DIBH compared with FB, and the lung V20 was reduced by almost one third. The dose reduction to organs at risk was greater for masses in the upper part of the mediastinum. IMRT with DIBH was partially implemented in 1 patient. This combination will be extended to other patients in the near future. Conclusions: Radiation exposure of the coronary arteries, heart, and lungs in patients with mediastinal Hodgkin's lymphoma was greatly reduced using DIBH with IMRT. The greatest benefit was obtained for tumors in the upper part of the mediastinum. The possibility of a wider use in clinical practice is currently under investigation in our department.

  15. Deep inspiration breath-hold technique for left-sided breast cancer: An analysis of predictors for organ-at-risk sparing

    SciTech Connect

    Register, Steven; Takita, Cristiane; Reis, Isildinha; Zhao, Wei; Amestoy, William; Wright, Jean

    2015-04-01

    To identify anatomic and treatment characteristics that correlate with organ-at-risk (OAR) sparing with deep inspiration breath-hold (DIBH) technique to guide patient selection for this technique. Anatomic and treatment characteristics and radiation doses to OARs were compared between free-breathing and DIBH plans. Linear regression analysis was used to identify factors independently predicting for cardiac sparing. We identified 64 patients: 44 with intact breast and 20 postmastectomy. For changes measured directly on treatment planning scans, DIBH plans decreased heart-chest wall length (6.5 vs 5.0 cm, p < 0.001), and increased lung volume (1074.4 vs 1881.3 cm{sup 3}, p < 0.001), and for changes measured after fields are set, they decreased maximum heart depth (1.1 vs 0.3 cm, p < 0.001) and heart volume in field (HVIF) (9.1 vs 0.9 cm{sup 3}, p < 0.001). DIBH reduced the mean heart dose (3.4 vs 1.8 Gy, p < 0.001) and lung V{sub 20} (19.6% vs 15.3%, p < 0.001). Regression analysis found that only change in HVIF independently predicted for cardiac sparing. We identified patients in the bottom quartile of the dosimetric benefits seen with DIBH and categorized the cause of this “minimal benefit.” Overall, 29% of patients satisfied these criteria for minimal benefit with DIBH and the most common cause was favorable baseline anatomy. Only the reduction in HVIF predicted for reductions in mean heart dose; no specific anatomic surrogate for the dosimetric benefits of DIBH technique could be identified. Most patients have significant dosimetric benefit with DIBH, and this technique should be planned and evaluated for all patients receiving left-sided breast/chest wall radiation.

  16. SU-E-J-32: Calypso(R) and Laser-Based Localization Systems Comparison for Left-Sided Breast Cancer Patients Using Deep Inspiration Breath Hold

    SciTech Connect

    Robertson, S; Kaurin, D; Sweeney, L; Kim, J; Fang, L; Tran, A; Holloway, K

    2014-06-01

    Purpose: Our institution uses a manual laser-based system for primary localization and verification during radiation treatment of left-sided breast cancer patients using deep inspiration breath hold (DIBH). This primary system was compared with sternum-placed Calypso(R) beacons (Varian Medical Systems, CA). Only intact breast patients are considered for this analysis. Methods: During computed tomography (CT) simulation, patients have BB and Calypso(R) surface beacons positioned sternally and marked for free-breathing and DIBH CTs. During dosimetry planning, BB longitudinal displacement between free breathing and DIBH CT determines laser mark (BH mark) location. Calypso(R) beacon locations from the DIBH CT are entered at the Tracking Station. During Linac simulation and treatment, patients inhale until the cross-hair and/or lasers coincide with the BH Mark, which can be seen using our high quality cameras (Pelco, CA). Daily Calypso(R) displacement values (difference from the DIBH-CT-based plan) are recorded.The displacement mean and standard deviation was calculated for each patient (77 patients, 1845 sessions). An aggregate mean and standard deviation was calculated weighted by the number of patient fractions.Some patients were shifted based on MV ports. A second data set was calculated with Calypso(R) values corrected by these shifts. Results: Mean displacement values indicate agreement within 1±3mm, with improvement for shifted data (Table). Conclusion: Both unshifted and shifted data sets show the Calypso(R) system coincides with the laser system within 1±3mm, demonstrating either localization/verification system will Resultin similar clinical outcomes. Displacement value uncertainty unilaterally reduces when shifts are taken into account.

  17. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors.

    PubMed

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-01-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5Gy (0.7 to 9.6Gy) at FB, 1.2Gy (0.6 to 3.8Gy, p < 0.001) at 75% inspiration, 1.1Gy (0.6 to 3.1Gy, p = 0.004) at 90% inspiration, 1.0Gy (0.6 to 3.0Gy) at 100% inspiration or DIBH, and 1.0Gy (0.6 to 2.8Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9Gy (2.4 to 46.4Gy), 8.6Gy (2.0 to 43.8Gy, p < 0.001), 7.2Gy (1.9 to 40.1Gy, p = 0.035), 6.5Gy (1.8 to 34.7Gy), and 5.3Gy (1.5 to 31.5Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan. PMID:26206154

  18. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors.

    PubMed

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-01-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5Gy (0.7 to 9.6Gy) at FB, 1.2Gy (0.6 to 3.8Gy, p < 0.001) at 75% inspiration, 1.1Gy (0.6 to 3.1Gy, p = 0.004) at 90% inspiration, 1.0Gy (0.6 to 3.0Gy) at 100% inspiration or DIBH, and 1.0Gy (0.6 to 2.8Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9Gy (2.4 to 46.4Gy), 8.6Gy (2.0 to 43.8Gy, p < 0.001), 7.2Gy (1.9 to 40.1Gy, p = 0.035), 6.5Gy (1.8 to 34.7Gy), and 5.3Gy (1.5 to 31.5Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.

  19. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques

    SciTech Connect

    Epstein, D; Shekel, E; Levin, D

    2014-06-01

    Purpose: The purpose of this work was to verify the accuracy of the dose distribution along the field junction in a half beam irradiation technique for breast cancer patients receiving radiation to the breast or chest wall (CW) and the supraclavicular LN region for both free breathing and deep inspiration breath hold (DIBH) technique. Methods: We performed in vivo measurements for nine breast cancer patients receiving radiation to the breast/CW and to the supraclavicular LN region. Six patients were treated to the left breast/CW using DIBH technique and three patients were treated to the right breast/CW in free breath. We used five microMOSFET dosimeters: three located along the field junction, one located 1 cm above the junction and the fifth microMOSFET located 1 cm below the junction. We performed consecutive measurements over several days for each patient and compared the measurements to the TPS calculation (Eclipse, Varian™). Results: The calculated and measured doses along the junction were 0.97±0.08 Gy and 1.02±0.14 Gy, respectively. Above the junction calculated and measured doses were 0.91±0.08 Gy and 0.98±0.09 Gy respectively, and below the junction calculated and measured doses were 1.70±0.15 Gy and 1.61±0.09 Gy, respectively. All differences were not statistically significant. When comparing calculated and measured doses for DIBH patients only, there was still no statistically significant difference between values for all dosimeter locations. Analysis was done using the Mann-Whitney Rank-Sum Test. Conclusion: We found excellent correlation between calculated doses from the TPS and measured skin doses at the junction of several half beam fields. Even for the DIBH technique, where there is more potential for variance due to depth of breath, there is no over or underdose along the field junction. This correlation validates the TPS, as well an accurate, reproducible patient setup.

  20. Accuracy of Routine Treatment Planning 4-Dimensional and Deep-Inspiration Breath-Hold Computed Tomography Delineation of the Left Anterior Descending Artery in Radiation Therapy

    SciTech Connect

    White, Benjamin M.; Vennarini, Sabina; Lin, Lilie; Freedman, Gary; Santhanam, Anand; Low, Daniel A.; Both, Stefan

    2015-03-15

    Purpose: To assess the feasibility of radiation therapy treatment planning 4-dimensional computed tomography (4DCT) and deep-inspiration breath-hold (DIBH) CT to accurately contour the left anterior descending artery (LAD), a primary indicator of radiation-induced cardiac toxicity for patients undergoing radiation therapy. Methods and Materials: Ten subjects were prospectively imaged with a cardiac-gated MRI protocol to determine cardiac motion effects, including the displacement of a region of interest comprising the LAD. A series of planar views were obtained and resampled to create a 3-dimensional (3D) volume. A 3D optical flow deformable image registration algorithm determined tissue displacement during the cardiac cycle. The measured motion was then used as a spatial boundary to characterize motion blurring of the radiologist-delineated LAD structure for a cohort of 10 consecutive patients enrolled prospectively on a breast study including 4DCT and DIBH scans. Coronary motion–induced blurring artifacts were quantified by applying an unsharp filter to accentuate the LAD structure despite the presence of motion blurring. The 4DCT maximum inhalation and exhalation respiratory phases were coregistered to determine the LAD displacement during tidal respiration, as visualized in 4DCT. Results: The average 90th percentile heart motion for the region of interest was 0.7 ± 0.1 mm (left–right [LR]), 1.3 ± 0.6 mm (superior–inferior [SI]), and 0.6 ± 0.2 mm (anterior–posterior [AP]) in the cardiac-gated MRI cohort. The average relative increase in the number of voxels comprising the LAD contour was 69.4% ± 4.5% for the DIBH. The LAD volume overestimation had the dosimetric impact of decreasing the reported mean LAD dose by 23% ± 9% on average in the DIBH. During tidal respiration the average relative LAD contour increase was 69.3% ± 5.9% and 67.9% ± 4.6% for inhalation and exhalation respiratory phases, respectively. The average 90th

  1. TH-C-12A-11: Target Correlation of a 3D Surface Surrogate for Left Breast Irradiation Using the Respiratory-Gated Deep-Inspiration Breath-Hold Technique

    SciTech Connect

    Rong, Y; Walston, S

    2014-06-15

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.

  2. Breath holding spell

    MedlinePlus

    ... such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells ( ... tests may be done to check for an iron deficiency. Other tests that may be done include: EKG ...

  3. Breath-Holding Spells

    MedlinePlus

    ... less than a minute before a child regains consciousness and resumes breathing normally. Breath-holding spells can ... spells cause kids to stop breathing and lose consciousness for up to a minute. In the most ...

  4. Extreme human breath-hold diving.

    PubMed

    Ferretti, G

    2001-04-01

    In this paper, the respiratory, circulatory and metabolic adjustments to human extreme breath-hold diving are reviewed. A survey of the literature reveals that in extreme divers, adaptive mechanisms take place that allow prolongation of apnoea beyond the limits attained by non-diving subjects, and preservation of oxygen stores during the dives. The occurrence of a diving response, including peripheral vasoconstriction, increased arterial blood pressure, bradycardia and lowered cardiac output, is strongly implicated. Some peripheral regions may be excluded from perfusion, with consequent reliance on anaerobic metabolism. In addition, extreme breath-hold divers show a blunted ventilatory response to carbon dioxide breathing, possibly as a consequence of frequent exposure to high carbon dioxide partial pressures during the dives. These mechanisms allow the attainment of particularly low alveolar oxygen (< 30 mmHg) and high alveolar carbon dioxide (> 50 mmHg) partial pressures at the end of maximal dry breath-holds, and reduce oxygen consumption during the dive at the expense of increased anaerobic glycolysis (rate of blood lactate accumulation > 0.04 mM.s-1). The current absolute world record for depth in breath-hold diving is 150 m. Its further improvement depends upon how far the equilibrium between starting oxygen stores, the overall rate of energy expenditure, the fraction of energy provided by anaerobic metabolism and the diving speed can be pushed, with consciousness upon emersion. The ultimate limit to breath-hold diving records may indeed be imposed by an energetic constraint. PMID:11374109

  5. Functional analysis and intervention for breath holding.

    PubMed

    Kern, L; Mauk, J E; Marder, T J; Mace, F C

    1995-01-01

    We conducted a functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome. The results showed that breath holding served an operant function, primarily to gain access to attention. The intervention, consisting of extinction, scheduled attention, and use of a picture card communication system, resulted in decreased breath holding.

  6. Decompression sickness following breath-hold diving.

    PubMed

    Schipke, J D; Gams, E; Kallweit, Oliver

    2006-01-01

    Despite convincing evidence of a relationship between breath-hold diving and decompression sickness (DCS), the causal connection is only slowly being accepted. Only the more recent textbooks have acknowledged the risks of repetitive breath-hold diving. We compare four groups of breath-hold divers: (1) Japanese and Korean amas and other divers from the Pacific area, (2) instructors at naval training facilities, (3) spear fishers, and (4) free-dive athletes. While the number of amas is likely decreasing, and Scandinavian Navy training facilities recorded only a few accidents, the number of spear fishers suffering accidents is on the rise, in particular during championships or using scooters. Finally, national and international associations (e.g., International Association of Free Drives [IAFD] or Association Internationale pour Le Developpment De L'Apnee [AIDA]) promote free-diving championships including deep diving categories such as constant weight, variable weight, and no limit. A number of free-diving athletes, training for or participating in competitions, are increasingly accident prone as the world record is presently set at a depth of 171 m. This review presents data found after searching Medline and ISI Web of Science and using appropriate Internet search engines (e.g., Google). We report some 90 cases in which DCS occurred after repetitive breath-hold dives. Even today, the risk of suffering from DCS after repetitive breath-hold diving is often not acknowledged. We strongly suggest that breath-hold divers and their advisors and physicians be made aware of the possibility of DCS and of the appropriate therapeutic measures to be taken when DCS is suspected. Because the risk of suffering from DCS increases depending on depth, bottom time, rate of ascent, and duration of surface intervals, some approaches to assess the risks are presented. Regrettably, none of these approaches is widely accepted. We propose therefore the development of easily manageable

  7. Haemoptysis after breath-hold diving.

    PubMed

    Boussuges, A; Pinet, C; Thomas, P; Bergmann, E; Sainty, J M; Vervloet, D

    1999-03-01

    Pulmonary oedema has been described in swimmers and self-contained underwater breathing apparatus (Scuba) divers. This study reports three cases of haemoptysis secondary to alveolar haemorrhage in breath-hold divers. Contributory factors, such as haemodynamic modifications secondary to immersion, cold exposure, exercise and exposure to an increase in ambient pressure, could explain this type of accident. Furthermore, these divers had taken aspirin, which may have aggravated the bleeding.

  8. Motivational processes and behavioral inhibition in breath holding.

    PubMed

    Alpher, V S; Blanton, R L

    1991-01-01

    Large individual differences in breathing performance have made it difficult to investigate the effects of psychological variables on respiratory parameters. This study uses an experimental approach to investigating the effects of attentional and motivational factors on breath-holding span in humans. The effects of shock threat (negative incentive), monetary reward (positive incentive), and mantra meditation (attentional control) on breath-holding span at functional residual capacity (FRC) were compared. Based on Jeffrey Gray's (1975, 1987) theory of behavioral inhibition, it was predicted that shock threat would extend FRC breath holding. Breath holding was increased under the shock threat condition but not under the monetary reward or mantra meditation conditions.

  9. Diving bradycardia and breath-holding time in man.

    PubMed

    Sterba, J A; Lundgren, C E

    1985-06-01

    The hypothesis that the diving response, recorded as diving bradycardia during submersed breath holding in man, would enhance his breath-holding time was tested. Five certified scuba divers served as subjects. They performed breath holds of maximal duration while nonimmersed and during submersion in cool (32 degrees C), cold (20 degrees C), and thermoneutral (35 degrees C) water. The mean breath-holding time and heart rate during the nonimmersed (control) condition were, respectively, 111.2 +/- 14.1 (SE) s and 64.1 +/- 4.7 (SE) beats/min, the relatively long breath-holding times being due primarily to the so-called short-term training effect. Compared to the control values the breath-holding time in 20 degrees C water was 54.9% shorter and heart rate 25.9% lower, in 32 degrees C water the breath-holding time was not different and heart rate was 28.1% lower, and in 35 degrees C water the breath-holding time was longer by 25.6% while there was no difference in heart rate. In all conditions the breath-hold breaking point alveolar PCO2 was the same at about 52 mmHg. The shortening of the breath holds in cold water was ascribed to a 256% increase (over nonimmersed control) in metabolic rate as well as a respiratory drive due to stimulation of skin cold receptors. As for the prolongation of breath holds in thermoneutral water, it was hypothesized that immersion caused a delay in the build-up of chemical stimuli at the chemoreceptors.

  10. High-resolution breath-hold cardiac magnetic resonance imaging

    SciTech Connect

    Liu, Yu.

    1993-01-01

    This dissertation work is composed of investigations of three methods for fast cardiac magnetic resonance imaging (MRI). These methods include (1) 2D breath-hold magnetization prepared gradient echo and fast spin-echo (FSE) cardiac imaging, (2) 3D breath-hold magnetization prepared gradient echo cardiac imaging, and (3) real-time monitoring, feedback, and triggering for breath-hold MRI. The hypothesis of this work is that high resolution 2D and 3D magnetic resonance data sets for the heart can be acquired with the combination of magnetization prepared blood suppression for gradient echo techniques and accurate breath-holding methods. The 2D method included development of magnetic resonance data acquisition for cardiac imaging. The acquisition time is within a single breath-hold of 16 seconds (assuming heart 60/min). The data acquisition is synchronized with the electrocardiogram signal. Based on consistent observations of specific small cardiac structures like the papillary muscle, trabeculae, moderator band, and coronary vessels in studies of normal volunteers, the image quality represents a significant improvement over that obtained with fast imaging methods previously. To further improve the image quality provided by the 2D method, the first 3D cardiac MRI technique was developed. This method provides even better spatial resolution for cardiac images, with a voxel size of 1.09 [times] 2.19 [times] 4 mm[sup 3]. A 3D acquisition is completed in 8 breath-holds. The data acquisition for 3D cardiac imaging requires a consistent breath-hold position to avoid respiratory artifacts. To improve the reliability of the 3DFT acquisition, a new technique called MR breath-hold feedback was developed to provide reproducible breathholding. The diaphragm location is used as the index for breath-hold reproducibility measurement. The range of the diaphragm displacement in different breath-hold is reduced from 8.3 mm without the technique, to 1.3 mm with the technique.

  11. Acute effects of cannabis on breath-holding duration.

    PubMed

    Farris, Samantha G; Metrik, Jane

    2016-08-01

    Distress intolerance (an individual's perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a biobehavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress postcannabis use. This within-subjects study examined whether smoked marijuana with 2.7%-3.0% delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath holding. Participants (n = 88; 65.9% male) were nontreatment-seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed a breath-holding task postsmoking. Controlling for baseline breath-holding duration and participant sex, THC produced significantly shorter breath-holding durations relative to placebo. There was a significant interaction of drug administration × frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may exacerbate distress intolerance (via shorter breath-holding durations). As compared to less frequent cannabis users, frequent users display tolerance to cannabis' acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. (PsycINFO Database Record PMID:27454678

  12. Impact of breath holding on cardiovascular respiratory and cerebrovascular health.

    PubMed

    Dujic, Zeljko; Breskovic, Toni

    2012-06-01

    Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords 'breath-hold diving' and 'apnoea diving' was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

  13. Ultrasound lung "comets" increase after breath-hold diving.

    PubMed

    Lambrechts, Kate; Germonpré, Peter; Charbel, Brian; Cialoni, Danilo; Musimu, Patrick; Sponsiello, Nicola; Marroni, Alessandro; Pastouret, Frédéric; Balestra, Costantino

    2011-04-01

    The purpose of the study was to analyze the ultrasound lung comets (ULCs) variation, which are a sign of extra-vascular lung water. Forty-two healthy individuals performed breath-hold diving in different conditions: dynamic surface apnea; deep variable-weight apnea and shallow, face immersed without effort (static maximal and non-maximal). The number of ULCs was evaluated by means of an ultrasound scan of the chest, before and after breath-hold diving sessions. The ULC score increased significantly from baseline after dynamic surface apnea (p = 0.0068), after deep breath-hold sessions (p = 0.0018), and after static maximal apnea (p = 0.031). There was no statistically significant difference between the average increase of ULC scores after dynamic surface apnea and deep breath-hold diving. We, therefore, postulate that extravascular lung water accumulation may be due to other factors than (deep) immersion alone, because it occurs during dynamic surface apnea as well. Three mechanisms may be responsible for this. First, the immersion-induced hydrostatic pressure gradient applied on the body causes a shift of peripheral venous blood towards the thorax. Second, the blood pooling effect found during the diving response Redistributes blood to the pulmonary vascular bed. Third, it is possible that the intense involuntary diaphragmatic contractions occurring during the "struggle phase" of the breath-hold can also produce a blood shift from the pulmonary capillaries to the pulmonary alveoli. A combination of these factors may explain the observed increase in ULC scores in deep, shallow maximal and shallow dynamic apneas, whereas shallow non-maximal apneas seem to be not "ULC provoking".

  14. Energy cost and optimisation in breath-hold diving.

    PubMed

    Trassinelli, M

    2016-05-01

    We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate active swimming with prolonged glides during the dive (as is the case in mammals). The energy cost of the dive is strongly dependent on these prolonged gliding phases. Here we investigate the length and impacts on energy cost of these glides with respect to the diver characteristics, and compare them with those observed in different breath-hold diving species. Taking into account the basal metabolic rate and chemical energy to propulsion transformation efficiency, we calculate optimal swim velocity and the corresponding total energy cost (including metabolic rate) and compare them with observations. Energy cost is minimised when the diver passes through neutral buoyancy conditions during the dive. This generally implies the presence of prolonged gliding phases in both ascent and descent, where the buoyancy (varying with depth) is best used against the drag, reducing energy cost. This is in agreement with past results (Miller et al., 2012; Sato et al., 2013) where, when the buoyant force is considered constant during the dive, the energy cost was minimised for neutral buoyancy. In particular, our model confirms the good physical adaption of dolphins for diving, compared to other breath-hold diving species which are mostly positively buoyant (penguins for example). The presence of prolonged glides implies a non-trivial dependency of optimal speed on maximal depth of the dive. This extends previous findings (Sato et al., 2010; Watanabe et al., 2011) which found no dependency of optimal speed on dive depth for particular conditions. The energy cost of the dive can be further

  15. Energy cost and optimisation in breath-hold diving.

    PubMed

    Trassinelli, M

    2016-05-01

    We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate active swimming with prolonged glides during the dive (as is the case in mammals). The energy cost of the dive is strongly dependent on these prolonged gliding phases. Here we investigate the length and impacts on energy cost of these glides with respect to the diver characteristics, and compare them with those observed in different breath-hold diving species. Taking into account the basal metabolic rate and chemical energy to propulsion transformation efficiency, we calculate optimal swim velocity and the corresponding total energy cost (including metabolic rate) and compare them with observations. Energy cost is minimised when the diver passes through neutral buoyancy conditions during the dive. This generally implies the presence of prolonged gliding phases in both ascent and descent, where the buoyancy (varying with depth) is best used against the drag, reducing energy cost. This is in agreement with past results (Miller et al., 2012; Sato et al., 2013) where, when the buoyant force is considered constant during the dive, the energy cost was minimised for neutral buoyancy. In particular, our model confirms the good physical adaption of dolphins for diving, compared to other breath-hold diving species which are mostly positively buoyant (penguins for example). The presence of prolonged glides implies a non-trivial dependency of optimal speed on maximal depth of the dive. This extends previous findings (Sato et al., 2010; Watanabe et al., 2011) which found no dependency of optimal speed on dive depth for particular conditions. The energy cost of the dive can be further

  16. Breath holding during the turn in competitive swimming.

    PubMed

    Craig, A B

    1986-08-01

    Breath holding times were measured during competition and averaged 5.0 sec in the breaststroke events, 4.3 sec in freestyle, 3.7 sec in butterfly, and 3.3 sec in backstroke. These times represented approximately 30% of the total time of swimming breaststroke and freestyle races but only 20% of the time of backstroke and butterfly events. Pulmonary gas exchanges of O2 and CO2 were studied in eight male swimmers during the first turn after the start of a swim and during the third turn after continuous swimming. It was concluded that biomechanical considerations of optimizing a turn are in most circumstances not limited by the increased PCO2 and the decreased PO2 in the alveoli related to the brief period of breath holding. In turns which last longer than about 5.5 s, the swimmers may experience a strong urge to breathe. This "breaking point" sensation is brief and need not compromise the conclusion of a well-executed turn. PMID:3747799

  17. Essential Hypertension: Cardiovascular Response to Breath Hold Combined with Exercise.

    PubMed

    Hoffmann, U; Urban, P; Koschate, J; Drescher, U; Pfister, R; Michels, G

    2015-07-01

    Essential hypertension (EH) is a widespread disease and might be prevalent in apnea divers and master athletes. Little is known about the influence of EH and the antihypertensive drugs (AHD) on cardiovascular reactions to combined breath hold (BH) and exercise. In this pilot study, healthy divers (HCON) were compared with treated hypertensive divers with regard to heart rate (HR) and mean blood-pressure (MAP) responses to BH, exercise and the combination of both. Ten subjects with EH and ten healthy divers were tested. 3 different 20 s stimuli were applied: BH combined with 30 W or 150 W and 150 W without BH. The time-charts during the stress intervals and during recovery were compared. Subjects treated with an angiotensin-converting enzyme (ACE) inhibitor showed higher changes for MAP values if breath hold was performed. HR responses were obviously changed if a β-blocker was part of the medication. One subject showed extreme MAP responses to all stimuli and conspicuous HR if BH was involved. The modulation of HR-/MAP-response in EH subjects depends on the mechanisms of antihypertensive agents. The combination of an ACE inhibitor and a β-blocker may give the best protection. It is recommended to include short apnea tests in the fitness-to-dive examination to individually predict potential endangerment. PMID:25875316

  18. [Breath-hold diving--an increasing adventure sport with medical risks].

    PubMed

    Lindholm, Peter; Gennser, Mikael

    2004-02-26

    Breath-hold diving as a recreational and competitive sports activity is on the increase. In this review physiological limitations and medical risks associated with breath-hold diving are discussed. Specific topics include hypoxia, ascent blackout, hyperventilation, squeeze or barotrauma of descent including effects on the pulmonary system, glossopharyngeal breathing, and decompression illness. It is also concluded that the health requirements for competitive breath-hold diving should follow essentially the same standards as used for SCUBA-diving.

  19. [Conditioning of affect-induced breath-holding spells].

    PubMed

    Noeker, M; Haverkamp, F

    1997-01-01

    Breath holding spells often arise in the context of affectively dramatic conflict situations between mother and child. Assessment by psychopathological screening instruments, however, has not given empirical evidence of an increased psychiatric morbidity in these children. Therefore, in our study we did not concentrate on basic psychopathology but on behavioral variables that might be effective during the ongoing attack episode and, hereby, exert an influence on the risk of chronification (relapse rate). The main goal of this approach is to examine secondary reinforcement effects on the attack behavior according to the learning principle of operant conditioning. Our sample consisted of 28 children and ten siblings as control group. To control for effects of behavioral disorders in the sample, we applied the Marburger Verhaltensliste (MVL) on the level of the child, and the Familienfragebogen (FFBO-III) on the level of family adaptation. The main assessment instrument, however, was the Functional Behavior Analysis (FBA) in order to measure the trigger, reaction and consequence conditions in the course of given attack episodes. MVL and FFBO-III results confirm the lack of basic psychopathology in the patients and their families. The individualized FBA's can be transformed in a taxonomy of five distinct types. All the first three types are triggered by intensive conflict situations and show a high relapse rate (type 1) if the mother reacts in a rewarding manner with positive consequences for the child (reinforcement condition), a dramatically reduced rate (type 2) if the mother reacts neutral (extinction condition), or a heterogeneous pattern (type 3) if the mother reacts punishing (punishment condition). In type 4 (pallid type) and type 5 (triggered spontaneously), respectively, no responsiveness to conditioning effects can be recognized. With respect to parent counselling, a recommendation for a quiet and consequent reaction can be concluded, especially in the case

  20. Qualitative assessment of contrast-enhanced magnetic resonance angiography using breath-hold and non-breath-hold techniques in the portal venous system

    NASA Astrophysics Data System (ADS)

    Goo, Eun-Hoe; Kim, Sun-Ju; Dong, Kyung-Rae; Kim, Kwang-Choul; Chung, Woon-Kwan

    2016-09-01

    The purpose of this study is to evaluate the image quality in delineation of the portal venous systems with two different methods, breath-hold and non-breath-hold by using the 3D FLASH sequence. We used a 1.5 T system to obtain magnetic resonance(MR)images. Arterial and portal phase 3D FLASH images were obtained with breath-hold after a bolus injection of GD-DOTA. The detection of PVS on the MR angiograms was classified into three grades. First, the angiograms of the breath-hold method showed well the portal vein, the splenic vein and the superior mesenteric vein systems in 13 of 15 patients (86%) and the inferior mesenteric vein system in 6 of 15 patients (40%), Second, MR angiograms of the non-breath-hold method demonstrated the PVS and the SMV in 12 of 15 patients (80%) and the IMV in 5 of 15 patients (33%). Our study showed contrast-enhanced 3D FLASH MR angiography, together with the breath-hold technique, may provide reliable and accurate information on the portal venous system.

  1. [Conditioning of affect-induced breath-holding spells].

    PubMed

    Noeker, M; Haverkamp, F

    1997-01-01

    Breath holding spells often arise in the context of affectively dramatic conflict situations between mother and child. Assessment by psychopathological screening instruments, however, has not given empirical evidence of an increased psychiatric morbidity in these children. Therefore, in our study we did not concentrate on basic psychopathology but on behavioral variables that might be effective during the ongoing attack episode and, hereby, exert an influence on the risk of chronification (relapse rate). The main goal of this approach is to examine secondary reinforcement effects on the attack behavior according to the learning principle of operant conditioning. Our sample consisted of 28 children and ten siblings as control group. To control for effects of behavioral disorders in the sample, we applied the Marburger Verhaltensliste (MVL) on the level of the child, and the Familienfragebogen (FFBO-III) on the level of family adaptation. The main assessment instrument, however, was the Functional Behavior Analysis (FBA) in order to measure the trigger, reaction and consequence conditions in the course of given attack episodes. MVL and FFBO-III results confirm the lack of basic psychopathology in the patients and their families. The individualized FBA's can be transformed in a taxonomy of five distinct types. All the first three types are triggered by intensive conflict situations and show a high relapse rate (type 1) if the mother reacts in a rewarding manner with positive consequences for the child (reinforcement condition), a dramatically reduced rate (type 2) if the mother reacts neutral (extinction condition), or a heterogeneous pattern (type 3) if the mother reacts punishing (punishment condition). In type 4 (pallid type) and type 5 (triggered spontaneously), respectively, no responsiveness to conditioning effects can be recognized. With respect to parent counselling, a recommendation for a quiet and consequent reaction can be concluded, especially in the case

  2. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    ERIC Educational Resources Information Center

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  3. Scaling of swim speed in breath-hold divers.

    PubMed

    Watanabe, Yuuki Y; Sato, Katsufumi; Watanuki, Yutaka; Takahashi, Akinori; Mitani, Yoko; Amano, Masao; Aoki, Kagari; Narazaki, Tomoko; Iwata, Takashi; Minamikawa, Shingo; Miyazaki, Nobuyuki

    2011-01-01

    1. Breath-hold divers are widely assumed to descend and ascend at the speed that minimizes energy expenditure per distance travelled (the cost of transport (COT)) to maximize foraging duration at depth. However, measuring COT with captive animals is difficult, and empirical support for this hypothesis is sparse. 2. We examined the scaling relationship of swim speed in free-ranging diving birds, mammals and turtles (37 species; mass range, 0·5-90,000 kg) with phylogenetically informed statistical methods and derived the theoretical prediction for the allometric exponent under the COT hypothesis by constructing a biomechanical model. 3. Swim speed significantly increased with mass, despite considerable variations around the scaling line. The allometric exponent (0·09) was statistically consistent with the theoretical prediction (0·05) of the COT hypothesis. 4. Our finding suggests a previously unrecognized advantage of size in divers: larger animals swim faster and thus could travel longer distance, search larger volume of water for prey and exploit a greater range of depths during a given dive duration. 5. Furthermore, as predicted from the model, endotherms (birds and mammals) swam faster than ectotherms (turtles) for their size, suggesting that metabolic power production limits swim speed. Among endotherms, birds swam faster than mammals, which cannot be explained by the model. Reynolds numbers of small birds (<2 kg) were close to the lower limit of turbulent flow (∼ 3 × 10(5) ), and they swam fast possibly to avoid the increased drag associated with flow transition. PMID:20946384

  4. Peripheral vascular response to inspiratory breath hold in paediatric homozygous sickle cell disease

    PubMed Central

    L’Esperance, Veline S; Cox, Sharon E; Simpson, David; Gill, Carolyn; Makani, Julie; Soka, Deogratias; Mgaya, Josephine; Kirkham, Fenella J; Clough, Geraldine F

    2013-01-01

    New Findings • What is the central question of this study? Autonomic nervous dysfunction is implicated in complications of sickle cell anaemia (SCA). In healthy adults, a deep inspiratory breath hold (IBH) elicits rapid transient SNS- mediated vasoconstriction detectable using Laser Doppler Flux (LDF) assessment of the finger-tip cutaneous micovasculature. • What is the main finding and its importance? We demonstrate significantly increased resting peripheral blood flow and sympathetic activity in African children with SCA compared to sibling controls and increased sympathetic stimulation in response to vasoprovocation with DIG. This study is the first to observe an inverse association between resting peripheral blood flow and haemoglobin oxygen saturation (SpO2). These phenomena may be an adaptive response to the hypoxic exposure in SCA. There is increasing evidence that autonomic dysfunction in adults with homozygous sickle cell (haemoglobin SS) disease is associated with enhanced autonomic nervous system-mediated control of microvascular perfusion. However, it is unclear whether such differences are detectable in children with SS disease. We studied 65 children with SS disease [38 boys; median age 7.2 (interquartile range 5.1–10.6) years] and 20 control children without symptoms of SS disease [8 boys; 8.7 (5.5–10.8) years] and recorded mean arterial blood pressure (ABP) and daytime haemoglobin oxygen saturation (). Cutaneous blood flux at rest (RBF) and during the sympathetically activated vasoconstrictor response to inspiratory breath hold (IBH) were measured in the finger pulp of the non-dominant hand using laser Doppler fluximetry. Local factors mediating flow motion were assessed by power spectral density analysis of the oscillatory components of the laser Doppler signal. The RBF measured across the two study groups was negatively associated with age (r=−0.25, P < 0.0001), ABP (r=−0.27, P= 0.02) and daytime (r=−0.30, P= 0.005). Children with SS

  5. Implementation of Feedback-Guided Voluntary Breath-Hold Gating for Cone Beam CT-Based Stereotactic Body Radiotherapy

    SciTech Connect

    Peng Yong; Vedam, Sastry; Chang, Joe Y.; Gao Song; Sadagopan, Ramaswamy; Bues, Martin; Balter, Peter

    2011-07-01

    Purpose: To analyze tumor position reproducibility of feedback-guided voluntary deep inspiration breath-hold (FGBH) gating for cone beam computed tomography (CBCT)-based stereotactic body radiotherapy (SBRT). Methods and materials: Thirteen early-stage lung cancer patients eligible for SBRT with tumor motion of >1cm were evaluated for FGBH-gated treatment. Multiple FGBH CTs were acquired at simulation, and single FGBH CBCTs were also acquired prior to each treatment. Simulation CTs and treatment CBCTs were analyzed to quantify reproducibility of tumor positions during FGBH. Benefits of FGBH gating compared to treatment during free breathing, as well treatment with gating at exhalation, were examined for lung sparing, motion margins, and reproducibility of gross tumor volume (GTV) position relative to nonmoving anatomy. Results: FGBH increased total lung volumes by 1.5 times compared to free breathing, resulting in a proportional drop in total lung volume receiving 10 Gy or more. Intra- and inter-FGBH reproducibility of GTV centroid positions at simulation were 1.0 {+-} 0.5 mm, 1.3 {+-} 1.0 mm, and 0.6 {+-} 0.4 mm in the anterior-posterior (AP), superior-inferior (SI), and left-right lateral (LR) directions, respectively, compared to more than 1 cm of tumor motion at free breathing. During treatment, inter-FGBH reproducibility of the GTV centroid with respect to bony anatomy was 1.2 {+-} 0.7 mm, 1.5 {+-} 0.8 mm, and 1.0 {+-} 0.4 mm in the AP, SI, and LR directions. In addition, the quality of CBCTs was improved due to elimination of motion artifacts, making this technique attractive for poorly visualized tumors, even with small motion. Conclusions: The extent of tumor motion at normal respiration does not influence the reproducibility of the tumor position under breath hold conditions. FGBH-gated SBRT with CBCT can improve the reproducibility of GTV centroids, reduce required margins, and minimize dose to normal tissues in the treatment of mobile tumors.

  6. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    SciTech Connect

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-07-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  7. Breath-hold duration in man and the diving response induced by face immersion.

    PubMed

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  8. Case report of successful treatment of pallid breath-holding spells with glycopyrrolate.

    PubMed

    Williams, Jason; Cain, Nicole

    2015-05-01

    Breath-holding spells are a common childhood disorder that typically present before 12 months of age. Whereas most cases are benign, some patients have very severe cases associated with bradycardia that can progress from asystole to syncope and seizures. Treatment studies have implicated the use of several therapies, such as oral iron, fluoxetine, and pacemaker implantation. This is a retrospective study of patients treated with glycopyrrolate for pallid breath-holding spells. Clinical data from 4 patients referred to pediatric cardiology who saw therapeutic benefit from treatment using glycopyrrolate were reviewed to evaluate for clinical response to the drug. Two twin patients, whose symptoms began at 5 months of age, experienced a decrease in breath-holding frequency after 1 month. A patient diagnosed at 7 months of age experienced a decrease in frequency of spells. A patient diagnosed at 10 months of age reported cessation of syncope shortly after initiation of glycopyrrolate and complete resolution of breath-holding spells during prolonged treatment. This case study of 4 patients with pallid breath-holding offers evidence that glycopyrrolate may be beneficial in treating breath-holding spells and has a safer side-effect profile than pacemaker implantation.

  9. Respiration-correlated treatment delivery using feedback-guided breath hold: A technical study

    SciTech Connect

    Nelson, Christopher; Starkschall, George; Balter, Peter; Fitzpatrick, Mathew J.; Antolak, John A.; Tolani, Naresh; Prado, Karl

    2005-01-01

    Respiratory motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. To reduce the uncertainties caused by this motion, we have developed feedback-guided breath hold (FGBH), a novel delivery technique in which radiation is delivered only during a voluntary breath hold that is sustained for as long as the patient feels comfortable. Here we present the technical aspects of FGBH, which involve (1) fabricating the hardware so the respiratory trace can be displayed to the patient, (2) assembling a delay box to be used as a breath-hold detector, and (3) performing quality control tests to ensure that FGBH can be delivered accurately and safely. A commercial respiratory tracking system that uses an external fiducial to monitor abdominal wall motion generates and displays the breathing trace and specific positions in the breathing cycle where a breath hold needs to occur. Hardware was developed to present this display to the patient in the treatment position. Patients view the presentation either on a liquid crystal display or through a pair of virtual reality goggles. Using the respiratory trace as a visual aid, the patient performs a breath hold so that the position representing the location of a fiducial is held within a specified gating window. A delay box was fabricated to differentiate between gating signals received during free breathing and those received during breath hold, allowing radiation delivery only when the fiducial was within the breath-hold gating window. A quality control analysis of the gating delay box and the integrated system was performed to ensure that all of the hardware and components were ready for clinical use.

  10. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stam, Mette K.; van Vulpen, Marco; Barendrecht, Maurits M.; Zonnenberg, Bernard A.; Intven, Martijn; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2013-04-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney.

  11. Relative contributions of chemical and non-chemical drives to the breath-holding time in breath-hold divers (Ama).

    PubMed

    Honda, Y; Hayashi, F; Yoshida, A; Masuda, Y; Sasaki, K

    1981-01-01

    Relative contributions of chemical and non-chemical respiratory stimulations to breath-holding time (BHT) were examined in assisted (Funado) and unassisted (Kachido) breath-hold divers (Ama). In the Funado the magnitude of the chemical contribution was reduced, though statistically not significantly. On the other hand, in the Kachido no difference in chemical contribution was seen from the control. This was considered to be due to the fact that ventilatory response to CO2 was reduced in the Funado, but not in the Kachido. Despite the decreased contribution of CO2 drive to BHT, absolute BHT in the Funado was no prolonged. This may be related to sensitization of the respiratory centers to non-chemical stimulation. Such adaptation would be effective for preventing the danger of losing consciousness in the Funado who face extreme hypoxia on returning to the surface from a dive.

  12. Free-breathing radial volumetric interpolated breath-hold examination vs breath-hold cartesian volumetric interpolated breath-hold examination magnetic resonance imaging of the liver at 1.5T

    PubMed Central

    Yedururi, Sireesha; Kang, HyunSeon C; Wei, Wei; Wagner-Bartak, Nicolaus A; Marcal, Leonardo P; Stafford, R Jason; Willis, Brandy J; Szklaruk, Janio

    2016-01-01

    AIM To compare breath-hold cartesian volumetric interpolated breath-hold examination (cVIBE) and free-breathing radial VIBE (rVIBE) and determine whether rVIBE could replace cVIBE in routine liver magnetic resonance imaging (MRI). METHODS In this prospective study, 15 consecutive patients scheduled for routine MRI of the abdomen underwent pre- and post-contrast breath-hold cVIBE imaging (19 s acquisition time) and free-breathing rVIBE imaging (111 s acquisition time) on a 1.5T Siemens scanner. Three radiologists with 2, 4, and 8 years post-fellowship experience in abdominal imaging evaluated all images. The radiologists were blinded to the sequence types, which were presented in a random order for each patient. For each sequence, the radiologists scored the cVIBE and rVIBE images for liver edge sharpness, hepatic vessel clarity, presence of artifacts, lesion conspicuity, fat saturation, and overall image quality using a five-point scale. RESULTS Compared to rVIBE, cVIBE yielded significantly (P < 0.001) higher scores for liver edge sharpness (mean score, 3.87 vs 3.37), hepatic-vessel clarity (3.71 vs 3.18), artifacts (3.74 vs 3.06), lesion conspicuity (3.81 vs 3.2), and overall image quality (3.91 vs 3.24). cVIBE and rVIBE did not significantly differ in quality of fat saturation (4.12 vs 4.03, P = 0.17). The inter-observer variability with respect to differences between rVIBE and cVIBE scores was close to zero compared to random error and inter-patient variation. Quality of rVIBE images was rated as acceptable for all parameters. CONCLUSION rVIBE cannot replace cVIBE in routine liver MRI. At 1.5T, free-breathing rVIBE yields acceptable, although slightly inferior image quality compared to breath-hold cVIBE. PMID:27551341

  13. Arterial blood gas tensions during breath-hold diving in the Korean ama.

    PubMed

    Qvist, J; Hurford, W E; Park, Y S; Radermacher, P; Falke, K J; Ahn, D W; Guyton, G P; Stanek, K S; Hong, S K; Weber, R E

    1993-07-01

    Korean female unassisted divers (cachido ama) breath-hold dive > 100 times to depths of 3-7 m during a work day. We sought to determine the extent of arterial hypoxemia during normal working dives and reasonable time limits for breath-hold diving by measuring radial artery blood gas tensions and pH in five cachido ama who dove to a fixed depth of 4-5 m and then continued to breath hold for various times after their return to the surface. Eighty-two blood samples were withdrawn from indwelling radial artery catheters during 37 ocean dives. We measured compression hyperoxia [arterial PO2 = 141 +/- 24 (SD) Torr] and hypercapnia (arterial PCO2 = 46.6 +/- 2.4 Torr) at depth. Mean arterial PO2 near the end of breath-hold dives lasting 32-95 s (62 +/- 14 s) was decreased (62.6 +/- 13.5 Torr). Mean arterial PCO2 reached 49.9 +/- 5.4 Torr. Complete return of these values to their baseline did not occur until 15-20 s after breathing was resumed. In dives of usual working duration (< 30 s), blood gas tensions remained within normal ranges. Detailed analysis of hemoglobin components and intrinsic oxygenation properties revealed no evidence for adaptive changes that could increase the tolerance of the ama to hypoxic or hypothermic conditions associated with repetitive diving.

  14. Continuous pulse oximetry in the breath-hold diving women of Korea and Japan.

    PubMed

    Stanek, K S; Guyton, G P; Hurford, W E; Park, Y S; Ahn, D W; Qvist, J; Falke, K J; Hong, S K; Kobayashi, K; Kobayashi, H

    1993-12-01

    Arterial oxygen saturation during breath-hold diving has not previously been measured continuously. We devised a submersible, waterproof, backpack computer to continuously record heart rate, depth, and arterial oxygen saturation (SPO2) as determined by earlobe pulse oximetry. Our measurements showed that one assisted (Funado) diver had reduced SPO2 values immediately after surfacing from 22 dives which lasted 23-76 s, from a mean of 99 +/- 1% SPO2 to 96 +/- 3% SPO2. SPO2 returned to 97 +/- 2% within 15 s after surfacing (P < 0.05 surface value differs from predive base line). Four unassisted (Cachido) divers showed no significant reduction of mean predive SPO2 below 98 +/- 2% at any time during the dive or recovery period in 92 routine dives lasting from 15 to 44 s. Upon surfacing from diving, mean SPO2 was 98 +/- 2% and the mean SPO2 15 s after surfacing was 97 +/- 3% for the unassisted divers. Three Cachido divers were asked to dive and breath hold for as long as possible. Mean SPO2 at the conclusion of breath holding was 73% after an average dive and breath hold lasting 69 s.

  15. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

    PubMed

    Pinto, Joana; Jorge, João; Sousa, Inês; Vilela, Pedro; Figueiredo, Patrícia

    2016-07-15

    Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements

  16. Nonrigid registration method to assess reproducibility of breath-holding with ABC in lung cancer

    SciTech Connect

    Sarrut, David . E-mail: dsarrut@univ-lyon2.fr; Boldea, Vlad; Ayadi, Myriam; Badel, Jean-Noel; Ginestet, Chantal; Clippe, Sebastien; Carrie, Christian

    2005-02-01

    Purpose: To study the interfraction reproducibility of breath-holding using active breath control (ABC), and to develop computerized tools to evaluate three-dimensional (3D) intrathoracic motion in each patient. Methods and materials: Since June 2002, 11 patients with non-small-cell lung cancer enrolled in a Phase II trial have undergone four CT scans: one during free-breathing (reference) and three using ABC. Patients left the room between breath-hold scans. The patient's breath was held at the same predefined phase of the breathing cycle (about 70% of the vital capacity) using the ABC device, then patients received 3D-conformal radiotherapy. Automated computerized tools for breath-hold CT scans were developed to analyze lung and tumor interfraction residual motions with 3D nonrigid registration. Results: All patients but one were safely treated with ABC for 7 weeks. For 6 patients, the lung volume differences were <5%. The mean 3D displacement inside the lungs was between 2.3 mm (SD 1.4) and 4 mm (SD 3.3), and the gross tumor volume residual motion was 0.9 mm (SD 0.4) to 5.9 mm (SD 0.7). The residual motion was slightly greater in the inferior part of the lung than the superior. For 2 patients, we detected volume changes >300 cm{sup 3} and displacements >10 mm, probably owing to atelectasia and emphysema. One patient was excluded, and two others had incomplete data sets. Conclusion: Breath-holding with ABC was effective in 6 patients, and discrepancies were clinically accountable in 2. The proposed 3D nonrigid registration method allows for personalized evaluation of breath-holding reproducibility with ABC. It will be used to adapt the patient-specific internal margins.

  17. Immediate effects of breath holding maneuvers onto composition of exhaled breath.

    PubMed

    Sukul, Pritam; Trefz, Phillip; Schubert, Jochen K; Miekisch, Wolfram

    2014-09-01

    Rapid concentration changes due to physiological or pathophysiological effects rather than appearance of unique disease biomarkers are important for clinical application of breath research. Simple maneuvers such as breath holding may significantly affect breath biomarker concentrations. In this study, exhaled volatile organic compound (VOC) concentrations were assessed in real time before and after different breath holding maneuvers. Continuous breath-resolved measurements (PTR-ToF-MS-8000) were performed in 31 healthy human subjects in a side-stream sampling mode. After 1 min of tidal breathing participants held their breath for 10, 20, 40, 60 s and as long as possible. Afterwards they continued to breathe normally for another minute. VOC profiles could be monitored in real time by assigning online PTR-ToF-MS data to alveolar or inspired phases of breath. Sudden and profound changes of exhaled VOC concentrations were recorded after different breath holding maneuvers. VOC concentrations returned to base line levels 10-20 s after breath holding. Breath holding induced concentration changes depended on physico-chemical properties of the substances. When substance concentrations were normalized onto end-tidal CO2 content, variation of acetone concentrations decreased, whereas variations of isoprene concentrations were not affected. As the effects of breathing patterns on exhaled substance concentrations depend on individual substance properties, sampling procedures have to be validated for each compound by means of appropriate real-time analysis. Normalization of exhaled concentrations onto exhaled CO2 is only valid for substances having similar physico-chemical properties as CO2.

  18. Treatment of Chronic Breath-Holding in an Adult with Severe Mental Retardation: A Clinical Case Study

    ERIC Educational Resources Information Center

    Reed, Derek D.; Martens, Brian K.

    2008-01-01

    We describe a clinical case study surrounding the behavioral assessment and operant treatment of, an adult with severe mental retardation who engaged in chronic breath-holding. In this clinical case, previous neurological and medical testing had ruled out biological bases for the individual's breath-holding. A functional behavioral assessment…

  19. Pulmonary oedema in breath-hold diving: an unusual presentation and computed tomography findings.

    PubMed

    Gempp, Emmanuel; Sbardella, Fabrice; Cardinale, Mickael; Louge, Pierre

    2013-09-01

    Haemoptysis and pulmonary oedema following deep breath-hold diving have been described in recent years. We describe the case of a 33-year-old healthy military diver who presented symptoms suggestive of pulmonary oedema after two breathhold dives, the first lasting 0.5-1 min and the second 1-2 min, to 6 metres' depth in the sea. The diagnosis was promptly confirmed with chest computed tomography showing bilateral interstitial infiltrates in the upper regions of the lungs. To our knowledge, this is the first report to document pulmonary oedema in this setting of shallow breath-hold diving with atypical radiological presentation. A definite mechanism for this specific distribution of lung injury remains unclear.

  20. [Breath-holding three-dimensional MR imaging: evaluation of phase reordering for motion artifact suppression].

    PubMed

    Amanuma, M; Kimura, T; Takizawa, O; Kozawa, E; Enomoto, K; Watabe, T; Heshiki, A

    1995-03-01

    To suppress image degradation due to respiratory corruption during breath holding, a method of reordering of phase encoding was introduced in three-dimensional MR imaging. Without trade-offs in SNR, CNR, and examination time, the method provided a significant reduction of respiratory motion-induced artifacts both in phantom and in vivo experiments. More than twenty seconds of breath holding ensured acceptable image quality regardless of respiratory motion thereafter. Signal intensity change during data acquisition altered the obtained image contrast compared with that of standard sequential linear phase encoding. This technique can be readily implemented on standard two-and three-dimensional pulse sequences and will improve image quality when a patient cannot hold his/her breath during the whole imaging period.

  1. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia

    PubMed Central

    Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David

    2016-01-01

    This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910

  2. The effect of breath holding, hyperventilation, and exercise on nasal resistance.

    PubMed

    Hasegawa, M; Kern, E B

    1978-12-01

    A group of 51 patients was studied by a technique of active posterior rhinomanometry that assessed the influence of breath holding, hyperventilation, and exercise on nasal resistance. Breath hodling of 30 seconds or longer produced a decrease in nasal resistance in most of the subjects tested. Hyperventilation had variable effects on nasal resistance, and exercise consistently decreased nasal resistance. These observations are consistent with the proposed effect of chemoreceptor stimulation on nasal airway resistance.

  3. A survey of neurological decompression illness in commercial breath-hold divers (Ama) of Japan.

    PubMed

    Tamaki, Hideki; Kohshi, Kiyotaka; Ishitake, Tatsuya; Wong, Robert M

    2010-01-01

    A survey was conducted in the northern district of Yamaguchi, Japan to determine the relationship between neurological diving accidents and risk factors among commercial breath-hold divers (Ama). A questionnaire was distributed to 381 Ama divers who are members of the Ama diving union. We sought information on their dive practices (depth of single dive, single dive time, surface interval, length of dive shifts, lunch break) and the presence or absence of medical problems, such as hypertension, cardiac arrhythmia, diabetic mellitus and other issues. Of the 381 Ama divers, 173 responded (45%): 29 were Funado (assisted-descent using weights) and 144 Cachido (unassisted) divers. Twelve had experienced strokelike symptoms during or after repetitive breath-hold diving; 11 were assisted and one unassisted (Funado vs. Cachido). Only two of 12 divers with neurological diving accidents had musculoskeletal symptoms. Neurological events were significantly correlated with dive depth, dive time, and surface interval; however, they were not related to medical history. Neurological diving accidents are more likely to happen among assisted Ama divers than unassisted ones. Repetitive breath-hold diving with a deep dive depth, long dive time, and short surface interval predisposes divers to decompression illness, which characteristically manifests as cerebral stroke.

  4. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    SciTech Connect

    Lin, M; Feigenberg, S

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  5. Maximal breath-holding time and immediate tissue CO2 storage capacity during head-out immersion in humans.

    PubMed

    Chang, L P; Lundgren, C E

    1996-01-01

    This study tested three possible mechanisms that could explain the prolonged breath-holds (BH) previously observed in humans during submersion in 35 degrees C (thermoneutral) water, including a reduced metabolism, a decreased CO2 sensitivity, and an increased CO2 storage capacity. During immersed BH (n = 13), maximal BH time was prolonged by 20.3% (P < 0.05), the rate of rise of end tidal partial pressure of carbon dioxide (PETCO2) was slower (P < 0.05) by 31% (compatible with increased CO2 storage capacity), but the breaking-point PETCO2 (CO2 sensitivity) and the rate of decrease of end tidal partial pressure of oxygen (metabolism) were unchanged. During air breathing (n = 5), immersion resulted in a significant decrease in tidal volume (11%), but did not affect O2 uptake, CO2 elimination (VCO2), or respiratory exchange ratio (R). During a 4-min CO2-rebreathing (n = 9), the slope of the hypercapnic ventilatory response curve (CO2 sensitivity index) was unchanged by immersion, but the significantly decreased VCO2, R, and rate of rise in PETCO2 during immersed rebreathing indicated an increase in the acute CO2 storage capacity (SC). The estimated SC (n = 9), based on an assumed cellular respiratory quotient of 0.8, were 0.52 (SEM 0.03) ml.kg-1.mmHg-1 for control and 0.66 (SEM 0.04) ml.kg-1.mmHg-1 for immersion. A proposed mechanism for the increased SC during immersed BH and during immersed rebreathing is that immersion accelerated CO2 redistribution in the body by increasing perfusion to some low-perfused, low-metabolism, and high-capacity tissues, such as resting skeletal muscle. The increased SC during immersion, however, did not correlate with the prolonged BH duration (n = 9, P > 0.05). The mechanism of the latter remains unclear.

  6. Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens).

    PubMed

    Terasawa, Fumio; Ohizumi, Hiroshi; Ohshita, Isao

    2010-09-01

    The effect of a breath-hold on blood gas was evaluated in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). Serial blood collections were performed from a vessel on the ventral surface of the flukes during breath-hold. In total, 178 blood samples were taken from three dolphins for five trials in each animal. During a breath-hold, partial pressure of oxygen (Po₂) decreased from 152.5 to 21.8 mmHg and partial pressure of carbon dioxide (Po₂) conversely increased from 31.8 to 83.6 mmHg. The range of pH was 7.54 to 7.25, suggesting drastic change from alkalemia to acidemia. These wide ranges of blood gas imply a considerable change of oxygen affinity caused by the Bohr effect during breath-hold, which enable effective uptake and distribution of oxygen to metabolizing tissues.

  7. Nasal vasomotor responses in man to breath holding and hyperventilation recorded by means of intranasal balloons.

    PubMed

    Babatola, F D; Eccles, R

    1986-12-01

    Nasal vasomotor responses were recorded in conscious human subjects by means of water filled balloons. Hyperventilation caused an increase in intranasal balloon pressure associated with vasodilatation whereas breath holding caused a decrease associated with vasoconstriction. The amplitude of the nasal vasomotor response was influenced by the nasal cycle with the greatest response always observed on the congested or low airflow side of the nose. The results suggest that an elevated arterial level of carbon dioxide causes a pronounced vasoconstruction of the nasal blood vessels and that this response may be clinically relevant in controlling nasal bleeding.

  8. Presumed Arterial Gas Embolism After Breath-Hold Diving in Shallow Water.

    PubMed

    Harmsen, Stefani; Schramm, Dirk; Karenfort, Michael; Christaras, Andreas; Euler, Michael; Mayatepek, Ertan; Tibussek, Daniel

    2015-09-01

    Dive-related injuries are relatively common, but almost exclusively occur in recreational or scuba diving. We report 2 children with acute central nervous system complications after breath-hold diving. A 12-year-old boy presented with unilateral leg weakness and paresthesia after diving beneath the water surface for a distance of ∼25 m. After ascent, he suddenly felt extreme thoracic pain that resolved spontaneously. Neurologic examination revealed right leg weakness and sensory deficits with a sensory level at T5. Spinal MRI revealed a nonenhancing T2-hyperintense lesion in the central cord at the level of T1/T2 suggesting a spinal cord edema. A few weeks later, a 13-year-old girl was admitted with acute dizziness, personality changes, confusion, and headache. Thirty minutes before, she had practiced diving beneath the water surface for a distance of ∼25 m. After stepping out, she felt sudden severe thoracic pain and lost consciousness. Shortly later she reported headache and vertigo, and numbness of the complete left side of her body. Neurologic examination revealed reduced sensibility to all modalities, a positive Romberg test, and vertigo. Cerebral MRI revealed no pathologic findings. Both children experienced a strikingly similar clinical course. The chronology of events strongly suggests that both patients were suffering from arterial gas embolism. This condition has been reported for the first time to occur in children after breath-hold diving beneath the water surface without glossopharyngeal insufflation. PMID:26260715

  9. Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers.

    PubMed

    Perini, Renza; Tironi, Adelaide; Gheza, Alberto; Butti, Ferdinando; Moia, Christian; Ferretti, Guido

    2008-09-01

    To define the dynamics of cardiovascular adjustments to apnoea, beat-to-beat heart rate (HR) and blood pressure and arterial oxygen saturation (SaO(2)) were recorded during prolonged breath-holding in air in 20 divers. Apnoea had a mean duration of 210 +/- 70 s. In all subjects, HR attained a value 14 beats min(-1) lower than control within the initial 30 s (phase I). HR did not change for the following 2-2.5 min (phase II). Then, nine subjects interrupted the apnoea (group A), whereas 11 subjects (group B) could prolong the breath-holding for about 100 s, during which HR continuously decreased (phase III). In both groups, mean blood pressure was 8 mmHg above control at the end of phase I; it then further increased by additional 12 mmHg at the end of the apnoea. In both groups, SaO(2) did not change in the initial 100-140 s of apnoea; then, it decreased to 95% at the end of phase II. In group B, SaO(2) further diminished to 84% at the end of phase III. A typical pattern of cardiovascular readjustments was identified during dry apnoea. This pattern was not compatible with a role for baroreflexes in phase I and phase II. Further readjustment in group B may imply a role for both baroreflexes and chemoreflexes. Hypothesis has been made that the end of phase II corresponds to physiological breakpoint.

  10. Correlational analysis of electroencephalographic and end-tidal carbon dioxide signals during breath-hold exercise.

    PubMed

    Morelli, Maria Sole; Vanello, Nicola; Giannoni, Alberto; Frijia, Francesca; Hartwig, Valentina; Maestri, Michelangelo; Bonanni, Enrica; Carnicelli, Luca; Positano, Vincenzo; Passino, Claudio; Emdin, Michele; Landini, Luigi

    2015-01-01

    The central mechanism of breathing control is not totally understood. Several studies evaluated the correlation between electroencephalographic (EEG) power spectra and respiratory signals by performing resting state tasks or adopting hypercapnic/hypoxic stimuli. The observation of brain activity during voluntary breath hold tasks, might be an useful approach to highlight the areas involved in mechanism of breath regulation. Nevertheless, studies of brain activity with EEG could present some limitations due to presence of severe artifacts. When artifact rejection methods, as independent component analysis, cannot reliably clean EEG data, it is necessary to exclude noisy segments. In this study, global field power in the delta band and end-tidal CO2 were derived from EEG and CO2 signals respectively in 4 healthy subjects during a breath-hold task. The cross correlation function between the two signals was estimated taking into account the presence of missing samples. The statistical significance of the correlation coefficients at different time lags was assessed using surrogate data. Some simulations are introduced to evaluate the effect of missing data on the correlational analysis and their results are discussed. Results obtained on subjects show a significant correlation between changes in EEG power in the delta band and end-tidal CO2. Moreover, the changes in end-tidal CO2 were found to precede those of global field power. These results might help to better understand the cortical mechanisms involved in the control of breathing. PMID:26737684

  11. Correlational analysis of electroencephalographic and end-tidal carbon dioxide signals during breath-hold exercise.

    PubMed

    Morelli, Maria Sole; Vanello, Nicola; Giannoni, Alberto; Frijia, Francesca; Hartwig, Valentina; Maestri, Michelangelo; Bonanni, Enrica; Carnicelli, Luca; Positano, Vincenzo; Passino, Claudio; Emdin, Michele; Landini, Luigi

    2015-01-01

    The central mechanism of breathing control is not totally understood. Several studies evaluated the correlation between electroencephalographic (EEG) power spectra and respiratory signals by performing resting state tasks or adopting hypercapnic/hypoxic stimuli. The observation of brain activity during voluntary breath hold tasks, might be an useful approach to highlight the areas involved in mechanism of breath regulation. Nevertheless, studies of brain activity with EEG could present some limitations due to presence of severe artifacts. When artifact rejection methods, as independent component analysis, cannot reliably clean EEG data, it is necessary to exclude noisy segments. In this study, global field power in the delta band and end-tidal CO2 were derived from EEG and CO2 signals respectively in 4 healthy subjects during a breath-hold task. The cross correlation function between the two signals was estimated taking into account the presence of missing samples. The statistical significance of the correlation coefficients at different time lags was assessed using surrogate data. Some simulations are introduced to evaluate the effect of missing data on the correlational analysis and their results are discussed. Results obtained on subjects show a significant correlation between changes in EEG power in the delta band and end-tidal CO2. Moreover, the changes in end-tidal CO2 were found to precede those of global field power. These results might help to better understand the cortical mechanisms involved in the control of breathing.

  12. Presumed Arterial Gas Embolism After Breath-Hold Diving in Shallow Water.

    PubMed

    Harmsen, Stefani; Schramm, Dirk; Karenfort, Michael; Christaras, Andreas; Euler, Michael; Mayatepek, Ertan; Tibussek, Daniel

    2015-09-01

    Dive-related injuries are relatively common, but almost exclusively occur in recreational or scuba diving. We report 2 children with acute central nervous system complications after breath-hold diving. A 12-year-old boy presented with unilateral leg weakness and paresthesia after diving beneath the water surface for a distance of ∼25 m. After ascent, he suddenly felt extreme thoracic pain that resolved spontaneously. Neurologic examination revealed right leg weakness and sensory deficits with a sensory level at T5. Spinal MRI revealed a nonenhancing T2-hyperintense lesion in the central cord at the level of T1/T2 suggesting a spinal cord edema. A few weeks later, a 13-year-old girl was admitted with acute dizziness, personality changes, confusion, and headache. Thirty minutes before, she had practiced diving beneath the water surface for a distance of ∼25 m. After stepping out, she felt sudden severe thoracic pain and lost consciousness. Shortly later she reported headache and vertigo, and numbness of the complete left side of her body. Neurologic examination revealed reduced sensibility to all modalities, a positive Romberg test, and vertigo. Cerebral MRI revealed no pathologic findings. Both children experienced a strikingly similar clinical course. The chronology of events strongly suggests that both patients were suffering from arterial gas embolism. This condition has been reported for the first time to occur in children after breath-hold diving beneath the water surface without glossopharyngeal insufflation.

  13. Attenuated ventilatory responses to hypercapnia and hypoxia in assisted breath-hold drivers (Funado).

    PubMed

    Masuda, Y; Yoshida, A; Hayashi, F; Sasaki, K; Honda, Y

    1982-01-01

    The steady-state ventilatory responses to hypercapnia and hypoxia in 7 assisted breath-hold divers (Funado) were compared with those in 7 normal sedentary controls. Ventilatory response to hypercapnia was measured from the slope of the hyperoxic VN-PETCO2 line, where VN was normalized minute ventilation using the allometric coefficient and PETCO2 end-Tidal PCO2. The slope of this line in the Funado (1.48 +/- 0.54 liters . min-1 . Torr-1) was significantly less than in the control (2.70 +/- 1.08 liters . min-1 . Torr-1) (p less than 0.025). On the other hand, hypoxic sensitivity estimated by hyperbolic and exponential mathematical equations was not found to be significantly different between the two groups, although estimated increments in ventilation using the hyperbolic equation exhibited significantly lower response in the Funado than in the control only when PETO2 decreased lower than 50 Torr (p less than 0.05). These findings in the Funado were different from our previous observations obtained in unassisted breath-hold divers (Kachido), in whom no obvious attenuations in CO2 sensitivity were seen. This difference was assumed to be derived from more hypercapnic and hypoxic conditions produced in the Funado than in the Kachido during diving activities.

  14. Changes in partial pressures of respiratory gases during submerged voluntary breath hold across odontocetes: is body mass important?

    PubMed

    Noren, S R; Williams, T M; Ramirez, K; Boehm, J; Glenn, M; Cornell, L

    2012-02-01

    Odontocetes have an exceptional range in body mass spanning 10(3) kg across species. Because, size influences oxygen utilization and carbon dioxide production rates in mammals, this lineage likely displays an extraordinary variation in oxygen store management compared to other marine mammal groups. To examine this, we measured changes in the partial pressures of respiratory gases ([Formula: see text], [Formula: see text]), pH, and lactate in the blood during voluntary, quiescent, submerged breath holds in Pacific white-sided dolphins (Lagenorhynchus obliquidens), bottlenose dolphins (Tursiops truncatus), and a killer whale (Orcinus orca) representing a mass range of 96-3,850 kg. These measurements provided an empirical determination of the effect of body size on the variability in blood biochemistry during breath hold and experimentally determined aerobic dive limits (ADL) within one taxonomic group (odontocetes). For the species in this study, maximum voluntary breath-hold duration was positively correlated with body mass, ranging from 3.5 min in white-sided dolphins to 13.3 min for the killer whale. Variation in breath-hold duration was associated with differences in the rate of change for [Formula: see text] throughout breath hold; [Formula: see text] decreased twice as fast for the two smaller species (-0.6 mmHg O(2) min(-1)) compared to the largest species (-0.3 mmHg O(2) min(-1)). In contrast, the rate of increase in [Formula: see text] during breath hold was similar across species. These results demonstrate that large body size in odontocetes facilitates increased aerobic breath-hold capacity as mediated by decreased mass-specific metabolic rates (rates of change in [Formula: see text] served as a proxy for oxygen utilization). Indeed the experimentally determined 5 min ADL for bottlenose dolphins was surpassed by the 13.3 min maximum breath hold of the killer whale, which did not end in a rise in lactate. Rather, breath hold ended voluntarily as respiratory

  15. Effect of breath holding on cerebrovascular hemodynamics in normal pregnancy and preeclampsia.

    PubMed

    van Veen, Teelkien R; Panerai, Ronney B; Haeri, Sina; Zeeman, Gerda G; Belfort, Michael A

    2015-04-01

    Preeclampsia (PE) is associated with endothelial dysfunction and impaired autonomic function, which is hypothesized to cause cerebral hemodynamic abnormalities. Our aim was to test this hypothesis by estimating the difference in the cerebrovascular response to breath holding (BH; known to cause sympathetic stimulation) between women with preeclampsia and a group of normotensive controls. In a prospective cohort analysis, cerebral blood flow velocity (CBFV) in the middle cerebral artery (transcranial Doppler), blood pressure (BP, noninvasive arterial volume clamping), and end-tidal carbon dioxide (EtCO2) were simultaneously recorded during a 20-s breath hold maneuver. CBFV changes were broken down into standardized subcomponents describing the relative contributions of BP, cerebrovascular resistance index (CVRi), critical closing pressure (CrCP), and resistance area product (RAP). The area under the curve (AUC) was calculated for changes in relation to baseline values. A total of 25 preeclamptic (before treatment) and 25 normotensive women in the second half of pregnancy were enrolled, and, 21 patients in each group were included in the analysis. The increase in CBFV and EtCO2 was similar in both groups. However, the AUC for CVRi and RAP during BH was significantly different between the groups (3.05 ± 2.97 vs. -0.82 ± 4.98, P = 0.006 and 2.01 ± 4.49 vs. -2.02 ± 7.20, P = 0.037), indicating an early, transient increase in CVRi and RAP in the control group, which was absent in PE. BP had an equal contribution in both groups. Women with preeclampsia have an altered initial CVRi response to the BH maneuver. We propose that this is due to blunted sympathetic or myogenic cerebrovascular response in women with preeclampsia. PMID:25614597

  16. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  17. Characteristics of the respiratory mechanical and muscle function of competitive breath-hold divers.

    PubMed

    Tetzlaff, Kay; Scholz, Tobias; Walterspacher, Stephan; Muth, Claus M; Metzger, Jule; Roecker, Kai; Sorichter, Stephan

    2008-07-01

    Competitive breath-hold divers (BHD) employ glossopharyngeal insufflation (GI) to increase intrapulmonary oxygen stores and prevent the lungs from dangerous compressions at great depths. Glossopharyngeal insufflation is associated with inflation of the lungs beyond total lung capacity (TLC). It is currently unknown whether GI transiently over-distends the lungs or adversely affects lung elastic properties in the long-term. Resting lung function, ventilatory drive, muscle strength, and lung compliance were measured in eight BHD who performed GI since 5.5 (range 2-6) years on average, eight scuba divers, and eight control subjects. In five BHD subsequent measures of static lung compliance (Cstat) were obtained after 1 and 3 min following GI. Breath-hold divers had higher than predicted ventilatory flows and volumes and did not differ from control groups with regard to gas transfer, inspiratory muscle strength, and lung compliance. A blunted response to CO2 was obtained in BHD as compared to control groups. Upon GI there was an increase in mean vital capacity (VCGI) by 1.75 +/- 0.85 (SD) L compared to baseline (p < 0.001). In five BHD Cstat raised from 3.7 (range 2.9-6.8) L/kPa at baseline to 8.1 (range 3.4-21.2) L/kPa after maximal GI and thereafter gradually decreased to 5.6 (range 3.3-8.1) L/kPa after 1 min and 4.2 (range 2.7-6.6) L/kPa after 3 min (p < 0.01). We conclude that in experienced BHD there is a transient alteration in lung elastic recoil. Resting lung function did not reveal a pattern indicative of altered lung ventilatory or muscle function.

  18. Effect of breath holding on cerebrovascular hemodynamics in normal pregnancy and preeclampsia.

    PubMed

    van Veen, Teelkien R; Panerai, Ronney B; Haeri, Sina; Zeeman, Gerda G; Belfort, Michael A

    2015-04-01

    Preeclampsia (PE) is associated with endothelial dysfunction and impaired autonomic function, which is hypothesized to cause cerebral hemodynamic abnormalities. Our aim was to test this hypothesis by estimating the difference in the cerebrovascular response to breath holding (BH; known to cause sympathetic stimulation) between women with preeclampsia and a group of normotensive controls. In a prospective cohort analysis, cerebral blood flow velocity (CBFV) in the middle cerebral artery (transcranial Doppler), blood pressure (BP, noninvasive arterial volume clamping), and end-tidal carbon dioxide (EtCO2) were simultaneously recorded during a 20-s breath hold maneuver. CBFV changes were broken down into standardized subcomponents describing the relative contributions of BP, cerebrovascular resistance index (CVRi), critical closing pressure (CrCP), and resistance area product (RAP). The area under the curve (AUC) was calculated for changes in relation to baseline values. A total of 25 preeclamptic (before treatment) and 25 normotensive women in the second half of pregnancy were enrolled, and, 21 patients in each group were included in the analysis. The increase in CBFV and EtCO2 was similar in both groups. However, the AUC for CVRi and RAP during BH was significantly different between the groups (3.05 ± 2.97 vs. -0.82 ± 4.98, P = 0.006 and 2.01 ± 4.49 vs. -2.02 ± 7.20, P = 0.037), indicating an early, transient increase in CVRi and RAP in the control group, which was absent in PE. BP had an equal contribution in both groups. Women with preeclampsia have an altered initial CVRi response to the BH maneuver. We propose that this is due to blunted sympathetic or myogenic cerebrovascular response in women with preeclampsia.

  19. A size-based emphysema severity index: robust to the breath-hold-level variations and correlated with clinical parameters

    PubMed Central

    Hwang, Jeongeun; Lee, Minho; Lee, Sang Min; Oh, Sang Young; Oh, Yeon-Mok; Kim, Namkug; Seo, Joon Beom

    2016-01-01

    Objective To determine the power-law exponents (D) of emphysema hole-size distributions as a competent emphysema index. Robustness to extreme breath-hold-level variations and correlations with clinical parameters for chronic obstructive pulmonary disease (COPD) were investigated and compared to a conventional emphysema index (EI%). Patients and methods A total of 100 patients with COPD (97 males and three females of mean age 67±7.9 years) underwent multidetector row computed tomography scanning at full inspiration and full expiration. The diameters of the emphysematous holes were estimated and quantified with a fully automated algorithm. Power-law exponents (D) of emphysematous hole-size distribution were evaluated. Results The diameters followed a power-law distribution in all cases, suggesting the scale-free nature of emphysema. D of inspiratory and expiratory computed tomography of patients showed intraclass correlation coefficients >0.8, indicating statistically absolute agreement of different breath-hold levels. By contrast, the EI% failed to agree. Bland–Altman analysis also revealed the superior robustness of D to EI%. D also significantly correlated with clinical parameters such as airflow limitation, diffusion capacity, exercise capacity, and quality of life. Conclusion The D of emphysematous hole-size distribution is robust to breath-hold-level variations and sensitive to the severity of emphysema. This measurement may help rule out the confounding effects of variations in breath-hold levels. PMID:27536095

  20. Optical measures of changes in cerebral vascular tone during voluntary breath holding and a Sternberg memory task.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Schneider-Garces, Nils; Zimmerman, Benjamin; Fletcher, Mark A; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2016-07-01

    The human cerebral vasculature responds to changes in blood pressure and demands for oxygenation via cerebral autoregulation. Changes in cerebrovascular tone (vasoconstriction and vasodilation) also mediate the changes in blood flow measured by the BOLD fMRI signal. This cerebrovascular reactivity is known to vary with age. In two experiments, we demonstrate that cerebral pulse parameters measured using optical imaging can quantify changes in cerebral vascular tone, both globally and locally. In experiment 1, 51 older adults (age range=55-87) performed a voluntary breath-holding task while cerebral pulse amplitude measures were taken. We found significant pulse amplitude variations across breath-holding periods, indicating vasodilation during, and vasoconstriction after breath holding. The breath-holding index (BHI), a measure of cerebrovascular reactivity (CVR) was derived and found to correlate with age. BHI was also correlated with performance in the Modified Mini-Mental Status Examination, even after controlling for age and education. In experiment 2, the same participants performed a Sternberg task, and changes in regional pulse amplitude between high (set-size 6) and low (set-size 2) task loads were compared. Only task-related areas in the fronto-parietal network (FPN) showed significant reduction in pulse amplitude, indicating vasodilation. Non-task-related areas such as the somatosensory and auditory cortices did not show such reductions. Taken together, these experiments suggest that optical pulse parameters can index changes in brain vascular tone both globally and locally, using both physiological and cognitive load manipulations.

  1. Modified ventilatory response characteristics to exercise in breath-hold divers.

    PubMed

    Roecker, Kai; Metzger, Jule; Scholz, Tobias; Tetzlaff, Kay; Sorichter, Stephan; Walterspacher, Stephan

    2014-09-01

    Specific adjustments to repeated extreme apnea are not fully known and understood. While a blunted ventilatory chemosensitivity to CO2 is described for elite breath-hold divers (BHDs) at rest, it is unclear whether specific adaptations affect their response to dynamic exercise. Eight elite BHDs with a previously validated decrease in CO2 chemosensitivity, 8 scuba divers (SCDs), and 8 matched control subjects were included in a study where markers of ventilatory response, Fowler's dead space, partial pressure of carbon dioxide (pCO2), and blood lactate concentrations during cycle exercise were measured. Maximal power output did not differ between the groups, but lactate threshold (θL) appeared at a significantly lowered respiratory compensation point (RCP) and at a higher VO2 for the BHDs. End-tidal (petCO2) and estimated arterial pCO2 (paCO2) were significantly higher in BHDs at θL, the RCP, and maximum exhaustion. BHDs showed a significantly (P < .01) slower breathing pattern in relation to a given tidal volume at a specific work rate. In summary, BHDs presented signs of a metabolic shift from aerobic to anaerobic energy supply, decreased chemosensitivity during exercise, and a distinct ventilatory-response pattern during cycle exercise that differs from SCDs and controls. PMID:24231513

  2. Modified ventilatory response characteristics to exercise in breath-hold divers.

    PubMed

    Roecker, Kai; Metzger, Jule; Scholz, Tobias; Tetzlaff, Kay; Sorichter, Stephan; Walterspacher, Stephan

    2014-09-01

    Specific adjustments to repeated extreme apnea are not fully known and understood. While a blunted ventilatory chemosensitivity to CO2 is described for elite breath-hold divers (BHDs) at rest, it is unclear whether specific adaptations affect their response to dynamic exercise. Eight elite BHDs with a previously validated decrease in CO2 chemosensitivity, 8 scuba divers (SCDs), and 8 matched control subjects were included in a study where markers of ventilatory response, Fowler's dead space, partial pressure of carbon dioxide (pCO2), and blood lactate concentrations during cycle exercise were measured. Maximal power output did not differ between the groups, but lactate threshold (θL) appeared at a significantly lowered respiratory compensation point (RCP) and at a higher VO2 for the BHDs. End-tidal (petCO2) and estimated arterial pCO2 (paCO2) were significantly higher in BHDs at θL, the RCP, and maximum exhaustion. BHDs showed a significantly (P < .01) slower breathing pattern in relation to a given tidal volume at a specific work rate. In summary, BHDs presented signs of a metabolic shift from aerobic to anaerobic energy supply, decreased chemosensitivity during exercise, and a distinct ventilatory-response pattern during cycle exercise that differs from SCDs and controls.

  3. Electrocardiographic aspects of deep dives in elite breath-hold divers.

    PubMed

    Lemaître, F; Lafay, V; Taylor, M; Costalat, G; Gardette, B

    2013-01-01

    The cardiac diving response, 12-lead electrocardiogram (ECG) and the prevalence, time of onset, and possible associations of cardiac arrhythmias were examined during deep breath-hold (BH) dives. Nine elite BH divers (33.2 +/- 3.6 years; mean +/- SD) performed one constant-weight dive of at least 75% of their best personal performance (70 +/- 7 meters for 141 +/- 22 seconds) wearing a 12-lead ECG Holter monitor. Diving parameters (depth and time), oxygen saturation (SaO2), blood lactate concentration and ventilatory parameters were also recorded. Bradycardia during these dives was pronounced (52.2 +/- 12.2%), with heart rates dropping to 46 +/- 10 beats/minute. The diving reflex was strong, overriding the stimulus of muscular exercise during the ascent phase of the dive for all divers. Classical arrhythmias occurred, mainly after surfacing, and some conduction alterations were detected at the bottom of the dives. The BH divers did not show any right shift of the QRS electrical axis during their dives.

  4. Cardiovascular changes during deep breath-hold dives in a pressure chamber.

    PubMed

    Ferrigno, M; Ferretti, G; Ellis, A; Warkander, D; Costa, M; Cerretelli, P; Lundgren, C E

    1997-10-01

    Electrocardiogram, cardiac output, and blood lactate accumulation were recorded in three elite breath-hold divers diving to 40-55 m in a pressure chamber in thermoneutral (35 degrees C) or cool (25 degrees C) water. In two of the divers, invasive recordings of arterial blood pressure were also obtained during dives to 50 m in cool water. Bradycardia during the dives was more pronounced and developed more rapidly in the cool water, with heart rates dropping to 20-30 beats/min. Arrhythmias occurred, particularly during the dives in cool water, when they were often more frequent than sinus beats. Because of bradycardia, cardiac output decreased during the dives, especially in cool water (to <3 l/min in 2 of the divers). Arterial blood pressure increased dramatically, reaching values as high as 280/200 and 290/150 mmHg in the two divers, respectively. This hypertension was secondary to peripheral vasoconstriction, which also led to anaerobic metabolism, reflected in increased blood lactate concentration. The diving response of these divers resembles the one described for diving animals, although the presence of arrhythmias and large increases in blood pressure indicate a less perfect adaptation in humans.

  5. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    SciTech Connect

    Gong, G; Yin, Y

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  6. Treatment of cyanotic breath-holding spells with oral theophylline in a 10-year-old boy.

    PubMed

    Garg, Meenal; Goraya, Jatinder S

    2015-06-01

    Cyanotic breath-holding spells are generally benign and resolve spontaneously by 4 to 5 years of age. Treatment with iron and other drugs has been employed in selected cases with very frequent and severe episodes. We describe a 10-year-old boy with recent-onset cyanotic breath-holding spells that were activity limiting. He was unable to participate in physical activities with his peers as any argument or emotional upset provoked these spells. Treatment with oral iron and piracetam was ineffective. However, treatment with oral theophylline produced dramatic amelioration of symptoms, and he was once again able to participate in play activities with his peers. We believe that general central nervous system stimulant and respirogenic effects of theophylline were instrumental in control of symptoms in our child.

  7. Voluntary breath-holding in the morning and in the evening.

    PubMed

    Bosco, Gerardo; Ionadi, Alessandro; Data, Piergiorgio G; Mortola, Jacopo P

    2004-04-01

    The aim of the present study was to determine whether or not voluntary breath-holding time (BHT) changes with the time of the day. BHT with airways closed at end-expiration was measured in six male subjects in the sitting position during the morning (08.00-12.00 hours, on days 1, 6, 7 and 8) and evening (20.00-24.00 hours, on days 2 and 4). BHT increased with the number of days of testing and, at day 8, the morning values averaged 160% of those on day 1. Also, Delta P ACO2 [the difference between end-tidal partial pressure of CO2 ( P CO2) and alveolar P CO2 ( P ACO2) at the breaking point] increased in proportion to BHT. Hence the BHT/Delta P ACO2 ratio remained nearly constant. Voluntary hyperventilation prolonged BHT and increased Delta P ACO2. Conversely, in hypoxia (13% O2 for 1-2 h), BHT and Delta P ACO2 were reduced proportionally. During the evening sessions, most of the BHT/Delta P ACO2 ratios in normoxia, hypoxia or after hyperventilation were higher than the corresponding morning values, with the group difference reaching statistical significance for the measurements in normoxia and hypoxia. In conclusion, voluntary BHT varies in both duration and its relationship with Delta P ACO2 between the morning and evening hours. The results should also imply that, with an interruption of breathing, changes in alveolar and arterial gases are not the same at different times of the day.

  8. Lack of Correlation Between External Fiducial Positions and Internal Tumor Positions During Breath-Hold CT

    SciTech Connect

    Hunjan, Sandeep; Starkschall, George; Prado, Karl; Dong Lei; Balter, Peter

    2010-04-15

    Purpose: For thoracic tumors, if four-dimensional computed tomography (4DCT) is unavailable, the internal margin can be estimated by use of breath-hold (BH) CT scans acquired at end inspiration (EI) and end expiration (EE). By use of external surrogates for tumor position, BH accuracy is estimated by minimizing the difference between respiratory extrema BH and mean equivalent-phase free breathing (FB) positions. We tested the assumption that an external surrogate for BH accuracy correlates with internal tumor positional accuracy during BH CT. Methods and Materials: In 16 lung cancer patients, 4DCT images, as well as BH CT images at EI and EE, were acquired. Absolute differences between BH and mean equivalent-phase (FB) positions were calculated for both external fiducials and gross tumor volume (GTV) centroids as metrics of external and internal BH accuracy, respectively, and the results were correlated. Results: At EI, the absolute difference between mean FB and BH fiducial displacement correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.11). Similarly, at EE, the absolute difference between mean FB and BH fiducial displacements correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.18). Conclusions: External surrogates for tumor position are not an accurate metric of BH accuracy for lung cancer patients. This implies that care should be taken when using such an approach because an incorrect internal margin could be generated.

  9. Underwater Stroke Kinematics During Breathing and Breath-holding Front Crawl Swimming.

    PubMed

    Vezos, Nickos; Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Christoforidis, Christos; Mavromatis, Giorgos

    2007-01-01

    The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05), the backward hand displacement relative to the water (t9 = 2.471; p<0.05) and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05). On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05) and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05) were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing. Key pointsThe breathing action increases the duration of the total underwater pull.The breathing action increases the absolute backward displacement of the hand.The breathing action caused significant modifications in the overall motor pattern, possibly due to body roll during breathing. PMID:24149225

  10. Upper extremity kinematics and body roll during preferred-side breathing and breath-holding front crawl swimming.

    PubMed

    Payton, C J; Bartlett, R M; Baltzopoulos, V; Coombs, R

    1999-09-01

    Front crawl swimmers often restrict the number of breaths they take during a race because of the possible adverse effects of the breathing action on resistance or stroke mechanics. The aim of this study was to determine whether differences exist in the kinematics of the trunk and upper extremity used during preferred-side breathing and breath-holding front crawl swimming. Six male swimmers performed trials at their 200 m race pace under breathing and breath-holding conditions. The underwater arm stroke was filmed from the front and side using video cameras suspended over periscope systems. Video recordings were digitized at 50 Hz and the three-dimensional coordinates of the upper extremity obtained using a direct linear transformation algorithm. Body roll angles were obtained by digitizing video recordings of a balsa wood fin attached to the swimmers' backs. The swimmers performed the breathing action without any decrement in stroke length (mean +/- s: breathing 2.24 +/- 0.27 m; breath-holding 2.15 +/- 0.22 m). Stroke widths were similar in the breathing (0.28 +/- 0.07 m) and breath-holding (0.27 +/- 0.07 m) trials, despite swimmers rolling further when taking a breath (66 +/- 5 degrees) than when not (57 +/- 4 degrees). The timing of the four underwater phases of the stroke was also unaffected by the breathing action, with swimmers rolling back towards the neutral position during the insweep phase. In conclusion, the results suggest that front crawl swimmers can perform the breathing action without it interfering with their basic stroke parameters. The insweep phase of the stroke assists body roll and not vice versa as suggested in previous studies.

  11. [Contrast-enhanced 3D MR angiography of the chest and abdomen with breath-holding using phase reordering].

    PubMed

    Amanuma, M; Sugimoto, E; Hirata, H; Enomoto, K; Watabe, T; Kimura, T; Takizawa, O; Heshiki, A

    1995-07-01

    This report presents the feasibility of phase-recordered contrast-enhanced three-dimensional MR angiography in 32 consecutive patients with vascular abnormalities in the chest and abdomen. To suppress motion artifacts due to respiratory corruption, a phase-reordering technique was introduced so that the low frequency components of the phase data were obtained first during the imaging period. Image quality and degree of motion suppression were assessed by four radiologists independently without information on breath-holding time. Abnormalities were detected in 30 cases (93.8%), and their extent was correctly assessed in 28 cases (87.5%). More confident assessment was possible in abnormalities of the pulmonary vessels and thoracic aorta than in those of the abdominal aorta and portal venous system. With phase reordering, more than 20 seconds of breath-holding ensured image quality sufficient to correctly assess the vascular abnormalities. While this technique is easy and requires only single breath-holding, it can provide excellent MRA without slice-to-slice spatial misregistration.

  12. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    SciTech Connect

    Lee, D; Pollock, S; Keall, P; Greer, P; Lapuz, C; Ludbrook, J; Kim, T

    2015-06-15

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath-hold

  13. Inter- and Intrafraction Variability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy

    SciTech Connect

    Case, Robert B.; Sonke, Jan-Jakob; Moseley, Douglas J.; Kim, John; Brock, Kristy K.; Dawson, Laura A.

    2009-09-01

    Purpose: The inter- and intrafraction variability of liver position was assessed in patients with liver cancer treated with kilovoltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy. Methods and Materials: A total of 314 CBCT scans obtained in the treatment position immediately before and after each fraction were evaluated from 29 patients undergoing six-fraction, non-breath-hold stereotactic body radiotherapy for unresectable liver cancer. Off-line, the CBCT scans were sorted into 10 bins, according to the phase of respiration. The liver position (relative to the vertebral bodies) was measured using rigid alignment of the exhale CBCT liver with the exhale planning CT liver, following the alignment of the vertebrae. The interfraction liver position change was measured by comparing the pretreatment CBCT scans, and the intrafraction change was measured from the CBCT scans obtained immediately before and after each fraction. Results: The mean amplitude of liver motion for all patients was 1.8 mm (range, 0.1-5.7), 8.0 mm (range, 0.1-18.8), and 4.3 mm (range 0.1-12.1) in the medial-lateral (ML), craniocaudal (CC), and anteroposterior (AP) directions, respectively. The mean absolute ML, CC, and AP interfraction changes in liver position were 2.0 mm (90th percentile, 4.2), 3.5 mm (90th percentile, 7.3), and 2.3 mm (90th percentile, 4.7). The mean absolute intrafraction ML, CC, and AP changes were 1.3 mm (90th percentile, 2.9), 1.6 mm (90th percentile, 3.6), and 1.5 mm (90th percentile, 3.1), respectively. The interfraction changes were significantly larger than the intrafraction changes, with a CC systematic error of 2.9 and 1.1 mm, respectively. The intraobserver reproducibility ({sigma}, n = 29 fractions) was 1.3 mm in the ML, 1.4 mm in the CC, and 1.6 mm in the AP direction. Conclusion: Interfraction liver position changes relative to the vertebral bodies are an important source of geometric uncertainty, providing a rationale for

  14. Dosimetric investigation of breath-hold intensity-modulated radiotherapy for pancreatic cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Kishimoto, Shun; Iwamura, Kohei; Shiinoki, Takehiro; Nakamura, Akira; Matsuo, Yukinori; Shibuya, Keiko; Hiraoka, Masahiro

    2012-01-15

    Purpose: To experimentally investigate the effects of variations in respiratory motion during breath-holding (BH) at end-exhalation (EE) on intensity-modulated radiotherapy (BH-IMRT) dose distribution using a motor-driven base, films, and an ionization chamber. Methods: Measurements were performed on a linear accelerator, which has a 120-leaf independently moving multileaf collimator with 5-mm leaf width at the isocenter for the 20-cm central field. Polystyrene phantoms with dimensions of 40 x 40 x 10 cm were set on a motor-driven base. All gantry angles of seven IMRT plans (a total of 35 fields) were changed to zero, and doses were then delivered to a film placed at a depth of 4 cm and an ionization chamber at a depth of 5 cm in the phantom with a dose rate of 600 MU/min under the following conditions: pulsation from the abdominal aorta and baseline drift with speeds of 0.2 mm/s (BD{sub 0.2mm/s}) and 0.4 mm/s (BD{sub 0.4mm/s}). As a reference for comparison, doses were also delivered to the chamber and film under stationary conditions. Results: In chamber measurements, means {+-} standard deviations of the dose deviations between stationary and moving conditions were -0.52% {+-} 1.03% (range: -3.41-1.05%), -0.07% {+-} 1.21% (range: -1.88-4.31%), and 0.03% {+-} 1.70% (range: -2.70-6.41%) for pulsation, BD{sub 0.2mm/s}, and BD{sub 0.4mm/s}, respectively. The {gamma} passing rate ranged from 99.5% to 100.0%, even with the criterion of 2%/1 mm for pulsation pattern. In the case of BD{sub 0.4mm/s}, the {gamma} passing rate for four of 35 fields (11.4%) did not reach 90% with a criterion of 3%/3 mm. The differences in {gamma} passing rate between BD{sub 0.2mm/s} and BD{sub 0.4mm/s} were statistically significant for each criterion. Taking {gamma} passing rates of > 90% as acceptable with a criterion of 3%/3 mm, large differences were observed in the {gamma} passing rate between the baseline drift of {<=}5 mm and that of >5 mm (minimum {gamma} passing rate: 92.0% vs 82

  15. Heart rate variability during static and dynamic breath-hold dives in elite divers.

    PubMed

    Kiviniemi, Antti M; Breskovic, Toni; Uglesic, Lovro; Kuch, Benjamin; Maslov, Petra Zubin; Sieber, Arne; Seppänen, Tapio; Tulppo, Mikko P; Dujic, Zeljko

    2012-08-16

    The purpose of this study was to assess the differences in cardiac autonomic modulation during maximal static (SA) and dynamic (DA) underwater apneas. Arterial oxygen saturation (SpO(2)), heart rate (HR) and HR variability (SD1 from Poincaré plot and short-term fractal-like scaling exponent, α(1)) were analyzed at the immersed baseline (3 min) and initial, mid- and end-phases (each 30s) of SA and DA in nine elite breath-hold divers. DA and SA lasted 78 ± 8 and 225 ± 20s (mean ± SEM), respectively, and resulted in similar decrements in end-stage SpO(2) (78 ± 3 and 75 ± 3%, p=0.352). During DA, initial increase in HR (from 80 ± 5 to 122 ± 5 bpm, p<0.001) was followed by gradual decrease towards the baseline at mid-apnea and end-apnea phase (101 ± 6 and 80 ± 8 bpm, respectively). During SA, HR decreased at mid-apnea (from 78 ± 4 to 66 ± 3 bpm, p=0.004) but did not decrease further at end-apnea phase (66 ± 4b pm). Decreased SD1 was observed at the initial phase of DA (from 28 ± 5 to 10 ± 4 ms, p=0.005) being lower compared with SA (24 ± 4 ms, p=0.005). At the end of DA and SA, SD1 tended to increase above the baseline (62 ± 16 and 66 ± 10 ms, p=0.128 and p=0.093, respectively, p=0.602 DA vs. SA). α(1) tended to be higher at the end of DA compared with SA (1.17 ± 0.10 vs. 0.79 ± 0.10, p=0.059). We concluded that apnea blunts the effects of exercise on cardiac vagal activity at the end of DA. However, higher HR during DA compared with SA indicates larger cardiac sympathetic activity during DA, as suggested also by slightly higher α(1).

  16. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Nakamura, Akira; Shiinoki, Takehiro; Matsuo, Yukinori; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  17. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols.

    PubMed

    Khajeh-Hosseini-Dalasm, Navvab; Longest, P Worth

    2015-01-01

    Previous studies have demonstrated that factors such as airway wall motion, inhalation waveform, and geometric complexity influence the deposition of aerosols in the alveolar airways. However, deposition fraction correlations are not available that account for these factors in determining alveolar deposition. The objective of this study was to generate a new space-filling model of the pulmonary acinus region and implement this model to develop correlations of aerosol deposition that can be used to predict the alveolar dose of inhaled pharmaceutical products. A series of acinar models was constructed containing different numbers of alveolar duct generations based on space-filling 14-hedron elements. Selected ventilation waveforms were quick-and-deep and slow-and-deep inhalation consistent with the use of most pharmaceutical aerosol inhalers. Computational fluid dynamics simulations were used to predict aerosol transport and deposition in the series of acinar models across various orientations with gravity where ventilation was driven by wall motion. Primary findings indicated that increasing the number of alveolar duct generations beyond 3 had a negligible impact on total acinar deposition, and total acinar deposition was not affected by gravity orientation angle. A characteristic model containing three alveolar duct generations (D3) was then used to develop correlations of aerosol deposition in the alveolar airways as a function of particle size and particle residence time in the geometry. An alveolar deposition parameter was determined in which deposition correlated with d(2)t over the first half of inhalation followed by correlation with dt(2), where d is the aerodynamic diameter of the particles and t is the potential particle residence time in the alveolar model. Optimal breath-hold times to allow 95% deposition of inhaled 1, 2, and 3 μm particles once inside the alveolar region were approximately >10, 2.7, and 1.2 s, respectively. Coupling of the deposition

  18. Modeling airway resistance dynamics after tidal and deep inspirations.

    PubMed

    Thorpe, C William; Salome, Cheryl M; Berend, Norbert; King, Gregory G

    2004-11-01

    Using the forced oscillation technique, we tracked airway resistance continuously during quiet breathing (QB) and deep inspiration (DI), thus observing fluctuations in resistance that may reflect mechanisms of airway stretch and renarrowing. After DI, however, the resistance may be depressed for a period not related to volume changes. We hypothesized that this gradual increase in resistance after DI-induced dilation was determined by a simple time constant. Furthermore, to the extent that this effect reflects dynamic characteristics of airway renarrowing, the resistance change after each tidal inspiration should also be constrained by this temporal limit. A model relating resistance fluctuations to the breathing pattern, including both instantaneous and delayed effects, was developed and applied to data from 14 nonasthmatic and 17 asthmatic subjects (forced expiratory volume in 1 s = 103 +/- 13 and 83 +/- 12%, respectively, means +/- SD) after methacholine challenge (dose 145 +/- 80 and 3.0 +/- 3.4 micromol, respectively) that resulted in respective forced expiratory volume in 1 s reductions of 16 +/- 7 and 24 +/- 6% from baseline. Resistance was measured continuously for 1 min of QB, a DI, followed by a further minute of QB. Resistance values at end expiration (Ree) and end inspiration were calculated. We found that the sequence of Ree after DI was best modeled by a power-law function of time rather than an exponential decay (r2 = 0.82 +/- 0.18 compared with 0.63 +/- 0.16; P < 0.01). Furthermore, the coefficient characterizing this "renarrowing function" was close to equal to the coefficient characterizing the equivalent function of resistance change between each resistance value at end inpiration and subsequent Ree during QB, particularly in the nonasthmatic subjects for whom the intraclass correlation was 0.66. This suggests that the same time-dependent factors determine renarrowing after both large and small breaths.

  19. Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction

    SciTech Connect

    Blessing, Manuel; Stsepankou, Dzmitry; Wertz, Hansjoerg; Arns, Anna; Lohr, Frank; Hesser, Juergen; Wenz, Frederik

    2010-11-15

    Purpose: Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials: An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90{sup o} within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 x 512 x 512 volume within 6 s. Results: The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2-3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180{sup o}-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was <6 mGy. Conclusion: The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV-MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.

  20. Single breath hold 3D cardiac cine MRI using kat-ARC: preliminary results at 1.5T.

    PubMed

    Jeong, Daniel; Schiebler, Mark L; Lai, Peng; Wang, Kang; Vigen, Karl K; François, Christopher J

    2015-04-01

    Validation of a new single breath-hold, three-dimensional, cine balanced steady-state free precession (3D cine bSSFP) cardiac magnetic resonance (CMR) sequence for left ventricular function. CMR examinations were performed on fifteen patients and three healthy volunteers on a clinical 1.5T scanner using a two-dimensional (2D) cine balanced SSFP CMR sequence (2D cine bSSFP) followed by an investigational 3D cine bSSFP pulse sequence acquired within a single breath hold. Left ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), ejection fraction (LVEF), and myocardial mass were independently segmented on a workstation by two experienced radiologists. Blood pool to myocardial contrast was evaluated in consensus using a Likert scale. Bland-Altman analysis was used to compare these quantitative and nominal measurements for the two sequences. The average acquisition time was significantly shorter for the 3D cine bSSFP than for 2D cine bSSFP (0.36 ± 0.03 vs. 8.5 ± 2.3 min) p = 0.0002. Bland-Altman analyses [bias and (limits of agreement)] of the data derived from these two methods revealed that the LVEF 0.9% (-4.7, 6.4), LVEDV 4.9 ml (-23.0, 32.8), LVESV -0.2 ml (-22.4, 21.9), and myocardial mass -0.4 g (-23.8, 23.0) were not significantly different. There was excellent intraclass correlation for intra-observer variability (0.981, 0.989, 0.997, 0.985) and inter-observer variability (0.903, 0.954, 0.970, 0.842) for LVEF, LVEDV, LVESV, and myocardial mass respectively. 3D cine bSSFP allows for accurate single breath-hold volumetric cine CMR which enables substantial improvements in scanner time efficiency without sacrificing diagnostic accuracy.

  1. Breath-hold black blood quantitative T1rho imaging of liver using single shot fast spin echo acquisition

    PubMed Central

    Chan, Queenie; Wáng, Yì-Xiáng J.

    2016-01-01

    Background Liver fibrosis is a key feature in most chronic liver diseases. T1rho magnetic resonance imaging is a potentially important technique for noninvasive diagnosis, severity grading, and therapy monitoring of liver fibrosis. However, it remains challenging to perform robust T1rho quantification of liver on human subjects. One major reason is that the presence of rich blood signal in liver can cause artificially high T1rho measurement and makes T1rho quantification susceptible to motion. Methods A pulse sequence based on single shot fast/turbo spin echo (SSFSE/SSTSE) acquisition, with theoretical analysis and simulation based on the extended phase graph (EPG) algorithm, was presented for breath-hold single slice quantitative T1rho imaging of liver with suppression of blood signal. The pulse sequence was evaluated in human subjects at 3.0 T with 500 Hz spinlock frequency and time-of-spinlock (TSL) 0, 10, 30 and 50 ms. Results Human scan demonstrated that the entire T1rho data sets with four spinlock time can be acquired within a single breath-hold of 10 seconds with black blood effect. T1rho quantification with suppression of blood signal results in significantly reduced T1rho value of liver compared to the results without blood suppression. Conclusions A signal-to-noise ratio (SNR) efficient pulse sequence was reported for T1rho quantification of liver. The black blood effect, together with a short breath-hold, mitigates the risk of quantification errors as would occur in the conventional methods. PMID:27190769

  2. Bronchodilating effect of deep inspirations in asthma and chronic cough.

    PubMed

    V Wasilewski, Nastasia; Fisher, Thomas; Turcotte, Scott E; Fisher, John T; Lougheed, M Diane

    2016-05-01

    The pathophysiologic processes distinguishing classic asthma (CA), cough-variant asthma (CVA), and methacholine (MCh)-induced cough but normal airway sensitivity (COUGH) are inadequately understood and may be a result of differences in the ability to bronchodilate following a deep inspiration (DI). The purpose of this study was to compare the bronchodilating effect of DIs in individuals with CA, CVA, and COUGH using high-dose MCh. Individuals aged 18-65 yr with CA or suspected CVA completed high-dose MCh testing to a maximum change in forced expiratory volume in 1 s (FEV1) of 50% from baseline (MAX). Impulse oscillometry (IOS) measurements and partial and maximal-flow volume curves (used to calculate a DI index) were recorded at baseline and at each dose of MCh. Body plethysmography was performed at baseline and MAX. Twenty-eight subjects [25 women, 39.8 ± 11.9 yr (means ± SD)] were studied (n = 11 CA, n = 10 CVA, and n = 7 COUGH). At MAX, the percent change in FEV1 was greater in subjects with CA compared with those with CVA (P < 0.001) and COUGH (P < 0.001), and the percent change in forced vital capacity was greater in those with CA than with COUGH (P = 0.017). Subjects with CA and CVA developed dynamic hyperinflation and gas trapping. In subjects with CA and CVA, all IOS parameters were significantly increased from baseline to MAX, except for central respiratory resistance (R20). In individuals with COUGH, total respiratory resistance, R20, and resonant frequency were significantly increased from baseline. At MAX, the DI index was positive in all groups, suggesting preserved bronchodilation (CA, 0.67 ± 0.97; CVA, 0.51 ± 0.73; COUGH, 0.01 ± 0.36; P = 0.211). We conclude that the bronchodilating effect of DIs is preserved in individuals with CA, CVA, and borderline with COUGH; however, hyperinflation and gas trapping are avoided in subjects with COUGH alone. PMID:26940655

  3. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    NASA Astrophysics Data System (ADS)

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-05-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media.

  4. Quality Assurance Challenges for Motion-Adaptive Radiation Therapy: Gating, Breath Holding, and Four-Dimensional Computed Tomography

    SciTech Connect

    Jiang, Steve B. Wolfgang, John; Mageras, Gig S.

    2008-05-01

    Compared with conventional three-dimensional (3D) conformal radiation therapy and intensity-modulated radiation therapy treatments, quality assurance (QA) for motion-adaptive radiation therapy involves various challenges because of the added temporal dimension. Here we discuss those challenges for three specific techniques related to motion-adaptive therapy: namely respiratory gating, breath holding, and four-dimensional computed tomography. Similar to the introduction of any other new technologies in clinical practice, typical QA measures should be taken for these techniques also, including initial testing of equipment and clinical procedures, as well as frequent QA examinations during the early stage of implementation. Here, rather than covering every QA aspect in depth, we focus on some major QA challenges. The biggest QA challenge for gating and breath holding is how to ensure treatment accuracy when internal target position is predicted using external surrogates. Recommended QA measures for each component of treatment, including simulation, planning, patient positioning, and treatment delivery and verification, are discussed. For four-dimensional computed tomography, some major QA challenges have also been discussed.

  5. Single Breath-Hold Physiotherapy Technique: Effective tool for T2* magnetic resonance imaging in young patients with thalassaemia major.

    PubMed

    Mevada, Surekha T; Al-Mahruqi, Najma; El-Beshlawi, Ismail; El-Shinawy, Mohamed; Zachariah, Mathew; Al-Rawas, Abdul H; Daar, Shahina; Wali, Yasser

    2016-02-01

    Magnetic resonance imaging using T2* (MRI T2*) is a highly sensitive and non-invasive technique for the detection of tissue iron load. Although the single breath-hold multi-echo T2* technique has been available at the Sultan Qaboos University Hospital (SQUH), Muscat, Oman, since 2006, it could not be performed on younger patients due to their inability to hold their breath after expiration. This study was carried out between May 2007 and May 2015 and assessed 50 SQUH thalassaemic patients aged 7-17 years old. Seven of these patients underwent baseline and one-year follow-up MRI T2* scans before receiving physiotherapy training. Subsequently, all patients were trained by a physiotherapist to hold their breath for approximately 15-20 seconds at the end of expiration before undergoing baseline and one-year follow-up MRI T2* scans. Failure rates for the pre- and post-training groups were 6.0% and 42.8%, respectively. These results indicate that the training of thalassaemic patients in breath-hold techniques is beneficial and increases rates of compliance for MRI T2* scans.

  6. [EFFECT OF VOLUNTARY BREATH-HOLDING AND COGNITIVE LOADS ON REGIONAL CEREBRAL BLOOD FLOW AND BIOELECTRIC ACTIVITY OF THE BRAIN].

    PubMed

    Moreva, T I; Pasekova, O B; Kriushev, E S; Dobrokvashina, E I; Moreva, O V; Builov, S P; Smirnov, O A; Bragin, L Kh; Voronkov, Iu I

    2015-01-01

    Cerebral blood flow and bioelectric activity were studied in 10 normal volunteers in order to assess cerebrovascular reactivity during different types of functional testing. The transcranial Doppler was used to measure linear blood velocity (LBV) in the middle cerebral artery (MCA) during maximal voluntary breath-holding (apnea), controlled verbal association test and tactile memory test. Simultaneous electroencephalography (EEG) registered the bioelectric activity of the brain cortex. Both investigations were performed continuously in the course of each test. Breath-holding induced a smooth symmetric increase of CMA blood velocity; LBV rose to maximum values in the majority of the volunteered subjects. Two subjects with small focal changes in the brain's white matter displayed an asymmetric blood flow reaction to apnea. Gain in LBV was materially less during the cognitive tests; the verbal test decreased LBV in one half of the subjects and increased LBV in the other. The tactile memory test increased LBV which was particularly high in the left CMA of all subjects. LBV dynamics during the cognitive tests was essentially different from what was observed in apnea. Blood flow variations in the course of equally the verbal and tactile tests had a regular undulatory character. Concurrent LBV and EEG monitoring made it possible to compare and contrast dynamics of the cerebral blood velocity and bioelectric activity directly during testing and thus to reveal peculiar reactions of the cerebral blood flow to cognitive and physiological testing.

  7. Comparison between in-phase and opposed-phase T1-weighted breath-hold FLASH sequences for hepatic imaging

    SciTech Connect

    Rofsky, N.M.; Weinreb, J.C.; Ambrosino, M.M.; Safir, J.; Krinsky, G.

    1996-03-01

    Our goal was to compare in-phase (IP) and opposed-phase (OP) sequences for GRE breath-hold hepatic imaging. Non-contrast-enhanced IP and OP GRE breath-hold images were obtained in 104 consecutive patients referred for abdominal MRI at 1.0 T. For both sequences, the TR, FA, matrix, FOV, slice thickness, interslice gap, and measurements were kept constant. Images were compared quantitatively [liver/spleen and liver/lesion signal difference/noise ratio, (SD/N)] and qualitatively (artifacts, lesion detection and conspicuity, and intrahepatic anatomy). There was no statistically significant difference when comparing IP and OP sequences for liver/spleen and liver/lesion SD/N or for the qualitative parameters. In patients with fatty infiltration, the OP sequences yielded substantially lower values for liver/spleen and liver/lesion SD/N (0.9 and - 1.2, respectively) than the IP sequences (20 and 17, respectively). Furthermore, in several cases with fatty infiltration, many more lesions were identified using IP images. The use of IP and OP GRE sequences provides complementary diagnostic information. Focal liver lesions may be obscured in the setting of fatty infiltration if only OP sequences are employed. A complete assessment of the liver with MR should include both IP and OP imaging. 11 refs., 3 figs., 1 tab.

  8. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    PubMed Central

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media. PMID:27169670

  9. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    SciTech Connect

    Shanmugam, Senthilkumar

    2014-06-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  10. Single-breath-hold venous or arterial flow-suppressed pulmonary vascular MR imaging with phased-array coils.

    PubMed

    Foo, T K; MacFall, J R; Sostman, H D; Hayes, C E

    1993-01-01

    A method for acquiring pulmonary vascular magnetic resonance (MR) images with either venous or arterial flow suppression is described. The proposed method only marginally increases the overall imaging time compared with conventional flow-suppression techniques. This enables an acquisition to be completed within a single breath hold with some selectivity as to flow direction. Instead of applying a spatially selective presaturation pulse before each radio-frequency (RF) excitation pulse, the flow presaturation pulse is applied once every 16-20 RF excitation pulses. To avoid image artifacts and to maintain a steady state, each presaturation pulse interval is followed by a normal imaging segment but with data acquisition turned off. Overall imaging time is increased by two TR intervals for each presaturation segment. For a 256 x 128 matrix acquisition, venous flow presaturation increases overall imaging time by approximately 14 TR intervals, while arterial flow suppression increases imaging time by 10 TR intervals.

  11. Myocardial viability: breath-hold 3D MR imaging of delayed hyperenhancement with variable sampling in time.

    PubMed

    Foo, Thomas K F; Stanley, David W; Castillo, Ernesto; Rochitte, Carlos E; Wang, Yi; Lima, João A C; Bluemke, David A; Wu, Katherine C

    2004-03-01

    A method for visualizing myocardial infarction with a three-dimensional (3D) breath-hold gated acquisition was examined. By using variable sampling in time, whole heart coverage with a single volume acquisition was achieved in 24 heart beats. In a study of 35 patients, in whom 3D volume acquisition was compared with a two-dimensional (2D) acquisition, all regions of myocardial infarction were correctly identified at 3D examination. The mean imaging time for 12 section locations was 8.0 minutes +/- 3.0 with a 2D approach compared with 22 seconds +/- 4 with a 3D approach (P <.001). Advantages were also noted for infarct contrast-to-noise ratio: 60 +/- 37 for 3D versus 33 +/- 20 for 2D imaging (P <.001). No significant differences (P >.05) were noted at qualitative assessment of myocardial suppression, endocardial border visualization, respiratory and cardiac motion artifacts, or confidence of transmurality of the infarct.

  12. Cardiovascular change in elderly male breath-hold divers (Ama) and their socio-economical background at Chikura in Japan.

    PubMed

    Holm, B; Schagatay, E; Kobayashi, T; Masuda, A; Ohdaira, T; Honda, Y

    1998-09-01

    The Ama have existed for more than 2000 years in Japan and Korea. They have been diving for seaweed and molluscs. Their traditional way of fishing, with goggles or a mask, but without a wetsuit, is still practised as a result of laws against overfishing. We investigated cardiovascular diving responses, expressed as heart rate (HR) reduction, peripheral vasoconstriction indicated by skin blood flow (SkBF) and mean arterial blood pressure (MAP) during breath-hold face immersion in a group of eight elderly male Ama at Chikura, Japan. Their data were compared to those from three other groups: a) elderly non-divers; b) young divers and c) young non-divers. Our previous studies have shown that young divers show a more pronounced bradycardia than young non-divers. The present study of elderly Ama and elderly non-divers was performed to investigate if this difference persists in old age. We found that, in spite of many years of diving experience, HR reduction of the elderly professional divers observed during face immersion did not differ from that of elderly non-divers, but it was much less pronounced than in the two younger groups. We conclude that even if a well-developed diving response at young age has been reduced to the level of non-divers, the Ama are still able to continue their work of diving in old age. Ama that has been a traditionally female occupation, is mostly practised by men at Chikura today. No young have been recruited for this profession. Therefore, the present Ama are senior and the traditional breath-hold diving will probably cease to exist in the near future. The probable reasons for these changes are discussed.

  13. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    SciTech Connect

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R

    2015-06-15

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.

  14. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  15. Fatal and nonfatal drowning outcomes related to dangerous underwater breath-holding behaviors - New York State, 1988-2011.

    PubMed

    Boyd, Christopher; Levy, Amanda; McProud, Trevor; Huang, Lilly; Raneses, Eli; Olson, Carolyn

    2015-05-22

    Drowning is an important cause of preventable injury and mortality, ranking fifth among leading causes of unintentional injury death in the United States. In 2011, two healthy young men died in a drowning incident at a New York City (NYC)-regulated swimming facility. The men became unconscious underwater after performing intentional hyperventilation before submersion. The phenomenon of healthy swimmers becoming unconscious underwater has been described elsewhere as hypoxic blackout. Prompted by this incident, the NYC Department of Health and Mental Hygiene (DOHMH) in collaboration with the New York State Department of Health (SDOH) conducted a case review of New York state fatal and nonfatal drownings reported during 1988-2011 to investigate similar behaviors in other incidents. DOHMH identified 16 cases, three in NYC, with a consistent set of voluntary behaviors associated with unintentional drowning and designated this class of behaviors as "dangerous underwater breath-holding behaviors" (DUBBs). For this small sample, the frequency of different DUBBs varied by age and swimming level, and practicing more than one DUBB increased the risk for fatality. This research contributes to the literature on drowning by focusing on contributing behaviors rather than drowning outcomes. NYC recently enacted public health education and regulations that discourage DUBBs; these interventions have the potential to effectively reduce unintentional drowning related to these behaviors and could be considered by other municipalities and jurisdictions. PMID:25996093

  16. An atypical case of taravana syndrome in a breath-hold underwater fishing champion: a case report.

    PubMed

    Cortegiani, Andrea; Foresta, Grazia; Strano, Giustino; Strano, Maria Teresa; Montalto, Francesca; Garbo, Domenico; Raineri, Santi Maurizio

    2013-01-01

    Dysbaric accidents are usually referred to compressed air-supplied diving. Nonetheless, some cases of decompression illness are known to have occurred among breath-hold (BH) divers also, and they are reported in the medical literature. A male BH diver (57 years old), underwater fishing champion, presented neurological disorders as dizziness, sensory numbness, blurred vision, and left frontoparietal pain after many dives to a 30-35 meters sea water depth with short surface intervals. Symptoms spontaneously regressed and the patient came back home. The following morning, pain and neurological impairment occurred again and the diver went by himself to the hospital where he had a generalized tonic-clonic seizure and lost consciousness. A magnetic resonance imaging of the brain disclofsed a cortical T1-weighted hypointense area in the temporal region corresponding to infarction with partial hemorrhage. An early hyperbaric oxygen therapy led to prompt resolution of neurological findings. All clinical and imaging characteristics were referable to the Taravana diving syndrome, induced by repetitive prolonged deep BH dives. The reappearance of neurological signs after an uncommon 21-hour symptom-free interval may suggest an atypical case of Taravana syndrome.

  17. Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy) of liver metastases – clinical results

    PubMed Central

    2012-01-01

    Purpose Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold) were analysed regarding overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC), acute and late toxicity. Results PTV (planning target volume)-size was 108 ± 109cm3 (median 67.4 cm3). BED2 (Biologically effective dose in 2 Gy fraction) was 83.3 ± 26.2 Gy (median 78 Gy). Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months). Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999). Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08) when a volume cut-off of 67 cm3 was used. No local relapse was observed at PTV-sizes < 67 cm3 and BED2 > 78 Gy. No acute clinical toxicity > °2 was observed. Late toxicity was also ≤ °2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C

  18. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    SciTech Connect

    Gierga, David P.; Turcotte, Julie C.; Sharp, Gregory C.; Sedlacek, Daniel E.; Cotter, Christopher R.; Taghian, Alphonse G.

    2012-12-01

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

  19. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding.

    PubMed

    Stavrou, Vasileios; Toubekis, Argyris G; Karetsi, Eleni

    2015-12-22

    The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post-training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. -1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. -4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both groups (p<0.05). The reduction was higher in the IBH compared to the SBF group (p<0.05). Performance in the 50 and 400 m tests improved in both groups, however, the improvement was greater in the IBH compared to the SBF group in both 50 and 400 m tests (p<0.05). The use of IBH is likely to enhance the load on the respiratory muscles, thus, contributing to improvement of the respiratory parameters. Decreased SpO2 after IBH is likely due to adaptation to hypoventilation. IBH favours performance improvement at 50 and 400 m fin-swimming. PMID:26839609

  20. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding

    PubMed Central

    Stavrou, Vasileios; Toubekis, Argyris G.; Karetsi, Eleni

    2015-01-01

    The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post-training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. −1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. −4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both groups (p<0.05). The reduction was higher in the IBH compared to the SBF group (p<0.05). Performance in the 50 and 400 m tests improved in both groups, however, the improvement was greater in the IBH compared to the SBF group in both 50 and 400 m tests (p<0.05). The use of IBH is likely to enhance the load on the respiratory muscles, thus, contributing to improvement of the respiratory parameters. Decreased SpO2 after IBH is likely due to adaptation to hypoventilation. IBH favours performance improvement at 50 and 400 m fin-swimming. PMID:26839609

  1. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding.

    PubMed

    Stavrou, Vasileios; Toubekis, Argyris G; Karetsi, Eleni

    2015-12-22

    The purpose of this study was to examine the effects of training with intermittent breath holding (IBH) on respiratory parameters, arterial oxygen saturation (SpO2) and performance. Twenty-eight fin-swimming athletes were randomly divided into two groups and followed the same training for 16 weeks. About 40% of the distance of each session was performed with self-selected breathing frequency (SBF group) or IBH (IBH group). Performance time of 50 and 400 m at maximum intensity was recorded and forced expired volume in 1 s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and SpO2 were measured before and after the 50 m test at baseline and post-training. Post-training, the respiratory parameters were increased in the IBH but remained unchanged in the SBF group (FEV1: 17 ±15% vs. -1 ±11%; FVC: 22 ±13% vs. 1 ±10%; PEF: 9 ±14% vs. -4 ±15%; p<0.05). Pre compared to post-training SpO2 was unchanged at baseline and decreased post-training following the 50 m test in both groups (p<0.05). The reduction was higher in the IBH compared to the SBF group (p<0.05). Performance in the 50 and 400 m tests improved in both groups, however, the improvement was greater in the IBH compared to the SBF group in both 50 and 400 m tests (p<0.05). The use of IBH is likely to enhance the load on the respiratory muscles, thus, contributing to improvement of the respiratory parameters. Decreased SpO2 after IBH is likely due to adaptation to hypoventilation. IBH favours performance improvement at 50 and 400 m fin-swimming.

  2. Positional Reproducibility of Pancreatic Tumors Under End-Exhalation Breath-Hold Conditions Using a Visual Feedback Technique

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Shiinoki, Takehiro; Matsuo, Yukinori; Nakamura, Akira; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2011-04-01

    Purpose: To assess positional reproducibility of pancreatic tumors under end-exhalation (EE) breath-hold (BH) conditions with a visual feedback technique based on computed tomography (CT) images. Methods and Materials: Ten patients with pancreatic cancer were enrolled in an institutional review board-approved trial. All patients were placed in a supine position on an individualized vacuum pillow with both arms raised. At the time of CT scan, they held their breath at EE with the aid of video goggles displaying their abdominal displacement. Each three-consecutive helical CT data set was acquired four times (sessions 1-4; session 1 corresponded to the time of CT simulation). The point of interest within or in proximity to a gross tumor volume was defined based on certain structural features. The positional variations in point of interest and margin size required to cover positional variations were assessed. Results: The means {+-} standard deviations (SDs) of intrafraction positional variations were 0.0 {+-} 1.1, 0.1 {+-} 1.2, and 0.1 {+-} 1.0 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively (p = 0.726). The means {+-} SDs of interfraction positional variations were 0.3 {+-} 2.0, 0.8 {+-} 1.8, and 0.3 {+-} 1.8 mm in the LR, AP, and SI directions, respectively (p = 0.533). Population-based margin sizes required to cover 95th percentiles of the overall positional variations were 4.7, 5.3, and 4.9 mm in the LR, AP, and SI directions, respectively. Conclusions: A margin size of 5 mm was needed to cover the 95th percentiles of the overall positional variations under EE-BH conditions, using this noninvasive approach to motion management for pancreatic tumors.

  3. Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy.

    PubMed

    Badawi, Ahmed M; Weiss, Elisabeth; Sleeman, William C; Hugo, Geoffrey D

    2012-01-21

    The purpose of this study is to develop and evaluate a lung tumour interfraction geometric variability classification scheme as a means to guide adaptive radiotherapy and improve measurement of treatment response. Principal component analysis (PCA) was used to generate statistical shape models of the gross tumour volume (GTV) for 12 patients with weekly breath hold CT scans. Each eigenmode of the PCA model was classified as 'trending' or 'non-trending' depending on whether its contribution to the overall GTV variability included a time trend over the treatment course. Trending eigenmodes were used to reconstruct the original semi-automatically delineated GTVs into a reduced model containing only time trends. Reduced models were compared to the original GTVs by analyzing the reconstruction error in the GTV and position. Both retrospective (all weekly images) and prospective (only the first four weekly images) were evaluated. The average volume difference from the original GTV was 4.3% ± 2.4% for the trending model. The positional variability of the GTV over the treatment course, as measured by the standard deviation of the GTV centroid, was 1.9 ± 1.4 mm for the original GTVs, which was reduced to 1.2 ± 0.6 mm for the trending-only model. In 3/13 cases, the dominant eigenmode changed class between the prospective and retrospective models. The trending-only model preserved GTV and shape relative to the original GTVs, while reducing spurious positional variability. The classification scheme appears feasible for separating types of geometric variability by time trend.

  4. Investigation of dose homogeneity for loose helical tomotherapy delivery in the context of breath-hold radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Bryan; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2005-05-01

    Loose helical delivery is a potential solution to account for respiration-driven tumour motion in helical tomotherapy (HT). In this approach, a treatment is divided into a set of interlaced 'loose' helices commencing at different gantry angles. Each loose helix covers the entire target length in one gantry rotation during a single breath-hold. The dosimetric characteristics of loose helical delivery were investigated by delivering a 6 MV photon beam in a HT-like manner. Multiple scenarios of conventional 'tight' HT and loose helical deliveries were modelled in treatment planning software, and carried out experimentally with Kodak EDR2 film. The advantage of loose helical delivery lies in its ability to produce a more homogeneous dose distribution by eliminating the 'thread' effect—an inherent characteristic of HT, which results in dose modulations away from the axis of gantry rotation. However, loose helical delivery was also subjected to undesirable dose modulations in the direction of couch motion (termed 'beating' effect), when the ratio between the number of beam projections per gantry rotation (n) and pitch factor (p) was a non-integer. The magnitude of dose modulations decreased with an increasing n/p ratio. The results suggest that for the current HT unit (n = 51), dose modulations could be kept under 5% by selecting a pitch factor smaller than 7. A pitch factor of this magnitude should be able to treat a target up to 30 cm in length. Loose helical delivery should increase the total session time only by a factor of 2, while the planning time should stay the same since the total number of beam projections remains unchanged. Considering its dosimetric advantage and clinical practicality, loose helical delivery is a promising solution for the future HT treatments of respiration-driven targets.

  5. Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia

    PubMed Central

    Laurino, Marco; Menicucci, Danilo; Mastorci, Francesca; Allegrini, Paolo; Piarulli, Andrea; Scilingo, Enzo P.; Bedini, Remo; Pingitore, Alessandro; Passera, Mirko; L'Abbate, Antonio; Gemignani, Angelo

    2011-01-01

    The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH. PMID:22461774

  6. Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Weiss, Elisabeth; Sleeman, William C., IV; Hugo, Geoffrey D.

    2012-01-01

    The purpose of this study is to develop and evaluate a lung tumour interfraction geometric variability classification scheme as a means to guide adaptive radiotherapy and improve measurement of treatment response. Principal component analysis (PCA) was used to generate statistical shape models of the gross tumour volume (GTV) for 12 patients with weekly breath hold CT scans. Each eigenmode of the PCA model was classified as ‘trending’ or ‘non-trending’ depending on whether its contribution to the overall GTV variability included a time trend over the treatment course. Trending eigenmodes were used to reconstruct the original semi-automatically delineated GTVs into a reduced model containing only time trends. Reduced models were compared to the original GTVs by analyzing the reconstruction error in the GTV and position. Both retrospective (all weekly images) and prospective (only the first four weekly images) were evaluated. The average volume difference from the original GTV was 4.3% ± 2.4% for the trending model. The positional variability of the GTV over the treatment course, as measured by the standard deviation of the GTV centroid, was 1.9 ± 1.4 mm for the original GTVs, which was reduced to 1.2 ± 0.6 mm for the trending-only model. In 3/13 cases, the dominant eigenmode changed class between the prospective and retrospective models. The trending-only model preserved GTV and shape relative to the original GTVs, while reducing spurious positional variability. The classification scheme appears feasible for separating types of geometric variability by time trend.

  7. Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath hold lung cancer radiotherapy

    PubMed Central

    Badawi, Ahmed M.; Weiss, Elisabeth; Sleeman, William C.

    2012-01-01

    The purpose of this study is to develop and evaluate a lung tumour interfraction geometric variability classification scheme as a means to guide adaptive radiotherapy and improve measurement of treatment response. Principal component analysis (PCA) was used to generate statistical shape models of the gross tumour volume (GTV) for 12 patients with weekly breath hold CT scans. Each eigenmode of the PCA model was classified as ‘trending’ or ‘non-trending’ depending on whether its contribution to the overall GTV variability included a time trend over the treatment course. Trending eigenmodes were used to reconstruct the original semi-automatically delineated GTVs into a reduced model containing only time trends. Reduced models were compared to the original GTVs by analyzing reconstruction error in the GTV volume and position. Both retrospective (all weekly images) and prospective (only the first four weekly images) were evaluated. Average volume difference from the original GTV was 4.3% ± 2.4% for the trending model. The positional variability of the GTV over the treatment course, as measured by the standard deviation of the GTV centroid, was 1.9 ± 1.4 mm for the original GTVs, which was reduced to 1.2 ± 0.6 mm for the trending only model. In 3/13 cases the dominant eigenmode changed class between the prospective and retrospective models. The trending only model preserved GTV volume and shape relative to the original GTVs, while reducing spurious positional variability. The classification scheme appears feasible for separating types of geometric variability by time trend. PMID:22172998

  8. SU-E-T-361: Clinical Benefit of Automatic Beam Gating Mixed with Breath Hold in Radiation Therapy of Left Breast

    SciTech Connect

    Wu, J; Hill, G; Spiegel, J; Ye, J; Mehta, V

    2014-06-01

    Purpose: To investigate the clinical and dosimetric benefits of automatic gating of left breast mixed with breath-hold technique. Methods: Two Active Breathing Control systems, ABC2.0 and ABC3.0, were used during simulation and treatment delivery. The two systems are different such that ABC2.0 is a breath-hold system without beam control capability, while ABC3.0 has capability in both breath-hold and beam gating. At simulation, each patient was scanned twice: one with free breathing (FB) and one with breath hold through ABC. Treatment plan was generated on the CT with ABC. The same plan was also recalculated on the CT with FB. These two plans were compared to assess plan quality. For treatments with ABC2.0, beams with MU > 55 were manually split into multiple subfields. All subfields were identical and shared the total MU. For treatment with ABC3.0, beam splitting was unnecessary. Instead, treatment was delivered in gating mode mixed with breath-hold technique. Treatment delivery efficiency using the two systems was compared. Results: The prescribed dose was 50.4Gy at 1.8Gy/fraction. The maximum heart dose averaged over 10 patients was 46.0±2.5Gy and 24.5±12.2Gy for treatments with FB and with ABC respectively. The corresponding heart V10 was 13.2±3.6% and 1.0±1.6% respectively. The averaged MUs were 99.8±7.5 for LMT, 99.2±9.4 for LLT. For treatment with ABC2.0, normally the original beam was split into 2 subfields. The averaged total time to delivery all beams was 4.3±0.4min for treatments with ABC2.0 and 3.3±0.6min for treatments with ABC3.0 in gating mode. Conclusion: Treatment with ABC tremendously reduced heart dose. Compared to treatments with ABC2.0, gating with ABC3.0 reduced the total treatment time by 23%. Use of ABC3.0 improved the delivery efficiency, and eliminated the possibility of mistreatments. The latter may happen with ABC2.0 where beam is not terminated when breath signal falls outside of the treatment window.

  9. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    PubMed Central

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A.; laFougère, Christian; Nikolaou, Konstantin

    2016-01-01

    Objective First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. Materials and Methods The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Results Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Conclusion Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR

  10. In Vivo Diffusion Tensor MRI of the Human Heart: Reproducibility of Breath-Hold and Navigator-Based Approaches

    PubMed Central

    Nielles-Vallespin, Sonia; Mekkaoui, Choukri; Gatehouse, Peter; Reese, Timothy G.; Keegan, Jennifer; Ferreira, Pedro F.; Collins, Steve; Speier, Peter; Feiweier, Thorsten; de Silva, Ranil; Jackowski, Marcel P.; Pennell, Dudley J.; Sosnovik, David E.; Firmin, David

    2013-01-01

    The aim of this study was to implement a quantitative in vivo cardiac diffusion tensor imaging (DTI) technique that was robust, reproducible, and feasible to perform in patients with cardiovascular disease. A stimulated-echo single-shot echo-planar imaging (EPI) sequence with zonal excitation and parallel imaging was implemented, together with a novel modification of the prospective navigator (NAV) technique combined with a biofeedback mechanism. Ten volunteers were scanned on two different days, each time with both multiple breath-hold (MBH) and NAV multislice protocols. Fractional anisotropy (FA), mean diffusivity (MD), and helix angle (HA) fiber maps were created. Comparison of initial and repeat scans showed good reproducibility for both MBH and NAV techniques for FA (P > 0.22), MD (P > 0.15), and HA (P > 0.28). Comparison of MBH and NAV FA (FAMBHday1 = 0.60 ± 0.04, FANAVday1 = 0.60 ± 0.03, P = 0.57) and MD (MDMBHday1 = 0.8 ± 0.2 × 1023 mm2/s, MDNAVday1 = 0.9 ± 0.2 × 10−3 mm2/s, P = 0.07) values showed no significant differences, while HA values (HAMBHday1Endo = 22 ± 10°, HAMBHday1Mid-Endo = 20 ± 6°, HAMBHday1Mid-Epi = −1 ± 6°, HAMBHday1Epi = 17 ± 6°, HANAVday1Endo = 7 ± 7°, HAMBHday1Mid-Endo = 13 ± 8°, HAMBHday1Epi = −2 ± 7°, HAMBHday1Epi −14 ± 6°,) were significantly different. The scan duration was 20% longer with the NAV approach. Currently, the MBH approach is the more robust in normal volunteers. While the NAV technique still requires resolution of some bulk motion sensitivity issues, these preliminary experiments show its potential for in vivo clinical cardiac diffusion tensor imaging and for delivering high-resolution in vivo 3D DTI tractography of the heart. PMID:23001828

  11. Three-dimensional Mr cholangiopancreatography in a Breath hold with sparsity-based reconstruction of highly Undersampled Data1

    PubMed Central

    Chandarana, Hersh; Doshi, Ankur M.; Shanbhogue, Alampady; Babb, James S.; Bruno, Mary T.; Zhao, Tiejun; Raithel, Esther; Zenge, Michael O.; Li, Guobin; Otazo, Ricardo

    2016-01-01

    Purpose To develop a three-dimensional breath-hold (BH) magnetic resonance (MR) cholangiopancreatographic protocol with sampling perfection with application-optimized contrast using different flip-angle evolutions (SPACE) acquisition and sparsity-based iterative reconstruction (SPARSE) of prospectively sampled 5% k-space data and to compare the results with conventional respiratory-triggered (RT) acquisition. Materials and Methods This HIPAA-compliant prospective study was institutional review board approved. Twenty-nine patients underwent conventional RT SPACE and BH–accelerated SPACE acquisition with 5% k-space sampling at 3 T. Spatial resolution and other parameters were matched when possible. BH SPACE images were reconstructed by enforcing joint multicoil sparsity in the wavelet domain (SPARSE-SPACE). Two board-certified radiologists independently evaluated BH SPARSE-SPACE and RT SPACE images for image quality parameters in the pancreatic duct and common bile duct by using a five-point scale. The Wilcoxon signed-rank test was used to compare BH SPARSE-SPACE and RT SPACE images. Results Acquisition time for BH SPARSE-SPACE was 20 seconds, which was significantly (P < .001) shorter than that for RT SPACE (mean ± standard deviation, 338.8 sec ± 69.1). Overall image quality scores were higher for BH SPARSE-SPACE than for RT SPACE images for both readers for the proximal, middle, and distal pancreatic duct, but the difference was not statistically significant (P > .05). For reader 1, distal common bile duct scores were significantly higher with BH SPARSE-SPACE acquisition (P = .036). More patients had acceptable or better overall image quality (scores ≥ 3) with BH SPARSE-SPACE than with RT SPACE acquisition, respectively, for the proximal (23 of 29 [79%] vs 22 of 29 [76%]), middle (22 of 29 [76%] vs 18 of 29 [62%]), and distal (20 of 29 [69%] vs 13 of 29 [45%]) pancreatic duct and the proximal (25 of 28 [89%] vs 22 of 28 [79%]) and distal (25 of 28 [89%] vs 24

  12. Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Leech, Robert; Murphy, Kevin

    2015-05-01

    Blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath-hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task-related BOLD signal changes. Three methods of analyzing the breath-hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri-infarct tissue, both sub-acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri-infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group-level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath-hold-based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity.

  13. SU-C-BRF-01: Correlation of DIBH Breath Hold Amplitude with Dosimetric Sparing of Heart and Left Anterior Descending Artery in Left Breast Radiotherapy

    SciTech Connect

    Kim, Taeho; Reardon, Kelli; Sukovich, Kaitlyn; Crandley, Edwin; Read, Paul; Krishni, Wijesooriya

    2014-06-15

    Purpose: A 7.4% increase in major coronary events per 1 Gy increase in mean heart dose has been reported from the population-based analysis of radiation-induced cardiac toxicity following treatment of left sided breast cancer. Deep inhalation breath-hold (DIBH) is clinically utilized to reduce radiation dose to heart and left anterior descending artery (LAD). We investigated the correlation of dose sparing in heart and LAD with internal DIBH amplitude to develop a quantitative predictive model for expected dose to heart and LAD based on internal breath hold amplitude. Methods: A treatment planning study (Prescription Dose = 50 Gy) was performed on 50 left breast cancer patients underwent DIBH whole breast radiotherapy. Two CT datasets, free breathing (FB) and DIBH, were utilized for treatment planning and for determination of the internal anatomy DIBH amplitude (difference between sternum position at FB and DIBH). The heart and LAD dose between FB and DIBH plans was compared and dose to the heart and LAD as a function of breath hold amplitude was determined. Results: Average DIBH amplitude using internal anatomy was 13.9±4.2 mm. The DIBH amplitude-mean dose reduction correlation is 20%/5mm (0.3 Gy/5mm) for the heart and 18%/5mm (1.1 Gy/5mm) for LAD. The correlation with max dose reduction is 12%/5mm (3.8 Gy/5mm) for the heart and 16%/5mm (3.2 Gy/5mm) for LAD. We found that average dose reductions to LAD from 6.0±6.5 Gy to 2.0±1.6 Gy with DIBH (4.0 Gy reduction: -67%, p < 0.001) and average dose reduction to the heart from 1.3±0.7 Gy to 0.7±0.2 Gy with DIBH (0.6 Gy reduction: -46%, p < 0.001). That suggests using DIBH may reduce the risk of the major coronary event for left sided breast cancer patients. Conclusion: The correlation between breath hold amplitude and dosimetric sparing suggests that dose sparing linearly increases with internal DIBH amplitude.

  14. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Kim, Siyong; Park, Yang-Kyun; Youn, Kaylin K.; Keall, Paul; Lee, Rena

    2014-11-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE90%) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min-1 with free breathing to 0.09 mm min-1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH biofeedback

  15. Effect of Maximal Apnoea Easy-Going and Struggle Phases on Subarachnoid Width and Pial Artery Pulsation in Elite Breath-Hold Divers

    PubMed Central

    Winklewski, Pawel J.; Barak, Otto; Madden, Dennis; Gruszecka, Agnieszka; Gruszecki, Marcin; Guminski, Wojciech; Kot, Jacek; Frydrychowski, Andrzej F.; Drvis, Ivan; Dujic, Zeljko

    2015-01-01

    Purpose The aim of the study was to assess changes in subarachnoid space width (sas-TQ), the marker of intracranial pressure (ICP), pial artery pulsation (cc-TQ) and cardiac contribution to blood pressure (BP), cerebral blood flow velocity (CBFV) and cc-TQ oscillations throughout the maximal breath hold in elite apnoea divers. Non-invasive assessment of sas-TQ and cc-TQ became possible due to recently developed method based on infrared radiation, called near-infrared transillumination/backscattering sounding (NIR-T/BSS). Methods The experimental group consisted of seven breath-hold divers (six men). During testing, each participant performed a single maximal end-inspiratory breath hold. Apnoea consisted of the easy-going and struggle phases (characterised by involuntary breathing movements (IBMs)). Heart rate (HR) was determined using a standard ECG. BP was assessed using the photoplethysmography method. SaO2 was monitored continuously with pulse oximetry. A pneumatic chest belt was used to register thoracic and abdominal movements. Cerebral blood flow velocity (CBFV) was estimated by a 2-MHz transcranial Doppler ultrasonic probe. sas-TQ and cc-TQ were measured using NIR-T/BSS. Wavelet transform analysis was performed to assess cardiac contribution to BP, CBFV and cc-TQ oscillations. Results Mean BP and CBFV increased compared to baseline at the end of the easy phase and were further augmented by IBMs. cc-TQ increased compared to baseline at the end of the easy phase and remained stable during the IBMs. HR did not change significantly throughout the apnoea, although a trend toward a decrease during the easy phase and recovery during the IBMs was visible. Amplitudes of BP, CBFV and cc-TQ were augmented. sas-TQ and SaO2 decreased at the easy phase of apnoea and further decreased during the IBMs. Conclusions Apnoea increases intracranial pressure and pial artery pulsation. Pial artery pulsation seems to be stabilised by the IBMs. Cardiac contribution to BP, CBFV and

  16. Total removal of unwanted harmonic peaks (TruHARP) MRI for single breath-hold high-resolution myocardial motion and strain quantification.

    PubMed

    Agarwal, Harsh K; Prince, Jerry L; Abd-Elmoniem, Khaled Z

    2010-08-01

    Current MRI methods for myocardial motion and strain quantification have limited resolution because of Fourier space spectral peak interference. Methods have been proposed to remove this interference in order to improve resolution; however, these methods are clinically impractical due to the prolonged imaging times. In this paper, we propose total removal of unwanted harmonic peaks (TruHARP); a myocardial motion and strain quantification methodology that uses a novel single breath-hold MR image acquisition protocol. In post-processing, TruHARP separates the spectral peaks in the acquired images, enabling high-resolution motion and strain quantification. The impact of high resolution on calculated circumferential and radial strains is studied using realistic Monte Carlo simulations, and the improvement in strain maps is demonstrated in six human subjects.

  17. Hemodynamic Changes during a Deep Inspiration Maneuver Predict Fluid Responsiveness in Spontaneously Breathing Patients

    PubMed Central

    Préau, Sébastien; Dewavrin, Florent; Soland, Vincent; Bortolotti, Perrine; Colling, Delphine; Chagnon, Jean-luc; Durocher, Alain; Saulnier, Fabienne

    2012-01-01

    Objective. We hypothesized that the hemodynamic response to a deep inspiration maneuver (DIM) indicates fluid responsiveness in spontaneously breathing (SB) patients. Design. Prospective study. Setting. ICU of a general hospital. Patients. Consecutive nonintubated patients without mechanical ventilation, considered for volume expansion (VE). Intervention. We assessed hemodynamic status at baseline and after VE. Measurements and Main Results. We measured radial pulse pressure (PP) using an arterial catheter and peak velocity of femoral artery flow (VF) using continuous Doppler. Changes in PP and VF induced by a DIM (ΔPPdim and ΔVFdim) were calculated in 23 patients. ΔPPdim and ΔVFdim ≥12% predicted responders to VE with sensitivity of 90% and specificity of 100%. Conclusions. In a restricted population of SB patients with severe sepsis or acute pancreatitis, ΔPPdim and ΔVFdim are accurate indices for predicting fluid responsiveness. These results should be confirmed in a larger population before validating their use in current practice. PMID:22195286

  18. Deep inspiration and the emergence of ventilation defects during bronchoconstriction: a computational study.

    PubMed

    Golnabi, Amir H; Harris, R Scott; Venegas, Jose G; Winkler, Tilo

    2014-01-01

    Deep inspirations (DIs) have a dilatory effect on airway smooth muscle (ASM) that helps to prevent or reduce more severe bronchoconstriction in healthy individuals. However, this bronchodilation appears to fail in some asthmatic patients or under certain conditions, and the reason is unclear. Additionally, quantitative effects of the frequency and magnitude of DIs on bronchodilation are not well understood. In the present study, we used a computational model of bronchoconstriction to study the effects of DI volumes, time intervals between intermittent DIs, relative speed of ASM constriction, and ASM activation on bronchoconstriction and the emergence of ventilation defects (VDefs). Our results showed a synergistic effect between the volume of DIs and the time intervals between them on bronchoconstriction and VDefs. There was a domain of conditions with sufficiently large volumes of DIs and short time intervals between them to prevent VDefs. Among conditions without VDefs, larger volumes of DIs resulted in greater airway dilation. Similarly, the time interval between DIs, during which the activated ASM re-constricts, affected the amplitude of periodic changes in airway radii. Both the relative speed of ASM constriction and ASM activation affected what volume of DIs and what time interval between them could prevent the emergence of VDefs. In conclusion, quantitative characteristics of DIs, such as their volume and time interval between them, affect bronchoconstriction and may contribute to difficulties in asthma. Better understanding of the quantitative aspects of DIs may result in novel or improved therapeutic approaches. PMID:25402457

  19. Quantifying the Reproducibility of Heart Position During Treatment and Corresponding Delivered Heart Dose in Voluntary Deep Inhalation Breath Hold for Left Breast Cancer Patients Treated With External Beam Radiotherapy

    SciTech Connect

    McIntosh, Alyson; Shoushtari, Asal N.; Benedict, Stanley H.; Read, Paul W.; Wijesooriya, Krishni

    2011-11-15

    Purpose: Voluntary deep inhalation breath hold (VDIBH) reduces heart dose during left breast irradiation. We present results of the first study performed to quantify reproducibility of breath hold using bony anatomy, heart position, and heart dose for VDIBH patients at treatment table. Methods and Materials: Data from 10 left breast cancer patients undergoing VDIBH whole-breast irradiation were analyzed. Two computed tomography (CT) scans, free breathing (FB) and VDIBH, were acquired to compare dose to critical structures. Pretreatment weekly kV orthogonal images and tangential ports were acquired. The displacement difference from spinal cord to sternum across the isocenter between coregistered planning Digitally Reconstructed Radiographs (DRRs) and kV imaging of bony thorax is a measure of breath hold reproducibility. The difference between bony coregistration and heart coregistration was the measured heart shift if the patient is aligned to bony anatomy. Results: Percentage of dose reductions from FB to VDIBH: mean heart dose (48%, SD 19%, p = 0.002), mean LAD dose (43%, SD 19%, p = 0.008), and maximum left anterior descending (LAD) dose (60%, SD 22%, p = 0.008). Average breath hold reproducibility using bony anatomy across the isocenter along the anteroposterior (AP) plane from planning to treatment is 1 (range, 0-3; SD, 1) mm. Average heart shifts with respect to bony anatomy between different breath holds are 2 {+-} 3 mm inferior, 1 {+-} 2 mm right, and 1 {+-} 3 mm posterior. Percentage dose changes from planning to delivery: mean heart dose (7%, SD 6%); mean LAD dose, ((9%, SD 7%)S, and maximum LAD dose, (11%, SD 11%) SD 11%, p = 0.008). Conclusion: We observed excellent three-dimensional bony registration between planning and pretreatment imaging. Reduced delivered dose to heart and LAD is maintained throughout VDIBH treatment.

  20. Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition

    PubMed Central

    Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir

    2015-01-01

    Purpose To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. Materials and Methods This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30–70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. Results There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: −8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95

  1. Accelerated Cardiac T2 Mapping using Breath-hold Multi-Echo Fast Spin-Echo Pulse Sequence with Compressed sensing and Parallel Imaging

    PubMed Central

    Feng, Li; Otazo, Ricardo; Jung, Hong; Jensen, Jens H.; Ye, Jong C.; Sodickson, Daniel K.; Kim, Daniel

    2010-01-01

    Cardiac T2 mapping is a promising method for quantitative assessment of myocardial edema and iron overload. We have developed a new multi-echo fast spin echo (ME-FSE) pulse sequence for breath-hold T2 mapping with acceptable spatial resolution. We propose to further accelerate this new ME-FSE pulse sequence using k-t FOCal Underdetermined System Solver (FOCUSS) adapted with a framework that utilizes both compressed sensing and parallel imaging (.e.g, GRAPPA) to achieve higher spatial resolution. We imaged twelve control subjects in mid-ventricular short-axis planes and compared the accuracy of T2 measurements obtained using ME-FSE with GRAPPA and ME-FSE with k-t FOCUSS. For image reconstruction, we used a bootstrapping two-step approach, where in the first step fast Fourier transform was used as the sparsifying transform and in the final step principal component analysis was used as the sparsifying transform. Compared with T2 measurements obtained using GRAPPA, T2 measurements obtained using k-t FOCUSS were in excellent agreement (mean difference = 0.04 ms; upper/lower 95% limits of agreement were 2.26/−2.19 ms). The proposed accelerated ME-FSE pulse sequence with k-t FOCUSS is a promising investigational method for rapid T2 measurement of the heart with relatively high spatial resolution (1.7 mm × 1.7 mm). PMID:21360737

  2. Reproducibility of The Abdominal and Chest Wall Position by Voluntary Breath-Hold Technique Using a Laser-Based Monitoring and Visual Feedback System

    SciTech Connect

    Nakamura, Katsumasa . E-mail: nakam@radiol.med.kyushu-u.ac.jp; Shioyama, Yoshiyuki; Nomoto, Satoru; Ohga, Saiji; Toba, Takashi; Yoshitake, Tadamasa; Anai, Shigeo; Terashima, Hiromi; Honda, Hiroshi

    2007-05-01

    Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspiration BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 {+-} 1.3 mm to 1.5 {+-} 0.5 mm, 2.5 {+-} 1.9 mm to 1.1 {+-} 0.4 mm, and 6.6 {+-} 2.4 mm to 2.6 {+-} 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial.

  3. Rate of disappearance of labeled carbon dioxide from the lungs of humans during breath holding: a method for studying the dynamics of pulmonary CO2 exchange

    PubMed Central

    Hyde, Richard W.; Puy, Ricardo J. M.; Raub, William F.; Forster, Robert E.

    1968-01-01

    The dynamics of CO2 exchange in the lungs of man was studied by observing the rate of disappearance of a stable isotope of CO2 (13CO2) from the alveolar gas during breath holding. Over 50% of the inspired isotope disappeared within the first 3 sec followed by a moderately rapid logarithmic decline in which one-half of the remaining 13CO2 disappeared every 10 sec. The large initial disappearance of 13CO2 indicated that alveolar 13CO2 equilibrated in less than 3 sec with the CO2 stored in the pulmonary tissues and capillary blood. The volume of CO2 in the pulmonary tissues calculated from this initial disappearance was 200 ml or 0.33 ml of CO2 per milliliter of pulmonary tissue volume. The alveolar to end-capillary gradient for 13CO2 was calculated by comparing the simultaneous disappearance rates of 13CO2 and acetylene. At rest and during exercise this gradient for 13CO2 was either very small or not discernible, and diffusing capacity for CO2 (DLCO2) exceeded 200 ml/(min × mm Hg). After the administration of a carbonic anhydrase inhibitor the rate of disappearance of 13CO2 decreased markedly. DLCO2 fell to 42 ml/(min × mm Hg) and at least 70% of the exchange of 13CO2 with the CO2 stores in the pulmonary tissues and blood was blocked by the inhibitor. These changes were attributed to impairment of exchange of 13CO2 with the bicarbonate in the pulmonary tissues and blood. The pH of the pulmonary tissues (Vtis) was determined by a method based on the premise that the CO2 space in the pulmonary tissues blocked by the inhibitor represented total bicarbonate content. At an alveolar PCO2 of 40 mm Hg pH of Vtis equalled 6.97 ± 0.09. PMID:5658586

  4. SU-E-J-140: Availability of Using Diaphragm Matching in Stereotactic Body Radiotherapy (SBRT) at the Time in Breath-Holding SBRT for Liver Cancer

    SciTech Connect

    Kawahara, D; Tsuda, S.; Ozawa, S; Ohno, Y.; Kimura, T.; Nagata, Y.; Nakashima, T.; Aita, M.; Ochi, Y.; Okumura, T.; Masuda, H.

    2014-06-01

    Purpose: IGRT based on the bone matching may produce a larger target positioning error in terms of the reproducibility of the expiration breath hold. Therefore, the feasibility of the 3D image matching between planning CT image and pretreatment CBCT image based on the diaphragm matching was investigated. Methods: In fifteen-nine liver SBRT cases, Lipiodol, uptake after TACE was outlined as the marker of the tumor. The relative coordinate of the isocenter obtained by the contrast matching was defined as the reference coordinate. The target positioning difference between diaphragm matching and bone matching were evaluated by the relative coordinate of the isocenter from the reference coordinate obtained by each matching technique. In addition, we evaluated PTV margins by van Herk setup margin formula. Results: The target positioning error by the diaphragm matching and the bone matching was 1.31±0.83 and 3.10±2.80 mm in the cranial-caudal(C-C) direction, 1.04±0.95 and 1.62±1.02 mm in the anterior-posterior(A-P) direction, 0.93±1.19 and 1.12±0.94 mm in the left-right(L-R) direction, respectively. The positioning error by the diaphragm matching was significantly smaller than the bone matching in the C-C direction (p<0.05). The setup margin of diaphragm matching and bone matching that we had calculated based on van Herk margin formula was 4.5mm and 6.2mm(C-C), and 3.6mm and 6.3mm(A-P), and 2.6mm and 4.5mm(L-R), respectively. Conclusion: IGRT based on a diaphragm matching could be one alternative image matching technique for the positioning of the patients with liver tumor.

  5. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise.

  6. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  7. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  8. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  9. Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies.

    PubMed

    Gardener, Alexander G; Francis, Susan T

    2010-06-01

    Flow-sensitive alternating inversion recovery arterial spin labeling with parallel imaging acquisition is used to acquire single-shot, multislice perfusion maps of the kidney. A considerable problem for arterial spin labeling methods, which are based on sequential subtraction, is the movement of the kidneys due to respiratory motion between acquisitions. The effects of breathing strategy (free, respiratory-triggered and breath hold) are studied and the use of background suppression is investigated. The application of movement correction by image registration is assessed and perfusion rates are measured. Postacquisition image realignment is shown to improve visual quality and subsequent perfusion quantification. Using such correction, data can be collected from free breathing alone, without the need for a good respiratory trace and in the shortest overall acquisition time, advantageous for patient comfort. The addition of background suppression to arterial spin labeling data is shown to reduce the perfusion signal-to-noise ratio and underestimate perfusion.

  10. Pulmonary Perfusion MRI using Interleaved Variable Density Sampling and HighlY Constrained Cartesian Reconstruction (HYCR)

    PubMed Central

    Wang, Kang; Schiebler, Mark L.; Francois, Christopher J.; Del Rio, A. Munoz; Cornejo, Ma. Daniela; Bell, Laura C.; Korosec, Frank R.; Brittain, Jean H.; Holmes, James H.; Nagle, Scott K.

    2012-01-01

    Purpose To demonstrate the feasibility of performing single breath-hold, non-cardiac gated, ultrafast, high spatial-temporal resolution whole chest MR pulmonary perfusion imaging in humans. Materials and Methods Eight (8) subjects (5 male, 3 female) were scanned with the proposed method on a 3T clinical scanner using a 32-channel phased-array coil. Seven (88%) were healthy volunteers, and one was a patient volunteer with sarcoidosis. The peak lung enhancement phase for each subject was scored for gravitational effect, peak parenchymal enhancement and severity of artifacts by 3 cardiothoracic radiologists independently. Results All studies were successfully performed by MR technologists without any additional training. Mean parenchymal signal was very good, measuring 0.78 ± 0.13 (continuous scale, 0 = “none” → 1 = “excellent”). Mean level of motion artifacts was low, measuring 0.13 ± 0.08 (continuous scale, 0 = “none” → 1 = “severe”). Conclusion It is feasible to perform single breath-hold, non-cardiac gated, ultrafast, high spatial-temporal resolution whole chest MR pulmonary perfusion imaging in humans. PMID:23349079

  11. Parallel imaging for first-pass myocardial perfusion.

    PubMed

    Irwan, Roy; Lubbers, Daniël D; van der Vleuten, Pieter A; Kappert, Peter; Götte, Marco J W; Sijens, Paul E

    2007-06-01

    Two parallel imaging methods used for first-pass myocardial perfusion imaging were compared in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image artifacts. One used adaptive Time-adaptive SENSitivity Encoding (TSENSE) and the other used GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA), which are both applied to a gradient-echo sequence. Both methods were tested on 12 patients with coronary artery disease. The order of perfusion sequences was inverted in every other patient. Image acquisition was started during the administration of a contrast bolus followed by a 20-ml saline flush (3 ml/s), and the next perfusion was started at least 15 min thereafter using an identical bolus. An acceleration rate of 2 was used in both methods, and acquisition was performed during breath-holding. Significantly higher SNR, CNR and image quality were obtained with GRAPPA images than with TSENSE images. GRAPPA, however, did not yield a higher CNR when applied after the second bolus. GRAPPA perfusion imaging produced larger differences between subjects than did TSENSE. Compared to TSENSE, GRAPPA produced significantly better CNR on the first bolus. More consistent SNR and CNR were obtained from TSENSE images than from GRAPPA images, indicating that the diagnostic value of TSENSE may be better.

  12. Organ perfusion during voluntary pulmonary hyperinflation; a magnetic resonance imaging study.

    PubMed

    Kyhl, Kasper; Drvis, Ivan; Barak, Otto; Mijacika, Tanja; Engstrøm, Thomas; Secher, Niels H; Dujic, Zeljko; Buca, Ante; Madsen, Per Lav

    2016-02-01

    Pulmonary hyperinflation is used by competitive breath-hold divers and is accomplished by glossopharyngeal insufflation (GPI), which is known to compress the heart and pulmonary vessels, increasing sympathetic activity and lowering cardiac output (CO) without known consequence for organ perfusion. Myocardial, pulmonary, skeletal muscle, kidney, and liver perfusion were evaluated by magnetic resonance imaging in 10 elite breath-hold divers at rest and during moderate GPI. Cardiac chamber volumes, stroke volume, and thus CO were determined from cardiac short-axis cine images. Organ volumes were assessed from gradient echo sequences, and organ perfusion was evaluated from first-pass images after gadolinium injection. During GPI, lung volume increased by 5.2 ± 1.5 liters (mean ± SD; P < 0.001), while spleen and liver volume decreased by 46 ± 39 and 210 ± 160 ml, respectively (P < 0.05), and inferior caval vein diameter by 4 ± 3 mm (P < 0.05). Heart rate tended to increase (67 ± 10 to 86 ± 20 beats/min; P = 0.052) as right and left ventricular volumes were reduced (P < 0.05). Stroke volume (107 ± 21 to 53 ± 15 ml) and CO (7.2 ± 1.6 to 4.2 ± 0.8 l/min) decreased as assessed after 1 min of GPI (P < 0.01). Left ventricular myocardial perfusion maximum upslope and its perfusion index decreased by 1.52 ± 0.15 s(-1) (P < 0.001) and 0.02 ± 0.01 s(-1) (P < 0.05), respectively, without transmural differences. Pulmonary tissue, spleen, kidney, and pectoral-muscle perfusion also decreased (P < 0.05), and yet liver perfusion was maintained. Thus, during pulmonary hyperinflation by GPI, CO and organ perfusion, including the myocardium, as well as perfusion of skeletal muscles, are reduced, and yet perfusion of the liver is maintained. Liver perfusion seems to be prioritized when CO decreases during GPI. PMID:26589331

  13. Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; West, John B.

    1994-01-01

    We studied the effects of gravity on the inhomogeneity of pulmonary perfusion in humans by performing hyperventilation-breath-hold single-breath measurements before, during, and after 9 days of continuous exposure to microgravity during the Spacelab Life Sciences-1 (SLS-1) mission. In microgravity the indicators of inhomogeneity of perfusion, especially the size of cardiogenic oscillations in expired CO2 and the height of phase IV, were markedly reduced. Cardiogenic oscillations were reduced to approximately 60% of their preflight standing size, and the height of phase IV was between 0 and -8% (a terminal fall became a small terminal rise) of the preflight standing value. The terminal change in expired CO2 was nearly abolished in microgravity, indicating more uniformity of blood flow between lung units that close and those that remain open at the end of expiration. A possible explanation of this observation is the disappearance of gravity-dependent topographic inequality of blood flow. The residual cardiogenic oscillations in expired CO2 imply a persisting inhomogeneity of perfusion in the absence of gravity, probably in lung regions that are not within the same acinus.

  14. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    SciTech Connect

    Mittauer, K; Deraniyagala, R; Li, J; Lu, B; Liu, C; Lightsey, J; Yan, G

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied for dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.

  15. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  16. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS. PMID:24297421

  17. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health care ...

  18. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    PubMed Central

    Jekic, Mihaela; Foster, Eric L; Ballinger, Michelle R; Raman, Subha V; Simonetti, Orlando P

    2008-01-01

    Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed. PMID:18272005

  19. Hepatic Perfusion Therapy.

    PubMed

    Rajeev, Rahul; Gamblin, T Clark; Turaga, Kiran K

    2016-04-01

    Isolated hepatic perfusion uses the unique vascular supply of hepatic malignancies to deliver cytotoxic chemotherapy. The procedure involves vascular isolation of the liver and delivery of chemotherapy via the hepatic artery and extraction from retrohepatic vena cava. Benefits of hepatic perfusion have been observed in hepatic metastases of ocular melanoma and colorectal cancer and primary hepatocellular carcinoma. Percutaneous and prophylactic perfusions are avenues of ongoing research.

  20. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  1. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  2. Evaluation of Respiratory Motion Effect on Defect Detection in Myocardial Perfusion SPECT: A Simulation Study.

    PubMed

    Yang, Yu-Wen; Chen, Jyh-Cheng; He, Xin; Wang, Shyh-Jen; Tsui, Benjamin M W

    2009-06-01

    The objective of this study is to investigate the effects of respiratory motion (RM) on defect detection in Tc-99m sestamibi myocardial perfusion SPECT (MPS) using a phantom population that includes patient variability. Three RM patterns are included, namely breath-hold, slightly enhanced normal breathing, and deep breathing. For each RM pattern, six 4-D NCAT phantoms were generated, each with anatomical variations. Anterior, lateral and inferior myocardial defects with different sizes and contrasts were inserted. Noise-free SPECT projections were simulated using an analytical projector. Poisson noise was then added to generate noisy realizations. The projection data were reconstructed using the OS-EM algorithm with 1 and 4 subsets/iteration and at 1, 2, 3, 5, 7, and 10 iterations. Short-axis images centered at the centroid of the myocardial defect were extracted, and the channelized Hotelling observer (CHO) was applied for the detection of the defect. The CHO results show that the value of the area under the receiver operating characteristics (ROC) curve (AUC) is affected by the RM amplitude. For all the defect sizes and contrasts studied, the highest or optimal AUC values indicate maximum detectability decrease with the increase of the RM amplitude. With no respiration, the ranking of the optimal AUC value in decreasing order is anterior then lateral, and finally inferior defects. The AUC value of the lateral defect drops more severely as the RM amplitude increases compared to other defect locations. Furthermore, as the RM amplitude increases, the AUC values of the smaller defects drop more quickly than the larger ones. We demonstrated that RM affects defect detectability of MPS imaging. The results indicate that developments of optimal data acquisition methods and RM correction methods are needed to improve the defect detectability in MPS.

  3. Evaluation of Respiratory Motion Effect on Defect Detection in Myocardial Perfusion SPECT: A Simulation Study

    PubMed Central

    Yang, Yu-Wen; Chen, Jyh-Cheng; He, Xin; Wang, Shyh-Jen; Tsui, Benjamin M. W.

    2010-01-01

    The objective of this study is to investigate the effects of respiratory motion (RM) on defect detection in Tc-99m sestamibi myocardial perfusion SPECT (MPS) using a phantom population that includes patient variability. Three RM patterns are included, namely breath-hold, slightly enhanced normal breathing, and deep breathing. For each RM pattern, six 4-D NCAT phantoms were generated, each with anatomical variations. Anterior, lateral and inferior myocardial defects with different sizes and contrasts were inserted. Noise-free SPECT projections were simulated using an analytical projector. Poisson noise was then added to generate noisy realizations. The projection data were reconstructed using the OS-EM algorithm with 1 and 4 subsets/iteration and at 1, 2, 3, 5, 7, and 10 iterations. Short-axis images centered at the centroid of the myocardial defect were extracted, and the channelized Hotelling observer (CHO) was applied for the detection of the defect. The CHO results show that the value of the area under the receiver operating characteristics (ROC) curve (AUC) is affected by the RM amplitude. For all the defect sizes and contrasts studied, the highest or optimal AUC values indicate maximum detectability decrease with the increase of the RM amplitude. With no respiration, the ranking of the optimal AUC value in decreasing order is anterior then lateral, and finally inferior defects. The AUC value of the lateral defect drops more severely as the RM amplitude increases compared to other defect locations. Furthermore, as the RM amplitude increases, the AUC values of the smaller defects drop more quickly than the larger ones. We demonstrated that RM affects defect detectability of MPS imaging. The results indicate that developments of optimal data acquisition methods and RM correction methods are needed to improve the defect detectability in MPS. PMID:21731107

  4. Perfusion Bioreactor Module

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  5. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  6. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed.

  7. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  8. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  9. [Extracorporeal perfusion of the sheep rumen].

    PubMed

    Leng, L; Bajo, M; Várady, J; Szányiová, M

    1977-06-01

    We constructed a modified perfusion apparatus and elaborated a method of extracorporal perfusion of the rumen of sheep. As perfusates we used the bovine plasma diluted in a ratio of 1:1 of an isotonic sodium chloride (NaCl) solution and the whole autologous blood. Transaminases GOT and GPT, ammonia and pH were determined in the perfusate. The different perfusions were evaluated according to previously determined perfusion conditions and criteria. A subject for discussion is the question of suitability of the parameters under examination for judging the state of the perfused organ. The described method is suitable for the study of metabolical processes in the rumen wal.

  10. Distributed perfusion educational model: a shift in perfusion economic realities.

    PubMed

    Austin, Jon W; Evans, Edward L; Hoerr, Harry R

    2005-12-01

    In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  11. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed. PMID:24629039

  12. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  13. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    SciTech Connect

    Song, H; Liu, W; Ruan, D; Jung, S; Gach, M

    2014-06-15

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition. During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human

  14. Artificial tissues in perfusion culture.

    PubMed

    Sittinger, M; Schultz, O; Keyszer, G; Minuth, W W; Burmester, G R

    1997-01-01

    In the stagnant environment of traditional culture dishes it is difficult to generate long term experiments or artificial tissues from human cells. For this reason a perfusion culture system with a stable supply of nutrients was developed. Human chondrocytes were seeded three-dimensionally in resorbable polymer fleeces. The cell-polymer tissues were then mounted in newly developed containers (W.W. Minuth et al, Biotechniques, 1996) and continuously perfused by fresh medium for 40 days. Samples from the effluate were analyzed daily, and the pH of the medium and glucose concentration remained stable during this period. The lactid acid concentration increased from 0.17 mg/ml to 0.35 mg/ml, which was influenced by the degradation of the resorbable polymer fibers used as three dimensional support material for the cells. This perfusion system proved to be reliable especially in long term cultures. Any components in the culture medium of the cells could be monitored without disturbances as caused by manual medium replacement. These results suggest the described perfusion culture system to be a valuable and convenient tool for many applications in tissue engineering, especially in the generation of artificial connective tissue.

  15. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  16. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  17. Sodium efflux from perfused giant algal cells.

    PubMed

    Clint, G M; Macrobbie, E A

    1987-06-01

    Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including (22)Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 μM N,N'-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.

  18. Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving?

    PubMed Central

    Hooker, Sascha K.; Miller, Patrick J. O.; Johnson, Mark P.; Cox, Oliver P.; Boyd, Ian L.

    2005-01-01

    Novel observations collected from video, acoustic and conductivity sensors showed that Antarctic fur seals consistently exhale during the last 50–85% of ascent from all dives (10–160 m, n>8000 dives from 50 seals). The depth of initial bubble emission was best predicted by maximum dive depth, suggesting an underlying physical mechanism. Bubble sound intensity recorded from one seal followed predictions of a simple model based on venting expanding lung air with decreasing pressure. Comparison of air release between dives, together with lack of variation in intensity of thrusting movement during initial descent regardless of ultimate dive depth, suggested that inhaled diving lung volume was constant for all dives. The thrusting intensity in the final phase of ascent was greater for dives in which ascent exhalation began at a greater depth, suggesting an energetic cost to this behaviour, probably as a result of loss of buoyancy from reduced lung volume. These results suggest that fur seals descend with full lung air stores, and thus face the physiological consequences of pressure at depth. We suggest that these regular and predictable ascent exhalations could function to reduce the potential for a precipitous drop in blood oxygen that would result in shallow-water blackout. PMID:15734689

  19. [The use of Pantogam syrup in treating small children's breath holding spells].

    PubMed

    Pol'skaya, A V; Chutko, L S; Yakovenko, E V

    2016-01-01

    Цель исследования. Эффективность применения препарата пантогам сироп 10% (гопантеновая кислота) в терапии аффективно-респираторных приступов (АРП). Материал и методы. Обследованы 60 детей в возрасте от 2 до 4 лет с АРП. Проведена оценка клинических проявлений и данных нейрофизиологического обследования (длительный видео-ЭЭГ-мониторинг) у детей с пароксизмами, определение уровня их тревожности. В ходе исследования дети были разделены на две группы: основную (30 пациентов), где в качестве терапии АРП применялся пантогам сироп (100 мг/мл в течение 3 мес в дозе 30—35 мг/кг в сутки) и группу сравнения (30 пациентов), в которой состояние корригировалось лишь психологическими методами. Результаты и заключение. После курса лечения отмечено улучшение у 73,3% пациентов основной группы по сравнению с 16,7% в группе сравнения. Показатели уровня детской тревожности также значительно снизились после проведенной нейропротивной терапии. Сравнительный анализ электроэнцефалографических показателей выявил достоверное снижение мощности ритмов медленноволнового диапазона. Полученные результаты позволяют судить о высокой эффективности пантогама сиропа в лечении детей с данной патологией.

  20. Daily diving pattern of Korean and Japanese breath-hold divers (ama).

    PubMed

    Hong, S K; Henderson, J; Olszowka, A; Hurford, W E; Falke, K J; Qvist, J; Radermacher, P; Shiraki, K; Mohri, M; Takeuchi, H

    1991-01-01

    Daily diving patterns and thoracic skin and sea-water temperatures were recorded during the entire work shift of Korean female unassisted (cachido) and Japanese male unassisted and partly assisted (funado) divers using Underwater Physiological Data Loggers developed in Buffalo and Japan. All 3 groups of divers were studied during the summer of 1989 and 1990. Additional studies were conducted during the winter of 1991 on Korean female divers who, unlike Japanese divers, dive all year round. The water temperature of the diving grounds in summer was 24 degrees C in both Korea and Japan, and 10 degrees C during winter in Korea. Both Korean female and Japanese male cachido divers made 113-138 dives a day and stayed in the water a total of 170-200 min.day-1, of which only 52-63 min were spent diving submerged, and the remaining time at the water surface. These diving patterns were not different between female and male cachido divers. Compared with Japanese male divers, Korean female divers dived to a shallower depth (3.7 vs. 6.9 m) with shorter dive time (29 vs. 37 s) and shorter bottom time (14 vs. 18 s). Velocities of descent (0.72 vs. 0.47 m.s-1) and ascent (0.77 vs. 0.56 m.s-1) were also slower in female divers than in male divers. The diving pattern of Korean female divers was similar in both summer and winter. Although all cachido divers wore wet suits and thus were protected from severe cold stress, thoracic skin temperature decreased during a work shift by 7 degrees C in winter (vs. 1 degree C in summer) in Korean divers. Compared with Japanese male cachido divers, Japanese male funado divers stayed in the diving ground (including time in the boat) longer (201 vs. 305 min.day-1) but performed only 23 dives per day. The average diving depth (9.7 m), duration (69 s), and bottom time for each dive (45 s), however, were significantly greater in funados. The velocity of vertical descent (1.0 m.s-1) was also significantly greater in funados because they descend with a weight (8-12 kg). The rate of ascent was not different.

  1. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  2. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  3. Perfusion patterns of ischemic stroke on computed tomography perfusion.

    PubMed

    Lin, Longting; Bivard, Andrew; Parsons, Mark W

    2013-09-01

    CT perfusion (CTP) has been applied increasingly in research of ischemic stroke. However, in clinical practice, it is still a relatively new technology. For neurologists and radiologists, the challenge is to interpret CTP results properly in the context of the clinical presentation. In this article, we will illustrate common CTP patterns in acute ischemic stroke using a case-based approach. The aim is to get clinicians more familiar with the information provided by CTP with a view towards inspiring them to incorporate CTP in their routine imaging workup of acute stroke patients.

  4. Intestinal perfusion monitoring using photoplethysmography

    PubMed Central

    Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-01-01

    Abstract. In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed. PMID:23942635

  5. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  6. Sumatriptan and cerebral perfusion in healthy volunteers.

    PubMed

    Scott, A K; Grimes, S; Ng, K; Critchley, M; Breckenridge, A M; Thomson, C; Pilgrim, A J

    1992-04-01

    1. The effect of sumatriptan on regional cerebral perfusion was studied in healthy volunteers. 2. Intravenous sumatriptan (2 mg) had no detectable effect on regional cerebral perfusion as measured using a SPECT system with 99technetiumm labelled hexemethylpropyleneamineoxime. 3. Sumatriptan had no effect on pulse, blood pressure or ECG indices. 4. All six volunteers experienced minor adverse effects during the intravenous infusion.

  7. Personality factors correlate with regional cerebral perfusion.

    PubMed

    O'Gorman, R L; Kumari, V; Williams, S C R; Zelaya, F O; Connor, S E J; Alsop, D C; Gray, J A

    2006-06-01

    There is an increasing body of evidence pointing to a neurobiological basis of personality. The purpose of this study was to investigate the biological bases of the major dimensions of Eysenck's and Cloninger's models of personality using a noninvasive magnetic resonance perfusion imaging technique in 30 young, healthy subjects. An unbiased voxel-based analysis was used to identify regions where the regional perfusion demonstrated significant correlation with any of the personality dimensions. Highly significant positive correlations emerged between extraversion and perfusion in the basal ganglia, thalamus, inferior frontal gyrus and cerebellum and between novelty seeking and perfusion in the cerebellum, cuneus and thalamus. Strong negative correlations emerged between psychoticism and perfusion in the basal ganglia and thalamus and between harm avoidance and perfusion in the cerebellar vermis, cuneus and inferior frontal gyrus. These observations suggest that personality traits are strongly associated with resting cerebral perfusion in a variety of cortical and subcortical regions and provide further evidence for the hypothesized neurobiological basis of personality. These results may also have important implications for functional neuroimaging studies, which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation since personality effects may influence the intersubject variability for both task-related activity and resting cerebral perfusion. This technique also offers a novel approach for the exploration of the neurobiological correlates of human personality.

  8. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  9. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight.

  10. [Assessing myocardial perfusion with positron emission tomography].

    PubMed

    vom Dahl, J

    2001-11-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to two indications: 1) The detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well-validated perfusion tracers, such as N-13 ammonia, Rb-82 rubidium chloride, or O-15 labeled water. 2) Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with high specificity, PET is today the best-validated available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows one to use PET perfusion imaging to detect subtle changes in the perfusion reserve for the detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial collaterals and, thus, imaging of several coronary distribution territories in one noninvasive

  11. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  12. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  13. Temperature controlled machine perfusion system for liver.

    PubMed

    Obara, H; Matsuno, N; Shigeta, T; Hirano, T; Enosawa, S; Mizunuma, H

    2013-06-01

    Organ preservation using machine perfusion is an effective method compared with conventional preservation techniques using static cold storage. A newly developed MP preservation system to control perfusate temperatures from hypothermic to subnormothermic conditions is introduced. This system is useful not only for liver preservation, but also for evaluation of graft viability for recovery. This novel method has been proposed for preservation of porcine liver grafts. An innovative preservation system is especially important to obtain viable organs from extended criteria or donation after cardiac death donors. In this study, we introduce a new machine perfusion preservation system (NES-01) to evaluate graft viability for recovery of liver functions, using porcine grafts.

  14. Microcirculation Perfusion Monitor on the Back of the Health Volunteers

    PubMed Central

    Li, Yanqi; Li, Xiaomei; Zhou, Dan; Wang, Kang; Liu, Yangyang; Guo, Yi; Qiu, Shuang; Zhai, Tianchen; Liu, Shuang; Liu, Jingjing; Ming, Dong

    2013-01-01

    Objective. To observe the dermal microcirculation blood perfusion characterization of meridians channels (acupoints). Methods. 20 healthy human subjects were monitored using Pericam Perfusion Speckle Imager (PSI) for the changes in dermal microcirculation blood perfusion on governor meridian and other respective dermal regions as a control. Result. The microcirculation blood perfusion on Governor Meridian is higher than its control area. Conclusion. The dermal microcirculation blood perfusion on certain parts of Governor Meridian of healthy human subjects showed specifics. PMID:24371463

  15. Luminal distension as a possible consequence of experimental intestinal perfusion

    PubMed Central

    Wingate, David; Hyams, Ashley; Phillips, Sidney

    1974-01-01

    In an experimental jejunal perfusion study, distress in healthy subjects occurred during eight out of 16 perfusions in which intestinal secretion was provoked. Calculation demonstrates the volumetric consequences of inadequate recovery of secretory perfusates, and analysis of the perfusion studies shows that distress was significantly associated with poor recovery of the perfusate. These observations are pertinent to increasing interest in the phenomenon of intestinal fluid secretion. PMID:4435588

  16. Ex vivo lung perfusion and reconditioning.

    PubMed

    Yeung, Jonathan C; Cypel, Marcelo; Massad, Ehab; Keshavjee, Shaf

    2011-01-01

    Normothermic ex vivo lung perfusion can act as a platform for the evaluation and repair of donor lungs. An acellular hyperosmolar solution is perfused anterograde through the donor lungs at 40% of the estimated cardiac output. Following oxygenation of the perfusate by the lung, it passes through a hollow fiber oxygenator supplied with a hypoxic gas mixture to remove oxygen and to maintain physiological carbon dioxide levels. Flow through a heat exchanger to maintain normothermia and a leukocyte filter to remove demarginated leukocytes completes the circuit. Lung function can be measured by the difference in PO2 between the perfusate postlung and postmembrane and by physiological parameters. Utilization of this method of ex vivo donor lung evaluation should reduce concerns of primary graft dysfunction and increase utilization rates of donor lungs. PMID:24412979

  17. Noninvasive methods of measuring bone blood perfusion

    PubMed Central

    Dyke, J.P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability within the bone was performed with small and macromolecular contrast media, using dynamic contrast-enhanced magnetic resonance imaging in models of osteoarthritis and the femoral head. Bone blood flow and remodeling was estimated using 18F-Fluoride positron emission tomography in fracture healing and osteoarthritis. Multimodality assessment of bone blood flow, permeability, and remodeling by using noninvasive imaging techniques may provide information essential in monitoring subsequent rates of healing and response to treatment as well as identifying candidates for additional therapeutic or surgical interventions. PMID:20392223

  18. Bubble dynamics in perfused tissue undergoing decompression.

    PubMed

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  19. Vicarious Audiovisual Learning in Perfusion Education

    PubMed Central

    Rath, Thomas E.; Holt, David W.

    2010-01-01

    Abstract: Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video. These modules described the setup and operation of the MAQUET ROTAFLOW standalone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today’s perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p < .05). The same was true for test #2 where video learners (n = 10) had an average score of 77% while text learners (n = 9) scored 60% (p < .05). Survey results indicated video learners were more satisfied with their learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important

  20. Pancreas transplants: Evaluation using perfusion scintigraphy

    SciTech Connect

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3) size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.

  1. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  2. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  3. Technical aspects of MR perfusion.

    PubMed

    Sourbron, Steven

    2010-12-01

    The most common methods for measuring perfusion with MRI are arterial spin labelling (ASL), dynamic susceptibility contrast (DSC-MRI), and T(1)-weighted dynamic contrast enhancement (DCE-MRI). This review focuses on the latter approach, which is by far the most common in the body and produces measures of capillary permeability as well. The aim is to present a concise but complete overview of the technical issues involved in DCE-MRI data acquisition and analysis. For details the reader is referred to the references. The presentation of the topic is essentially generic and focuses on technical aspects that are common to all DCE-MRI measurements. For organ-specific problems and illustrations, we refer to the other papers in this issue. In Section 1 "Theory" the basic quantities are defined, and the physical mechanisms are presented that provide a relation between the hemodynamic parameters and the DCE-MRI signal. Section 2 "Data acquisition" discusses the issues involved in the design of an optimal measurement protocol. Section 3 "Data analysis" summarizes the steps that need to be taken to determine the hemodynamic parameters from the measured data. PMID:20363574

  4. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    PubMed

    Ghisleni, Carmen; Bollmann, Steffen; Biason-Lauber, Anna; Poil, Simon-Shlomo; Brandeis, Daniel; Martin, Ernst; Michels, Lars; Hersberger, Martin; Suckling, John; Klaver, Peter; O'Gorman, Ruth L

    2015-01-01

    Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  5. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  6. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  7. [Absorption of amino acids from the perfused ovine rumen].

    PubMed

    L' Leng; Tomás, J; Várady, J; Szányiová, M

    1978-06-01

    The experiments with extracoroporeal perfusion of sheep rumen were performed [Leng et al., 1977]. Bovine plasma, diluted in a 1:1ratio with an isotonic solution of sodium chloride, was used for four perfusions, and autologous blood was used for two perfusions in the course of 150 minutes. After 60 minutes perfusion 20 g enzymatic casein hydrolyzate were applied to the rumen. The levels of free amino acids in the perfusate were recorded after 60 minutes' perfusion [the first phase of perfusion] and at the end of the experiment [the second phase]. The levels of lysine, aspartic acid and glutamic acid increased after perfusions with bovine plasma during the first phase, the levels of glutamic acid, phenylalanine, and in one case of alanine, increased after perfusions with autologus blood. Simultaneously the level of valine decreased after perfusions with bovine plasma, and after perfusions with blood the levels of arginine and valine, and/or lysine, dropped. During the second phase of perfusion, the levels of all the observed amino acids except methionine [bovine plasma], and/or orginine and methionine [blood] rose in the perfusate. The experiments showed that the level of amino acids in the rumen content presented a decisive factor affecting amino acid absorption from the rumen into the blood. Transformation of the amino acids during their passage through the remen wall may be assumed, and glutamic acid is one of the chief products of this process.

  8. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  9. Perfusion safety: new initiatives and enduring principles.

    PubMed

    Kurusz, M

    2011-09-01

    Perfusion safety has been studied and discussed extensively for decades. Many initiatives occurred through efforts of professional organizations to achieve recognition, establish accreditation and certification, promote consensus practice guidelines, and develop peer-reviewed journals as sources for dissemination of clinical information. Newer initiatives have their basis in other disciplines and include systems approach, Quality Assurance/Quality Improvement processes, error recognition, evidence-based methodologies, registries, equipment automation, simulation, and the Internet. Use of previously established resources such as written protocols, checklists, safety devices, and enhanced communication skills has persisted to the present in promoting perfusion safety and has reduced current complication rates to negligible levels.

  10. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  11. [Design of the Rolling Type Nasal Feeding Perfusion Apparatus].

    PubMed

    Yu, Dong; Yang, Yonghuan; Hu, Huiqin; Luo, Hongjun; Feng, Yunhao; Hao, Xiali

    2015-09-01

    At present, the existing problem in nasal feeding perfusion apparatus is laborious and instability. Designing the rolling type perfusion apparatus by using a roller pump, the problem is solved. Compared with the traditional perfusion apparatus, the advantage lies in liquid carrying only need once and simulating human swallowing process. Through testing and verification, the apparatus can be used in nasal feeding perfusion for elderly or patients.

  12. An alternative method for neonatal cerebro-myocardial perfusion.

    PubMed

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-05-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed.

  13. Role of hypothermic machine perfusion in liver transplantation.

    PubMed

    Schlegel, Andrea; Dutkowski, Philipp

    2015-06-01

    Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.

  14. Asynchronicity of facial blood perfusion in migraine.

    PubMed

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A; Kamshilin, Alexei A; Närhi, Matti; Karjalainen, Pasi A; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology. PMID:24324592

  15. Simplified prototyping of perfusable polystyrene microfluidics

    PubMed Central

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  16. Nuclear cardiology: Myocardial perfusion and function

    SciTech Connect

    Seldin, D.W. )

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.

  17. Comparing Normothermic Machine Perfusion Preservation With Different Perfusates on Porcine Livers From Donors After Circulatory Death.

    PubMed

    Liu, Q; Nassar, A; Farias, K; Buccini, L; Mangino, M J; Baldwin, W; Bennett, A; O'Rourke, C; Iuppa, G; Soliman, B G; Urcuyo-Llanes, D; Okamoto, T; Uso, T D; Fung, J; Abu-Elmagd, K; Miller, C; Quintini, C

    2016-03-01

    The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs. PMID:26663737

  18. Luminal perfusion of isolated gastric glands.

    PubMed

    Waisbren, S J; Geibel, J; Boron, W F; Modlin, I M

    1994-04-01

    We have extended to rabbit gastric glands the technique for perfusing single isolated renal tubules. We isolated glands by hand dissection and used concentric glass pipettes to hold them and perfuse their lumina. Parietal cells (PCs), which tended to be located toward the gland opening, were identified by their pyramidal shape, large size, and autofluorescence. Chief cells (CCs) were identified by their round shape and smaller size. In some experiments, we perfused the lumen with hydroxypyrenetrisulfonate, a pH-sensitive fluorophore, at pH 7.4 and used digital image processing to monitor luminal pH (pH1). Solutions were buffered with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid to pH 7.4 at 37 degrees C. With fast perfusion, we found no evidence of decreased pH1, even with stimulation by 10 microM carbachol. With slow perfusion, pH1 often fell below the dye's sensitive range (pH < 5), especially at low perfusate buffering power. In other experiments, we loaded cells with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and monitored intracellular pH (pHi) in multiple individual PCs and CCs in a single gland. Mean pHi was 7.21 +/- 0.02 (n = 136 cells) for PCs and 7.27 +/- 0.03 (n = 103) for CCs. To examine the response to decreased pH1 and basolateral pH (pHb), we lowered pHb to 6.4 or lowered pH1 to 3.4 or 1.4. Lowering pHb to 6.4 for approximately 1 min caused pHi to fall reversibly by 0.39 +/- 0.05 (n = 53) in PCs and 0.58 +/- 0.03 (n = 50) in CCs. Lowering pH1 to 3.4 or 1.4 caused no significant pHi changes in PCs (n = 38 and 82) or in CCs (n = 44 and 77). Carbachol did not affect the response to changes in pH1 or pHb. We conclude that the apical surfaces of PCs and CCs are unusually resistant to extreme pH gradients.

  19. Near-infrared measurements of hemodynamic and oxygenation changes on the frontal cortex during breath holding, hyperventilation, and natural sleep

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi E.; Kotilahti, Kalle; Toppila, Jussi; Nissila, Ilkka T.; Salmi, Tapani; Kajava, Timo T.; Katila, Toivo E.

    2003-07-01

    We have developed a frequency-domain near-infrared device suitable for physiological studies in human. In this work, a four-channel configuration of the instrument is applied to monitor hemodynamic and oxygenation changes in the frontal cortex of volunteers during different ventilation tasks. We use four different source-receiver separations (2, 3, 4, and 5 cm) and three wavelengths (760, 808, and 830 nm) to test the sensitivity of these parameters to cardiovascular and metabolic changes. Low-frequency oscillations (~ 0.02 Hz) and variations in heart rate during different ventilation tasks are investigated as well. We also study physiological changes during natural sleep using the frequency-domain instrument simultaneously with a polysomnography system containing a pulse oximeter. Our results indicate that hemodynamic and oxygenation changes in the frontal cortex during natural sleep can be detected using near-infrared measurements.

  20. Imaging of drug effects in perfused liver

    NASA Astrophysics Data System (ADS)

    Dammann, Marc; Mahlke, Christine; Kessler, Manfred D.

    2002-06-01

    Various medications affect the systemic circulation and organ oxygenation causing dilatation or constriction of blood vessels. Imminent liver failure can be generated by reduced perfusion of different origins. In this case hepatic vasodilatation would be a therapeutical approach for improving patient's condition. Our examinations have been performed in perfused rat liver using spectrometric methods. Two defined areas of the liver were measured punctually. We compared the influence of Tetramethylpyrazine and Glyceroltrinitrate on hemoglobin oxygenation (HbO2) and concentration (Hb-conc.) in rat liver after application of Norepinephrine, which caused a mid decrease in hemoglobin oxygenation of 47,9 %. Both increased the HbO2, but differed from each other in manner of time and extent. Tetramethylpyrazine indicated a longer effect than Glyceroltrinitrate. Furthermore, HbO2 and Hb-conc. showed a conversed relation. From the shape of the absorption spectra it is possible to derive the oxygenation of hemoglobin.

  1. The evolution of perfusion education in America.

    PubMed

    Toomasian, John M; Searles, Bruce; Kurusz, Mark

    2003-07-01

    Clinical cardiopulmonary perfusion has evolved significantly during its 50 years. The science, technology and educational processes related to cardiopulmonary bypass have undergone continual change and metamorphosis. Perfusionists were initially trained on the job or in the laboratory, but with the advent of myocardial revascularization and the explosion in cardiac surgery, the need for formal educational training programs became apparent. The American Society of Extracorporeal Technology began the arduous processes of credentialing and developing certification guidelines that have continued under the American Board of Cardiovascular Perfusion. Licensure has also been adopted in many states during the past 10 years where nearly 50% of all perfusionists are covered by some legislative act. One additonal challenge has been developing minimal standards in which perfusionists practice. The initial standards included the use of a checklist and have evolved to monitoring and recording the significant events and parameters of each clinical procedure. The education of perfusionists will continue to be a challenge related primarily to reduced fiscal resources, the applicant pool and the ever-changing demands for extracorporeal circulation services. According to demographic and census information, it is expected the overall number of cardiovascular interventions will increase dramatically towards the latter end of the current decade in the US. The question arises as to what role perfusionists will play, as treatment strategies continue to change. If the number of education programs and new graduates continue to decline, the total number of perfusionists will decline, especially as many senior perfusionists leave the field or retire. It may be difficult to predict the total number of cardiovascular interventions that will be required in the next several years. However, if the total number of cardiovascular interventions that require perfusion services increase as a function

  2. Myocardial perfusion imaging with dual energy CT.

    PubMed

    Jin, Kwang Nam; De Cecco, Carlo N; Caruso, Damiano; Tesche, Christian; Spandorfer, Adam; Varga-Szemes, Akos; Schoepf, U Joseph

    2016-10-01

    Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  3. Inhomogeneity of pulmonary perfusion during sustained microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; West, John B.

    1994-01-01

    The effects of gravity on the inhomogeneity of pulmonary perfusion in man were studied by performing hyperventilation-breathhold single-breath measurements before, during and after 9 days of continuous exposure to microgravity. In microgravity the indicators of inhomogeneity of perfusion, especially the size of cardiogenic oscillations in expired CO2 and the height of phase 4, were both markedly reduced. Cardiogenic oscillations were reduced to approximately 60 of their preflight standing size, while the height of phase 4 was between 0 and -8% (a terminal fall became a small terminal rise) of preflights standing. The terminal change in CO2 was nearly abolished in microgravity indicating more uniformity of blood flow between lung units that close at the end of expiration and units that remain open. This may result from the disappearance of gravity-dependent topographical inequality of blood flow. The residual cardiographic oscillations in expired CO2 imply a persisting inhomogeneity of perfusion in the absence of gravity at a level larger than acinar.

  4. Noncontact blood perfusion mapping in clinical applications

    NASA Astrophysics Data System (ADS)

    Iakovlev, Dmitry; Dwyer, Vincent; Hu, Sijung; Silberschmidt, Vadim

    2016-04-01

    Non-contact imaging photoplethysmography (iPPG) to detect pulsatile blood microcirculation in tissue has been selected as a successor to low spatial resolution and slow scanning blood perfusion techniques currently employed by clinicians. The proposed iPPG system employs a novel illumination source constructed of multiple high power LEDs with narrow spectral emission, which are temporally modulated and synchronised with a high performance sCMOS sensor. To ensure spectrum stability and prevent thermal wavelength drift due to junction temperature variations, each LED features a custom-designed thermal management system to effectively dissipate generated heat and auto-adjust current flow. The use of a multi-wavelength approach has resulted in simultaneous microvascular perfusion monitoring at various tissue depths, which is an added benefit for specific clinical applications. A synchronous detection algorithm to extract weak photoplethysmographic pulse-waveforms demonstrated robustness and high efficiency when applied to even small regions of 5 mm2. The experimental results showed evidences that the proposed system could achieve noticeable accuracy in blood perfusion monitoring by creating complex amplitude and phase maps for the tissue under examination.

  5. Perfusion computed tomography in renal cell carcinoma

    PubMed Central

    Das, Chandan J; Thingujam, Usha; Panda, Ananya; Sharma, Sanjay; Gupta, Arun Kumar

    2015-01-01

    Various imaging modalities are available for the diagnosis, staging and response evaluation of patients with renal cell carcinoma (RCC). While contrast enhanced computed tomography (CT) is used as the standard of imaging for size, morphological evaluation and response assessment in RCC, a new functional imaging technique like perfusion CT (pCT), goes down to the molecular level and provides new perspectives in imaging of RCC. pCT depicts regional tumor perfusion and vascular permeability which are indirect parameters of tumor angiogenesis and thereby provides vital information regarding tumor microenvironment. Also response evaluation using pCT may predate the size criteria used in Response Evaluation Criteria in Solid Tumors, as changes in the perfusion occurs earlier following tissue kinase inhibitors before any actual change in size. This may potentially help in predicting prognosis, better selection of therapy and more accurate and better response evaluation in patients with RCC. This article describes the techniques and role of pCT in staging and response assessment in patients with RCCs. PMID:26217456

  6. CT perfusion: principles, applications, and problems

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Yim

    2004-10-01

    The fast scanning speed of current slip-ring CT scanners has enabled the development of perfusion imaging techniques with intravenous injection of contrast medium. In a typical CT perfusion study, contrast medium is injected and rapid scanning at a frequency of 1-2 Hz is used to monitor the first circulation of the injected contrast medium through a 1-2 cm thick slab of tissue. From the acquired time-series of CT images, arteries can be identified within the tissue slab to derive the arterial contrast concentration curve, Ca(t) while each individual voxel produces a tissue residue curve, Q(t) for the corresponding tissue region. Deconvolution between the measured Ca(t) and Q(t) leads to the determination of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in brain studies. In this presentation, an important application of CT perfusion in acute stroke studies - the identification of the ischemic penumbra via the CBF/CBV mismatch and factors affecting the quantitative accuracy of deconvolution, including partial volume averaging, arterial delay and dispersion are discussed.

  7. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  8. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom

    PubMed Central

    Otton, James; Morton, Geraint; Schuster, Andreas; Bigalke, Boris; Marano, Riccardo; Olivotti, Luca; Nagel, Eike; Chiribiri, Amedeo

    2013-01-01

    Background Direct comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection. Objective We precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions. Methods We used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represent the human circulation. CT perfusion studies were performed with a Philips iCT (256 slice) CT, with isotropic resolution of 0.6 mm3. MR perfusion was performed with k-t SENSE acceleration at 3 T and spatial resolution of 1.2 × 1.2 × 10 mm. The image contrast between normal and underperfused myocardial compartments was quantified at various perfusion and photon energy settings. Noise estimates were based on published clinical data. Results Contrast by CTP highly depends on photon energy and also timing of imaging within the myocardial perfusion upslope. For an identical myocardial perfusion deficit, the native image contrast-to-noise ratio (CNR) generated by CT and MR are similar. If slice averaging is used, the CNR of a perfusion deficit is expected to be greater for CTP than MR perfusion (MRP). Perfect timing during single time point CTP imaging is difficult to achieve, and CNR by CT decreases by 24%–31% two seconds from the optimal imaging time point. Although single-phase CT perfusion offers higher spatial resolution, MRP allows multiple time point sampling and quantitative analysis. Conclusion The ability of CTP and current optimal MRP techniques to detect simulated myocardial perfusion deficits is similar. PMID:23622506

  9. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  10. Brain perfusion: computed tomography and magnetic resonance techniques.

    PubMed

    Copen, William A; Lev, Michael H; Rapalino, Otto

    2016-01-01

    Cerebral perfusion imaging provides assessment of regional microvascular hemodynamics in the living brain, enabling in vivo measurement of a variety of different hemodynamic parameters. Perfusion imaging techniques that are used in the clinical setting usually rely upon X-ray computed tomography (CT) or magnetic resonance imaging (MRI). This chapter reviews CT- and MRI-based perfusion imaging techniques, with attention to image acquisition, clinically relevant aspects of image postprocessing, and fundamental differences between CT- and MRI-based techniques. Correlations with cerebrovascular physiology and potential clinical applications of perfusion imaging are reviewed, focusing upon the two major classes of neurologic disease in which perfusion imaging is most often performed: primary perfusion disorders (including ischemic stroke, transient ischemic attack, and reperfusion syndrome), and brain tumors.

  11. A Phantom Tissue System for the Calibration of Perfusion Measurements

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2008-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to simulate the nondirectional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent® to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on clearance of thermal energy. A heat flux gage measures the heat flux response of tissue when a thermal event (convective cooling) is applied. The blood perfusion and contact resistance are estimated by a parameter estimation code. From the experimental and analytical results, it was concluded that the probe displayed good measurement repeatability and sensitivity. The experimental perfusion measurements in the tissue were in good agreement with those of the CFD models and demonstrated the value of the phantom tissue system. PMID:19045509

  12. Developing a benchmarking process in perfusion: a report of the Perfusion Downunder Collaboration.

    PubMed

    Baker, Robert A; Newland, Richard F; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W; Merry, Alan F

    2012-03-01

    Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCOz management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose > or =4 mmol/L and < or =10 mmol/L; arterial outlet temperature < or = 37 degrees C; and arterial blood gas pCO2 > or =35 and < or =45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37-96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16-98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21-91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice.

  13. Effect of vasodilators on pulmonary perfusion defects in asthma using sequential Kr-81m perfusion imaging

    SciTech Connect

    Ertle, A.R.; Tashkin, D.P.; Webber, M.M.; Soffer, M.J.; Frank, G.W.

    1984-01-01

    The investigation was undertaken to determine if vasodilator agents may enhance the diagnostic utility of perfusion lung imaging (Q) by normalizing regional perfusion abnormalities in bronchospastic patients. The effect of oxygen (02), nitroglycerine (NTG), hydralazine (H), and nifedipine (N) on regional lung perfusion defects was studied in 6 mild to severe asthmatics (ages defects was studied in 6 mild to severe asthmatics (ages 31-72yrs) using sequential Kr-81m imaging which permits repetitive imaging due to very low radiation dose and 13 sec T-1/2. Each patient was studied once weekly for 3 wks. Baseline Q scans were obtained using 10mCi of I.V. Kr-81m. the best view showing perfusion defects was used for subsequent images. At each visits, 30% 02 by ventimask was given for 20 min followed by a repeat Q scan. Subsequently, on separate visits, subjects were given either 1 dose of sublingual (sl)N 20 mg or 2 doses (1 hr between) of s1 NTG 1/150gr or po H 25mg according to a random-order crossover design. Q scans were obtained 2 min after NTG, 60 min after H, and 30 and 60 min after N. 30% 02 was given again for 20 min, and a final scan was obtained. Scan were reviewed by 2 observers and showed relatively fixed defects in 4 pts improvement in defects in 3 pts with NTG, 1 with N, 1 with H, and 2 with 02 alone. Additive effects of 02 and N or NTG were seen in 2 pts. These preliminary results suggest that vasodilators and 02 may improve regional perfusion in patients with bronchospastic disease and that this effect may be additive. These medications may thus improve the specificity of perfusion lung scanning in the diagnostic evaluation of pulmonary embolism.

  14. A method of thymic perfusion and its evaluation

    PubMed Central

    Ekwueme, O.

    1973-01-01

    The development and evaluation of a method of isolated ex vivo perfusion of the rabbit thymus using diluted autologous blood is described. The data indicate that the viability of the preparation is maintained at a satisfactory level during the period of perfusion. These results suggest that the isolated perfused thymus would be a useful new approach to studies of thymus function. ImagesFig. 2Fig. 8Fig. 9Fig. 10Fig. 11 PMID:4747584

  15. Scintigraphic perfusion patterns in patients with diffuse lung disease

    SciTech Connect

    Newman, G.E.; Sullivan, D.C.; Gottschalk, A.; Putman, C.E.

    1982-04-01

    Perfusion scintigrams of 55 patients with radiographic evidence of diffuse lung disease were reviewed. Thirty-nine had acute and/or chronic changes caused by congestive heart failure, and 16 had diffuse reticulonodular disease. A normal or near-normal perfusion pattern was seen in 40/55 (73%), and this finding was equally common in the two groups. The authors conclude that perfusion scintigraphy is useful in excluding pulmonary embolism in patients with radiographic evidence of diffuse, symmetrical lung disease.

  16. Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery

    PubMed Central

    Chandra, Divay; Lipson, David A.; Hoffman, Eric A.; Hansen-Flaschen, John; Sciurba, Frank C.; DeCamp, Malcolm M.; Reilly, John J.; Washko, George R.

    2010-01-01

    Rationale: It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). Objectives: To study the role of perfusion scintigraphy in patient selection for LVRS. Methods: We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non–high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non–upper lobe–predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Measurements and Main Results: Among 284 of 1,045 patients with upper lobe–predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe–predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non–upper lobe–predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Conclusions: Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe–predominant emphysema when there is low rather than high perfusion to the upper lung. PMID:20538961

  17. Measurement of continuous distributions of ventilation-perfusion ratios - Theory

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.; Saltzman, H. A.; West, J. B.

    1974-01-01

    The resolution of the technique considered is sufficient to describe smooth distributions containing blood flow to unventilated regions (shunt), ventilation to unperfused regions (dead space), and up to three additional modes over the range of finite ventilation-perfusion ratios. In particular, areas whose ventilation-perfusion ratios are low can be separated from unventilated regions and those whose ventilation-perfusion ratios are high can similarly be distinguished from unperfused areas.

  18. Extracorporeal Free Flap Perfusion in Case of Prolonged Ischemia Time

    PubMed Central

    Präbst, K.; Beier, J. P.; Meyer, A.; Horch, R. E.

    2016-01-01

    Summary: In free flap surgery, a clinically established concept still has to be found for the reduction of ischemia-related cell damage in the case of prolonged ischemia. Although promising results using extracorporeal free flap perfusion in the laboratory have been published in the past, until now this concept has not yet paved its way into clinical routine. This might be due to the complexity of perfusion systems and a lack of standardized tools. Here, we want to present the results of the first extracorporeal free flap perfusion in a clinical setting using a simple approach without the application of a complex perfusion machinery. PMID:27200244

  19. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    PubMed Central

    Bergh, A; Nyman, G; Lundeberg, T; Drevemo, S

    2006-01-01

    Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2) in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334%) and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264%) and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature. PMID:16722304

  20. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification.

    PubMed

    deKemp, Robert A; Renaud, Jennifer M; Klein, Ran; Beanlands, Rob S B

    2016-02-01

    Myocardial perfusion imaging is performed most commonly using Tc-99m-sestamibi or tetrofosmin SPECT as well as Rb-82-rubidium or N-13-ammonia PET. Diseased-to-normal tissue contrast is determined by the tracer retention fraction, which decreases nonlinearly with flow. Reduced tissue perfusion results in reduced tracer retention, but the severity of perfusion defects is typically underestimated by 20% to 40%. Compared to SPECT, retention of the PET tracers is more linearly related to flow, and therefore, the perfusion defects are measured more accurately using N-13-ammonia or Rb-82. PMID:26590778

  1. Ex Situ Normothermic Machine Perfusion of Donor Livers.

    PubMed

    Karimian, Negin; Matton, Alix P M; Westerkamp, Andrie C; Burlage, Laura C; Op den Dries, Sanna; Leuvenink, Henri G D; Lisman, Ton; Uygun, Korkut; Markmann, James F; Porte, Robert J

    2015-01-01

    In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.

  2. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  3. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  4. Magnetic Resonance Perfusion Imaging in the Study of Language

    ERIC Educational Resources Information Center

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  5. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  6. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  7. Perfusion Electronic Record Documentation Using Epic Systems Software.

    PubMed

    Riley, Jeffrey B; Justison, George A

    2015-12-01

    The authors comment on Steffens and Gunser's article describing the University of Wisconsin adoption of the Epic anesthesia record to include perfusion information from the cardiopulmonary bypass patient experience. We highlight the current-day lessons and the valuable quality and safety principles the Wisconsin-Epic model anesthesia-perfusion record provides.

  8. Motion compensation of ultrasonic perfusion images

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Nylund, Kim; Gilja, Odd H.; Tönnies, Klaus D.

    2012-03-01

    Contrast-enhanced ultrasound (CEUS) is a rapid and inexpensive medical imaging technique to assess tissue perfusion with a high temporal resolution. It is composed of a sequence with ultrasound brightness values and a contrast sequence acquired simultaneously. However, the image acquisition is disturbed by various motion influences. Registration is needed to obtain reliable information of spatial correspondence and to analyze perfusion characteristics over time. We present an approach to register an ultrasonography sequence by using a feature label map. This label map is generated from the b-mode data sequence by a Markov-Random-Field (MRF) based analysis, where each location is assigned to one of the user-defined regions according to its statistical parameters. The MRF reduces the chance that outliers are represented in the label map and provides stable feature labels over the time frames. A registration consisting of rigid and non-rigid transformations is determined consecutively using the generated label map of the respective frames for similarity calculation. For evaluation, the standard deviation within specific regions in intestinal CEUS images has been measured before and after registration resulting in an average decrease of 8.6 %. Additionally, this technique has proven to be more robust against noise influence compared to similarity calculation based on image intensities only. The latter leads only to 7.6 % decrease of the standard deviation.

  9. The pediatric template of brain perfusion.

    PubMed

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7-18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  10. The pediatric template of brain perfusion

    PubMed Central

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7–18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  11. A constant temperature perfusion system for myocardial energetics.

    PubMed

    Niesler, R A; Axon, D W; Eggert, M A

    1981-11-01

    A constant temperature perfusion system employing four heat exchangers has been developed in which perfusion fluid is heated from room temperature to 37 +/- 10 -4 degrees C for precision heat flow measurements on isolated working rat hearts. The temperature characteristics have been established and mathematical expressions developed to identify and quantify spurious thermal events. The system is a refinement of existing perfusion systems for metabolic and mechanical investigations which meets the complete requirements of myocardial energetics. It can also be used for experiments which include high precision temperature measurements on isolated working hearts or for thermal investigations on other isolated perfused organs where a highly stabilised temperature base line is required over perfusion flows from 0-100 cm3 min -1. PMID:7323145

  12. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  13. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis

    SciTech Connect

    Kahan, A.; Devaux, J.Y.; Amor, B.; Menkes, C.J.; Weber, S.; Nitenberg, A.; Venot, A.; Guerin, F.; Degeorges, M.; Roucayrol, J.C.

    1986-05-29

    Heart disease in patients with progressive systemic sclerosis may be due in part to myocardial ischemia caused by a disturbance of the coronary microcirculation. To determine whether abnormalities of myocardial perfusion in this disorder are potentially reversible, we evaluated the effect of the coronary vasodilator nifedipine on myocardial perfusion assessed by thallium-201 scanning in 20 patients. Thallium-201 single-photon-emission computerized tomography was performed under control conditions and 90 minutes after 20 mg of oral nifedipine. The mean (+/- SD) number of left ventricular segments with perfusion defects decreased from 5.3 +/- 2.0 to 3.3 +/- 2.2 after nifedipine (P = 0.0003). Perfusion abnormalities were quantified by a perfusion score (0 to 2.0) assigned to each left ventricular segment and by a global perfusion score (0 to 18) for the entire left ventricle. The mean perfusion score in segments with resting defects increased from 0.97 +/- 0.24 to 1.26 +/- 0.44 after nifedipine (P less than 0.00001). The mean global perfusion score increased from 11.2 +/- 1.7 to 12.8 +/- 2.4 after nifedipine (P = 0.003). The global perfusion score increased by at least 2.0 in 10 patients and decreased by at least 2.0 in only 1. These observations reveal short-term improvement in thallium-201 myocardial perfusion with nifedipine in patients with progressive systemic sclerosis. The results are consistent with a potentially reversible abnormality of coronary vasomotion in this disorder, but the long-term therapeutic effects of nifedipine remain to be determined.

  14. Predicting radiotherapy-induced cardiac perfusion defects

    SciTech Connect

    Das, Shiva K.; Baydush, Alan H.; Zhou Sumin; Miften, Moyed; Yu Xiaoli; Craciunescu, Oana; Oldham, Mark; Light, Kim; Wong, Terence; Blazing, Michael; Borges-Neto, Salvador; Dewhirst, Mark W.; Marks, Lawrence B.

    2005-01-01

    The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy-induced left ventricular perfusion defects assessed using single-photon emission computed tomography (SPECT). The basis of this study is data from 73 left-sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis--LDA). Data used by the models were the left ventricular dose--volume histograms, or SPECT-based dose-function histograms, and the presence/absence of SPECT perfusion defects 6 months postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F-tests were used to fit the model parameters. The nonparametric LDA model step-wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has area=1). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose-volume histogram/dose-function histogram inputs, in order of increasing prediction accuracy, were LNTCP (0.79/0.75), RS (0.80/0.77), gEUD (0.81/0.78), and LDA (0.84/0.86). Only the LDA model benefited from SPECT-based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above

  15. Hydrogels for Engineering of Perfusable Vascular Networks

    PubMed Central

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S. P.; Machens, Hans-Günther; Schilling, Arndt F.

    2015-01-01

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. PMID:26184185

  16. Perfused human organs versus Mary Shelley's Frankenstein.

    PubMed

    Leung, Lawrence

    2009-01-01

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs. PMID:19166591

  17. Perfused human organs versus Mary Shelley's Frankenstein.

    PubMed

    Leung, Lawrence

    2009-01-23

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs.

  18. Hydrogels for Engineering of Perfusable Vascular Networks.

    PubMed

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S P; Machens, Hans-Günther; Schilling, Arndt F

    2015-07-14

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  19. Measuring perfusion with light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; de Bruin, Daniel M.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-03-01

    There is no gold standard test for perfusion evaluation in surgery. Optical Imaging techniques are able to image tissue at high resolution and in real-time. Laser Speckle Contrast Imaging, Optical Coherence Tomography, Sidestream Darkfield and Incident Darkfield all use the interaction of light with tissue to create an image. To test their feasibility and explore validity in a controlled setting, we created a phantom with the optical properties of tissue and microvascular channels of 30-400 micrometer. With a Hamilton Syringe Pump we mimicked blood flow velocities of 0-20 mm/sec. Images of all different modalities at different blood flow velocities were compared in terms of imaging depth, resoluation and hemodynamic parameters.

  20. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  1. Distal coronary artery perfusion during percutaneous transluminal coronary angioplasty.

    PubMed

    Anderson, H V; Leimgruber, P P; Roubin, G S; Nelson, D L; Gruentzig, A R

    1985-10-01

    Perfusion of the coronary artery distal to an occluding angioplasty balloon was performed in 34 patients undergoing coronary angioplasty (PTCA). A randomized crossover study was employed using two exogenous substances as perfusates: lactated Ringer's solution (LR) and a fluorocarbon emulsion (FL), Fluosol-DA 20%. Both substances are electrolyte solutions, but the FL will dissolve more oxygen than the LR. During two attempted coronary artery occlusions of 90 seconds each, we perfused through the central lumen (guidewire channel) of the PTCA catheter at 60 ml/min. With FL perfusion the mean time to onset of angina after occlusion was delayed (41 +/- 21 vs 33 +/- 16 seconds, mean +/- SD; p less than 0.05), the mean duration of angina was shortened (77 +/- 58 vs 92 +/- 70 seconds, p less than 0.05), and the rise in the ST segment of the ECG was reduced (0.15 +/- 0.24 vs 0.2 +/- 0.23 mV, p less than 0.001) when compared to LR perfusion. Balloon occlusion time was able to be extended with FL perfusion (71 +/- 22 vs 59 +/- 22 seconds p less than 0.001). These results indicate that perfusion of the distal coronary artery is possible during PTCA and can reduce ischemia during a prolonged balloon occlusion time. PMID:2931968

  2. Ex vivo lung perfusion in Brazil

    PubMed Central

    Abdalla, Luis Gustavo; Braga, Karina Andrighetti de Oliveira; Nepomuceno, Natalia Aparecida; Fernandes, Lucas Matos; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2016-01-01

    Objective: To evaluate the use of ex vivo lung perfusion (EVLP) clinically to prepare donor lungs for transplantation. Methods: A prospective study involving EVLP for the reconditioning of extended-criteria donor lungs, the criteria for which include aspects such as a PaO2/FiO2 ratio < 300 mmHg. Between February of 2013 and February of 2014, the lungs of five donors were submitted to EVLP for up to 4 h each. During EVLP, respiratory mechanics were continuously evaluated. Once every hour during the procedure, samples of the perfusate were collected and the function of the lungs was evaluated. Results: The mean PaO2 of the recovered lungs was 262.9 ± 119.7 mmHg at baseline, compared with 357.0 ± 108.5 mmHg after 3 h of EVLP. The mean oxygenation capacity of the lungs improved slightly over the first 3 h of EVLP-246.1 ± 35.1, 257.9 ± 48.9, and 288.8 ± 120.5 mmHg after 1, 2, and 3 h, respectively-without significant differences among the time points (p = 0.508). The mean static compliance was 63.0 ± 18.7 mmHg, 75.6 ± 25.4 mmHg, and 70.4 ± 28.0 mmHg after 1, 2, and 3 h, respectively, with a significant improvement from hour 1 to hour 2 (p = 0.029) but not from hour 2 to hour 3 (p = 0.059). Pulmonary vascular resistance remained stable during EVLP, with no differences among time points (p = 0.284). Conclusions: Although the lungs evaluated remained under physiological conditions, the EVLP protocol did not effectively improve lung function, thus precluding transplantation. PMID:27167429

  3. CT Perfusion of the Liver: Principles and Applications in Oncology

    PubMed Central

    Kim, Se Hyung; Kamaya, Aya

    2014-01-01

    With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132

  4. Perfusion-related stimuli for compensatory lung growth following pneumonectomy.

    PubMed

    Dane, D Merrill; Yilmaz, Cuneyt; Gyawali, Dipendra; Iyer, Roshni; Ravikumar, Priya; Estrera, Aaron S; Hsia, Connie C W

    2016-07-01

    Following pneumonectomy (PNX), two separate mechanical forces act on the remaining lung: parenchymal stress caused by lung expansion, and microvascular distension and shear caused by increased perfusion. We previously showed that parenchymal stress and strain explain approximately one-half of overall compensation; the remainder was presumptively attributed to perfusion-related factors. In this study, we directly tested the hypothesis that perturbation of regional pulmonary perfusion modulates post-PNX lung growth. Adult canines underwent banding of the pulmonary artery (PAB) to the left caudal (LCa) lobe, which caused a reduction in basal perfusion to LCa lobe without preventing the subsequent increase in its perfusion following right PNX while simultaneously exaggerating the post-PNX increase in perfusion to the unbanded lobes, thereby creating differential perfusion changes between banded and unbanded lobes. Control animals underwent sham pulmonary artery banding followed by right PNX. Pulmonary function, regional pulmonary perfusion, and high-resolution computed tomography of the chest were analyzed pre-PNX and 3-mo post-PNX. Terminally, the remaining lobes were fixed for detailed morphometric analysis. Results were compared with corresponding lobes in two control (Sham banding and normal unoperated) groups. PAB impaired the indices of post-PNX extravascular alveolar tissue growth by up to 50% in all remaining lobes. PAB enhanced the expected post-PNX increase in alveolar capillary formation, measured by the prevalence of double-capillary profiles, in both unbanded and banded lobes. We conclude that perfusion distribution provides major stimuli for post-PNX compensatory lung growth independent of the stimuli provided by lung expansion and parenchymal stress and strain.

  5. Deep Vein Thrombosis Presenting on Pulmonary Ventilation and Perfusion Scintigraphy.

    PubMed

    Itani, Malak; Fair, Joanna; Hillman, Zachary; Behnia, Fatemeh; Elojeimy, Saeed

    2016-10-01

    A 52-year-old woman presenting with dyspnea was referred for a ventilation and perfusion scan (VQ). VQ images (with Tc-DTPA [diethylene triamine pentaacetic acid aerosol] and Tc-MAA [macroaggregated albumin]) initially appeared normal; however, count rates on perfusion images were similar to ventilation images, implying little Tc-MAA had reached the lungs. Spot images of the injected extremity demonstrated focal Tc-MAA accumulation worrisome for a venous thrombus, subsequently confirmed by Doppler ultrasound. Careful attention to relative radiotracer count rates on VQ scans is crucial to ensure diagnostic utility. In addition, abnormal low perfusion radiotracer counts may unveil other pathology with important clinical implications. PMID:27556796

  6. Colour perfusion imaging: a new application of computed tomography.

    PubMed

    Miles, K A; Hayball, M; Dixon, A K

    1991-03-16

    We describe a new application for imaging with computed tomography (CT) in which a quantifiable map of tissue perfusion is created and displayed by means of a colour scale. A rapid sequence of images is acquired without table movement immediately after a bolus intravenous injection of radiographic contrast medium. The rate of enhancement in each pixel within the chosen slice can then be used to determine perfusion. The technique provides a quantifiable display of regional perfusion combined with the high spatial resolution afforded by CT.

  7. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    NASA Astrophysics Data System (ADS)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  8. Hemangioma of the tongue demonstrating a perfusion blood pool mismatch

    SciTech Connect

    Front, D.; Groshar, D.; Israel, O.; Robinson, E.

    1986-02-01

    Perfusion blood pool mismatch using Tc-99m labeled red blood cells (RBCs) in a hemangioma of the tongue is described. The method is useful in the evaluation of size of the residual blood pool after irradiation of the tumor.

  9. Perfusion computed tomography to assist decision making for stroke thrombolysis.

    PubMed

    Bivard, Andrew; Levi, Christopher; Krishnamurthy, Venkatesh; McElduff, Patrick; Miteff, Ferdi; Spratt, Neil J; Bateman, Grant; Donnan, Geoffrey; Davis, Stephen; Parsons, Mark

    2015-07-01

    The use of perfusion imaging to guide selection of patients for stroke thrombolysis remains controversial because of lack of supportive phase three clinical trial evidence. We aimed to measure the outcomes for patients treated with intravenous recombinant tissue plasminogen activator (rtPA) at a comprehensive stroke care facility where perfusion computed tomography was routinely used for thrombolysis eligibility decision assistance. Our overall hypothesis was that patients with 'target' mismatch on perfusion computed tomography would have improved outcomes with rtPA. This was a prospective cohort study of consecutive ischaemic stroke patients who fulfilled standard clinical/non-contrast computed tomography eligibility criteria for treatment with intravenous rtPA, but for whom perfusion computed tomography was used to guide the final treatment decision. The 'real-time' perfusion computed tomography assessments were qualitative; a large perfusion computed tomography ischaemic core, or lack of significant perfusion lesion-core mismatch were considered relative exclusion criteria for thrombolysis. Specific volumetric perfusion computed tomography criteria were not used for the treatment decision. The primary analysis compared 3-month modified Rankin Scale in treated versus untreated patients after 'off-line' (post-treatment) quantitative volumetric perfusion computed tomography eligibility assessment based on presence or absence of 'target' perfusion lesion-core mismatch (mismatch ratio >1.8 and volume >15 ml, core <70 ml). In a second analysis, we compared outcomes of the perfusion computed tomography-selected rtPA-treated patients to an Australian historical cohort of non-contrast computed tomography-selected rtPA-treated patients. Of 635 patients with acute ischaemic stroke eligible for rtPA by standard criteria, thrombolysis was given to 366 patients, with 269 excluded based on visual real-time perfusion computed tomography assessment. After off-line quantitative

  10. Metabolism of 7-ethyoxycoumarin by Isolated Perfused Rainbow Trout Livers

    EPA Science Inventory

    Isolated trout livers were perfused using methods designed to preserve tissue viability and function. Liver performance was evaluated by measuring O2 consumption, vascular resistance, K+ leakage, glucose flux, lactate flux, alanine aminotransferase leakage, and metabolic clearanc...

  11. Automatic Characterization of Myocardial Perfusion in Contrast Enhanced MRI

    NASA Astrophysics Data System (ADS)

    Positano, Vincenzo; Santarelli, Maria Filomena; Landini, Luigi

    2003-12-01

    The use of contrast medium in cardiac MRI allows joining the high-resolution anatomical information provided by standard magnetic resonance with functional information obtained by means of the perfusion of contrast agent in myocardial tissues. The current approach to perfusion MRI characterization is the qualitative one, based on visual inspection of images. Moving to quantitative analysis requires extraction of numerical indices of myocardium perfusion by analysis of time/intensity curves related to the area of interest. The main problem in quantitative image sequence analysis is the heart movement, mainly due to patient respiration. We propose an automatic procedure based on image registration, segmentation of the myocardium, and extraction and analysis of time/intensity curves. The procedure requires a minimal user interaction, is robust with respect to the user input, and allows effective characterization of myocardial perfusion. The algorithm was tested on cardiac MR images acquired from voluntaries and in clinical routine.

  12. Multislice CT brain image registration for perfusion studies

    NASA Astrophysics Data System (ADS)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  13. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    SciTech Connect

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation

  14. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  15. Perfusion Electronic Record Documentation Using Epic Systems Software.

    PubMed

    Steffens, Thomas G; Gunser, John M; Saviello, George M

    2015-12-01

    This paper describes the design and use of Epic Systems software for documentation of perfusion activities as part of the patient electronic medical record. The University of Wisconsin Hospital and Clinics adapted the Anesthesia software module and developed an integrated perfusion/anesthesia record for the documentation of cardiac and non-cardiac surgical procedures. This project involved multiple committees, approvals, and training to successfully implement. This article will describe our documentation options, concepts, design, challenges, training, and implementation during our initial experience.

  16. Perfusion of nonventilated lung: failure of hypoxic vasoconstriction

    SciTech Connect

    Sostman, H.D.; Neumann, R.D.; Gottschalk, A.; Greenspan, R.H.

    1983-07-01

    Alveolar hypoxia is a well established cause of regional vasoconstriction such that nonventilated segments are not perfused. The paradoxical situation of retained perfusion of nonventilated lung has seldom been discussed. Three clinical examples are illustrated. In each case coexistent chronic obstructive lung disease may have contributed to this unexpected finding by reducing pulmonary vascular capacity such that blood flow diversion from hypoxic segments was not possible.

  17. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    PubMed

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P < 0.05). Mean arterial pressure, heart rate, oxygen saturation, pH, bicarbonate, base deficit, hematocrit, and coagulation parameters correlated poorly with both TVD and De Backer score. Direct measurement of sublingual microvascular perfusion is technically feasible in trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism. PMID:26736167

  18. Can arterial spin labeling detect white matter perfusion signal?

    PubMed

    van Osch, Matthias J P; Teeuwisse, Wouter M; van Walderveen, Marianne A A; Hendrikse, Jeroen; Kies, Dennis A; van Buchem, Mark A

    2009-07-01

    Since the invention of arterial spin labeling (ASL) it has been acknowledged that ASL does not allow reliable detection of a white matter (WM) perfusion signal. However, recent developments such as pseudo-continuous labeling and background suppression have improved the quality. The goal of this research was to study the ability of these newer ASL sequences to detect WM perfusion signal. Background suppressed pseudo-continuous ASL was implemented at 3T with multislice 2D readout after 1525 ms. In five volunteers it was shown that 10 min scanning resulted in significant perfusion signal in 70% of WM voxels. Increasing the labeling and delay time did not lead to a higher percentage. In 27 normal volunteers it was found that 35 averages are necessary to detect significant WM signal, but 150 averages are needed to detect signal in the deep WM. Finally, it was shown in a patient with a cerebral arteriovenous malformation that pseudo-continuous ASL enabled the depiction of hypointense WM perfusion signal, although dynamic susceptibility contrast MRI showed that this region was merely showing delayed arrival of contrast agent than hypoperfusion. It can be concluded that, except within the deep WM, ASL is sensitive enough to detect WM perfusion signal and perfusion deficits. PMID:19365865

  19. Transepithelial transport of glutathione in isolated perfused small intestine

    SciTech Connect

    Hagen, T.M.; Jones, D.P.

    1986-03-01

    Uptake of GSH was studied in isolated perfused segment of jejunum in the adult rat. Krebs-Henseleit buffer was infused through the superior mesenteric artery and fractions were collected from the portal vein. The maintenance of vascular and epithelial integrity was established by lack of transfer of /sup 14/C-inulin or /sup 14/C-polyethylene glycol from the lumen to the perfusate. (glycine-2-/sup 3/H)GSH was introduced in the lumen and perfusate fractions collected every min. With 1 mM GSH and 10 mM Gly in the lumen, transport into the perfusate was 220 nmol/min. Analysis by HPLC showed that 80% was at the intact tripeptide, GSH. No cysteinylgylcine was detected in the perfusate. Pretreatment of the segment with 0.25 mM acivicin and 1 mM buthionine sulfoximine had no significant effect on GSH transport rate, thus showing that degradation and resynthesis of GSH did not contribute to the appearance of GSH in the perfusate. GSH transport was inhibited 50% by replacing lumenal NaCl with choline Cl. Addition of 10 mM ..gamma..-Clu-Glu or 10 mM ophthalmic acid decreased the rat of transport by 60-70%. These results establish that transepithelial transport of intact GSH occurs in rat small intestine. This may allow utilization of dietary GSH or reutilization of biliary GSH. In addition, the results suggest that oral GSH may be of therapeutic benefit.

  20. A pump-free membrane-controlled perfusion microfluidic platform.

    PubMed

    Goral, Vasiliy N; Tran, Elizabeth; Yuen, Po Ki

    2015-09-01

    In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.

  1. Goal-directed-perfusion in neonatal aortic arch surgery

    PubMed Central

    Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-01-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called “total body perfusion (TBP)” is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored. PMID:27709094

  2. Fast nonlinear regression method for CT brain perfusion analysis.

    PubMed

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods. PMID:27413770

  3. CT Perfusion Characteristics Identify Metastatic Sites in Liver.

    PubMed

    Wang, Yuan; Hobbs, Brian P; Ng, Chaan S

    2015-01-01

    Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  4. Comparison of 2 techniques for regional antibiotic delivery to the equine forelimb: intraosseous perfusion vs. intravenous perfusion.

    PubMed Central

    Butt, T D; Bailey, J V; Dowling, P M; Fretz, P B

    2001-01-01

    The purpose of this study was to compare the synovial fluid concentrations and pharmacokinetics of amikacin in the equine limb distal to the carpus following intraosseous and intravenous regional perfusion. The front limbs of 6 horses were randomly assigned to either intraosseous or intravenous perfusion. A tourniquet was placed distal to each carpus and the limb perfused with 500 mg of amikacin. Systemic blood samples and synovial fluid samples were collected over 70 min from the distal interphalangeal (DIP) joint, metacarpophalangeal joint, and digital flexor sheath. The tourniquet was removed following the 30 min sample collection. The mean peak amikacin concentration for the DIP joint was significantly higher with intravenous perfusion. There were no significant differences in time to peak concentration or elimination half-life between methods at each synovial structure. Each technique produced mean peak concentrations ranging from 5 to 50 times that of recommended peak serum concentrations for therapeutic efficacy. PMID:11519271

  5. Integrating evidence-based perfusion into practices: the International Consortium for Evidence-Based Perfusion.

    PubMed

    Likosky, Donald S

    2006-12-01

    There is surmounting pressure for clinicians domestically and abroad not only to practice evidence-based perfusion, but also to supplement practice with documentation thereof. In this editorial, I shall describe an international initiative aimed at embracing this dictum from patients, regulatory bodies, and payers. "Research is the only hope that the future will be different than the past"- Daniel Mintz, MD "Practical men who believe themselves to be quite exempt from any intellectual influences are usually the slaves of some defunct economist.... It is ideas not vested interests which are dangerous for good or evil."-John Maynard Keynes.

  6. Myocardial perfusion echocardiography and coronary microvascular dysfunction

    PubMed Central

    Barletta, Giuseppe; Del Bene, Maria Riccarda

    2015-01-01

    Our understanding of coronary syndromes has evolved in the last two decades out of the obstructive atherosclerosis of epicardial coronary arteries paradigm to include anatomo-functional abnormalities of coronary microcirculation. No current diagnostic technique allows direct visualization of coronary microcirculation, but functional assessments of this circulation are possible. This represents a challenge in cardiology. Myocardial contrast echocardiography (MCE) was a breakthrough in echocardiography several years ago that claimed the capability to detect myocardial perfusion abnormalities and quantify coronary blood flow. Research demonstrated that the integration of quantitative MCE and fractional flow reserve improved the definition of ischemic burden and the relative contribution of collaterals in non-critical coronary stenosis. MCE identified no-reflow and low-flow within and around myocardial infarction, respectively, and predicted the potential functional recovery of stunned myocardium using appropriate interventions. MCE exhibited diagnostic performances that were comparable to positron emission tomography in microvascular reserve and microvascular dysfunction in angina patients. Overall, MCE improved echocardiographic evaluations of ischemic heart disease in daily clinical practice, but the approval of regulatory authorities is lacking. PMID:26730291

  7. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  8. Myocardial perfusion assessment with contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  9. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  10. Color-Doppler sonographic tissue perfusion measurements reveal significantly diminished renal cortical perfusion in kidneys with vesicoureteral reflux.

    PubMed

    Scholbach, T M; Sachse, C

    2016-01-01

    Vesicoureteral reflux (VUR) and its sequelae may lead to reduced renal perfusion and loss of renal function. Methods to describe and monitor tissue perfusion are needed. We investigated dynamic tissue perfusion measurement (DTPM) with the PixelFlux-software to measure microvascular changes in the renal cortex in 35 children with VUR and 28 healthy children. DTPM of defined horizontal slices of the renal cortex was carried out. A kidney was assigned to the "low grade reflux"-group if the reflux grade of the voiding cystourethrogram was 1 to 3 and to the "high grade reflux"-group if the reflux grade was 4 to 5. Kidneys with VUR showed a significantly reduced cortical perfusion. Compared to healthy kidneys, this decline reached in low and high grade refluxes within the proximal 50% of the cortex: 3% and 12 %, in the distal 50% of the cortex: 21% and 44 % and in the most distal 20 % of the cortex 41% and 44%. DTPM reveals a perfusion loss in kidneys depending on the degree of VUR, which is most pronounced in the peripheral cortex. Thus, DTPM offers the tool to evaluate microvascular perfusion, to help planning treatment decisions in children with VUR.

  11. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD: a randomised clinical trial

    PubMed Central

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas; Andersen, Lars W; Secher, Niels H; Ravn, Hanne B; Steinbrüchel, Daniel A; Jakobsen, Janus C; Wetterslev, Jørn

    2016-01-01

    Introduction Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. Methods 90 patients were randomised to receive pulmonary artery perfusion during CPB with either oxygenated blood (n=30) or histidine-tryptophan-ketoglutarate (HTK) solution (n=29) compared with no pulmonary perfusion (n=31). The coprimary outcomes were the inverse oxygenation index compared at 21 hours after starting CPB and longitudinally in a mixed-effects model (MEM). Secondary outcomes were tracheal intubation time, serious adverse events, mortality, days alive outside the intensive care unit (ICU) and outside the hospital. Results 21 hours after starting CPB patients receiving pulmonary artery perfusion with normothermic oxygenated blood had a higher oxygenation index compared with no pulmonary perfusion (mean difference (MD) 0.94; 95% CI 0.05 to 1.83; p=0.04). The blood group had also a higher oxygenation index both longitudinally (MEM, p=0.009) and at 21 hours (MD 0.99; CI 0.29 to 1.69; p=0.007) compared with the HTK group. The latest result corresponds to a difference in the arterial partial pressure of oxygen of 23 mm Hg with a median fraction of inspired oxygen of 0.32. Yet the blood or HTK groups did not demonstrate a longitudinally higher oxygenation index compared with no pulmonary perfusion (MEM, p=0.57 and 0.17). Similarly, at 21 hours there was no difference in the oxygenation index between the HTK group and those no pulmonary perfusion (MD 0.06; 95% CI −0.73 to 0.86; p=0.87). There were no statistical significant differences between the groups for the secondary outcomes. Discussion Pulmonary artery perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing

  12. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD: a randomised clinical trial

    PubMed Central

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas; Andersen, Lars W; Secher, Niels H; Ravn, Hanne B; Steinbrüchel, Daniel A; Jakobsen, Janus C; Wetterslev, Jørn

    2016-01-01

    Introduction Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. Methods 90 patients were randomised to receive pulmonary artery perfusion during CPB with either oxygenated blood (n=30) or histidine-tryptophan-ketoglutarate (HTK) solution (n=29) compared with no pulmonary perfusion (n=31). The coprimary outcomes were the inverse oxygenation index compared at 21 hours after starting CPB and longitudinally in a mixed-effects model (MEM). Secondary outcomes were tracheal intubation time, serious adverse events, mortality, days alive outside the intensive care unit (ICU) and outside the hospital. Results 21 hours after starting CPB patients receiving pulmonary artery perfusion with normothermic oxygenated blood had a higher oxygenation index compared with no pulmonary perfusion (mean difference (MD) 0.94; 95% CI 0.05 to 1.83; p=0.04). The blood group had also a higher oxygenation index both longitudinally (MEM, p=0.009) and at 21 hours (MD 0.99; CI 0.29 to 1.69; p=0.007) compared with the HTK group. The latest result corresponds to a difference in the arterial partial pressure of oxygen of 23 mm Hg with a median fraction of inspired oxygen of 0.32. Yet the blood or HTK groups did not demonstrate a longitudinally higher oxygenation index compared with no pulmonary perfusion (MEM, p=0.57 and 0.17). Similarly, at 21 hours there was no difference in the oxygenation index between the HTK group and those no pulmonary perfusion (MD 0.06; 95% CI −0.73 to 0.86; p=0.87). There were no statistical significant differences between the groups for the secondary outcomes. Discussion Pulmonary artery perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing

  13. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  14. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  15. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Nanjo, Takafumi; Satoshi, Ii; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-11-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation × 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current.

  16. Tissue perfusion inhomogeneity during early tumor growth in rats.

    PubMed

    Endrich, B; Reinhold, H S; Gross, J F; Intaglietta, M

    1979-02-01

    Tissue perfusion in BA 1112 sarcomas of WAG inbred Rijswijk rats was determined from in vivo measurements of capillary density, length, and erythrocyte velocity in modified Algire chamber preparations. Studies were done with the use of television techniques in situ during a period of 26 days, both in control chambers and after implantation of a 0.1-mm3 piece of tumor tissue. Perfusion in control areas void of tumor tissue. Perfusion in control areas void of tumor was approximately 8-10 ml/minute/100 g of tissue. Flow in active tumor growth regions on the outward side of the tumor edge was through undifferentiated channels and had characteristics of flow through a porous medium. Despite enhanced arterial supply, the stabilized tumor microcirculation at the inward side of the growing tumor retained its perfusion rate constant (15-18 ml/min/100 g). Perfusion in central portions of the tumor was about 2-4 ml/minute/100 g during 12 days, whereas the tumor doubled in diameter. Our findings support the concept of temporal and functional blood flow inhomogeneity in the microcirculation of spreading tumors. PMID:283271

  17. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  18. Visuospatial deficits and hemispheric perfusion asymmetries in posterior cortical atrophy.

    PubMed

    Andrade, Katia; Kas, Aurélie; Samri, Dalila; Sarazin, Marie; Dubois, Bruno; Habert, Marie-Odile; Bartolomeo, Paolo

    2013-04-01

    We studied visuospatial performance and obtained brain perfusion scintigraphy in 27 patients with posterior cortical atrophy (PCA) and 24 healthy controls, with two aims: (1) to determine inter-hemispheric perfusion imbalances underlying signs of spatial neglect and (2) to establish the functional substrates of patients' performance on distinct visuospatial tasks (line bisection and target cancellation). Between-groups and correlation analyses were performed on a voxel-wise basis with Statistical Parametric Mapping, and right-to-left hemispheric perfusion ratios were calculated in anatomical regions of interest. Nineteen patients had pathological spatial biases. Compared with controls, patients with signs of left-sided and right-sided neglect presented prominent hypoperfusion in the right and left parietal cortex, respectively. Importantly, hypoperfusion extended to the ipsilateral prefrontal regions. Correlation analyses between task scores and brain perfusion showed that shifts in line bisection correlated with hypoperfusion in parieto-frontal regions, whereas omissions on target cancellation mainly correlated with hypoperfusion in prefrontal structures. Overall, the results indicate that spatial neglect in PCA is related to inter-hemispheric perfusion asymmetries in fronto-parietal networks, with partially different neural correlates for line bisection and target cancellation.

  19. Tomographic digital subtraction angiography for lung perfusion estimation in rodents

    SciTech Connect

    Badea, Cristian T.; Hedlund, Laurence W.; De Lin, Ming; Boslego Mackel, Julie S.; Samei, Ehsan; Allan Johnson, G.

    2007-05-15

    In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of {mu}L volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 {mu}m, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.

  20. Perfused Multiwell Plate for 3D Liver Tissue Engineering

    PubMed Central

    Domansky, Karel; Inman, Walker; Serdy, James; Dash, Ajit; Lim, Matthew H. M.

    2014-01-01

    In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isolated from each other. Each bioreactor in the array contains a scaffold that supports formation of hundreds of 3D microscale tissue units. The tissue units are perfused with cell culture medium circulated within the bioreactor by integrated pneumatic diaphragm micropumps. Electronic controls for the pumps are kept outside the incubator and connected to the perfused multiwell by pneumatic lines. The docking design and open-well bioreactor layout make handling perfused multiwell plates similar to using standard multiwell tissue culture plates. A model of oxygen consumption and transport in the circulating culture medium was used to predict appropriate operating parameters for primary liver cultures. Oxygen concentrations at key locations in the system were then measured as a function of flow rate and time after initiation of culture to determine oxygen consumption rates. After seven days in culture, tissue formed from cells seeded in the perfused multiwell reactor remained functionally viable as assessed by immunostaining for hepatocyte and liver sinusoidal endothelial cell (LSEC) phenotypic markers. PMID:20024050

  1. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  2. Regional time-density measurement of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Breen, Jerome F.; Robb, Richard A.

    2003-05-01

    The measurement of time-density relationships of the myocardium in studies of Magnetic Resonance perfusion data sets is a clinical technique used in assessing myocardial perfusion. Traditionally, to measure the time-density relationship a physician draws a region on the same 2-D image of the myocardium in sequential cardiac cycles. Throughout multiple cardiac cycles the density changes in this region are measured. A major limitation of this technique is change in anatomy relative to the selected region on the myocardium during consecutive cardiac cycles. This causes measurement errors, which are amplified if the traced region does not encompass the entire myocardial thickness, or includes a boundary exterior to the epicardial or endocardial surface. The technique described in this paper uses approximately the same myocardial region throughout the entire perfusion study, which insures inclusion of the entire endocardial to epicardial region and exclusion of exterior regions. Moreover, this region can be subdivided into smaller regions of interest. This can be accomplished by careful segmentation and reformatting of the data into polar coordinates. This allows sectioning both axially and transaxially through the myocardium permitting regional assessment of perfusion specific values such as maximum and/or the time to reach maximum density. These values can then be illustrated using density-mapped colors or time-density curves. This measurement and display technique may provide enhanced detection and evaluation of regional deficits in myocardial contractility and perfusion.

  3. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  4. Testosterone biotransformation by the isolated perfused canine pancreas

    SciTech Connect

    Fernandez-del Castillo, C.; Diaz-Sanchez, V.; Varela-Fascinetto, G.; Altamirano, A.; Odor-Morales, A.; Lopez-Medrano, R.M.; Robles-Diaz, G. )

    1991-01-01

    There is strong evidence indicating that the pancreas is under the influence of sex steroid hormones, and that it may even participate in their biosynthesis and metabolism. In the present study, (3H)testosterone was perfused into the isolated canine pancreas, and measured in the effluent with several of its metabolites (5 alpha-dihydrotestosterone, androstenedione, and estradiol). Results show that testosterone is readily transformed by the canine pancreas. The main product found in the effluent is androstenedione. The testis and spleen were also perfused with (3H)testosterone and used as controls. In both cases, this hormone appeared mostly unchanged in the effluent as compared to the pancreatic perfusion (p less than 0.0001). From our data, we conclude that the canine pancreas has the capacity to transform sex steroid hormones, and could be considered an extragonadal site of sex steroid biosynthesis.

  5. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  6. Novel Technologies for Isolated Lung Perfusion: Beyond Lung Transplant.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2016-05-01

    Isolated lung perfusion (ILP) has been examined and developed in lung transplantation and thoracic oncology research. In lung transplantation, ILP has been used to assess physiologic integrity of donor lungs after removal from the donor, and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. ILP is attractive as a concept to deliver high-dose chemotherapy to treat pulmonary metastatic disease, referred to as in vivo lung perfusion. This article focuses on the rationale, technical aspects, and experimental and clinical experience of in vivo lung perfusion. A perspective on the future application of these techniques is described. PMID:27112253

  7. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  8. Laser-induced macular holes demonstrate impaired choroidal perfusion

    NASA Astrophysics Data System (ADS)

    Brown, Jeremiah, Jr.; Allen, Ronald D.; Zwick, Harry; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    2003-06-01

    Choroidal perfusion was evaluated following the creation of a laser induced macular hole in a nonhuman primate model. Two Rhesus monkeys underwent macular exposures delivered by a Q-switched Nd:YAG laser. The lesions were evaluated with fluorescein angiography and indocyanine green (ICG) angiography . Each lesion produced vitreous hemorrhage and progressed to a full thickness macular hole. ICG angiography revealed no perfusion of the choriocapillaris beneath the lesion centers. Histopathologic evaluation showed replacement of the choriocapillaris with fibroblasts and connective tissue. Nd:YAG, laser-induced macular holes result in long term impairment of choroidal perfusion at the base of the hole due to choroidal scarring and obliteration of the choriocapillaris.

  9. Evaluation of CT Perfusion Biomarkers of Tumor Hypoxia

    PubMed Central

    Qi, Qi; Yeung, Timothy Pok Chi; Lee, Ting-Yim; Bauman, Glenn; Crukley, Cathie; Morrison, Laura; Hoffman, Lisa; Yartsev, Slav

    2016-01-01

    Background Tumor hypoxia is associated with treatment resistance to cancer therapies. Hypoxia can be investigated by immunohistopathologic methods but such procedure is invasive. A non-invasive method to interrogate tumor hypoxia is an attractive option as such method can provide information before, during, and after treatment for personalized therapies. Our study evaluated the correlations between computed tomography (CT) perfusion parameters and immunohistopathologic measurement of tumor hypoxia. Methods Wistar rats, 18 controls and 19 treated with stereotactic radiosurgery (SRS), implanted with the C6 glioma tumor were imaged using CT perfusion on average every five days to monitor tumor growth. A final CT perfusion scan and the brain were obtained on average 14 days (8–22 days) after tumor implantation. Tumor hypoxia was detected immunohistopathologically with pimonidazole. The tumor, necrotic, and pimonidazole-positive areas on histology samples were measured. Percent necrotic area and percent hypoxic areas were calculated. Tumor volume (TV), blood flow (BF), blood volume (BV), and permeability-surface area product (PS) were obtained from the CT perfusion studies. Correlations between CT perfusion parameters and histological parameters were assessed by Spearman’s ρ correlation. A Bonferroni-corrected P value < 0.05 was considered significant. Results BF and BV showed significant correlations with percent hypoxic area ρ = -0.88, P < 0.001 and ρ = -0.81, P < 0.001, respectively, for control animals and ρ = -0.7, P < 0.001 and ρ = -0.6, P = 0.003, respectively, for all animals, while TV and BV were correlated (ρ = -0.64, P = 0.01 and ρ = -0.43, P = 0.043, respectively) with percent necrotic area. PS was not correlated with either percent necrotic or percent hypoxic areas. Conclusions Percent hypoxic area provided significant correlations with BF and BV, suggesting that CT perfusion parameters are potential non-invasive imaging biomarkers of tumor

  10. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  11. Aortic arch replacement with a beating heart: a simple method using continuous 3-way perfusion.

    PubMed

    Abu-Omar, Y; Ali, J M; Colah, S; Dunning, J J

    2014-01-01

    We describe a simplified 3-way perfusion strategy that could be used in complex aortic procedures, which ensures continuous end-organ perfusion and minimizes the potential risks of cardiac, cerebral and peripheral ischaemic complications.

  12. [Ischemic heart disease (myocardial perfusion and viability): techniques and results].

    PubMed

    Croisille, P

    2004-10-01

    Over the last two decades, the understanding, diagnosis and treatment of patients with suspected or known coronary artery disease have made tremendous progress, in particular with the help of the development of non-invasive methodologies for assessing myocardial perfusion and viability. Clinically, nuclear medicine techniques (particularly SPECT imaging) have predominated. With the recent technical developments allowing for a combined assessment of perfusion and irreversible damage with late enhancement imaging, MRI will now play a major role in the assessment of ischemic heart disease. PMID:15507837

  13. Perfusion Electronic Record Documentation Using Epic Systems Software

    PubMed Central

    Steffens, Thomas G.; Gunser, John M.; Saviello, George M.

    2015-01-01

    Abstract: This paper describes the design and use of Epic Systems software for documentation of perfusion activities as part of the patient electronic medical record. The University of Wisconsin Hospital and Clinics adapted the Anesthesia software module and developed an integrated perfusion/anesthesia record for the documentation of cardiac and non-cardiac surgical procedures. This project involved multiple committees, approvals, and training to successfully implement. This article will describe our documentation options, concepts, design, challenges, training, and implementation during our initial experience. PMID:26834288

  14. Myocardial Perfusion Scintigraphy: Techniques, Interpretation, Indications and Reporting

    PubMed Central

    Fathala, Ahmed

    2011-01-01

    Myocardial perfusion single photon emission-computed tomography (MPS) has been one of the most important and common non-invasive diagnostic cardiac test. Gated MPS provides simultaneous assessment of myocardial perfusion and function with only one study. With appropriate attention to the MPS techniques, appropriate clinical utilization and effective reporting, gated MPS will remain a useful diagnostic test for many years to come. The aim of this article is to review the basic techniques of MPS, a simplified systematic approach for study interpretation, current clinical indications and reporting. After reading this article the reader should develop an understanding of the techniques, interpretation, current clinical indications and reporting of MPS studies. PMID:22048510

  15. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation

    PubMed Central

    Gui, Liqiong; Niklason, Laura E.

    2014-01-01

    Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics. PMID:24533306

  16. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION

    PubMed Central

    Mills, J. David; Tallent, Jerome H.

    1978-01-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules—or were not available within a reasonable computational time. PMID:15216068

  17. Pancreas tumor model in rabbit imaged by perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  18. [The Application of Machine Perfusion on Clinical Liver Transplantation].

    PubMed

    Ren, Fenggang; Zhu, Haoyang; Yan, Xiaopeng; Liu, Chang; Zhang, Xiaogang; Lv, Yi

    2015-11-01

    Liver transplantation is the only way to treat end-stage liver disease. In order to overcome the shortage of donor, marginal donors have been used widely, which bring about a series of problems. Machine perfusion can stimulate the circulation in vivo and is beneficial for the protection of liver. It could also improve the graft function and reduce postoperative complications, which makes it a hot spot in recent years. The aim of this study is to summarize the current status and prospects of application of machine perfusion on clinical liver transplantation.

  19. Diagnostic Performance of Dual-Energy CT Stress Myocardial Perfusion Imaging: Direct Comparison With Cardiovascular MRI

    PubMed Central

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K.

    2014-01-01

    OBJECTIVE The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. SUBJECTS AND METHODS One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥ 50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemodynamically significant stenosis was assessed before and after stress perfusion DECT on a pervessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. RESULTS The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p = 0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. CONCLUSION Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically

  20. High-frequency Electrocardiogram Analysis in the Ability to Predict Reversible Perfusion Defects during Adenosine Myocardial Perfusion Imaging

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.; Carlsson, Marcus; Pettersson, Jonas; Nilsson, Klas; Pahlm, Olle

    2007-01-01

    Background: A previous study has shown that analysis of high-frequency QRS components (HF-QRS) is highly sensitive and reasonably specific for detecting reversible perfusion defects on myocardial perfusion imaging (MPI) scans during adenosine. The purpose of the present study was to try to reproduce those findings. Methods: 12-lead high-resolution electrocardiogram recordings were obtained from 100 patients before (baseline) and during adenosine Tc-99m-tetrofosmin MPI tests. HF-QRS were analyzed regarding morphology and changes in root mean square (RMS) voltages from before the adenosine infusion to peak infusion. Results: The best area under the curve (AUC) was found in supine patients (AUC=0.736) in a combination of morphology and RMS changes. None of the measurements, however, were statistically better than tossing a coin (AUC=0.5). Conclusion: Analysis of HF-QRS was not significantly better than tossing a coin for determining reversible perfusion defects on MPI scans.

  1. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accessories is a device that is used to support a donated or...

  2. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accessories is a device that is used to support a donated or...

  3. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accesssories is a device that is used to support a donated or...

  4. 21 CFR 876.5880 - Isolated kidney perfusion and transport system and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Isolated kidney perfusion and transport system and....5880 Isolated kidney perfusion and transport system and accessories. (a) Identification. An isolated kidney perfusion and transport system and accesssories is a device that is used to support a donated or...

  5. Procedure for Decellularization of Rat Livers in an Oscillating-pressure Perfusion Device.

    PubMed

    Hillebrandt, Karl; Polenz, Dietrich; Butter, Antje; Tang, Peter; Reutzel-Selke, Anja; Andreou, Andreas; Napierala, Hendrik; Raschzok, Nathanael; Pratschke, Johann; Sauer, Igor M; Struecker, Benjamin

    2015-01-01

    Decellularization and recellularization of parenchymal organs may enable the generation of functional organs in vitro, and several protocols for rodent liver decellularization have already been published. We aimed to improve the decellularization process by construction of a proprietary perfusion device enabling selective perfusion via the portal vein and/or the hepatic artery. Furthermore, we sought to perform perfusion under oscillating surrounding pressure conditions to improve the homogeneity of decellularization. The homogeneity of perfusion decellularization has been an underestimated factor to date. During decellularization, areas within the organ that are poorly perfused may still contain cells, whereas the extracellular matrix (ECM) in well-perfused areas may already be affected by alkaline detergents. Oscillating pressure changes can mimic the intraabdominal pressure changes that occur during respiration to optimize microperfusion inside the liver. In the study presented here, decellularized rat liver matrices were analyzed by histological staining, DNA content analysis and corrosion casting. Perfusion via the hepatic artery showed more homogenous results than portal venous perfusion did. The application of oscillating pressure conditions improved the effectiveness of perfusion decellularization. Livers perfused via the hepatic artery and under oscillating pressure conditions showed the best results. The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.

  6. Role of Extracranial Carotid Duplex and Computed Tomography Perfusion Scanning in Evaluating Perfusion Status of Pericarotid Stenting

    PubMed Central

    Lin, Chih-Ming; Chang, Yu-Jun; Liu, Chi-Kuang; Yu, Cheng-Sheng

    2016-01-01

    Carotid stenting is an effective treatment of choice in terms of treating ischemic stroke patients with concomitant carotid stenosis. Though computed tomography perfusion scan has been recognized as a standard tool to monitor/follow up this group of patients, not everyone could endure due to underlying medical illness. In contrast, carotid duplex is a noninvasive assessment tool and could track patient clinical condition in real time. In this study we found that “resistance index” of the carotid ultrasound could detect flow changes before and after the stenting procedure, thus having great capacity to replace the role of computed tomography perfusion exam. PMID:27051669

  7. How to Perfuse: Concepts of Cerebral Protection during Arch Replacement

    PubMed Central

    Habertheuer, Andreas; Wiedemann, Dominik; Kocher, Alfred; Laufer, Guenther; Vallabhajosyula, Prashanth

    2015-01-01

    Arch surgery remains undoubtedly among the most technically and strategically challenging endeavors in cardiovascular surgery. Surgical interventions of thoracic aneurysms involving the aortic arch require complete circulatory arrest in deep hypothermia (DHCA) or elaborate cerebral perfusion strategies with varying degrees of hypothermia to achieve satisfactory protection of the brain from ischemic insults, that is, unilateral/bilateral antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). Despite sophisticated and increasingly individualized surgical approaches for complex aortic pathologies, there remains a lack of consensus regarding the optimal method of cerebral protection and circulatory management during the time of arch exclusion. Many recent studies argue in favor of ACP with various degrees of hypothermic arrest during arch reconstruction and its advantages have been widely demonstrated. In fact ACP with more moderate degrees of hypothermia represents a paradigm shift in the cardiac surgery community and is widely adopted as an emergent strategy; however, many centers continue to report good results using other perfusion strategies. Amidst this important discussion we review currently available surgical strategies of cerebral protection management and compare the results of recent European multicenter and single-center data. PMID:26713319

  8. Gated technetium-99m methoxy-isobutylisonitrile perfusion imaging.

    PubMed

    Avery, P G; Hudson, N M; Hubner, P J

    1992-05-01

    Technetium-99m methoxy-isobutylisonitrile, has been shown to be a useful perfusion agent for detecting coronary artery disease. Gated acquisition of perfusion images may remove motion artefact and improve detection. We compared the results of sensitivity and specificity for detecting coronary artery disease using perfusion images from the whole cardiac cycle (ungated) or from end-diastolic (gated) frames in 46 subjects, 31 with significant coronary disease and 15 with normal coronary arteries. There was no significant difference in detection of patients with coronary disease between the ungated and end-diastolic images: 25/31 with the ungated image and 28/31 with the end-diastolic. An improvement was made in detecting defects in the left anterior descending artery territory: 17/20 with the end-diastolic vs 11/20 with the ungated image (P less than 0.05) and in the right coronary artery region: 16/21 vs 10/21 (P less than 0.05), with an overall improvement in detecting regions supplied by stenosed coronary arteries: 45/55 end-diastolic vs 31/55 ungated (P less than 0.01). These results suggest use of the end-diastolic frame can significantly enhance the diagnostic capacity of methoxy-isobutylisonitrile perfusion imaging.

  9. Degradation of bradykinin by isolated perfused rat lung

    SciTech Connect

    Churchill, M.; Orawski, A.T.; AchutaMurthy, P.N.; Simmons, W.H.

    1986-03-01

    Several studies have suggested that the essentially complete degradation of circulating bradykinin (BK) in lung is mediated in part by peptidase(s) other than the well-characterized angiotensin converting enzyme (ACE). The authors report here that the isolated perfused rat lung can inactivate BK by sequential N-terminal cleavage. (/sup 3/H-2, 3-Pro) BK was perfused through the lung and the products in the perfusate identified by HPLC. In the absence of inhibitors, BK was 89-100% degraded with /sup 3/H-Pro/sup 2/-Pro/sup 3/ and /sup 3/H-Pro as the major products. The dipeptidylaminopeptidase IV (DAP IV) inhibitor, diprotein A (Ile-Pro-Ile), greatly reduced the Pro-Pro and Pro peaks and produced a prominent BK/sub 2-7/ peak (or BK/sub 2-9/ peak if the ACE inhibitor, captopril, was also present). 2-Mercapto-ethanol, a rather specific inhibitor of aminopeptidase P (AP-P), prevented the release of Arg/sup 1/, producing major BK and/or BK/sub 1-7/ peaks. The neutral metalloendopeptidase inhibitor, phosphoramidon, had no effect on the pattern of degradation of BK by the perfused rat lung by the release of Arg/sup 1/ by AP-P followed by release of Pro/sup 2/-Pro/sup 3/ by DAP IV.

  10. Vascularized organoid engineered by modular assembly enables blood perfusion

    PubMed Central

    McGuigan, Alison P.; Sefton, Michael V.

    2006-01-01

    Tissue engineering is one approach to address the donor-organ shortage, but to attain clinically significant viable cell densities in thick tissues, laboratory-constructed tissues must have an internal vascular supply. We have adopted a biomimetic approach and assembled microscale modular components, consisting of submillimeter-sized collagen gel rods seeded with endothelial cells (ECs) into a (micro)vascularized tissue; in some prototypes the gel contained HepG2 cells to illustrate the possibilities. The EC-covered modules then were assembled into a larger tube and perfused with medium or whole blood. The interstitial spaces among the modules formed interconnected channels that enabled this perfusion. Viable cell densities were high, within an order of magnitude of cell densities within tissues, and the percolating nature of the flow through the construct was evident in microcomputed tomography and Doppler ultrasound measurements. Most importantly, the ECs retained their nonthrombogenic phenotype and delayed clotting times and inhibited the loss of platelets associated with perfusion of whole blood through the construct. Unlike the conventional scaffold and cell-seeding paradigm of other tissue-engineering approaches, this modular construct has the potential to be scalable, uniform, and perfusable with whole blood, circumventing the limitations of other approaches. PMID:16864785

  11. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    SciTech Connect

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi National Institute for Physiological Sciences, Okazaki )

    1988-04-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25{degree}C). {sup 31}P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P{sub i}) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P{sub i} increased. At that time, the P{sub i} resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 {mu}M acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly.

  12. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. PMID:26730551

  13. Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI

    PubMed Central

    Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu

    2014-01-01

    Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343

  14. Ventilation and perfusion alterations after smoke inhalation injury.

    PubMed

    Robinson, N B; Hudson, L D; Robertson, H T; Thorning, D R; Carrico, C J; Heimbach, D M

    1981-08-01

    Previous studies of human victims of smoke inhalation injury have demonstrated retention of intravenously infused 133xenon2, 6 suggesting either: (1) true intrapulmonary shunting (Qs) secondary to alveolar collapse, flooding, or obliteration, or (2) perfusion of low ventilation/perfusion compartments (low VA/Q) secondary to bronchospasm, bronchial constriction, or partial bronchial occlusion by cellular debris. To differentiate between and quantitate the relative contribution of intrapulmonary shunt versus low VA/Q compartments, multiple inert gas analysis, as described by Wagner et al.,12 was applied to human victims of smoke inhalation. Studies of an animal model of injury were subsequently performed to confirm these observations. These experiments suggest that early alterations of ventilation and perfusion resulted from increased high VA/Q and dead-space ventilation. Late alterations included significantly increased perfusion of low VA/Q compartments and return of high VA/Q ventilation to baseline levels. True intrapulmonary shunting was notably absent. This physiologic sequence may represent early regional pulmonary vasospasm followed by regional bronchial obstruction and gradual alveolar secondary to bronchospasm, bronchial edema, or partial occlusion by cellular debris.

  15. Myocardial perfusion imaging during chest pain: a useful clinical tool.

    PubMed

    Shehata, A R; LaSala, A F; Heller, G V

    1996-04-01

    A 72-year old man was injected with Tc 99m tetrofosmin during acute chest pain, in the presence of a nondiagnostic electrocardiogram (ECG). Myocardial perfusion imaging revealed a large anteroseptal defect. Subsequent catheterization confirmed left anterior descending artery disease. Acute imaging may be useful in the identification of critical disease in patients with chest pain and nondiagnostic ECG.

  16. Perfusion from angiogram and a priori (PAP) with temporal regularization

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Geschwind, Jean-Francois H.

    2009-02-01

    Perfusion imaging is often used for diagnosis and for assessment of the response to the treatment. If perfusion can be measured during interventional procedures, it could lead to quantitative, more efficient and accurate treatment; however, imaging modalities that allow continuous dynamic scanning are not available in most of procedure rooms. Thus, we developed a method to measure the perfusion-time attenuation curves (TACs)-of regions-of-interest (ROIs) using xray C-arm angiography system with no gantry rotation but with a priori. The previous study revealed a problem of large oscillations in the estimated TACs and the lack of comparison with CT-based approaches. Thus the purposes of this study were (1) to reduce the variance of TDCs; and (2) to compare the performance of the improved PAP with that of the CT-based perfusion method. Our computer simulation study showed that the standard deviation of PAP method was decreased by 10.7-59.0% and that it outperformed (20× or 200× times) higher dose CT methods in terms of the accuracy, variance, and the temporal resolution.

  17. Current techniques of hyperthermic isolated limb perfusion for malignant melanoma.

    PubMed

    Tominaga, R; Kohno, H; Mayumi, H; Shiraishi, K; Nagae, S; Nakayama, J; Yasui, H

    2000-01-01

    A retrospective study was conducted examining 25 patients with malignant melanoma who were treated by our new protocol for hyperthermic isolated limb perfusion. The characteristics of our techniques include: a lower priming volume of the extracorporeal circuit; a therapeutic temperature range of 40-41 degrees C with 60 min hyperthermic perfusion; a nominal perfusion flow rate of 500 ml/min in the lower limb and 200 ml/min in the upper limb; and combined carboplatin with interferon-beta as the adjuvant chemotherapy drug. In the lower extremity group, the arterial cannula size ranged from 8 to 14 F, while the venous cannula size ranged from 14 to 16 F. In the upper limb group, the arterial cannula size ranged from 6 to 8F and the venous cannula size ranged from 10 to 12F. No patient required any homologous blood transfusion postoperatively. No operative death or major complications occurred during the early postoperative period, confirming the safety of this treatment. Both optimal cannula size selection and maintaining perfusion temperature below 41 degrees C were judged to be important in elimination of vascular and deep tissue injury.

  18. A review on electrical impedance tomography for pulmonary perfusion imaging.

    PubMed

    Nguyen, D T; Jin, C; Thiagalingam, A; McEwan, A L

    2012-05-01

    Although electrical impedance tomography (EIT) for ventilation monitoring is on the verge of clinical trials, pulmonary perfusion imaging with EIT remains a challenge, especially in spontaneously breathing subjects. In anticipation of more research on this subject, we believe a thorough review is called for. In this paper, findings related to the physiological origins and electrical characteristics of this signal are summarized, highlighting properties that are particularly relevant to EIT. The perfusion impedance change signal is significantly smaller in amplitude compared with the changes due to ventilation. Therefore, the hardware used for this purpose must be more sensitive and more resilient to noise. In previous works, some signal- or image-processing methods have been required to separate these two signals. Three different techniques are reviewed in this paper, including the ECG-gating method, frequency-domain-filtering-based methods and a principal-component-analysis-based method. In addition, we review a number of experimental studies on both human and animal subjects that employed EIT for perfusion imaging, with promising results in the diagnosis of pulmonary embolism (PE) and pulmonary arterial hypertension as well as other potential applications. In our opinion, PE is most likely to become the main focus for perfusion EIT in the future, especially for heavily instrumented patients in the intensive care unit (ICU).

  19. Simultaneous technetium-99m MIBI angiography and myocardial perfusion imaging

    SciTech Connect

    Baillet, G.Y.; Mena, I.G.; Kuperus, J.H.; Robertson, J.M.; French, W.J.

    1989-01-01

    Resting first-pass radionuclide angiography (FPRNA) was performed with the myocardial perfusion agent technetium-99m MIBI. In 27 patients, it was compared with technetium-99m diethylenetriamine pentaacetic acid FPRNA. A significant correlation was present in left (r = 0.93, p less than 0.001) as well as right (r = 0.92, p less than 0.001) ventricular ejection fraction measured with both radiopharmaceuticals. In 13 patients, MIBI derived segmental wall motion was compared with contrast ventriculography. A high correlation was present (p less than 0.001), and qualitative agreement was found in 38/52 segments. In 19 patients with myocardial infarction a significant correlation was present between MIBI segmental wall motion and perfusion scores (p less than 0.001). In ten patients with a history of myocardial infarction, 18 myocardial segments demonstrated diseased coronary vessels and impaired wall motion at contrast angiography. These segments were all identified by the MIBI wall motion and perfusion study. We conclude that MIBI is a promising agent for simultaneous evaluation of cardiac function and myocardial perfusion at rest.

  20. Teaching Ventilation/Perfusion Relationships in the Lung

    ERIC Educational Resources Information Center

    Glenny, Robb W.

    2008-01-01

    This brief review is meant to serve as a refresher for faculty teaching respiratory physiology to medical students. The concepts of ventilation and perfusion matching are some of the most challenging ideas to learn and teach. Some strategies to consider in teaching these concepts are, first, to build from simple to more complex by starting with a…

  1. Modeling of nanotherapeutics delivery based on tumor perfusion

    PubMed Central

    van de Ven, Anne L.; Abdollahi, Behnaz; Martinez, Carlos J.; Burey, Lacey A.; Landis, Melissa D.; Chang, Jenny C.; Ferrari, Mauro; Frieboes, Hermann B.

    2013-01-01

    Heterogeneities in the perfusion of solid tumors prevent optimal delivery of nanotherapeutics. Clinical imaging protocols to obtain patient-specific data have proven difficult to implement. It is challenging to determine which perfusion features hold greater prognostic value and to relate measurements to vessel structure and function. With the advent of systemically administered nanotherapeutics, whose delivery is dependent on overcoming diffusive and convective barriers to transport, such knowledge is increasingly important. We describe a framework for the automated evaluation of vascular perfusion curves measured at the single vessel level. Primary tumor fragments, collected from triple-negative breast cancer patients and grown as xenografts in mice, were injected with fluorescence contrast and monitored using intravital microscopy. The time to arterial peak and venous delay, two features whose probability distributions were measured directly from time-series curves, were analyzed using a Fuzzy C-mean (FCM) supervised classifier in order to rank individual tumors according to their perfusion characteristics. The resulting rankings correlated inversely with experimental nanoparticle accumulation measurements, enabling modeling of nanotherapeutics delivery without requiring any underlying assumptions about tissue structure or function, or heterogeneities contained within. With additional calibration, these methodologies may enable the study of nanotherapeutics delivery strategies in a variety of tumor models. PMID:24039540

  2. Disposition kinetics of diclofenac in the dual perfused rat liver.

    PubMed

    Sahin, Selma; Rowland, Malcolm

    2013-09-01

    This study investigates the hepatic disposition of diclofenac as a function of route of input: portal vein (PV) versus hepatic artery (HA) in the presence of its binding protein, albumin. The in situ dual perfused rat liver was performed using Krebs bicarbonate buffer containing human serum albumin (HSA, 0.25%-1%) at constant PV (12 mL/min) and HA (3 mL/min) flow rates. Bolus doses of [(14) C]-diclofenac and (125) I-labeled HSA were injected randomly into the HA or PV and then, after an appropriate interval, into the alternate vessel. Regardless of route of input and perfusion medium protein concentration, the hepatic outflow profile of diclofenac displayed a characteristic sharp peak followed by a slower eluting tail, indicating that its radial distribution is not instantaneous. Based on the estimated effective permeability-surface area product/blood flow ratio, hepatic uptake of diclofenac is governed by both perfusion and permeability. Fractional effluent recovery (F) increased as unbound diclofenac fraction in the perfusate decreased. Although no significant difference in hepatic clearance of diclofenac as a function of route of delivery at 0.5% and 1% HSA, it was demonstrable at 0.25% HSA (p < 0.001), when the extraction ratio is higher.

  3. Limited myocardial perfusion reserve in patients with left ventricular hypertrophy

    SciTech Connect

    Goldstein, R.A.; Haynie, M. )

    1990-03-01

    Experimental studies in animals have suggested that coronary flow reserve may be limited in patients with left ventricular hypertrophy (LVH). Accordingly, to noninvasively determine the effect of LVH on myocardial perfusion reserve, 25 patients, 9 with LVH and 16 controls, underwent positron imaging with rubidium-82 (82Rb) (30-55 mCi) or nitrogen-13 (13N) ammonia (12-19 mCi) at rest and following intravenous dipyridamole and handgrip stress. LVH was documented by echocardiographic and/or electrocardiographic measurements. LVH patients had either no chest pain (n = 8) and/or a normal coronary angiogram (n = 6). Nine simultaneous transaxial images were acquired, and the mean ratio of stress to rest activity (S:R), based on all regions for each heart, was calculated as an estimate of myocardial perfusion reserve. There were no regional differences in activity (i.e., perfusion defects) in any of the studies. S:R averaged 1.41 +/- 0.10 (s.d.) for controls and 1.06 +/- 0.09 for patients with LVH (p less than 0.0001). These data provide support for an abnormality in perfusion reserve in patients with LVH.

  4. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  5. Clinical Application and Research Advances of CT Myocardial Perfusion Imaging.

    PubMed

    2016-06-10

    Computed tomography (CT)-based myocardial perfusion imaging (CTP)has been widely recognized as a one-station solution for the imaging of myocardial ischemia-related diseases. This article reviews the clinical scanning protocols,analytical methods,and research advances of CTP in recent years and briefly discusses its limitations and future development. PMID:27469926

  6. Modeling of nanotherapeutics delivery based on tumor perfusion

    NASA Astrophysics Data System (ADS)

    van de Ven, Anne L.; Abdollahi, Behnaz; Martinez, Carlos J.; Burey, Lacey A.; Landis, Melissa D.; Chang, Jenny C.; Ferrari, Mauro; Frieboes, Hermann B.

    2013-05-01

    Heterogeneities in the perfusion of solid tumors prevent optimal delivery of nanotherapeutics. Clinical imaging protocols for obtaining patient-specific data have proven difficult to implement. It is challenging to determine which perfusion features hold greater prognostic value and to relate measurements to vessel structure and function. With the advent of systemically administered nanotherapeutics whose delivery is dependent on overcoming diffusive and convective barriers to transport, such knowledge is increasingly important. We describe a framework for the automated evaluation of vascular perfusion curves measured at the single vessel level. Primary tumor fragments, collected from triple-negative breast cancer patients and grown as xenografts in mice, were injected with fluorescence contrast and monitored using intravital microscopy. The time to arterial peak and venous delay, two features whose probability distributions were measured directly from time-series curves, were analyzed using a fuzzy c-mean supervised classifier in order to rank individual tumors according to their perfusion characteristics. The resulting rankings correlated inversely with experimental nanoparticle accumulation measurements, enabling the modeling of nanotherapeutics delivery without requiring any underlying assumptions about tissue structure or function, or heterogeneities contained therein. With additional calibration, these methodologies may enable the investigation of nanotherapeutics delivery strategies in a variety of tumor models.

  7. Efficiency of U.S. Tissue Perfusion Estimators.

    PubMed

    Kim, MinWoo; Abbey, Craig K; Insana, Michael F

    2016-08-01

    We measure the detection and discrimination efficiencies of conventional power-Doppler estimation of perfusion without contrast enhancement. The measurements are made in a phantom with known blood-mimicking fluid flow rates in the presence of clutter and noise. Efficiency is measured by comparing functions of the areas under the receiver operating characteristic curve for Doppler estimators with those of the ideal discriminator, for which we estimate the temporal covariance matrix from echo data. Principal-component analysis is examined as a technique for increasing the accuracy of covariance matrices estimated from echo data. We find that Doppler estimators are <50% efficient at directed perfusion detection between 0.1 and 2.0 mL/min per 2 cm(2) flow area. The efficiency was 20%-40% for the task of discriminating between two perfusion rates in the same range. We conclude that there are reasons to search for more efficient perfusion estimators, one that incorporates covariance matrix information that could significantly enhance the utility of Doppler ultrasound without contrast enhancement. PMID:27244733

  8. Photoacoustic perfusion measurements: a comparison with power Doppler in phantoms

    NASA Astrophysics Data System (ADS)

    Heres, H. M.; Arabul, M. Ü.; Tchang, B. C.; van de Vosse, F. N.; Rutten, M. C.; Lopata, R. G.

    2015-03-01

    Ultrasound-based measurements using Doppler, contrast, and more recently photoacoustics (PA), have emerged as techniques for tissue perfusion measurements. In this study, the feasibility of in vitro perfusion measurements with a fully integrated, hand-held, photoacoustic probe was investigated and compared to Power Doppler (PD). Three cylindrical polyvinyl alcohol (PVA) phantoms were made (diameter = 15 mm) containing 100, 200 and 400 parallel polysulfone tubes (diameter = 0.2 mm), resulting in a perfused cross-sectional area of 1.8, 3.6 and 7.1% respectively. Each phantom was perfused with porcine blood (15 mL/min). Cross-sectional PA images (λ = 805nm, frame rate = 10Hz) and PD images (PRF = 750Hz) were acquired with a MyLab One and MyLab 70 scanner (Esaote, NL), respectively. Data were averaged over 70 frames. The average PA signal intensity was calculated in a region-of-interest of 4 mm by 6 mm. The percentage of colored PD pixels was measured in the entire phantom region. The average signal intensity of the PA images increased linearly with perfusion density, being 0.54 (+/- 0.01), 0.56 (+/- 0.01), 0.58 (+/- 0.01) with an average background signal of 0.53 in the three phantoms, respectively. For PD, the percentage of colored pixels in the phantom area (1.5% (+/- 0.2%), 4.4% (+/- 0.2%), 13.7% (+/- 0.8%)) also increased linearly. The preliminary results suggest that PA, like PD, is capable of detecting an increase of blood volume in tissue. In the future, in vivo measurements will be explored, although validation will be more complex.

  9. Vascular effects of acetylcholine in the perfused rabbit lung

    SciTech Connect

    Cherry, P.D.; Gillis, C.N.

    1986-03-05

    Acetylcholine (ACh) relaxes large, isolated arteries by releasing an endothelium-derived relaxing factor (EDRF). The authors decided to determine if ACh releases EDRF in rabbit lungs (RL) perfused in situ and if chemical injury with tetradecanoyl phorbol myristate acetate (TPA) could modify EDRF release in RL and in rabbit pulmonary arteries (RPA) in vitro. RL were perfused at 15 ml/min with Krebs-dextran solution. 1 ..mu..M ACh infusion raised perfusion pressure (P) in RL that was blocked by 30 ..mu..M indomethacin (IND) in the perfusate. However, when IND-treated RL were perfused with the stable endoperoxide analog, U46619 (2-6nM) to increase P, ACh infusion (0.01-1.0 ..mu..M) consistently decreased elevated P. The vasodilator response to infusion of 1 ..mu..M ACh was acutely antagonized by infusion of either 20 ..mu..M quinacrine (Q) or 10 ..mu..M Fe/sup + +/-hemoglobin (Hb). ACh did not decrease P in IND-treated RL pre-equilibrated with Q or Hb. TPA (10 nM) antagonized ACh-reduction of P and the ACh-induced relaxation of isolated RPA. The TPA antagonism of ACh-relaxation of RPA was prevented by catalase (300 U/ml). From these results they conclude that: 1) ACh-induced vasoconstriction in RL depends on cyclooxygenase product(s). 2) IND unmasks ACh-induced vasodilatation in RL that is inhibited by Q and by Hb suggesting that the effect is mediated by EDRF. 3) TPA inhibits ACh-induced vasodilatation and relaxation of RPA via the release of H/sub 2/O/sub 2/ or a related oxidant that injures the endothelium.

  10. Normothermic blood perfusion of isolated rabbit kidneys. III. In vitro physiology of kidneys after perfusion with Euro-Collins solution or 7.5 M cryoprotectant (VS4).

    PubMed

    Arnaud, Françoise G; Khirabadi, Bijan S; Fahy, Gregory M

    2002-06-01

    Cryopreservation of solid organs might be possible using a mixture of cell-permeable agents, cryoprotectants (CPA), which are designed to completely preclude ice crystal formation during cooling to cryogenic temperatures. The effects of a specific prototype solution (VS4) were evaluated by normothermic blood perfusion in vitro. Rabbit kidneys were divided into three groups: untreated controls ( n=7), Euro-Collins (EC)-perfused controls ( n=6) and VS4 (49%, w/v) CPA-perfused kidneys ( n=7). After a 2-h blood perfusion, five of the seven CPA-perfused kidneys developed polyuria (0.21 mlxmin(-1)xg(-1)) relative to untreated controls (0.07 mlxmin(-1)xg(-1)) or EC-perfused kidneys (0.06 mlxmin(-1)xg(-1)), owing to the lower reabsorption of water (34.3%), Na(+) (34.2%) and glucose (35.6%). Furthermore, two kidneys were non-functional with virtually no urine production. Reduced tubular function was associated with reduced oxygen consumption (3.6 versus 2.3 versus 2.0 micromolexmin(-1)xg(-1) for controls, EC- and CPA-perfused kidneys, respectively) and increased weight gain (17% versus 20% versus 30%, respectively) after blood perfusion. Therefore, the current results provide insight into both the physiological effects of VS4 and the limits of reversibility of renal pathophysiological states. Our results also indicate that in vitro monitoring of oxygen consumption and weight gain of perfused organs could be used as predictors of renal function.

  11. Noninvasive Blood Perfusion Measurements of an Isolated Rat Liver and an Anesthetized Rat Kidney

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Lee, Charles Y.; Diller, Thomas E.; Scott, Elaine P.

    2008-01-01

    A simple, cost effective, and noninvasive blood perfusion system is tested in animal models. The system uses a small sensor to measure the heat transfer response to a thermal event (convective cooling) imposed on the tissue surface. Heat flux data are compared with a mathematical model of the tissue to estimate both blood perfusion and thermal contact resistance between the tissue and the probe. The perfusion system was evaluated for repeatability and sensitivity using isolated rat liver and exposed rat kidney tests. Perfusion in the isolated liver tests was varied by controlling the flow of the perfusate into the liver, and the perfusion in the exposed kidney tests was varied by temporarily occluding blood flow through the renal artery and vein. The perfusion estimated by the convective perfusion probe was in good agreement with that of the metered flow of the perfusate into the liver model. The liver tests indicated that the probe can be used to detect small changes in perfusion (0.005 ml/ml/s). The probe qualitatively tracked the changes in the perfusion in the kidney model due to occlusion of the renal artery and vein. PMID:19045542

  12. Development of an Extracorporeal Perfusion Device for Small Animal Free Flaps

    PubMed Central

    Fichter, Andreas M.; Ritschl, Lucas M.; Borgmann, Anna; Humbs, Martin; Luppa, Peter B.; Wolff, Klaus-Dietrich; Mücke, Thomas

    2016-01-01

    Background Extracorporeal perfusion (ECP) might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps. Methods After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood) were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7. Results ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27%) was even lower than after in vivo perfusion (49%), although not statistically significant (P = 0,083). After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%). Angiographic and histological findings confirmed these observations. Conclusions Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies. PMID:26808996

  13. Thyrotropin-releasing hormone metabolism and extraction by the perfused guinea pig placenta

    SciTech Connect

    Nogimori, T.; Alex, S.; Baker, S.; Emerson, C.H.

    1985-08-01

    This report describes the extraction of synthetic TRH and its metabolic conversion in the perfused guinea pig placenta. These studies were performed to obtain an estimate of fractional fetal TRH losses through the placenta and to determine if some of these losses are due to TRH metabolism. Experiments were performed in which the perfusion buffer contained 0.01, 1, and 10 micrograms/ml or no synthetic TRH. In experiments in which TRH was perfused, the perfusion reservoir contents and placental effluent fractions were counted for TH, and TRH and deamido-TRH were determined by RIA. Similarly, cyclo(His-Pro) was measured when 10 micrograms/ml TRH were perfused. When synthetic TRH was perfused, steady state TRH concentrations were achieved in placental effluent fractions by 20-30 min. The single pass extraction of TRH by the placenta was 11.4 +/- 2.6% (mean +/- SE) compared to 56.9 +/- 7.0% for TH22O. No significant difference was detected regardless of whether 10, 1, or 0.01 micrograms/ml TRH were perfused. A portion of the TRH that perfused the placenta was converted to deamido-TRH at all concentrations of perfused TRH. The conversion of TRH to TRH-OH was 4.2 +/- 0.7% in a single pass. When the perfusion buffer was devoid of synthetic TRH, a small but significant increase in the content of TRH immunoreactivity was noted in the placental effluent compared to that in the perfusion reservoir.

  14. An analysis of perfusion technology preadmission factors effects on academic success, perfusion certification achievement, and career placement.

    PubMed

    Palmer, David A

    2007-12-01

    This retrospective study was designed to evaluate the contribution of grade point average (GPA) and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) practical scores toward predicting perfusion academic success, career placement as a clinical perfusionist, and certification success or failure. The files of 95 students enrolled in the perfusion technology program at Carlow University-University of Pittsburgh Medical Center School of Cardiovascular Perfusion (CARLOW-UPMC) from 1995 through 2005 were reviewed to obtain admission and academic data. The independent variables used were WAIS-R practical results of the picture completion (PC), picture arrangement (PA), block design (BD), object assembly (OA) and digit symbol (DS) tests, undergraduate grade point average (UGPA), science grade point average (SGPA), and anatomy and physiology grade point average (APGPA). The dependent variables used were perfusion grade point average (PGPA), career placement status as a clinical perfusionist (CAREER), and success or failure on the American Board of Cardiovascular Perfusion (ABCP) certification examination. The research plan consisted of logistic and multiple linear regression analyses to determine which of the WAIS-R and GPA independent variables were significantly associated with the dependent variables. UGPA, SGPA, and APGPA all correlate at the 5% level with success achieving high PGPA. WAIS-R measures were not significant indicators of academic success. PGPA, UGPA, SGPA, and APGPA did not significantly correlate with any of the tested WAIS-R scores. PC, BD, and OA scores correlate well with CAREER. OA and DS scores correlate at the p = 0.05 level with ABCP certification success.

  15. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  16. Machine Perfusion Enhances Hepatocyte Isolation Yields From Ischemic Livers

    PubMed Central

    Izamis, Maria-Louisa; Perk, Sinem; Calhoun, Candice; Uygun, Korkut; Yarmush, Martin L.; Berthiaume, François

    2015-01-01

    Background High-quality human hepatocytes form the basis of drug safety and efficacy tests, cell-based therapies, and bridge-to-transplantation devices. Presently the only supply of cells derives from an inadequate pool of suboptimal disqualified donor livers. Here we evaluated whether machine perfusion could ameliorate ischemic injury that many of these livers experience prior to hepatocyte isolation. Methods Non-heparinized female Lewis rat livers were exposed to an hour of warm ischemia (34°C) and then perfused for 3 hours. Five different perfusion conditions that utilized the cell isolation apparatus were investigated, namely: (1) modified Williams Medium E and (2) Lifor, both with active oxygenation (95%O2/5%CO2), as well as (3) Lifor passively oxygenated with ambient air (21%O2/0.04%CO2), all at ambient temperatures (20±2°C). At hypothermic temperatures (5±1°C) and under passive oxygenation were (4) University of Wisconsin solution (UW) and (5) Vasosol. Negative and positive control groups comprised livers that had ischemia (WI) and livers that did not (Fresh) prior to cell isolation, respectively. Results Fresh livers yielded 32±9 million cells/g liver while an hour of ischemia reduced the cell yield to 1.6±0.6 million cells/g liver. Oxygenated Williams medium E and Lifor recovered yields of 39±11 and 31±2.3 million cells/g liver, respectively. The passively oxygenated groups produced 15±7 (Lifor), 13±7 (Vasosol), and 10±6 (UW) million cells/g liver. Oxygenated Williams Medium E was most effective at sustaining pH values, avoiding the accumulation of lactate, minimizing edematous weight gain and producing bile during perfusion. Conclusions Machine perfusion results in a dramatic increase in cell yields from livers that have had up to an hour of warm ischemia, but perfusate choice significantly impacts the extent of recovery. Oxygenated Williams Medium E at room temperature is superior to Lifor, UW and Vasosol, largely facilitated by its high

  17. Cardiac PET Perfusion: Prognosis, Risk Stratification, Clinical Management

    PubMed Central

    Dorbala, Sharmila; Di Carli, Marcelo F.

    2014-01-01

    Myocardial perfusion imaging (MPI) with positron emission tomography (PET) has expanded significantly over the past decade. With the wider availability of PET scanners and the routine use of quantitative blood flow imaging, the clinical use of PET MPI is expected to increase further. PET MPI is a powerful tool to identify risk, to quantify risk, and to guide therapy in patients with known or suspected coronary artery disease (CAD). A large body of evidence supports the prognostic value of PET MPI and ejection fraction in intermediate to high risk subjects, in women, in obese individuals and in post coronary artery bypass grafting (CABG) individuals. A normal perfusion study indicates low risk (< 1% annualized rate of cardiac events of cardiac death and non-fatal myocardial infarction), while an abnormal study indicates high risk. With accurate risk stratification, high quality images, and quantitation PET MPI may transform the management of patients with known or suspected CAD. PMID:25234079

  18. Cerebral perfusion in children with Alice in Wonderland syndrome.

    PubMed

    Kuo, Y T; Chiu, N C; Shen, E Y; Ho, C S; Wu, M C

    1998-08-01

    Alice in Wonderland syndrome (AIWS) is characterized by visual hallucinations and bizarre perceptual distortions. Technetium-99m hexamethylpropyleneamine tomography (SPECT) brain scans were performed in four patients during the acute stage of AIWS. Two patients were demonstrated to have Epstein-Barr virus infections. One had abnormal (EEG) findings. The visual-evoked potential, cranial CT, and MRI findings were negative. The decreased cerebral perfusion areas in all patients were near the visual tract and visual cortex. All involved some regions of the temporal lobe. In most patients with AIWS, the EEG, CT, and MRI are unable to determine the precise pathologic areas. However, a SPECT brain scan may demonstrate abnormal perfusion areas and explain the clinical presentations. PMID:9744628

  19. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  20. Topographic distribution of pulmonary ventilation and perfusion in the horse

    SciTech Connect

    Amis, T.C.; Pascoe, J.R.; Hornof, W.

    1984-08-01

    The regional distribution of ventilation to perfusion ratios (VA/Q) in the lungs of 8 healthy standing Thoroughbred geldings (4.4 +/- 1.5 years, 465.7 +/- 46.6 kg) was studied, using steady-state inhalation and IV infusion of the radioactive gas krypton-81m. The VA/Q was uniformly distributed within a vertical lung strip centered over the 9th rib on the right side. Ventilation per unit of alveolar volume (V/VA) assessed from the clearance of inhaled radioactive gas in 5 horses increased from 0.49 +/- 0.13 (arbitrary units) in nondependent lung zones to 1.45 +/- 0.16 in dependent lung zones. Seemingly, a vertical gradient of pulmonary ventilation exists in the horse that is matched by a similar gradient of perfusion.

  1. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.

    2011-08-01

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  2. Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus

    SciTech Connect

    Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.

    1984-08-01

    Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.

  3. Normothermic machine perfusion of the kidney: better conditioning and repair?

    PubMed

    Hosgood, Sarah A; van Heurn, Ernest; Nicholson, Michael L

    2015-06-01

    Kidney transplantation is limited by hypothermic preservation techniques. Prolonged periods of cold ischaemia increase the risk of early graft dysfunction and reduce long-term survival. To extend the boundaries of transplantation and utilize kidneys from more marginal donors, improved methods of preservation are required. Normothermic perfusion restores energy levels in the kidney allowing renal function to be restored ex vivo. This has several advantages: cold ischaemic injury can be avoided or minimized, the kidney can be maintained in a stable state allowing close observation and assessment of viability and lastly, it provides the ideal opportunity to add therapies to directly manipulate and improve the condition of the kidney. This review explores the experimental and clinical evidence for ex vivo normothermic perfusion in kidney transplantation and its role in conditioning and repair.

  4. Optical investigation of functional structures in isolated perfused pig heart

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Boehnert, Markus; Mahlke, Christine; Kessler, Manfred D.

    2000-11-01

    Light scattering in tissue of mammals and humans is affected by subcellular structures. Since these structures correlate well with the status of cells and tissue, light scattering seems to be ideal for monitoring of functional tissue state. By use of EMPHO SSK Oxyscan we investigated functional parameters in a novel kind of isolated perfused pig heart model. In this perfusion model we use organs obtained by the local slaughterhouse that are reanimated at our institute by application of a heart-lung machine. By creating 3D-images of tissue scattering we found an interesting relation between anatomical structures of myocardium and the 3D-images. Additionally, we detected coherence between backscattered light intensity and functional tissue status. Furthermore, we got a sight into the redox state of cytochrome aa3, b and c by creating difference spectra. We believe that this new kind of tissue imaging method will give us the opportunity to get new insights into myocardial function.

  5. Scalable Approach for Extrusion and Perfusion of Tubular, Heterotypic Biomaterials

    NASA Astrophysics Data System (ADS)

    Jeronimo, Mark David

    Soft material tubes are critical in the vasculature of mammalian tissues, forming networks of blood vessels and airways. Homogeneous and heterogeneous hydrogel tubes were extruded in a one-step process using a three layer microfluidic device. Co-axial cylindrical flow of crosslinking solutions and an alginate matrix is generated by a radial arrangement of microfluidic channels at the device's vertical extrusion outlet. The flow is confined and begins a sol-gel transition immediately as it extrudes at velocities upwards of 4 mm/s. This approach allows for predictive control over the dimensions of the rapidly formed tubular structures for outer diameters from 600 microm to 3 mm. A second microfluidic device hosts tube segments for controlled perfusion and pressurization using a reversible vacuum seal. On-chip tube deflection is observed and modeled as a measure of material compliance and circumferential elasticity. I anticipate applications of these devices for perfusion cell culture of cell-laden hydrogel tubes.

  6. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  7. Perfusion deficits, inflammation and aging precipitate depressive behaviour.

    PubMed

    Popa-Wagner, Aurel; Buga, Ana Maria; Tica, Andrei Adrian; Albu, Carmen Valeria

    2014-01-01

    Major depressive disorder (MDD) is a severe psychiatric illness that is associated with significant morbidity and mortality. Despite advances in the treatment of major depression, one-third of depressed patients fail to respond to conventional antidepressant medication. One pathophysiologic mechanism hypothesized to contribute to treatment resistance in depression is inflammation. Inflammation has been linked to depression by a number of putative mechanisms involving perfusion deficits that can trigger microglial activation and subsequent neuroinflammation in the elderly. However, the pathophysiological mechanisms remain to be further elucidated. This review focusses on recent studies addressing the complex relationships between depression, aging, inflammation and perfusion deficits in the elderly. We expect that a better understanding of neuroinflammatory mechanisms associated with age-related diseases may lead to the discovery of new biomarkers of MDD and development of new therapeutic interventions.

  8. Perfusion machines for liver transplantation: technology and multifunctionality.

    PubMed

    Rubbini, Michele

    2014-06-01

    The reliability of machine perfusion (alternative to static cold storage) for the preservation of liver for transplantation has been well investigated in experimental models, by taking into account the temperature, oxygenation, flow, pressure, and settings of the machine or proposed circuit. Machine perfusion is considered by many researchers as a valid method for preserving organs. While circuits or machines for preservation have been described, no agreement has been reached concerning how these devices should be developed. The machines proposed to date are considered here to identify the technical and functional features necessary for a machine to have multifunctionality and adaptability to cater all the needs of preservation, according to the type and features of the liver to be transplanted, including marginal livers. The need to establish a uniform method for the use of this machine is also emphasized, to achieve a clinical protocol for its use.

  9. An improved isolated working rabbit heart preparation using red cell enhanced perfusate.

    PubMed Central

    Chen, V.; Chen, Y. H.; Downing, S. E.

    1987-01-01

    The performance of isolated working rabbit hearts perfused with Krebs-Henseleit (KH) buffer was compared with those in which the buffer was supplemented with washed human red blood cells (KH + RBC) at a hematocrit of 15 percent. When perfused with KH alone at 70 cm H2O afterload and paced at 240 beats/minute, coronary flow was more than double, whereas aortic flow was 40-60 percent of that in hearts perfused with KH + RBC, regardless of left atrial filling pressures (LAFP). Peak systolic pressure reached a plateau at 120 mm Hg in KH + RBC, but at 95 mm Hg in the KH group. Stroke work, however, was similar in the two groups. Despite the high coronary flow, oxygen uptake by hearts perfused with KH was substantially less and did not respond to increases in LAFP as in those perfused with KH + RBC. There was a 20 percent drop in ATP and glycogen content after 90 minutes' perfusion. In contrast, isolated hearts perfused with RBC-enriched buffer remained stable for at least 150 minutes. Irrespective of the perfusate, triacylglycerol content of the muscle remained at similar levels throughout the course of study. Increasing RBC in the perfusate from 15 percent to 25 percent had no additional effect on cardiac performance or oxygen consumption. Our findings demonstrate that in the isolated working rabbit heart inclusion of RBC in the perfusate improves mechanical and metabolic stability by providing an adequate oxygen supply. PMID:3604287

  10. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  11. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers.

    PubMed

    op den Dries, S; Karimian, N; Sutton, M E; Westerkamp, A C; Nijsten, M W N; Gouw, A S H; Wiersema-Buist, J; Lisman, T; Leuvenink, H G D; Porte, R J

    2013-05-01

    In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. We have studied the feasibility of normothermic machine perfusion in four discarded human donor livers. Normothermic machine perfusion consisted of pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion for 6 h. Two hollow fiber membrane oxygenators provided oxygenation of the perfusion fluid. Biochemical markers in the perfusion fluid reflected minimal hepatic injury and improving function. Lactate levels decreased to normal values, reflecting active metabolism by the liver (mean lactate 10.0 ± 2.3 mmol/L at 30 min to 2.3 ± 1.2 mmol/L at 6 h). Bile production was observed throughout the 6 h perfusion period (mean rate 8.16 ± 0.65 g/h after the first hour). Histological examination before and after 6 h of perfusion showed well-preserved liver morphology without signs of additional hepatocellular ischemia, biliary injury or sinusoidal damage. In conclusion, this study shows that normothermic machine perfusion of human donor livers is technically feasible. It allows assessment of graft viability before transplantation, which opens new avenues for organ selection, therapeutic interventions and preconditioning.

  12. Brain perfusion in polysubstance users: Relationship to substance and tobacco use, cognition, and self-regulation*

    PubMed Central

    Murray, Donna E.; Durazzo, Timothy C.; Mon, Anderson; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2015-01-01

    Background Brain perfusion is altered in both alcohol dependence and stimulant dependence. Although most substance users also abuse/depend on alcohol concurrently (polysubstance users; PSU), rigorous perfusion research in PSU is limited. Also, the relationships of perfusion abnormalities with cognition, impulsivity or decision making are not well known. Methods Arterial spin labeling MRI and neuropsychological measures assessed perfusion levels and neurocognition in 20 alcohol dependent individuals with comorbid stimulant dependence (PSU), 26 individuals dependent on alcohol only (ALC), and 31 light/non-drinking controls (LD). The patient groups included smokers and non-smokers. Results ALC had lower perfusion than LD in subcortical and cortical brain regions including the brain reward/executive oversight system (BREOS). Contrary to our hypothesis, regional perfusion was generally not lower in PSU than ALC. However, smoking PSU had lower perfusion than smoking ALC in several regions, including BREOS. Lower BREOS perfusion related to greater drinking severity in smoking substance users and to greater smoking severity in smoking ALC. Lower regional perfusion in ALC and PSU correlated with worse performance in different cognitive domains; smoking status affected perfusion-cognition relationships in ALC only. Lower BREOS perfusion in both substance using groups related to higher impulsivity. Conclusion Although regional perfusion was not decreased in PSU as a group, the combination of cigarette smoking and polysubstance use is strongly related to hypoperfusion in important cortical and subcortical regions. As lower perfusion relates to greater smoking severity, worse cognition and higher impulsivity, smoking cessation is warranted for treatment-seeking PSU and ALC. PMID:25772434

  13. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  14. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  15. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.

    PubMed

    Abay, Tomas Ysehak; Kyriacou, Panayiotis A

    2015-09-01

    In the last decades, photoplethysmography (PPG) has been used as a noninvasive technique for monitoring arterial oxygen saturation by pulse oximetry (PO), whereas near-infrared spectroscopy (NIRS) has been employed for monitoring tissue blood perfusion. While NIRS offers more parameters to evaluate oxygen delivery and consumption in deep tissues, PO only assesses the state of oxygen delivery. For a broader assessment of blood perfusion, this paper explores the utilization of dual-wavelength PPG by using the pulsatile (ac) and continuous (dc) PPG for the estimation of arterial oxygen saturation (SpO2) by conventional PO. Additionally, the Beer-Lambert law is applied to the dc components only for the estimation of changes in deoxyhemoglobin (HHb), oxyhemoglobin (HbO2), and total hemoglobin (tHb) as in NIRS. The system was evaluated on the forearm of 21 healthy volunteers during induction of venous occlusion (VO) and total occlusion (TO). A reflectance PPG probe and NIRS sensor were applied above the brachioradialis, PO sensors were applied on the fingers, and all the signals were acquired simultaneously. While NIRS and forearm SpO2 indicated VO, SpO2 from the finger did not exhibit any significant drop from baseline. During TO, all the indexes indicated the change in blood perfusion. HHb, HbO2, and tHb changes estimated by PPG presented high correlation with the same parameters obtained by NIRS during VO (r(2) = 0.960, r(2) = 0.821, and r(2) = 0.974, respectively) and during TO (r(2) = 0.988, r(2) = 0.940, and r(2) = 0.938, respectively). The system demonstrated the ability to extract valuable information from PPG signals for a broader assessment of tissue blood perfusion. PMID:25838515

  16. Australian and New Zealand perfusion survey: equipment and monitoring.

    PubMed

    Baker, Robert A; Willcox, Timothy W

    2006-09-01

    The current practice of perfusion in Australia and New Zealand continues to adopt new techniques and procedures into clinical practice. Our aims were to report current practice in 2003 and to compare and contrast current practice with historic practice. A total of 62 centers (40 perfusion groups) performing procedures using cardiopulmonary bypass (CPB) were identified and were e-mailed a detailed electronic survey. The survey was comprised of an excel worksheet that contained 233 single answer questions (either dropdown lists, yes/no, true/false, or numeric) and 12 questions that allowed the respondent to provide a commentary. Respondents were instructed to answer all questions based on what represented the predominant practice of perfusion in their institutions during 2003. We report an 89% response rate representing a caseload of 20,688 adult cases. These data allowed us to profile the following. A standard adult CPB setup in 2003 consisted of a membrane oxygenator (100% of cases), a roller pump (70%) as the main arterial pump, although a centrifugal pump would be considered for selected procedures (30%), a circuit incorporating a hard-shell venous reservoir (86%), and a mixture of biocompatible and non-biocompatible circuit components (66%). The circuit would include a pre-bypass filter (88%), an arterial line filter (94%), and would allow monitoring of the following: hard-shell venous reservoir low level (100%) with servo-regulation of the arterial pump (85%), microbubble alarm (94%) with servo-regulation of the arterial pump (79.5%), arterial line pressures (100%) with servo-regulation of the arterial pump (79%), inline venous O2 saturation (100%), and inline hematocrit (58%). Perfusion practice in Australia and New Zealand has adopted changes over the last decade; however, some areas of practice show wide variation. This survey provides a baseline of contemporary practice for Australian and New Zealand perfusionists.

  17. Cardiac PET Perfusion Tracers: Current Status and Future Directions

    PubMed Central

    Maddahi, Jamshid; Packard, René R. S.

    2015-01-01

    Positron emission tomography (PET) myocardial perfusion imaging (MPI) is increasingly used for non-invasive detection and evaluation of coronary artery disease (CAD). However, the widespread use of PET MPI has been limited by shortcomings of the current PET perfusion tracers. Availability of these tracers is limited by need for an on-site (15O water and 13N ammonia) or nearby (13N ammonia) cyclotron or commitment to costly generators (82Rb). Due to short half-lives ranging from 76sec for 82Rb, to 2.1min for 15O water and 10min for 13N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible (82Rb and 15O water) or is not practical (13N ammonia). Furthermore, the long positron range of 82Rb makes image resolution suboptimal and its low extraction limits its defect resolution. In recent years, development of an 18F labeled PET perfusion tracer has gathered considerable interest. The longer half-life of 18F (108 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of 18F would result in better image resolution. 18F flurpiridaz is by far the most thoroughly studied in animal models, and is the only F18-based PET MPI radiotracer currently undergoing clinical evaluation. Pre-clinical and clinical experience with 18F flurpiridaz demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast which was stable over time – important properties of an ideal PET MPI radiotracer. Pre-clinical data from other 18F labeled myocardial perfusion tracers are encouraging. PMID:25234078

  18. A high-rate perfusion bioreactor for plant cells.

    PubMed

    De Dobbeleer, C; Cloutier, M; Fouilland, M; Legros, R; Jolicoeur, M

    2006-12-20

    A perfusion bioreactor allowing continuous extraction of secondary metabolites was designed and challenged for Eschscholtzia californica plant cell suspensions. Four sedimentation columns mounted inside a 2.5-L bioreactor separated single cells and cell aggregates from the culture medium. Cells were elicited with chitin at day 4 and the liquid medium free of cells and debris was then continuously pumped to the extraction columns containing fluidized XAD-7 resins, and then recirculated back to the cell suspension. A medium upward velocity corresponding to cell sedimentation velocity maintained a stable cell/medium separation front in the columns for sedimented cell volume (SCV) of 90% (70% packed cell volume, PCV). Two perfusion bioreactor cultures of 10 and 14 days were performed. A maximum dilution rate of 20.4/day was reached from day 4 to day 6, and was then reduced to 5/day at day 9 for 55% SCV. Control cultures were performed without and with free extraction resins into the cell suspension. Perfusion cultures showed similar specific growth rates of 0.24 +/- 0.04/day before and after elicitation. However, production level in the perfusion cultures was similar to that from the culture without resins with a maximum of 2.06 micromole/gDW total alkaloids, with 1.54 micromole/gDW in the resins. Cultures with free resins resulted in 30.94 micromole/gDW with 28.4 +/- 8.8 micromole/gDW in the resins. Difference in the cells nutritional state from elicitation was identified as a major cause in the production reduction. However, pathway to chelilutine was favored in the continuous extraction culture.

  19. Chromium absorption in the vascularly perfused rat intestine

    SciTech Connect

    Dowling, H.J.; Offenbacher, E.G.; Pi-Sunyer, F.X.

    1986-03-01

    The mechanism of chromium (Cr) absorption by the rat small intestine was investigated using a double perfusion technique wherein the luman of the small intestine and the vasculature supplying it were separately perfused. The intestinal perfusate (IP) was a nutrient-rich tissue culture medium (TCM) with added inorganic Cr and /sup 51/Cr. The vascular perfusate (VP) was a Krebs-Ringer bicarbonate solution (KRB) containing 4.7% dextran, 0.1% glucose and 5% human serum. Cr absorption was calculated by the amount of /sup 51/Cr detected in the VP. To determine the transport mechanism for Cr, its absorption into the VP was measured at various Cr concentrations of the IP ranging from 10-400 ppb CrCl/sub 3/. The amount of Cr absorbed into the blood rose linearly with the intestinal Cr concentration suggesting a process of simple diffusion. Manipulations of the VP and IP constituents were made to investigate their effects on Cr absorption. When serum was omitted from the VP, Cr adsorption was suppressed, suggesting that serum component(s) are necessary for optimal Cr absorption. When either of 2 plasma transport proteins (apo-transferrin, albumin) were added to the serum-free VP at physiological levels, Cr absorption returned to, but did not exceed, control levels. When the TCM was replaced with a KRB solution; Cr absorption was suppressed indicating that there are nutrient(s) of the TCM which facilitate Cr absorption. Further suppression occurred when a Cr concentration gradient opposing Cr absorption was created (IP at 100 ppb Cr, VP at 400 ppb Cr).

  20. Ordered synthesis and mobilization of glycogen in the perfused heart

    SciTech Connect

    Brainard, J.R.; Hutson, J.Y. ); Hoekenga, D.E.; Lenhoff, R. )

    1989-12-12

    The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by {sup 13}C NMR. By varying the glucose isotopomer ((1-{sup 13}C)glucose or (2-{sup 13}C)glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When (1-{sup 13}C)glucose was given initially in the perfusion and (2-{sup 13}C)glucose was given second, (2-{sup 13}C)lactate was detected first during ischemia and (3-{sup 13}C)lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as {beta} particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes have suggested that the organization of {beta} particles into {alpha} particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examine the ordered synthesis and mobilization of cardiac glycogen, the authors have selectively monitored the NMR properties of {sup 13}C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width. These results suggest either that there is significant isotopic exchange of glucosyl monomers in glycogen during net synthesis or that glucosyl residues incorporated into glycogen undergo motional restrictions as further glycogen synthesis occurs.

  1. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these tracers have been used for brain perfusion imaging with SPECT in brain disorders as well as for physiological activation protocols. Only seldom, however, have they been used in protocols that quantitatively measure rCBF. Nevertheless, comparative studies with perfusion reference tracers have repeatedly demonstrated that the brain uptake of these brain-retained tracers is correlated to perfusion, the major determinant of the distribution of these tracers in the brain. The brain kinetics of {sup 99m}Tc HMPAO, which is the tracer most commonly used, was described with a two-compartment tissue model. The theoretical approach, which is, in itself, sufficient for modeling quantitative measurements with {sup 99m}Tc HMPAO, initially suggested the possibility of empirically narrowing the distance between the brain`s regional uptake of the tracer and rCBF with a linearization algorithm which uses the cerebellum as the reference region. The value of this empirical method is hampered by the fact that the cerebellum can be involved in cerebrovascular disease (i.e. cerebellar diaschisis) as well as in several other brain disorders (e.g. anxiety, and dementia of the Alzheimer type). It also was proposed that different reference regions (occipital, whole slice, or whole brain) should be selected in relation to the brain disorder under study. However, this approach does not solve the main problem because it does not equip us with a reliable tool to evaluate rCBF with a high predictive value, and, at the same time, to reduce intersubject variability. The solution would be to measure a quantitative parameter which directly reflects rCBF, such as the unidirectional influx constant of the freely diffusible flow-limited tracers. 45 refs., 3 figs., 1 tab.

  2. Electrical constants of arterially perfused rabbit papillary muscle.

    PubMed Central

    Kléber, A G; Riegger, C B

    1987-01-01

    1. Right ventricular rabbit papillary muscles were arterially perfused with a mixture of Tyrode solution, bovine erythrocytes, dextran and albumin. In the recording chamber, they were surrounded by a H2O-saturated atmosphere of O2 and CO2 which served as an electrical insulator. 2. Conduction velocity and passive electrical properties were determined from intra- and extracellular potentials measured during excitation and during flow of subthreshold current. 3. The propagation of the action potential was linear along the muscle at a velocity of 55.6 cm/s. The extracellular wave-front voltage was 51.5 mV. 4. The following values for passive cable properties were obtained: (i) a ratio of extra- to intracellular longitudinal resistance of 1.2; (ii) an extracellular specific resistance (Ro) of 63 omega cm; (iii) an intracellular specific resistance (Ri) of 166 omega cm; (iv) a space constant lambda of 0.357 mm; (v) a membrane time constant tau of 2.57 ms. The space constant lambda* recalculated for zero extracellular resistance was 0.528 mm. 5. Arresting perfusion with drop of perfusion pressure was associated with an immediate increase of the extracellular longitudinal resistance by 35% and a decrease of conduction velocity by 13%. 6. The present results demonstrate the important contribution of the extracellular resistance to electrotonic interaction and propagation in densely packed myocardial tissue. Moreover, changes in perfusion pressure are associated with changes in extracellular resistance, probably as a consequence of changes in intravascular volume. PMID:3656162

  3. Comparison of Multi-Echo Dixon Methods with Volume Interpolated Breath-Hold Gradient Echo Magnetic Resonance Imaging in Fat-Signal Fraction Quantification of Paravertebral Muscle

    PubMed Central

    Yoo, Yeon Hwa; Kim, Hak-Sun; Lee, Young Han; Yoon, Choon-Sik; Paek, Mun Young; Yoo, Hanna; Kannengiesser, Stephan; Chung, Tae-Sub; Song, Ho-Taek; Suh, Jin-Suck

    2015-01-01

    Objective To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2* estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2*-corrected two-echo Dixon or T2*-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Materials and Methods Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2*-corrected Dixon technique with two (non-T2*-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. Results A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. Conclusion T2*-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification. PMID:26357503

  4. The effects of seasonal training on heart rate and oxygen saturation during face-immersion apnea in elite breath-hold diver: a case report.

    PubMed

    Kapus, Jernej; Usaj, Anton; Jeranko, Samo; Daić, Jure

    2016-01-01

    The purpose of the present study was to monitor a diver's ability to perform maximal face-immersion apnea throughout the competitive season. A male, world-class apnea diver was followed for 1 year (from March 2012 to March 2013). During this period he was tested six times. Each test session involved the measurements of the pulmonary function and respiratory muscle strength. In addition, the ability to perform maximal face-immersion apnea was also explored. The results of face-immersion apnea durations showed a continuous improvement throughout the preparation period 1 with the peak in the main competition period and a decline during the competition period 2 and the transition period. It seemed that the training periodization was successful by producing the diver's peak performance level at the main diving competition i.e. the 2012 AIDA Freediving World Championships. In conclusion, the study shows that changes in training interventions due to seasonal training periodization could be accompanied by changes in a diver's ability to perform the maximal face-immersion apnea. However, further research is needed to establish the influences of individual components of apnea training on a diver's performance.

  5. Cardiac functional analysis by free-breath real-time cine CMR with a spatiotemporal filtering method, TSENSE: comparison with breath-hold cine CMR.

    PubMed

    Yamamuro, Masaki; Tadamura, Eiji; Kanao, Shotaro; Okayama, Satoshi; Okamoto, Jun; Urayama, Shinichi; Kimura, Takeshi; Komeda, Masashi; Kita, Toru; Togashi, Kaori

    2006-01-01

    The aim of this study was to assess the accuracy of cardiac functional values obtained from free-breathing real-time cine CMR with the temporal sensitivity encoding (TSENSE) technique by comparing them with values obtained from conventional cine CMR. For the real-time cine CMR, two protocols were employed, one with good temporal resolution and one with good spatial resolution. The functional values obtained from the high temporal resolution real-time cine CMR agreed and correlated well with those of cine CMR. On the other hand, statistically significant but clinically slight overestimation of ESV (p < .05) and underestimation of EF (p < .01) were observed with the other protocol. Real-time cine CMR with TSENSE can provide acceptable cardiac functional values.

  6. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  7. Prilocaine elimination by isolated perfused rat lung and liver.

    PubMed

    Geng, W P; Ebke, M; Foth, H

    1995-01-01

    Prilocaine is assumed to undergo significant elimination by extrahepatic organs and to differ in this respect from other commonly used local anaesthetics. In order to clarify whether the lung may play an important role as a site of elimination of prilocaine, the kinetic parameters were studied in isolated perfused rat lungs and were compared to those of isolated livers. Furthermore, the structurally related compounds bupivacaine and mepivacaine were also investigated in this system. Prilocaine was dispersed into a relatively large apparent distribution volume in perfused rat lung (139 ml versus 97 ml in controls). In single-pass perfused lungs the observed maximum of concentration was decreased by about 60% compared to controls. The mean residence time was prolonged by about 40%. These observations suggest that prilocaine is substantially retained by rat lung and that this effect occurs particularly during first-pass. However, the ability of rat lung to degrade prilocaine was relatively low. The clearance values were about 0.3 ml/min equal to about 20% of the hepatic capacity calculated per g of tissue. Thus it must be assumed that prilocaine is only transiently retained by the lung and will gain systemic availability later on. In rat lungs the kinetics of prilocaine elimination were not substantially different from those of bupivacaine and mepivacaine (16 and 12%). These observations do not support the assumption that especially prilocaine undergoes extrahepatic elimination.

  8. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation.

  9. Sequential assembly of 3D perfusable microfluidic hydrogels.

    PubMed

    He, Jiankang; Zhu, Lin; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2014-11-01

    Bottom-up tissue engineering provides a promising way to recreate complex structural organizations of native organs in artificial constructs by assembling functional repeating modules. However, it is challenging for current bottom-up strategies to simultaneously produce a controllable and immediately perfusable microfluidic network in modularly assembled 3D constructs. Here we presented a bottom-up strategy to produce perfusable microchannels in 3D hydrogels by sequentially assembling microfluidic modules. The effects of agarose-collagen composition on microchannel replication and 3D assembly of hydrogel modules were investigated. The unique property of predefined microchannels in transporting fluids within 3D assemblies was evaluated. Endothelial cells were incorporated into the microfluidic network of 3D hydrogels for dynamic culture in a house-made bioreactor system. The results indicated that the sequential assembly method could produce interconnected 3D predefined microfluidic networks in optimized agarose-collagen hydrogels, which were fully perfusable and successfully functioned as fluid pathways to facilitate the spreading of endothelial cells. We envision that the presented method could be potentially used to engineer 3D vascularized parenchymal constructs by encapsulating primary cells in bulk hydrogels and incorporating endothelial cells in predefined microchannels. PMID:25027302

  10. Isolated perfused lung preparation for studying altered gaseous environments.

    PubMed Central

    Rhoades, R A

    1984-01-01

    The isolated perfused lung (IPL) preparation is ideally suited to investigate lung dynamics and cellular function, and is easily adapted to investigating biochemical and physiological responses to environmental insults. The IPL offers several advantages which permit one to study endothelial/epithelial interactions that are often disrupted with other model systems (e.g., isolated cells, minces, slices, homogenates, etc.). The IPL developed in our laboratory was devised for the rat lung and allows four lungs to be perfused simultaneously in which control over ventilation, flow, pressure, pH, PO2 and PCO2 can be maintained. Isolated lungs perfused for 1 to 2 hr at a flow rate of 10 mL/min exhibit less that 2% weight gain, maintain normal ATP levels, and exhibit linear substrate uptake. Mechanisms leading to changes in vascular and airway resistance, lipid metabolism, vasoactive hormones, blood gases and changes in vascular permeability mediated by environmental insults can be quantified in the IPL preparation. PMID:6383801

  11. Simulation model for contrast agent dynamics in brain perfusion scans.

    PubMed

    Bredno, Jörg; Olszewski, Mark E; Wintermark, Max

    2010-07-01

    Standardization efforts are currently under way to reduce the heterogeneity of quantitative brain perfusion methods. A brain perfusion simulation model is proposed to generate test data for an unbiased comparison of these methods. This model provides realistic simulated patient data and is independent of and different from any computational method. The flow of contrast agent solute and blood through cerebral vasculature with disease-specific configurations is simulated. Blood and contrast agent dynamics are modeled as a combination of convection and diffusion in tubular networks. A combination of a cerebral arterial model and a microvascular model provides arterial-input and time-concentration curves for a wide range of flow and perfusion statuses. The model is configured to represent an embolic stroke in one middle cerebral artery territory and provides physiologically plausible vascular dispersion operators for major arteries and tissue contrast agent retention functions. These curves are fit to simpler template curves to allow the use of the simulation results in multiple validation studies. A gamma-variate function with fit parameters is proposed as the vascular dispersion operator, and a combination of a boxcar and exponential decay function is proposed as the retention function. Such physiologically plausible operators should be used to create test data that better assess the strengths and the weaknesses of various analysis methods.

  12. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  13. [The perfusate culture--bacteriologic monitoring of kidney grafts].

    PubMed

    Buchholz, B; Zastrow, F; Lison, A E; Ritzerfeld, W

    1985-01-01

    Since the kidney recipient's immune system is entirely suppressed, any bacterial contamination from a graft might be hazardous. Major statistics [1,3,4,5] reveal a mortality as high as 10% due to infectious and gastrointestinal complications. From July 1979 to December 1983 114 kidney grafts have been done in our center. After transplantation none of the patients died as a result of complications due to infection. Microbiologic examination of the perfusate is obligatory to detect contamination. It was used in 145 donor nephrectomies; 28% of the perfusate culture samples were positive: In 4 of 5 cases (81%) the bacteria isolated were of the non-pathogenic type seen in the normal flora of the skin (Staphylococcus epidermidis). Introduction of cover drapes lowered the positive culture rate to 8%. Isolation of S. epidermidis after desinfection of the skin (6x) with 70% spore-free alcohol is proof of the extraordinary sensitivity of the method used. The outstanding clinical importance of this method is the rapid information obtained on any contamination and the early suggestion concerning the first choice of antibiotic. Though E.coli and Pseudomonas aeruginosa were found in the culture, no clinical infection was seen under adequate antimicrobial therapy. Among 114 kidney transplantations in our center no patient died of bacterial infection. Our experience points out that the effect of general antibiotic prophylaxis is negligible. Instead, the effect of early application of antibiotics in accordance with the results of the perfusate culture is superior.

  14. Effects of lung ventilation–perfusion and muscle metabolism–perfusion heterogeneities on maximal O2 transport and utilization

    PubMed Central

    Cano, I; Roca, J; Wagner, P D

    2015-01-01

    Previous models of O2 transport and utilization in health considered diffusive exchange of O2 in lung and muscle, but, reasonably, neglected functional heterogeneities in these tissues. However, in disease, disregarding such heterogeneities would not be justified. Here, pulmonary ventilation–perfusion and skeletal muscle metabolism–perfusion mismatching were added to a prior model of only diffusive exchange. Previously ignored O2 exchange in non-exercising tissues was also included. We simulated maximal exercise in (a) healthy subjects at sea level and altitude, and (b) COPD patients at sea level, to assess the separate and combined effects of pulmonary and peripheral functional heterogeneities on overall muscle O2 uptake ( and on mitochondrial (). In healthy subjects at maximal exercise, the combined effects of pulmonary and peripheral heterogeneities reduced arterial () at sea level by 32 mmHg, but muscle by only 122 ml min−1 (–3.5%). At the altitude of Mt Everest, lung and tissue heterogeneity together reduced by less than 1 mmHg and by 32 ml min−1 (–2.4%). Skeletal muscle heterogeneity led to a wide range of potential among muscle regions, a range that becomes narrower as increases, and in regions with a low ratio of metabolic capacity to blood flow, can exceed that of mixed muscle venous blood. For patients with severe COPD, peak was insensitive to substantial changes in the mitochondrial characteristics for O2 consumption or the extent of muscle heterogeneity. This integrative computational model of O2 transport and utilization offers the potential for estimating profiles of both in health and in diseases such as COPD if the extent for both lung ventilation–perfusion and tissue metabolism–perfusion heterogeneity is known. PMID:25640017

  15. Quantitative Perfusion Analysis of First-Pass Contrast Enhancement Kinetics: Application to MRI of Myocardial Perfusion in Coronary Artery Disease

    PubMed Central

    Shah, Binita; Storey, Pippa; Iqbal, Sohah; Slater, James; Axel, Leon

    2016-01-01

    Purpose Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue contrast exchange. This study presents a new approach for numerical implementation of the tissue homogeneity model, incorporating flexible distance steps along the capillary (NTHf). Methods The proposed NTHf model considers contrast exchange in fluid packets flowing along the capillary, incorporating flexible distance steps, thus allowing more efficient and stable calculations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 ± 13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion reserve index (MPRI) were estimated using both the NTHf and the conventional adiabatic approximation of the TH models. Coronary artery lesions detected at angiography were clinically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moderate’ and ‘severe’) and related to corresponding myocardial territories. Results The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 ± 0.33/1.25 ± 0.45 and 1.68 ± 0.54 in the insignificant regions, 0.74 ± 0.21/1.09 ± 0.28 and 1.54 ± 0.46 in the mild to moderate regions, and 0.79 ± 0.28/0.63 ± 0.34 and 0.85 ± 0.48 in the severe regions, respectively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTHf and AATH models were r = 0.97/0.93 and r = 0.91, respectively. Conclusions The proposed NTHf model allows efficient quantitative analysis of the transit of tracer through tissue, particularly at higher flow. Results of initial application to MRI of myocardial perfusion in CAD are encouraging. PMID:27583385

  16. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    PubMed

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  17. Bisoprolol improves perfusion of ischaemic myocardium in anaesthetized pigs.

    PubMed Central

    Sassen, L. M.; den Boer, M. O.; Rensen, R. J.; Saxena, P. R.; Verdouw, P. D.

    1988-01-01

    1. The ability of the cardioselective beta-adrenoceptor antagonist bisoprolol ((+/-)-1-[4-(2-isopropoxyethoxymethyl)-phenoxy]-3-isopropyl-amino -2-propanol hemifumarate, EMD 33512) to suppress isoprenaline-induced increases in heart rate and maximal rate of rise in left ventricular pressure (LVdP/dtmax) was studied in 6 anaesthetized pigs given 4 cumulative doses (16, 64, 256 and 1024 micrograms kg-1). Bisoprolol was about 2 times more effective in suppressing isoprenaline-induced increases in LVdP/dtmax than those in heart rate. 2. In 8 animals which had a partial stenosis of the left anterior descending coronary artery (LADCA), the effects of 3 consecutive doses (50, 200 and 750 micrograms kg-1) of bisoprolol were studied on systemic haemodynamics, regional myocardial perfusion and function. The effects of the drug were compared with those obtained in a group of 9 animals with LADCA stenosis which did not receive any treatment. 3. The lowest dose of bisoprolol (50 micrograms kg-1) increased perfusion of the ischaemic myocardium (which had been reduced from 123 +/- 20 ml min-1 100 g-1 to 42 +/- 11 ml min-1 100 g-1) by 21 +/- 10 ml min-1 100 g-1 (P less than 0.05). In particular the subendocardial layers, which were most severely affected by the stenosis (a decrease from 128 +/- 19 ml min-1 100 g-1 to 20 +/- 6 ml min-1 100 g-1) benefited from the administration of the drug (an increase of 30 +/- 10 ml min-1 100 g-1). Perfusion of the subepicardium was not significantly affected. With the higher dose only a minor additional improvement in perfusion of the ischaemic myocardium was observed. 4. The negative chronotropic response is the most likely factor leading to the improvement in perfusion. 5. Myocardial wall thickening, which decreased from 41 +/- 2% to 9 +/- 4% (P less than 0.05) due to the hypoperfusion, did not improve after administration of the drug. This lack of improvement may possibly be due to the duration of ischaemia before and the magnitude of the

  18. Changes in distribution of lung perfusion and ventilation at rest and during maximal exercise

    SciTech Connect

    Mohsenifar, Z.; Ross, M.D.; Waxman, A.; Goldbach, P.; Koerner, S.K.

    1985-03-01

    A new method for evaluation of changes in the distribution of pulmonary perfusion and ventilation during exercise was applied to normal male volunteers. Ventilation and perfusion scans were done with the subjects seated on a bicycle ergometer. The resting studies utilized krypton 81 (/sup 81m/Kr) for ventilation and technetium /sup 99m/ (/sup 99m/Tc) macroaggregate albumin intravenously for perfusion. Exercise studies were done when 80 percent of maximum predicted heart rate was maintained for five minutes and utilized /sup 81m/Kr for ventilation and a tenfold dose of /sup 99m/Tc for perfusion. Higher dose of /sup 99m/Tc would minimize the effect of radioactivity left over from the resting study. This method allowed us to assess changes in ventilation and perfusion in normal subjects induced by exercise, but may also be applicable in a variety of cardiopulmonary conditions that affect pulmonary ventilation and perfusion or both.

  19. A rabbit pulmonary vein myocyte isolation method based on simultaneous heart and pulmonary vein perfusion.

    PubMed

    Gao, Lin-Lin; Zhang, Miao-Miao; Zhang, Liang-Pin; Yang, Shu-Lin; Yao, Ke-Jun; Song, Yuan-Long

    2016-02-25

    Myocytes in the pulmonary veins (PV) play a pivotal role in the development of paroxysmal atrial fibrillation (AF). It is therefore important to understand physiological characteristics of these cells. Studies on these cells are, however, markedly impeded by the fact that single PV myocytes are very difficult to obtain due to lack of effective isolation methods. In this study, we described a novel PV myocyte isolation method. The key aspect of this method is to establish a combination of retrograde heart perfusion (via the aorta) and anterograde PV perfusion (via the pulmonary artery). With this simultaneous perfusion method, a better perfusion of the PV myocytes can be obtained. As results, the output and viability of single myocytes isolated by simultaneous heart and PV perfusion method were increased compared with those in conventional retrograde heart perfusion method. PMID:26915322

  20. Dynamic chest image analysis: model-based pulmonary perfusion analysis with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Haapanen, Arto; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1998-07-01

    The aim of the study 'Dynamic Chest Image Analysis' is to develop computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles in a short period of time. We have proposed a framework for ventilation study with an explicit ventilation model based on pyramid images. In this paper, we extend the framework to pulmonary perfusion study. A perfusion model and the truncated pyramid are introduced. The perfusion model aims at extracting accurate, geographic perfusion parameters, and the truncated pyramid helps in understanding perfusion at multiple resolutions and speeding up the convergence process in optimization. Three cases are included to illustrate the experimental results.

  1. Reduced liver uptake of arterially infused melphalan during retrograde rat liver perfusion with unaffected liver tumor uptake.

    PubMed

    Rothbarth, Joost; Sparidans, Rolf W; Beijnen, Jos H; Schultze-Kool, Leo J; Putter, Hein; van de Velde, Cornelis J H; Mulder, Gerard J

    2002-11-01

    Isolated hepatic perfusion (IHP) with melphalan is used for patients with nonresectable metastases confined to the liver. To improve the efficacy of IHP and to reduce the toxicity to the liver, reversion (retrograde perfusion) of the bloodstream through the liver in a rat model was studied. For liver tumor induction male WAG/Rij rats were inoculated with CC531 cells, a colorectal tumor cell line. After 11 to 12 days the tumor-bearing rat livers were perfused by single-pass perfusion through either the portal (orthograde) or caval vein (retrograde) for different time periods. During perfusion melphalan (160 Schultze) was infused in the hepatic artery. Melphalan concentrations were measured by high-performance liquid chromatography. A rapid extraction of melphalan by the liver occurred in the first 5 min, reaching steady state after 10 to 20 min for both perfusion directions. The melphalan concentration of the outflow perfusate was significantly higher in the retrograde perfusion compared with the orthograde perfusion. The melphalan content of the tumor tissue was unaffected by perfusion direction at any time point. To the contrary, the melphalan uptake in liver tissue was strongly influenced: the melphalan content after 40-min retrograde perfusion was 12% of that after orthograde perfusion. The average tumor/liver concentration ratio was 6 for orthograde perfusion and 30 for retrograde perfusion. In conclusion, retrograde IHP with continuous melphalan infusion in the hepatic artery provides a high tumor uptake of melphalan with potentially reduced liver toxicity compared with orthograde IHP. PMID:12388659

  2. A compact instrument to measure perfusion of vasculature in transplanted maxillofacial free flaps

    NASA Astrophysics Data System (ADS)

    Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Farkas, Dana; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Christian, James F.

    2016-03-01

    The vascularization and resulting perfusion of transferred tissues are critical to the success of grafts in buried free flap transplantations. To enable long-term clinical monitoring of grafted tissue perfusion during neovascularization and endothelialization, we are developing an implantable instrument for the continuous monitoring of perfusion using diffuse correlation spectroscopy (DCS), and augmented with diffuse reflectance spectroscopy (DRS). This work discusses instrument construction, integration, and preliminary results using a porcine graft model.

  3. The influence of oxygen tension on theophylline clearance in the rat isolated perfused liver.

    PubMed

    Miller, R; Oliver, I F

    1986-03-01

    The effect of changes in the rate of perfusion and oxygen tension (PO2) on theophylline clearance was determined in the rat isolated perfused liver. Changes in rate of perfusion had no effect on the extraction ratio of theophylline while a decrease in the PO2 significantly increased the half life of theophylline. These results suggest that changes in PO2 whether due to disease states or oxygen administration may necessitate theophylline dosage adjustment.

  4. Retinyl ester synthesis by the isolated perfused-ventilated neonatal rabbit lung.

    PubMed

    Zachman, R D

    1985-01-01

    Retinyl ester is present in lung but it is unknown if retinyl ester synthesis occurs in that organ. In this study, [3H]-Retinol was perfused into the pulmonary artery of isolated-perfused-ventilated neonatal rabbit lungs. Alumina chromatography was used to separate retinol from retinyl ester in hexane extracts of lung tissue. [3H]-Retinyl ester synthesis did occur and was perfusion time and perfusate [3H]-retinol concentration dependent. Documentation of [3H] retinyl ester synthesis was also made by HPLC analysis of the retinyl ester fraction before and after methanolic KOH hydrolysis. Isolated lung clearly can synthesize retinyl ester. PMID:4086204

  5. Imaging findings and cerebral perfusion in arterial ischemic stroke due to transient cerebral arteriopathy in children.

    PubMed

    Barbosa Junior, Alcino Alves; Ellovitch, Saada Resende de Souza; Pincerato, Rita de Cassia Maciel

    2012-01-01

    We report the case of a 4-year-old female child who developed an arterial ischemic stroke in the left middle cerebral artery territory, due to a proximal stenosis of the supraclinoid internal carotid artery, most probably related to transient cerebral arteriopathy of childhood. Computed tomography scan, magnetic resonance imaging, perfusion magnetic resonance and magnetic resonance angiography are presented, as well as follow-up by magnetic resonance and magnetic resonance angiography exams. Changes in cerebral perfusion and diffusion-perfusion mismatch call attention. As far as we know, this is the first report of magnetic resonance perfusion findings in transient cerebral arteriopathy.

  6. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Pelgrim, Gert Jan; Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Klotz, Ernst; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  7. Laser Doppler Perfusion Imaging with a high-speed CMOS-camera

    NASA Astrophysics Data System (ADS)

    Draijer, Matthijs J.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2007-07-01

    The technique of Laser Doppler Perfusion Imaging (LDPI) is widely used for determining cerebral blood flow or skin perfusion in the case of burns. The commonly used Laser Doppler Perfusion Imagers are scanning systems which point by point scan the area under investigation and use a single photo detector to capture the photoelectric current to obtain a perfusion map. In that case the imaging time for a perfusion map of 64 x 64 pixels is around 5 minutes. Disadvantages of a long imaging time for in-vivo imaging are the bigger chance of movement artifacts, reduced comfort for the patient and the inability to follow fast changing perfusion conditions. We present a Laser Doppler Perfusion Imager which makes use of a high speed CMOS-camera. By illuminating the area under investigation and simultaneously taking images at high speed with the camera, it is possible to obtain a perfusion map of the area under investigation in a shorter period of time than with the commonly used Laser Doppler Perfusion Imagers.

  8. Whole-Brain Computed Tomographic Perfusion Imaging in Acute Cerebral Venous Sinus Thrombosis

    PubMed Central

    Mokin, Maxim; Ciambella, Chelsey C.; Masud, Muhammad W.; Levy, Elad I.; Snyder, Kenneth V.; Siddiqui, Adnan H.

    2016-01-01

    Background Acute cerebral venous sinus thrombosis (VST) can be difficult to diagnose because of its diverse clinical presentation. The utility of perfusion imaging for diagnosing VST is not well understood. Summary We retrospectively reviewed cases of acute VST in patients who underwent whole-brain (320-detector-row) computed tomographic (CT) perfusion imaging in combination with craniocervical CT venography. Perfusion maps that were analyzed included cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time, and time to peak. Among the 10 patients with acute VST included in this study, 9 had perfusion abnormalities. All perfusion abnormalities were localized in areas adjacent to the occluded sinus and did not match typical anterior or posterior circulation arterial territories. Bilateral perfusion deficits were seen in 4 cases. In 2 cases, parenchymal hemorrhage was diagnosed on noncontrast CT imaging; in those cases, focal CBV and CBF were reduced. Key Messages Whole-brain CT perfusion imaging with 320-detector-row scanners can further assist in establishing the diagnosis of VST by detecting perfusion abnormalities corresponding to venous and not arterial territories. CT perfusion could assist in the differentiation between focal reversible changes, such as those caused by vasogenic edema, and irreversible changes due to infarction. PMID:27051406

  9. Whole Ovine Ovaries as a Model for Human: Perfusion with Cryoprotectants In Vivo and In Vitro

    PubMed Central

    Isachenko, Vladimir; Rahimi, Gohar; Dattena, Maria; Mallmann, Peter; Baikoshkarova, Saltanat; Kellerwessel, Elisabeth; Otarbaev, Marat; Shalakhmetova, Tamara; Isachenko, Evgenia

    2014-01-01

    These experiments were performed to test the perfusion of ovine as a model for human ovaries by cryoprotectants in vivo at high temperature when the permeability of capillaries is high and when blood is insensibly replaced by the solution of cryoprotectants. By our hypothetical supposition, ovaries could be saturated by cryoprotectants before their surgical removal. The objective was to examine the effectiveness of perfusion of ovine ovaries with vascular pedicle in vivo and in vitro. Arteria ovarica was cannuled and ovaries were perfused by Leibovitz L-15 medium + 100 IU/mL heparin + 5% bovine calf serum + 6% dimethyl sulfoxide + 6% ethylene glycol + 0.15 M sucrose + Indian ink in vivo and in vitro. In the first and second cycle of experiments, ovaries (n = 13 and n = 23) were perfused in vivo and in vitro, respectively, during 60 min with the rate of perfusion 50 mL/h (0.8 mL/min). It was established with in vivo perfusion that only about 10% of ovarian tissues were perfused due to an appearance of multiple anastomoses when the perfusion medium goes from arteria ovarica to arteria uterina without inflow into the ovaries. It was concluded that in vitro perfusion of ovine intact ovaries with vascular pedicle by freezing medium is more effective than this manipulation performed in vivo. PMID:24701576

  10. A Modified Apparatus for Dual, Sterilized, Isolated Perfusion of the Rat Liver

    PubMed Central

    Liu, Tao; Walsh, Thomas R.; Mischinger, Hans; Rao, Prakash N.; Chelvakumar, Premalatha; Rubin, Randy; Starzl, Thomas E.

    2010-01-01

    The isolated perfused rat liver (IPRL) has proven to be a useful model for the study of physiology and pathology of the liver. For research in nonparenchymal cell (NPC) function that includes measurement of cytokine production (eg, TNF), it is necessary to have a sterilized perfusion system. We have modified the IPRL apparatus so as to be able to perform sterile perfusions of two livers simultaneously. The perfusion apparatus is a recirculating closed system in which the oxygenator is a plastic container separated into two chambers by a fenestrated plastic wall. A disposable macropore filter functions as both a bubble trap and perfusate filter. The sterilization process is done by immersing the various components in Benz-All solution. The tubing is disinfected by irrigation with 10% Clorox followed by 0.9% sodium chloride solution. The perfusate used is filter-sterilized Krebs buffer solution containing 0.5 g Mandol/250 mL perfusate. Not only can two organs be conveniently perfused simultaneously, but the entire system can be reliably sterilized for up to 20 consecutive perfusions. Bile production is higher and more stable with less leakage of intracellular enzymes. Many of the components are disposable and can be altered to suit the needs of a particular experiment. PMID:2291894

  11. Transcranial Doppler Sonography for Optimization of Cerebral Perfusion in Aortic Arch Operation.

    PubMed

    Ghazy, Tamer; Darwisch, Ayham; Schmidt, Torsten; Fajfrova, Zuzana; Zickmüller, Claudia; Masshour, Ahmed; Matschke, Klaus; Kappert, Utz

    2016-01-01

    An open operation on the aortic arch is a complex procedure that requires not only surgical expertise but also meticulous management to ensure excellent outcomes. In recent years, the procedure has often been performed with the patient under circulatory arrest, with antegrade cerebral perfusion. With such a strategy, efficient monitoring to ensure adequate cerebral perfusion is essential. Here we describe a case of Stanford type A aortic dissection repair in which transcranial Doppler sonography was used as an excellent monitoring tool to allow visualization of cerebral flow and the online status of perfusion, providing instant feedback to allow changes in strategy to optimize inadequate cerebral perfusion. PMID:26694304

  12. [A method of extracorporeal perfusion of the sections of xenogeneic spleen].

    PubMed

    Borisov, A E; Zhidkov, K P; Dmitriev, N V; Domanskaia, I A

    1989-07-01

    A method of extracorporeal perfusion of sections of the swine spleen developed by the authors is described. Perfusion of the swine spleen sections was performed in the small volume perfusion chamber (100 cm3) with a 80-100 ml/min rate for 30-60 min with the help of a roller pump. The extracorporeal contour was connected with the major veins of the patient. An experience with the treatment of 23 patients with pyo-septic diseases with the use of extracorporeal perfusion of the swine spleen sections shows the efficiency, simplicity and safety of the proposed method.

  13. Thrombolysis, Complete Recanalization, Diffusion Reversal, and Luxury Perfusion in Hyperacute Stroke.

    PubMed

    Sakamoto, Yuki; Ouchi, Takahiro; Okubo, Seiji; Abe, Arata; Aoki, Junya; Nogami, Akane; Sato, Takahiro; Hokama, Hiroyuki; Ogawa, Yutaro; Suzuki, Shizuka; Mishina, Masahiro; Kimura, Kazumi

    2016-01-01

    A 59-year old man was admitted to our stroke care unit 1.8 hours after onset of cardioembolic stroke. Administration of issue-plasminogen activator achieved complete recanalization, and his lesion on diffusion-weighted imaging (DWI) disappeared and single photon emission computed tomography showed luxury perfusion. DWI reversal and luxury perfusion were sometimes observed in hyperacute stroke patients, especially timely reperfusion was achieved. However, the relationships between DWI reversal and luxury perfusion were not well known. Transient DWI reversal may be associated with luxury perfusion in patients treated with t-PA, via early complete recanalization achieved by thrombolysis. PMID:26521167

  14. Analysis of first-pass myocardial perfusion MRI using independent component analysis

    NASA Astrophysics Data System (ADS)

    Milles, Julien; van der Geest, Rob J.; Jerosch-Herold, Michael; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2006-03-01

    Myocardial perfusion MRI has emerged as a suitable imaging technique for the detection of ischemic regions of the heart. However, manual post-processing is labor intensive, seriously hampering its daily clinical use. We propose a novel, data driven analysis method based on Independent Component Analysis (ICA). By performing ICA on the complete perfusion sequence, physiologically meaningful feature images, representing events occurring during the perfusion sequence, can be factored out. Results obtained using our method are compared with results obtained using manual contouring by a medical expert. The estimated weight functions are correlated against the perfusion time-intensity curves from manual contours, yielding promising results.

  15. Mechanical and metabolic viability of a placental perfusion system in vitro under oxygenated and anoxic conditions.

    PubMed

    Illsley, N P; Aarnoudse, J G; Penfold, P; Bardsley, S E; Coade, S B; Stacey, T E; Hytten, F E

    1984-01-01

    In vitro dual circuit perfusion of the placenta with well-oxygenated medium results in the continuous and stable consumption of oxygen and glucose over a 2-h perfusion period. This is reflected in a stable production of lactate and an energy charge which is higher at the end of the perfusion period than that seen in fresh placental tissue immediately after vaginal delivery. Anoxic perfusion causes an increase in glucose consumption which is more than twofold higher than that seen in the oxygenated perfusion, resulting finally in placental uptake of glucose not only from the maternal but also from the fetal circulation. Lactate production is increased during the anoxic perfusion, while the final tissue energy charge value lies between the values observed for fresh tissue and for the oxygenated perfusion. The shift to anaerobic metabolism shown by placental tissue in anoxic conditions enables continued functioning of the tissue over the 2-h perfusion period but it appears that under anoxic conditions the tissue may incur an energy debt not observed in oxygenated perfusions.

  16. First-pass perfusion imaging of solitary pulmonary nodules with 64-detector row CT: comparison of perfusion parameters of malignant and benign lesions.

    PubMed

    Li, Y; Yang, Z-G; Chen, T-W; Yu, J-Q; Sun, J-Y; Chen, H-J

    2010-09-01

    The purpose of this study was to determine the usefulness of first-pass whole nodule perfusion imaging in the differentiation of benign and malignant solitary pulmonary nodules (SPNs). 77 patients with non-calcified SPNs (46 malignant, 22 benign and 9 active inflammatory) underwent first-pass perfusion imaging with a 64-detector row CT scanner. Perfusion, peak enhancement intensity (PEI), time to peak (TTP) and blood volume (BV) were measured and statistically compared among different groups. Mean perfusion, PEI and BV for benign SPNs were significantly lower than those for malignant nodules (p<0.05) and active infections (p<0.05), but the differences were not statistically significant between malignant tumours and active infections (p>0.05). Receiver operating characteristic (ROC) curve analysis showed that SPNs with perfusion greater than 30.6 ml min(-1) ml(-1), PEI higher than 23.3 HU or BV larger than 12.2 ml per 100 g were more likely to be malignant. In conclusion, first-pass perfusion imaging with 64-detector row CT is a feasible way of assessing whole nodule perfusion and helpful in differentiating benign from malignant SPNs.

  17. Calcium secretion in the isolated perfused canine pancreas.

    PubMed

    Teufel, H; Stock, P; Rohrmoser, H; Forell, M M

    1979-10-01

    The quantitative relation of calcium and protein secretion was studied on the isolated perfused canine pancreas at different secretory states of hydrokinetic and ecbolic stimulation and various extracellular Ca++-concentrations. 1. Calcium and protein secretion are correlated at both ecbolic and hydrokinetic stimulation as well as by biological or synthetic secretion. 2. Enzyme-associated calcium was estimated at 35 nmol/mg protein and did not vary under differing stimulatory and secretory conditions. 3. During variable concentrations of synthetic secretin basal protein and calcium concentrations in the pancreatic juice show a hyperbolic relationship to the respective rates of fluid secretion. At flow rates beyond 3 ml/5 min the calcium concentrations asymptotically tend to 0.46 mEq/l while protein concentrations nearly decrease to zero. Moreover, the y-intercept of the regressionline correlating the calcium and protein concentrations gives with 0.48 mEq/l Ca++ additional evidence of the existence and magnitude of an enzyme-independent calcium fraction, which seems to remain constant over the whole range of secretory rates. 4. The omission of perfusate calcium does not abolish the calcium-protein correlation either at hydrokinetic or at ecbolic stimulation, but diminishes the enzyme-independent calcium fraction. 5. Enhancing perfusate Ca++-concentrations augments calcium output byt fails in stimulating enzyme secretion. It is concluded that at exclusively hydrokinetic stimulation basal secreted protein with a definite amount of chelated calcium is diluted by variable rates of pancreatic juice containing enzyme independent Ca++ at a constant concentration. During different secretory states of hydrokinetic or ecbolic stimulation the respective proportions of enzyme associated and independent calcium vary, and thus determine changes in the calcium-protein ratios. Extracellular calcium can only influence the non-protein-bound calcium fraction of the pancreatic juice

  18. Uterine perfusion model for analyzing barriers to transport in fibroids.

    PubMed

    Stirland, Darren L; Nichols, Joseph W; Jarboe, Elke; Adelman, Marisa; Dassel, Mark; Janát-Amsbury, Margit-Maria; Bae, You Han

    2015-09-28

    This project uses an ex vivo human perfusion model for studying transport in benign, fibrous tumors. The uterine arteries were cannulated to perfuse the organ with a buffer solution containing blood vessel stain and methylene blue to analyze intratumoral transport. Gross examination revealed tissue expansion effects and a visual lack of methylene blue in the fibroids. Some fibroids exhibited regions with partial methylene blue penetration into the tumor environment. Histological analysis comparing representative sections of fibroids and normal myometrium showed a smaller number of vessels with decreased diameters within the fibroid. Imaging of fluorescently stained vessels exposed a stark contrast between fluorescence within the myometrium and relatively little within the fibroid tissues. Imaging at higher magnification revealed that fibroid blood vessels were indeed perfused and stained with the lipophilic membrane dye; however, the vessels were only the size of small capillaries and the blood vessel coverage was only 12% that of the normal myometrium. The majority of sampled fibroids had a strong negative correlation (Pearson's r=-0.68 or beyond) between collagen and methylene blue staining. As methylene blue was able to passively diffuse into fibroid tissue, the true barrier to transport in these fibroids is likely high interstitial fluid pressure, correlating with high collagen content and solid stress observed in the fibroid tissue. Fibroids had an average elevated interstitial fluid pressure of 4mmHg compared to -1mmHg in normal myometrium. Our findings signify relationships between drug distribution in fibroids and between vasculature characteristics, collagen levels, and interstitial fluid pressure. Understanding these barriers to transport can lead to developments in drug delivery for the treatment of uterine fibroids and tumors of similar composition. PMID:26184049

  19. Ethanol Promotes Arteriogenesis and Restores Perfusion to Chronically Ischemic Myocardium

    PubMed Central

    Lassaletta, Antonio D.; Elmadhun, Nassrene Y.; Liu, Yuhong; Feng, Jun; Burgess, Thomas A.; Karlson, Nicholas W.; Laham, Roger J.; Sellke, Frank W.

    2014-01-01

    Background Moderate alcohol consumption is known to be cardioprotective as compared to either heavy drinking or complete abstinence. We assessed the hypothesis that ethanol supplementation would improve myocardial function in the setting of chronic ischemia. Methods and Results Sixteen male Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Post-operatively animals were supplemented with either 90 ml of ethanol daily (50%/V, EtOH) or 80 g of sucrose of equal caloric value (SUC) serving as controls. Seven weeks after ameroid placement, arteriolar density (1.74 ± 0.210 vs. 3.11 ± 0.368 % area of arterioles per low-powered field in SUC vs. EtOH, p = 0.004), myocardial perfusion (ratio of blood flow to the at-risk myocardium compared to the normal ventricle during demand pacing was 0.585 ± 0.107 vs. 1.08 ± 0.138 for SUC vs. EtOH, p = 0.014), and microvascular reactivity were significantly increased in the ethanol-treated animals compared to controls in the at-risk myocardium. Analysis of VEGF and NOTCH pathway signaling suggested pro-neovascular and proliferative activity in the ischemic area. The average peak blood alcohol level in the treatment group was 40 ± 4 mg/dL consistent with levels of moderate drinking in humans. Conclusions Ethanol supplementation increased arteriolar density and significantly improved myocardial perfusion and endothelium-dependent vasorelaxation in chronically ischemic myocardium. These findings suggest that at moderate doses, ethanol directly promotes vasculogenesis and improves microvascular function resulting in significant improvements in myocardial perfusion in the setting of chronic ischemia. PMID:24030397

  20. Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma

    PubMed Central

    Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David

    2014-01-01

    Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT

  1. Perfusion Imaging with a Freely Diffusible Hyperpolarized Contrast Agent

    PubMed Central

    Grant, Aaron K.; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E.; Alsop, David C.

    2011-01-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized 13C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic 13C images acquired in rat brain with a balanced steady-state free precession (bSSFP) sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2–4s temporal resolution, 2mm slice thickness, and 700 micron in-plane resolution while retaining adequate signal-to-noise ratio. 13C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4T yield T1=46±4s and T2=0.55±0.03s. In the rat brain at 4.7T, analysis of the temporal dynamics of the bSSFP image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T2 of roughly 2–4s and a T1 of 43±24s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body. PMID:21432901

  2. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering

    PubMed Central

    Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G.; Ching, Kuan Y.; Jonnalagadda, Umesh S.; Oreffo, Richard O. C.; Hill, Martyn

    2014-01-01

    Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects. PMID:25272195

  3. Calcium secretion in the isolated perfused canine pancreas.

    PubMed

    Teufel, H; Stock, P; Rohrmoser, H; Forell, M M

    1979-10-01

    The quantitative relation of calcium and protein secretion was studied on the isolated perfused canine pancreas at different secretory states of hydrokinetic and ecbolic stimulation and various extracellular Ca++-concentrations. 1. Calcium and protein secretion are correlated at both ecbolic and hydrokinetic stimulation as well as by biological or synthetic secretion. 2. Enzyme-associated calcium was estimated at 35 nmol/mg protein and did not vary under differing stimulatory and secretory conditions. 3. During variable concentrations of synthetic secretin basal protein and calcium concentrations in the pancreatic juice show a hyperbolic relationship to the respective rates of fluid secretion. At flow rates beyond 3 ml/5 min the calcium concentrations asymptotically tend to 0.46 mEq/l while protein concentrations nearly decrease to zero. Moreover, the y-intercept of the regressionline correlating the calcium and protein concentrations gives with 0.48 mEq/l Ca++ additional evidence of the existence and magnitude of an enzyme-independent calcium fraction, which seems to remain constant over the whole range of secretory rates. 4. The omission of perfusate calcium does not abolish the calcium-protein correlation either at hydrokinetic or at ecbolic stimulation, but diminishes the enzyme-independent calcium fraction. 5. Enhancing perfusate Ca++-concentrations augments calcium output byt fails in stimulating enzyme secretion. It is concluded that at exclusively hydrokinetic stimulation basal secreted protein with a definite amount of chelated calcium is diluted by variable rates of pancreatic juice containing enzyme independent Ca++ at a constant concentration. During different secretory states of hydrokinetic or ecbolic stimulation the respective proportions of enzyme associated and independent calcium vary, and thus determine changes in the calcium-protein ratios. Extracellular calcium can only influence the non-protein-bound calcium fraction of the pancreatic juice

  4. Carbohydrate utilization by the ischemic perfused heart: an NMR analysis

    SciTech Connect

    Brainard, J.R.; Hutson, J.Y.; Hoekenga, D.E.; Lenhoff, R.J.

    1987-05-01

    During ischemia, carbohydrate is necessarily the primary fuel for generation of energy by anaerobic glycolysis. The relative contributions of glycogen and exogenous glucose to glycolysis in the ischemic guinea pig heart were determined by /sup 13/C labeling and NMR. Glycogen was labeled by preischemic perfusion with (1-/sup 13/C)glucose. (2-/sup 13/C)glucose was then supplied in fresh perfusate during 17 minutes of ischemia. Insulin was included in each case. The relative contribution of glycogen and glucose to glycolysis was determined from /sup 13/C spectra obtained during ischemia and by analysis of /sup 1/H spectra of lactate isolated from hearts freeze-clamped at the end of ischemia. The relative amounts of (2-/sup 13/C)lactate, (3-/sup 13/C)lactate, and natural abundance lactate produced during ischemia correspond to contributions to glycolysis by (2-/sup 13/C)glucose, (1-/sup 13/C)glycogen, and natural abundance glycogen, respectively. Glucose utilization during 17 minutes of ischemia, determined from integration of labeled lactate peaks from /sup 13/C spectra, increased from 11 to 35% of the labeled carbohydrate utilization when perfusate glucose increased from 3 to 11.7 mM. Analysis of labeled lactate formation as a function of time during ischemia suggests that glucose is preferentially utilized early during the ischemic period. They conclude that glucose can contribute significantly as a fuel source in the ischemic heart; the extent depends on the concentration of glucose available to the heart and on the duration of ischemia.

  5. A hybrid microsystem for parallel perfusion experiments on living cells

    NASA Astrophysics Data System (ADS)

    Greve, Frauke; Seemann, Livia; Hierlemann, Andreas; Lichtenberg, Jan

    2007-08-01

    A fully integrated microchip device for performing a complete and automated sample-perfusion experiment on living cells is presented. Cells were trapped and immobilized in a defined grid pattern inside a small 0.5 µl volume incubation chamber by pneumatic anchoring on 1000 5-µm orifices. This new cell trapping technique assures a precise and repeatable cell quantity for each experiment and enables the formation of a homogeneous cell population in the incubation chamber. The microsystem includes a perforated silicon chip seamlessly integrated by a new embedding technique in a larger elastomer substrate, which features the microfluidic network. The latter forms the incubation chamber and allows for economic logarithmic dilution of the sample reagent over a range of three orders of magnitude with subsequent perfusion of the cell population. First, the logarithmic dilution stage was validated using quantitative fluorescent imaging of fluorescein solution. Then, the cell adhesion and culturing inside the incubation chamber was studied using primary normal human dermal fibroblasts (NHDFs). The cells adhered well on laminin-coated surfaces and proliferated to form a confluent cell layer after 6 days in vitro. Finally, the complete system was tested by a perfusion experiment with cultured NHDFs, which were exposed to a fluorescent cell tracker at dilutions of 100 µm, 10 µm, 1 µm, 0.1 µm and 0 µm at a flow rate of 1.25 µl min-1 for 20 min. Fluorescence imaging of the cell array after incubation and image analysis showed a logarithmic relationship between sample concentration and the fluorescence signal. This paper describes the fabrication of the components and the assembly of the microsystem, the design approach and the validation of the sample diluter, cell-adhesion and cell-culturing experiments over several days.

  6. Uterine perfusion model for analyzing barriers to transport in fibroids.

    PubMed

    Stirland, Darren L; Nichols, Joseph W; Jarboe, Elke; Adelman, Marisa; Dassel, Mark; Janát-Amsbury, Margit-Maria; Bae, You Han

    2015-09-28

    This project uses an ex vivo human perfusion model for studying transport in benign, fibrous tumors. The uterine arteries were cannulated to perfuse the organ with a buffer solution containing blood vessel stain and methylene blue to analyze intratumoral transport. Gross examination revealed tissue expansion effects and a visual lack of methylene blue in the fibroids. Some fibroids exhibited regions with partial methylene blue penetration into the tumor environment. Histological analysis comparing representative sections of fibroids and normal myometrium showed a smaller number of vessels with decreased diameters within the fibroid. Imaging of fluorescently stained vessels exposed a stark contrast between fluorescence within the myometrium and relatively little within the fibroid tissues. Imaging at higher magnification revealed that fibroid blood vessels were indeed perfused and stained with the lipophilic membrane dye; however, the vessels were only the size of small capillaries and the blood vessel coverage was only 12% that of the normal myometrium. The majority of sampled fibroids had a strong negative correlation (Pearson's r=-0.68 or beyond) between collagen and methylene blue staining. As methylene blue was able to passively diffuse into fibroid tissue, the true barrier to transport in these fibroids is likely high interstitial fluid pressure, correlating with high collagen content and solid stress observed in the fibroid tissue. Fibroids had an average elevated interstitial fluid pressure of 4mmHg compared to -1mmHg in normal myometrium. Our findings signify relationships between drug distribution in fibroids and between vasculature characteristics, collagen levels, and interstitial fluid pressure. Understanding these barriers to transport can lead to developments in drug delivery for the treatment of uterine fibroids and tumors of similar composition.

  7. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  8. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke.

    PubMed

    Bivard, Andrew; Spratt, Neil; Levi, Christopher; Parsons, Mark

    2011-11-01

    Computed tomography perfusion imaging in acute stroke requires further validation. We aimed to establish the optimal computed tomography perfusion parameters defining the infarct core and critically hypoperfused tissue. Sub-6-h computed tomography perfusion and 24-h magnetic resonance imaging were analysed from 314 consecutive patients with ischaemic stroke. Diffusion-weighted imaging lesion volume at 24 h was used to define the extent of critically hypoperfused tissue (in patients without reperfusion between acute and 24-h time points), and infarct core (in patients with major reperfusion at 24 h). Pixel-based analysis of co-registered computed tomography perfusion and diffusion-weighted imaging was then used to define the optimum computed tomography perfusion thresholds for critically hypoperfused at-risk tissue and infarct core. These optimized acute computed tomography perfusion threshold-based lesion volumes were then compared with 24-h diffusion-weighted imaging infarct volume, as well as 24-h and 90-day clinical outcomes for validation. Relative delay time >2 s was the most accurate computed tomography perfusion threshold in predicting the extent of critically hypoperfused tissue with both receiver operating curve analysis (area under curve 0.86), and the volumetric validation (mean difference between computed tomography perfusion and 24-h diffusion-weighted imaging lesions = 2 cm(2), 95% confidence interval 0.5-3.2 cm(2)). Cerebral blood flow <40% (of contralateral) within the relative delay time >2 s perfusion lesion was the most accurate computed tomography perfusion threshold at defining infarct core with both receiver operating characteristic analysis (area under curve = 0.85) and the volumetric validation. Using these thresholds, the extent of computed tomography perfusion mismatch tissue (the volume of 'at-risk' tissue between the critically hypoperfused and core thresholds) salvaged from infarction correlated with clinical improvement at 24 h (R(2

  9. Intraoperative Assessment of Perfusion of the Gastric Graft and Correlation With Anastomotic Leaks After Esophagectomy

    PubMed Central

    Zehetner, Jörg; Alicuben, Evan T.; Oh, Daniel S.; Lipham, John C.; Hagen, Jeffrey A.; DeMeester, Tom R.

    2015-01-01

    Objective: The aim of the study was to evaluate laser-assisted fluorescent-dye angiography (LAA) to assess perfusion in the gastric graft and to correlate perfusion with subsequent anastomotic leak. Background: Anastomotic leaks are a major source of morbidity after esophagectomy with gastric pull-up (GPU). In large part, they occur as a consequence of poor perfusion in the gastric graft. Methods: Real-time intraoperative perfusion was assessed using LAA before bringing the graft up through the mediastinum. When there was a transition from rapid and bright to slow and less robust perfusion, this site was marked with a suture. The location of the anastomosis relative to the suture was noted and the outcome of the anastomosis ascertained by retrospective record review. Results: Intraoperative LAA was used to assess graft perfusion in 150 consecutive patients undergoing esophagectomy with planned GPU reconstruction. An esophagogastric anastomosis was performed in 144 patients. A leak was found in 24 patients (16.7%) and were significantly less likely when the anastomosis was placed in an area of good perfusion compared with when the anastomosis was placed in an area of less robust perfusion by LAA (2% vs 45%, P < 0.0001). By multivariate analysis perfusion at the site of the anastomosis was the only significant factor associated with a leak. Conclusions: Intraoperative real-time assessment of perfusion with LAA correlated with the likelihood of an anastomotic leak and confirmed the critical relationship between good perfusion and anastomotic healing. The use of LAA may contribute to reduced anastomotic morbidity. PMID:25029436

  10. Logistic ex Vivo Lung Perfusion for Hyperimmunized Patients.

    PubMed

    De Wolf, Julien; Puyo, Philippe; Bonnette, Pierre; Roux, Antoine; Le Guen, Morgan; Parquin, François; Chapelier, Alain; Sage, Edouard

    2016-09-01

    Hyperimmunized patients have restricted access to lung transplantation because of the low rate of donor lung availability. Sensitization to human leukocyte antigen is associated with acute rejection, allograft dysfunction, and decreased survival. Prospective crossmatching could allow matching a lung graft with the recipient; however, such a strategy would increase graft ischemia, with a worse impact on the long-term results of lung transplantation. We used logistic ex vivo lung perfusion for 3 patients at the Foch Hospital while waiting for a negative result of the prospective crossmatching and then moved forward to lung transplantation. All patients are alive 3 years after bilateral lung transplantation.

  11. Temperature control system for water-perfused suits

    NASA Technical Reports Server (NTRS)

    Brengelmann, G. L.; Mckeag, M.; Rowell, L. B.

    1977-01-01

    A system used to control skin temperature in human subjects wearing water-perfused garments is described. It supplies 8 l/min at 10 psi with water temperature controlled within plus or minus 0.1 C. Temperature control is facilitated by a low circulating thermal mass and a fast responding heater based on a commercially available quartz heat lamp. The system is open so that hot or cold water can be added from the building mains to produce rates of change of water temperature exceeding 5 C/min. These capabilities allow semiautomatic control of skin temperature within plus or minus 0.1 C of desired wave forms.

  12. Renal perfusion evaluation by alternating current biosusceptometry of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Quini, Caio C.; Matos, Juliana F.; Próspero, André G.; Calabresi, Marcos Felipe F.; Zufelato, Nicholas; Bakuzis, Andris F.; Baffa, Oswaldo; Miranda, José Ricardo A.

    2015-04-01

    Alternating current susceptometry, a simple and affordable technique, was employed to study the sensitivity of this approach to assess rat kidney perfusion by the injection of 200 μL of magnetic nanoparticles with a concentration of 23 mg/mL in the femoral vein and the measurement of the signal above the kidney. The instrument was able to detect the signal and the transit time of the first and second pass were measured in five animals with average values of 13.6±4.3 s and 20.6±7.1 s.

  13. Logistic ex Vivo Lung Perfusion for Hyperimmunized Patients.

    PubMed

    De Wolf, Julien; Puyo, Philippe; Bonnette, Pierre; Roux, Antoine; Le Guen, Morgan; Parquin, François; Chapelier, Alain; Sage, Edouard

    2016-09-01

    Hyperimmunized patients have restricted access to lung transplantation because of the low rate of donor lung availability. Sensitization to human leukocyte antigen is associated with acute rejection, allograft dysfunction, and decreased survival. Prospective crossmatching could allow matching a lung graft with the recipient; however, such a strategy would increase graft ischemia, with a worse impact on the long-term results of lung transplantation. We used logistic ex vivo lung perfusion for 3 patients at the Foch Hospital while waiting for a negative result of the prospective crossmatching and then moved forward to lung transplantation. All patients are alive 3 years after bilateral lung transplantation. PMID:27549543

  14. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  15. Functional human liver preservation and recovery by means of subnormothermic machine perfusion.

    PubMed

    Bruinsma, Bote G; Avruch, James H; Weeder, Pepijn D; Sridharan, Gautham V; Uygun, Basak E; Karimian, Negin G; Porte, Robert J; Markmann, James F; Yeh, Heidi; Uygun, Korkut

    2015-04-27

    There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.

  16. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  17. The transfer of calcium during perfusion of the placenta and intact and thyroparathyroidectomized sheep.

    PubMed

    Weatherley, A J; Ross, R; Pickard, D W; Care, A D

    1983-01-01

    Placental perfusions were carried out in six ewes during the last two weeks of gestation. Perfusions were carried out using autologous fetal blood and the flow rates adjusted to give a perfusion pressure of 50--70 mmHg. Perfusion plasma calcium concentrations rose steadily throughout the perfusions achieving a mean increase of 1.65 mmol/1 above initial concentration within 100 minutes. A further three ewes in the last two weeks of gestation were thyroparathyroidectomized and normal plasma calcium concentration maintained by an intravenous infusion of calcium borogluconate. After three days, placental perfusions were carried out as before. The mean perfusion plasma calcium concentration achieved by those three ewes in a period of 100 minutes showed an increase of 1.25 mmol/1. It is concluded that the presence of the fetus is not necessary for the continued active transfer of calcium across the placenta from mother to fetus. The reduced rate of accumulation of calcium in the perfusate in TXPTX ewes is attributed to a decline in 1,25-DHCC concentrations in both maternal and fetal circulations. The implications of these results in relation to fetal calcium homeostasis and the placental transfer of calcium are discussed.

  18. Evaluation of Feline Renal Perfusion with Contrast-Enhanced Ultrasonography and Scintigraphy

    PubMed Central

    Vanderperren, Katrien; Bosmans, Tim; Dobbeleir, André; Duchateau, Luc; Hesta, Myriam; Lybaert, Lien; Peremans, Kathelijne; Vandermeulen, Eva; Saunders, Jimmy

    2016-01-01

    Contrast-enhanced ultrasound (CEUS) is an emerging technique to evaluate tissue perfusion. Promising results have been obtained in the evaluation of renal perfusion in health and disease, both in human and veterinary medicine. Renal scintigraphy using 99mTc-Mercaptoacetyltriglycine (MAG3) is another non-invasive technique that can be used to evaluate renal perfusion. However, no data are available on the ability of CEUS or 99mTc- MAG3 scintigraphy to detect small changes in renal perfusion in cats. Therefore, both techniques were applied in a normal feline population to evaluate detection possibilities of perfusion changes by angiotensin II (AT II). Contrast-enhanced ultrasound using a bolus injection of commercially available contrast agent and renal scintigraphy using 99mTc-MAG3 were performed in 11 healthy cats after infusion of 0,9% NaCl (control) and AT II. Angiotensin II induced changes were noticed on several CEUS parameters. Mean peak enhancement, wash-in perfusion index and wash-out rate for the entire kidney decreased significantly after AT II infusion. Moreover, a tendency towards a lower wash-in area-under-the curve was present. Renal scintigraphy could not detect perfusion changes induced by AT II. This study shows that CEUS is able to detect changes in feline renal perfusion induced by AT II infusion. PMID:27736928

  19. [Antegrade unilateral perfusion of the brain through the brachiocephalic trunk in operations on the aortic arch].

    PubMed

    Kozlov, B N; Panfilov, D S; Kuznetsov, M S; Ponomarenko, I V; Nasrashvili, G G; Shipulin, V M

    2016-01-01

    Presented herein is a technique of unilateral antegrade perfusion of the brain in operations on the aortic arch. The method makes it possible to perform both systemic artificial circulation and adequate physiological perfusion of the brain, promoting minimization of the number of neurological complications. PMID:27100557

  20. Positron emission tomography to assess hypoxia and perfusion in lung cancer

    PubMed Central

    Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM

    2014-01-01

    In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221

  1. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  2. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  3. The effect of initial and dynamic liver conditions on RF ablation size: a study in perfused and non-perfused animal models

    NASA Astrophysics Data System (ADS)

    Belous, Anna; Podhajsky, Ronald J.

    2009-02-01

    Investigators reporting RF ablation (RFA) studies often use different initial and dynamic conditions, often in porcine or bovine liver models. This study examines the effects of initial temperature, prior freezing, and perfusion in these models. Understanding how these variables affect RFA size provides some basis for comparing data from different studies. We obtained porcine and bovine livers from a slaughterhouse and divided them into experimental groups each with discrete initial temperatures set in the range of 12 to 37°C. The livers were used either the day of harvest or frozen within 1-3 days prior to RFA treatment. A perfused liver model was developed to simulate human blood flow rates and allowed accurate control of the temperature and flow rate. Saline (0.9%) was substituted for blood. The non-perfused liver model group included bovine and porcine tissue; whereas the perfused liver model group included only porcine tissue. One experiment included porcine livers that were perfused at different flow rates and with different saline concentrations. Harvested tissue from this group was examined under a light microscope and the level of edema was assessed using image processing software. The results demonstrate no significant difference in RF lesion sizes between porcine and bovine livers. Freezing the tissue prior to treatment has no significant effect but the initial temperature does significantly affect the size of ablation. The ablation size in perfused liver is similar to in vivo results (earlier study) but is significantly smaller then non-perfused liver. Morphological analysis indicates that perfusion, freezing, and saline concentration cause significant tissue edema.

  4. Dynamic contrast-enhanced ultrasound for quantification of tissue perfusion.

    PubMed

    Fröhlich, Eckhart; Muller, Reinhold; Cui, Xin-Wu; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F

    2015-02-01

    Dynamic contrast-enhanced ultrasound (US) imaging, a technique that uses microbubble contrast agents with diagnostic US, has recently been technically summarized and reviewed by a European Federation of Societies for Ultrasound in Medicine and Biology position paper. However, the practical applications of this imaging technique were not included. This article reviews and discusses the published literature on the clinical use of dynamic contrast-enhanced US. This review finds that dynamic contrast-enhanced US imaging is the most sensitive cross-sectional real-time method for measuring the perfusion of parenchymatous organs noninvasively. It can measure parenchymal perfusion and therefore can differentiate between benign and malignant tumors. The most important routine clinical role of dynamic contrast-enhanced US is the prediction of tumor responses to chemotherapy within a very short time, shorter than using Response Evaluation Criteria in Solid Tumors criteria. Other applications found include quantifying the hepatic transit time, diabetic kidneys, transplant grafts, and Crohn disease. In addition, the problems involved in using dynamic contrast-enhanced US are discussed.

  5. Optimizing probe design for an implantable perfusion and oxygenation sensor

    PubMed Central

    Akl, Tony J.; Long, Ruiqi; McShane, Michael J.; Ericson, M. Nance; Wilson, Mark A.; Coté, Gerard L.

    2011-01-01

    In an effort to develop an implantable optical perfusion and oxygenation sensor, based on multiwavelength reflectance pulse oximetry, we investigate the effect of source–detector separation and other source-detector characteristics to optimize the sensor’s signal to background ratio using Monte Carlo (MC) based simulations and in vitro phantom studies. Separations in the range 0.45 to 1.25 mm were found to be optimal in the case of a point source. The numerical aperture (NA) of the source had no effect on the collected signal while the widening of the source spatial profile caused a shift in the optimal source-detector separation. Specifically, for a 4.5 mm flat beam and a 2.4 mm × 2.5 mm photodetector, the optimal performance was found to be when the source and detector are adjacent to each other. These modeling results were confirmed by data collected from in vitro experiments on a liver phantom perfused with dye solutions mimicking the absorption properties of hemoglobin for different oxygenation states. PMID:21833350

  6. In situ measurements of magnetic nanoparticles after placenta perfusion

    NASA Astrophysics Data System (ADS)

    Müller, Robert; Gläser, Marcus; Göhner, Claudia; Seyfarth, Lydia; Schleussner, Ekkehard; Hofmann, Andreas; Fritzsche, Wolfgang

    2015-04-01

    Nanoparticles (NP) present promising tools for medical applications. However, the investigation of their spatial and temporal distribution is hampered by missing in-situ particle detection and quantification technologies. The placenta perfusion experiment represents an interesting model for the study of the particle distribution at a biological barrier. It allows the ex-vivo investigation of the permeability of the placenta for materials of interest. We introduce an approach based on a magnetic system for an in situ measurement of the concentration of magnetic NPs in such an experiment. A previously off-line utilized magnetic readout device (sensitivity of ≈10-8 Am2) was used for long term measurements of magnetic NP of 100-150 nm size range in a closed circuit of a placenta perfusion. It represents a semiquantitative approach. The behavior of particles in the placenta and in the measurement system was studied, as well as the influence of particle surface modifications. The results suggest a transfer of a low amount of particles from the maternal to the fetal blood circuit.

  7. Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging.

    PubMed

    Boutelier, Timothé; Kudo, Koshuke; Pautot, Fabrice; Sasaki, Makoto

    2012-07-01

    A delay-insensitive probabilistic method for estimating hemodynamic parameters, delays, theoretical residue functions, and concentration time curves by computed tomography (CT) and magnetic resonance (MR) perfusion weighted imaging is presented. Only a mild stationarity hypothesis is made beyond the standard perfusion model. New microvascular parameters with simple hemodynamic interpretation are naturally introduced. Simulations on standard digital phantoms show that the method outperforms the oscillating singular value decomposition (oSVD) method in terms of goodness-of-fit, linearity, statistical and systematic errors on all parameters, especially at low signal-to-noise ratios (SNRs). Delay is always estimated sharply with user-supplied resolution and is purely arterial, by contrast to oSVD time-to-maximum TMAX that is very noisy and biased by mean transit time (MTT), blood volume, and SNR. Residue functions and signals estimates do not suffer overfitting anymore. One CT acute stroke case confirms simulation results and highlights the ability of the method to reliably estimate MTT when SNR is low. Delays look promising for delineating the arterial occlusion territory and collateral circulation. PMID:22410325

  8. Twin Reversed Arterial Perfusion Sequence: A Rare Entity

    PubMed Central

    Khanduri, Sachin; Chhabra, Saakshi; Raja, Anshul; Bhagat, Saurav

    2015-01-01

    Twin reversed arterial perfusion (TRAP) sequence is an extremely rare complication of monochorionic multi-fetal pregnancy, occurring once in 35,000 births. This condition is characterized by a malformed fetus without a cardiac pump being perfused by a structurally normal (pump) twin via an artery-to-artery anastomosis in a reverse direction. We report a case of a primigravida, who came for routine antenatal checkup to our hospital at 31 weeks gestational age. Ultrasound imaging and magnetic resonance imaging revealed twin monochorionic intrauterine pregnancy with a viable, normal-appearing first twin and amorphous structured second twin connected by umbilical vessels. The patient was monitored with weekly ultrasonography, echocardiography, and Doppler ultrasound examination to ascertain the well-being of the pump twin. She delivered successfully at term a normal live baby and an acardius acephalus fetus. Plain X-ray of the acardius acephalus fetus confirmed the absence of cephalic structures. The perinatal mortality of the pump twin ranges from 35 to 55%; hence, it is essential to diagnose the presence of a pump twin at an early gestational age through improved imaging techniques, so that intervention can be planned early in the pregnancy for a better outcome of the pump twin. PMID:25861543

  9. Deiodination of thyroid hormones by the perfused rat liver

    PubMed Central

    Hillier, A. P.

    1972-01-01

    1. An investigation has been made into the deiodination of thyroid hormones by the perfused rat liver. The hormones were labelled with 125I in the phenolic ring and the rate of deiodination was estimated by measuring the release of radio-iodide into the perfusate. 2. At tracer concentrations, 0·98% of the liver thyroxine is deiodinated/5 min. The deiodination of tri-iodothyronine is considerably faster, 3·3%/5 min. 3. Deiodination is very sensitive to changes in temperature. 4. The reaction shows saturation kinetics typical of many enzymes, the reciprocal of the rate of deiodination being proportional to the reciprocal of the hormone concentration in the tissue. The maximum rate of deiodination of each hormone is about 1·5 μg/min for a whole liver preparation weighing 16 g. 5. Tri-iodothyronine inhibits thyroxine deiodination and vice versa, suggesting that a single enzyme is responsible for both reactions. 6. Propyl thiouracil (PTU) at high concentrations inhibits the deiodination of both hormones. 7. An abnormally high rate of deiodination is associated with the actual injection of hormone into the preparation. This suggests that only the free (unbound) hormone in the tissue is directly available to the deiodinating enzyme. 8. About half of the whole body deiodination of thyroxine is relatively insensitive to PTU. It is suggested that most of this type of deiodination is performed in the liver and that the process is one of inactivation. PMID:5033472

  10. Twin reversed arterial perfusion sequence: a rare entity.

    PubMed

    Khanduri, Sachin; Chhabra, Saakshi; Raja, Anshul; Bhagat, Saurav

    2015-01-01

    Twin reversed arterial perfusion (TRAP) sequence is an extremely rare complication of monochorionic multi-fetal pregnancy, occurring once in 35,000 births. This condition is characterized by a malformed fetus without a cardiac pump being perfused by a structurally normal (pump) twin via an artery-to-artery anastomosis in a reverse direction. We report a case of a primigravida, who came for routine antenatal checkup to our hospital at 31 weeks gestational age. Ultrasound imaging and magnetic resonance imaging revealed twin monochorionic intrauterine pregnancy with a viable, normal-appearing first twin and amorphous structured second twin connected by umbilical vessels. The patient was monitored with weekly ultrasonography, echocardiography, and Doppler ultrasound examination to ascertain the well-being of the pump twin. She delivered successfully at term a normal live baby and an acardius acephalus fetus. Plain X-ray of the acardius acephalus fetus confirmed the absence of cephalic structures. The perinatal mortality of the pump twin ranges from 35 to 55%; hence, it is essential to diagnose the presence of a pump twin at an early gestational age through improved imaging techniques, so that intervention can be planned early in the pregnancy for a better outcome of the pump twin. PMID:25861543

  11. Perfusion measures from dynamic ICG scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Larkin, Sean; Invernizzi, Alessandro; Beecher, David; Staurenghi, Giovanni; Holmes, Tim

    2010-02-01

    Movies acquired from fundus imaging using Indocyanine Green (ICG) and a scanning laser ophthalmoscope provide information for identifying vascular and other retinal abnormalities. Today, the main limitation of this modality is that it requires esoteric training for interpretation. A straightforward interpretation of these movies by objective measurements would aid in eliminating this training barrier. A software program has been developed and tested that produces and visualizes 2D maps of perfusion measures. The program corrects for frame-to-frame misalignment caused by eye motion, including rigid misalignment and warp. The alignment method uses a cross-correlation operation that automatically detects the distance due to motion between adjacent frames. The d-ICG movie is further corrected by removing flicker and vignetting artifacts. Each pixel in the corrected movie sequence is fit with a least-squares spline to yield a smooth intensity temporal profile. From the dynamics of these intensity curves, several perfusion measures are calculated. The most effective of these measures include a metric that represents the amount of time required for a vessel to fill with dye, a metric that represents the diffusion of dye, and a metric that is affected by local blood volume. These metrics are calculated from movies acquired before and after treatment for a neovascular condition. A comparison of these before and after measures may someday provide information to the clinician that helps them to evaluate disease progression and response to treatment.

  12. Noninvasive Cerebral Perfusion Imaging in High-Risk Neonates

    PubMed Central

    Goff, Donna A.; Buckley, Erin M.; Durduran, Turgut; Wang, Jiongjong; Licht, Daniel J.

    2010-01-01

    Advances in medical and surgical care of the high-risk neonate have led to increased survival. A significant number of these neonates suffer from neurodevelopmental delays and failure in school. The focus of clinical research has shifted to understanding events contributing to neurological morbidity in these patients. Assessing changes in cerebral oxygenation and regulation of cerebral blood flow (CBF) is important in evaluating the status of the central nervous system. Traditional CBF imaging methods fail for both ethical and logistical reasons. Optical near infrared spectroscopy (NIRS) is increasingly being used for bedside monitoring of cerebral oxygenation and blood volume in both very low birth weight infants and neonates with congenital heart disease. Although trends in CBF may be inferred from changes in cerebral oxygenation and/or blood volume, NIRS does not allow a direct measure of CBF in these populations. Two relatively new modalities, arterial spin-labeled perfusion magnetic resonance imaging and optical diffuse correlation spectroscopy, provide direct, noninvasive measures of cerebral perfusion suitable for the high-risk neonates. Herein we discuss the instrumentation, applications, and limitations of these noninvasive imaging techniques for measuring and/or monitoring CBF. PMID:20109972

  13. Optimizing probe design for an implantable perfusion and oxygenation sensor

    SciTech Connect

    Akl, Tony; Long, Ruiqi; McShane, Michael J.; Ericson, Milton Nance; Wilson, Mark A.; Cote, Gerard L.

    2011-01-01

    In an effort to develop an implantable optical perfusion and oxygenation sensor, based on multiwavelength reflectance pulse oximetry, we investigate the effect of source detector separation and other source-detector characteristics to optimize the sensor s signal to background ratio using Monte Carlo (MC) based simulations and in vitro phantom studies. Separations in the range 0.45 to 1.25 mm were found to be optimal in the case of a point source. The numerical aperture (NA) of the source had no effect on the collected signal while the widening of the source spatial profile caused a shift in the optimal source-detector separation. Specifically, for a 4.5 mm flat beam and a 2.4 mm 2.5 mm photodetector, the optimal performance was found to be when the source and detector are adjacent to each other. These modeling results were confirmed by data collected from in vitro experiments on a liver phantom perfused with dye solutions mimicking the absorption properties of hemoglobin for different oxygenation states.

  14. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma.

    PubMed

    Wong, Kelvin K; Fung, Steve H; New, Pamela Z; Wong, Stephen T C

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  15. Perfusion pressure control by adenosine triphosphate given during cardiopulmonary bypass.

    PubMed

    Hashimoto, K; Kurosawa, H; Horikoshi, S; Miyamoto, H; Suzuki, K

    1993-01-01

    Administration of exogenous adenosine triphosphate (ATP) as a vasodilator during cardiopulmonary bypass was assessed in consecutive adult patients (n = 24) who demonstrated a high arterial perfusion pressure (mean, > 90 mm Hg). The action of ATP was characterized by rapid induction and stabilization of the blood pressure level. The dose of ATP ranged from 0.68 to 2.68 mg/min. Within 1 minute after the administration, there was a significant reduction in the perfusion pressure from 102 +/- 18 mm Hg (mean +/- standard deviation) to 72 +/- 19 mm Hg. The ATP was then able to maintain the desired pressure of 69 +/- 12 mm Hg at 5 minutes, 67 +/- 12 mm Hg at 10 minutes, and consistent values thereafter. After the ATP administration was discontinued, there was a prompt recovery of pressure without bradyarrhythmia. The frequency and amount of inotropes used were consistent with the control group (n = 26). Although the administration of ATP reduced the increase in serum catecholamine concentration, there were no significant changes in other vasoactive mediators (eicosanoid, angiotensin II, endothelin) between the two groups during cardiopulmonary bypass. There was neither an accumulation of metabolic products (uric acid, phosphate) nor a decrease in the level of divalent cation (Ca2+), which is observed when the cations combine with phosphates or adenosine nucleotides. This study confirmed the efficacy and safety of ATP infusion during cardiopulmonary bypass. PMID:8417658

  16. Reducing CT dose in myocardial perfusion SPECT/CT.

    PubMed

    O'Shaughnessy, Emma; Dixon, Kat L

    2015-11-01

    The aim of this study was to reduce the radiation dose arising from computed tomography (CT) attenuation correction to single photon emission computed tomography myocardial perfusion imaging studies without adversely affecting its accuracy. Using the Perspex CTDI phantom with the Xi detector to measure dose, CT scans were acquired using the Siemens Symbia T over the full range of CT settings available. Using the default setting 'AECmean', the measured dose at the centre of the phantom was 1.68 mGy and the breast dose from the scout view was 0.30 mGy. The lowest dose was achieved using the dose modulation setting in which the doses were reduced to 1.21 mGy and undetectable (<0.01 mGy), respectively. To observe the effect of changing these settings, 30 patients received a stress scan with default CT settings and a rest scan utilizing single photon emission computed tomography-guided CT and the dose modulation CT settings. Results showed a mean effective dose reduction of 23.6%. The dose reduction was greatest for larger patients, with the largest dose reduction for one patient being 72%. There was no apparent difference in attenuation correction between the two sets of resultant images. These new lower-dose settings are now applied to all clinical myocardial perfusion imaging studies. PMID:26302461

  17. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  18. Implementing Change in Perfusion Practice: Quality Improvement vs. Experimentation?

    PubMed Central

    Newland, Richard F.; Baker, Robert A.

    2009-01-01

    Abstract: The desire to optimize techniques and interventions that comprise clinical practice will inevitably involve the implementation of change in the process of care. To confirm the intended benefits of instituting clinical change, the process should be undertaken in a scientific manner. Although implementing changes in perfusion practice is limited by the availability of evidence based practice guidelines, we have the opportunity to audit our current practice according to institutional guidelines using quality improvement methods. Current electronic data collection technology is a useful tool available to facilitate the reporting of both clinical and process outcome improvements. The model of clinical effectiveness can be used as a systematic approach to introducing change in clinical practice, which involves reviewing the literature, acquiring appropriate skills and resources, auditing the change, and implementing continuous quality improvement to standardize the process. Finally, reporting the findings allows dissemination of the knowledge that can be generalized. Reporting change strengthens our efforts in clinical effectiveness, highlights the importance of perfusion practice, and increases the influence of the profession. PMID:20092082

  19. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma

    PubMed Central

    Wong, Kelvin K.; Fung, Steve H.; New, Pamela Z.; Wong, Stephen T. C.

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  20. Endoscopic ICG perfusion imaging for flap transplants: technical development

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Schachenmayr, Hilmar; Ehrhardt, André; Göbel, Werner; Zhorzel, Sven; Betz, Christian Stephan

    2010-02-01

    Objective: Following tumour surgery in the head and neck region, skin flap transplants are usually required to cover the resection area. The purpose of the development was to provide a simple and reliable means to assess whether the transplanted flap is sufficiently perfused. Methods: Fluorescence of intravenously injected Indocyanine green (ICG) was detected with a slightly modified 3-chip CCD camera. Appropriately coated optical filters allow for excitation of ICG with NIR light and detection of NIR ICGfluorescence with the blue channel of the camera. In addition, low intensities of white light can be transmitted to allow for simultaneous display of a remission image in the green and red channels of the camera. Further processing was performed with a LabVIEW program. Results: A satisfactory white light image (red, green and blue display (RGB)) could be calculated from the remission images recorded with the green and red channels of the camera via a look-up table. The look-up table was programmed to provide an optimized blue intensity value for each combination of red and green values. This was generated using a reference image. Implementation of image tracking and intensity measurements in regions of interest (ROIs) in the images is useful to reliably monitor perfusion kinetics of flap and adjacent normal tissue.

  1. Virtual patient simulator for the perfusion resource management drill.

    PubMed

    Ninomiya, Shinji; Tokaji, Megumi; Tokumine, Asako; Kurosaki, Tatsuya

    2009-12-01

    Perfusionists require a detailed understanding of a patient's physiological status while comprehending the mechanics and engineering of the cardiopulmonary bypass system, so it is beneficial for them to obtain relevant practical skills using extracorporeal circulation technology and educational physiological simulators. We designed a perfusion simulator system (ECCSIM: Extracorporeal Circulation SIMulator system) based on a hybrid of a simple hydraulic mock circulation loop linked to a computer simulation model. Patient physiological conditions (height, weight, and cardiac indices) were determined by a parameter estimation procedure and used to accurately reproduce hemodynamic conditions. Extracorporeal circulation trainees in pre-clinical education were able to maintain venous oxygen saturation levels above 50%, except during cardiac standstill and a brief resumption of pulsation. Infant amplitudes of reservoir volume oscillation and flow rate were greatly increased compared with adult cardiovascular parameters, this enabled the instructor to control the difficulty level of the operation using different hemodynamic variations. High-fidelity simulator systems with controllable difficulty levels and high physiological reproducibility are useful in constructing a perfusion resource management environment that enable basic training and periodic crisis management drills to be performed. PMID:20092074

  2. Virtual Patient Simulator for the Perfusion Resource Management Drill

    PubMed Central

    Ninomiya, Shinji; Tokaji, Megumi; Tokumine, Asako; Kurosaki, Tatsuya

    2009-01-01

    Abstract: Perfusionists require a detailed understanding of a patient’s physiological status while comprehending the mechanics and engineering of the cardiopulmonary bypass system, so it is beneficial for them to obtain relevant practical skills using extra-corporeal circulation technology and educational physiological simulators. We designed a perfusion simulator system (ECCSIM: Extracorporeal Circulation SIMulator system) based on a hybrid of a simple hydraulic mock circulation loop linked to a computer simulation model. Patient physiological conditions (height, weight, and cardiac indices) were determined by a parameter estimation procedure and used to accurately reproduce hemodynamic conditions. Extracorporeal circulation trainees in pre-clinical education were able to maintain venous oxygen saturation levels above 50%, except during cardiac standstill and a brief resumption of pulsation. Infant amplitudes of reservoir volume oscillation and flow rate were greatly increased compared with adult cardiovascular parameters, this enabled the instructor to control the difficulty level of the operation using different hemodynamic variations. High-fidelity simula tor systems with controllable difficulty levels and high physiological reproducibility are useful in constructing a perfusion resource management environment that enable basic training and periodic crisis management drills to be performed. PMID:20092074

  3. Recent developments and future prospects of SPECT myocardial perfusion imaging.

    PubMed

    Zaman, Maseeh Uz; Hashmi, Ibrahim; Fatima, Nosheen

    2010-10-01

    Myocardial perfusion SPECT imaging is the most commonly performed functional imaging for assessment of coronary artery disease. High diagnostic accuracy and incremental prognostic value are the major benefits while suboptimal spatial resolution and significant radiation exposure are the main limitations. Its ability to detect hemodynamic significance of lesions seen on multidetector CT angiogram (MDCTA) has paved the path for a successful marriage between anatomical and functional imaging modalities in the form of hybrid SPECT/MDCTA system. In recent years, there have been enormous efforts by industry and academia to develop new SPECT imaging systems with better sensitivity, resolution, compact design and new reconstruction algorithms with ability to improve image quality and resolution. Furthermore, expected arrival of Tc-99m-labeled deoxyglucose in next few years would further strengthen the role of SPECT in imaging hibernating myocardium. In view of these developments, it seems that SPECT would enjoy its pivotal role in spite of major threat to be replaced by fluorine-18-labeled positron emission tomography perfusion and glucose metabolism imaging agents. PMID:20652774

  4. Choice of the regularization parameter for perfusion quantification with MRI

    NASA Astrophysics Data System (ADS)

    Sourbron, S.; Luypaert, R.; Van Schuerbeek, P.; Dujardin, M.; Stadnik, T.

    2004-07-01

    Truncated singular value decomposition (TSVD) is an effective method for the deconvolution of dynamic contrast enhanced (DCE) MRI. Two robust methods for the selection of the truncation threshold on a pixel-by-pixel basis—generalized cross validation (GCV) and the L-curve criterion (LCC)—were optimized and compared to paradigms in the literature. GCV and LCC were found to perform optimally when applied with a smooth version of TSVD, known as standard form Tikhonov regularization (SFTR). The methods lead to improvements in the estimate of the residue function and of its maximum, and converge properly with SNR. The oscillations typically observed in the solution vanish entirely, and perfusion is more accurately estimated at small mean transit times. This results in improved image contrast and increased sensitivity to perfusion abnormalities, at the cost of 1-2 min in calculation time and hyperintense clusters in the image. Preliminary experience with clinical data suggests that the latter problem can be resolved using spatial continuity and/or hybrid thresholding methods. In the simulations GCV and LCC are equivalent in terms of performance, but GCV thresholding is faster.

  5. Computed tomography perfusion imaging denoising using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.

  6. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. PMID:24788075

  7. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.

  8. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth.

    PubMed

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  9. [Choice of optimal perfusion flow rate during surgical correction of combined acquired heart diseases].

    PubMed

    Len'kin, A I; Zakharov, V I; Smetkin, A A; Len'kin, P I; Kirov, M Iu

    2013-01-01

    Cardiac output during the use of cardiopulmonary bypass (CPB) is defined by perfusion flow rate, which is calculated by multiplying the perfusion index (PI) on the body surface area. To date, there is no clear definition of an optimal PI and flow rate of perfusion. 60 patients operated with CPB were enrolled in the prospective study to determine the relations between different modes of perfusion and oxygen transport during surgical correction of combined valvular heart disease. Calculation of the CPB flow rate was based on PI 2.5 and 3.0 l/min/m2. Results of the study demonstrate that perfusion based on PI 2.5 l/min/m2 provides more stable oxygen transport parameters and reduces the time of ICU stay in comparison with the flow rate based on PI 3.0 l/min/m2.

  10. Aortic arch surgery with a single centrifugal pump for selective cerebral perfusion and systemic circulation.

    PubMed

    Iwata, Keiji; Shimazaki, Yasuhisa; Sakamoto, Tomohiko; Ueda, Hideki; Nakagawa, Masashi; Yamada, Hideto; Doi, Teruo; Ooue, Takuya

    2010-01-01

    In aortic arch surgery, two pumps are required for systemic perfusion and selective cerebral perfusion (SCP). A new technique with a single centrifugal pump for systemic perfusion and SCP was developed and its efficacy and safety evaluated. This technique was adopted for total arch replacement in 22 consecutive patients with true aneurysms (13) and aortic dissection (nine) from January 2005 to January 2008. Cerebral perfusion lines branched from the main perfusion line. During SCP, right radial arterial pressure was maintained at 50 mm Hg and left common carotid arterial pressure at 60 mm Hg, and the regional cerebral oxygen saturation (rSO(2)) values were maintained at approximately >80% of the baseline value. Two operative deaths (9%) occurred due to pneumonia and hemorrhage in the left lung, respectively. Stroke occurred in one patient (5%). This simple circuit system can thus be easily and safely applied for aortic arch surgery.

  11. Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man.

    PubMed

    Goldstein, R A; Kirkeeide, R L; Demer, L L; Merhige, M; Nishikawa, A; Smalling, R W; Mullani, N A; Gould, K L

    1987-05-01

    To determine the relation between stenosis anatomy and perfusion in man, 31 patients had quantitative coronary arteriography and positron imaging (PET) with Rb-82 or N-13 ammonia at rest and after dipyridamole-handgrip stress. 10 patients were also studied after angioplasty (total stenoses = 41). Percent narrowing and absolute cross-sectional luminal area were related through a quadratic function to myocardial perfusion reserve determined with PET. Arteriographically determined coronary flow reserve was linearly related to relative myocardial perfusion reserve as expected, based on the derivation of equations for stenosis flow reserve. All of the correlations had considerable scatter, indicating that no single measurement derived by coronary arteriography was a good indicator of perfusion reserve by PET in individual patients. This study provides the relation between all anatomic dimensions of coronary artery stenoses and myocardial perfusion reserve in man, and suggests that PET indicates the functional significance of coronary artery stenoses for clinical purposes.

  12. A panel data set on harvest and perfusion decellularization of porcine rectus abdominis

    PubMed Central

    Zhang, Jian; Cheng, Wen Yue; Hu, Zhi Qian; Turner, Neill J.; Zhang, Li; Wang, Qiang; Badylak, Stephen F.

    2016-01-01

    In this dataset, we particularly depicted the harvest and perfusion decellularization of porcine rectus abdominis (RA), accompanied with displaying of the retained vascular trees within the perfusion-decellularized skeletal muscle matrix (pM-ECM) using vascular corrosion casting. In addition, several important tips for successful pM-ECM preparation were emphasized, which including using anatomically isolated skeletal muscle as tissue source with all main feeding and draining vessels perfused, preserving the internal microcirculation availability, aseptic technique and pyrogen free in all steps, sequential perfusion via artery or vein, and longtime washing after decellularization. The data are supplemental to our original research article describing detailed associations of pM-ECM as a clinically relevant scale, three-dimensional scaffold with a vascular network template for tissue-specific regeneration, “Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template” Zhang et al. (2016) [1]. PMID:27158653

  13. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  14. Caffeine-induced myocardial injury in calcium-free perfused rat hearts.

    PubMed

    Vander Heide, R S; Ganote, C E

    1985-01-01

    Hearts depleted of extracellular calcium become susceptible to injury caused by repletion of extracellular calcium (calcium paradox). It has been suggested that calcium-free perfusion causes weakening of intercalated disks and that the physical stress of contracture may cause sarcolemmal membrane rupture and creatine kinase (CK) release. To further investigate this hypothesis, the effects of caffeine on contracture, cellular morphology, and CK release were studied in control and calcium-free perfused isolated rat hearts. Control hearts perfused with 2.5 mM calcium retained normal ultrastructure for long periods of perfusion. Calcium-free hearts perfused for 12 minutes developed separations of fascia adherens portions of intercalated disks but retained intact nexus junctions. Hearts subjected to 5-minute calcium-free perfusion, followed by calcium repletion, developed a massive CK release and extensive contraction band necrosis (calcium paradox). Ten millimolar caffeine, which causes rapid calcium release from sarcoplasmic reticulum (SR), produced contracture, but not CK release, from control hearts perfused with medium containing 2.5 mM calcium. In calcium-free perfused hearts, caffeine caused sudden CK release accompanied by contracture, development of contraction bands, wide separations of cells at intercalated disks, and sarcolemmal membrane injury. Caffeine-induced injury occurred despite 3 mM amobarbital inhibition of mitochondrial respiration. Hearts perfused with caffeine in the presence of calcium relaxed when made calcium-free and did not release CK. Addition of caffeine following calcium-free perfusion at 22 C, which protects the heart from the calcium paradox, produced a rapid, transient contracture. These results are compatible with the hypothesis that myocardial cell injury in calcium-free hearts is not dependent on repletion of extracellular calcium or mitochondrial function, but can result from contracture following caffeine-induced release of

  15. Adiposity Is Associated with Gender-Specific Reductions in Left Ventricular Myocardial Perfusion during Dobutamine Stress

    PubMed Central

    Hall, Michael E.; Brinkley, Tina E.; Chughtai, Haroon; Morgan, Timothy M.; Hamilton, Craig A.; Jordan, Jennifer H.; Stacey, R. Brandon; Soots, Sandra; Hundley, W. Gregory

    2016-01-01

    Background Obesity and visceral adiposity are increasingly recognized risk factors for cardiovascular disease. Visceral fat may reduce myocardial perfusion by impairing vascular endothelial function. Women experience more anginal symptoms compared to men despite less severe coronary artery stenosis, as assessed by angiography. Women and men have different fat storage patterns which may account for the observed differences in cardiovascular disease. Therefore, our objective was to evaluate the relationship between visceral adipose tissue distributions and myocardial perfusion in men and women. Methods Visceral and subcutaneous fat distributions and myocardial perfusion were measured in 69 men and women without coronary artery disease using magnetic resonance imaging techniques. Myocardial perfusion index was quantified after first-pass perfusion with gadolinium contrast at peak dose dobutamine stress. Results We observed inverse relationships between female gender (r = -0.35, p = 0.003), pericardial fat (r = -0.36, p = 0.03), intraperitoneal fat (r = -0.37, p = 0.001), and retroperitoneal fat (r = -0.36, p = 0.002) and myocardial perfusion index. Visceral fat depots were not associated with reduced myocardial perfusion at peak dose dobutamine in men. However, in women, BMI (r = -0.33, p = 0.04), pericardial fat (r = -0.53, p = 0.02), subcutaneous fat (r = -0.39, p = 0.01) and intraperitoneal fat (r = -0.30, p = 0.05) were associated with reduced myocardial perfusion during dobutamine stress. Conclusions Higher visceral fat volumes are associated with reduced left ventricular myocardial perfusion at peak dose dobutamine stress in women but not in men. These findings suggest that visceral fat may contribute to abnormal microcirculatory coronary artery perfusion syndromes, explaining why some women exhibit more anginal symptoms despite typically lower grade epicardial coronary artery stenoses than men. PMID:26751789

  16. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  17. Percutaneous isolated limb perfusion with thrombolytics for severe limb ischemia.

    PubMed

    Ali, Ahsan T; Kalapatapu, Venkat R; Bledsoe, Shelly; Moursi, Mohammed M; Eidt, John F

    2005-01-01

    Patients with severe tibioperoneal disease are poor candidates for a distal bypass. Absence of a distal target, lack of conduit, or multiple medical problems can make these patients a prohibitive risk for revascularization. Acute on chronic ischemia in this group poses a greater challenge. Thrombolytic therapy for acute ischemia can be prolonged and carries a significant risk of bleeding if continued beyond 24 hours. However, if the ischemic limbs can be isolated from the systemic circulation, a higher dose of the lytic agent can be given with lower risk. These are the initial results of a series of 10 patients who underwent percutaneous isolated limb perfusion with a high dose of thrombolytics for severe ischemia. Ten patients (lower extremity 8 and upper extremity 2) presented with severe limb-threatening ischemia. Mean ankle/brachial index (ABI) was 0.15 for the lower extremity, and there were no recordable digital pressures in patients with upper extremity ischemia. No distal target was visible on the initial arteriogram. These patients were then taken to the operating room, and under anesthesia, catheters were placed in an antegrade fashion via femoral approach in the popliteal artery and vein percutaneously. For upper extremity, the catheters were placed in the brachial artery and vein. A proximal tourniquet was then applied. This isolated the limb from the systemic circulation. Heparinized saline was infused through the arterial catheter while the venous catheter was left open. A closed loop or an isolated limb perfusion was confirmed when effluent became clear coming out of the venous port. A high dose of thrombolytic agent (urokinase 500,000 to 1,000,000 U) was infused into the isolated limb via the arterial catheter and drained out of the venous catheter. After 45 minutes, arterial flow was reestablished. In 4 patients, Reopro((R)) was used in addition to thrombolytics. Postprocedure angiograms showed minimal changes, but patients exhibited marked

  18. Hepatic arterial perfusion scintigraphy with Tc-99m-MAA: use of a totally implanted drug delivery system

    SciTech Connect

    Ziessman, H.A.; Thrall, J.H.; Yang, P.J.; Walker, S.C.; Cozzi, E.A.; Niederhuber, J.E.; Gyves, J.W.; Ensminger, W.D.; Tuscan, M.C.

    1984-07-01

    Tc-99m-MAA hepatic arterial perfusion scintigraphy (HAPS) using a totally implanted drug delivery system was employed for hepatic arterial chemotherapy in 147 patients (335 studies). Complete perfusion of the involved liver was seen in 88% of patients initially and remained good on follow-up. A significant decrease in hepatic and/or extrahepatic perfusion associated with a hot spot at the tip of the catheter indicated hepatic arterial thrombosis. Extrahepatic perfusion was seen in 14% of cases, usually in the distribution of the stomach, small bowel, and spleen. Significant symptoms of drug toxicity were seen in 70% of patients with extrahepatic perfusion, compared to 19% of those without it.

  19. Extracorporeal membrane oxygenation with right axillary artery perfusion.

    PubMed

    Navia, José L; Atik, Fernando A; Beyer, Erik A; Ruda Vega, Pablo

    2005-06-01

    Extracorporeal membrane oxygenation can be instituted through various cannulation sites. This paper describes a technique for axillary artery cannulation for inflow perfusion in extracorporeal membrane oxygenation and discusses both potential advantages and limitations. Exposure of the artery was achieved through the deltoid-pectoral approach. Both direct cannulation and interposition graft cannulation are possible, but the latter is preferred. Advantages of axillary artery cannulation are related mainly to the establishment of "central" support with antegrade flow and excellent upper body oxygenation. It also affords chest closure after postcardiotomy shock, and easy control of any mediastinal bleeding. These cannulation sites may be options for the institution of venoarterial extracorporeal membrane oxygenation, especially in postcardiotomy and respiratory failure patients and in patients with significant peripheral vascular disease. PMID:15919341

  20. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    SciTech Connect

    Cohen, M.B.; Lake, R.R.; Graham, L.S.; King, M.A.; Kling, A.S.; Fitten, L.J.; O'Rear, J.; Bronca, G.A.; Gan, M.; Servrin, R. )

    1989-10-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n ({sup 123}I)IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed.

  1. The clinical potential of ex vivo lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-02-01

    The number of patients listed for lung transplantation largely exceeds the number of available transplantable organs because of both a shortage of organ donors and a low utilization rate of donor lungs. Normothermic ex vivo lung perfusion (EVLP) is a method that maintains the organ in physiologically protective conditions outside the body during preservation, and shows great promise to increase utilization of donor lungs by allowing more accurate evaluation, as well as treatment and repair, of damaged donor lungs prior to transplantation. This article will cover the rationale, technical details and results of experimental and clinical studies with EVLP. The significant potential applications of EVLP in lung transplantation, lung regeneration and oncology are discussed. PMID:22283576

  2. Persufflation (gaseous oxygen perfusion) as a method of heart preservation

    PubMed Central

    2013-01-01

    Persufflation (PSF; gaseous oxygen perfusion) is an organ preservation technique with a potential for use in donor heart preservation. Improved heart preservation with PSF may improve outcomes by maintaining cardiac tissue quality in the setting of longer cold ischemia times and possibly increasing the number of donor hearts available for allotransplant. Published data suggests that PSF is able to extend the cold storage times for porcine hearts up to 14 hours without compromising viability and function, and has been shown to resuscitate porcine hearts following donation after cardiac death. This review summarizes key published work on heart PSF, including prospective implications and future directions for PSF in heart transplantation. We emphasize the potential impact of extending preservation times and expanding donor selection criteria in heart allotransplant. Additionally, the key issues that need to be addressed before PSF were to become a widely utilized preservation strategy prior to clinical heart transplantation are summarized and discussed. PMID:23607734

  3. Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors.

    PubMed

    Raimondi, Manuela T; Causin, Paola; Mara, Andrea; Nava, Michele; Laganà, Matteo; Sacco, Riccardo

    2011-12-01

    We report about two specific breakthroughs, relevant to the mathematical modeling and numerical simulation of tissue growth in the context of cartilage tissue engineering in vitro. The proposed models are intended to form the building blocks of a bottom-up multiscale analysis of tissue growth, the idea being that a full microscale analysis of the construct, a 3-D partial differential equation (PDE) problem with internal moving boundaries, is computationally unaffordable. We propose to couple a PDE microscale model of a single functional tissue subunit with the information computed at the macroscale by 2-D-0-D models of reduced computational cost. Preliminary results demonstrate the effectiveness of the proposed models in describing the interplay among interstitial perfusion flow, nutrient delivery, and consumption and tissue growth in realistic scaffold geometries.

  4. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  5. Transplacental transfer of acrylamide and glycidamide are comparable to that of antipyrine in perfused human placenta.

    PubMed

    Annola, Kirsi; Karttunen, Vesa; Keski-Rahkonen, Pekka; Myllynen, Päivi; Segerbäck, Dan; Heinonen, Seppo; Vähäkangas, Kirsi

    2008-11-10

    Most drugs can penetrate the placenta but there are only a few studies on placental transfer of environmental toxic compounds. In this study, we used dual recirculating human placental perfusion to determine the transfer rate through the placenta of a neurotoxic and carcinogenic compound found in food, acrylamide and its genotoxic metabolite glycidamide. Putative acrylamide metabolism into glycidamide during the 4-h perfusions and acrylamide-derived DNA adducts in placental DNA after perfusions were also analyzed. Placentas were collected immediately after delivery and kept physiologically functional as confirmed by antipyrine kinetics, glucose consumption and leak from fetal to maternal circulation. Acrylamide (5 or 10 microg/ml) or glycidamide (5 microg/ml), both with antipyrine (100 microg/ml), was added to maternal circulation. Acrylamide and glycidamide were analyzed in the perfusion medium by liquid chromatography/mass spectrometry. Acrylamide and glycidamide crossed the placenta from maternal to fetal circulation with similar kinetics to antipyrine, suggesting fetal exposure if the mother is exposed. The concentrations in maternal and fetal circulations equilibrated within 2h for both studied compounds and with both concentrations. Acrylamide metabolism into glycidamide was not detected during the 4-h perfusions. Moreover, DNA adducts were undetectable in the placentas after perfusions. However, fetuses may be exposed to glycidamide after maternal metabolism. Although not found in placental tissue after 4h of perfusion, it is possible that glycidamide adducts are formed in fetal DNA.

  6. A Modified Perfusion Method to Improve the Quality of Procured Donor Pancreas in Rats

    PubMed Central

    Du, Fu Tian; Lin, Hong Feng; Ding, Wei

    2012-01-01

    Background In this animal study, we evaluated a modified pancreas perfusion method to improve the quality of harvested pancreas in rats. In this model, the portal vein was used as the outflow route during the pancreas perfusion. Methods Forty-eight male Wistar rats were randomly divided into study group and control group, with 24 rats in each group. In the study group, the portal vein was used as outflow of perfusion. While in the control group, the post-hepatic vein (right artrium) was used as perfusion outflow. UW solution was used as perfusion and preservation solution. Pancreas tissue samples were collected at 6, 10, and 14 hours after perfusion and cold preserved for histology and immunohistochemistry examination, P-selection (PS) and ICAM-1 were determined. Pancreas samples were also examined using electronic microscope for ultra-structures. Results Compared with the study group, in the pancreas of control group there were significant pathological impairments and cellular ultra-structural alterations observed by immunohistochemistry and electronic microscope, and these impairments aggravated with time. There were mild histological alterations in the pancreas of study group. Conclusions During the donor pancreas perfusion, the early opening of portal vein as the outflow is better than the opening of the post-hepatic vein for the preservation of donor graft pancreas and the reduction of tissue impairments.

  7. Liver Function After Irradiation Based on Computed Tomographic Portal Vein Perfusion Imaging

    SciTech Connect

    Cao Yue Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Haken, Randall K. ten; Lawrence, Theodore S.

    2008-01-01

    Purpose: To determine whether individual and regional liver sensitivity to radiation could be assessed by measuring liver perfusion during a course of treatment using dynamic contrast-enhanced computed tomography scanning. Methods and Materials: Patients with intrahepatic cancer undergoing conformal radiotherapy underwent dynamic contrast-enhanced computed tomography (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) before, during, and 1 month after treatment. We hoped to determine whether the residual functioning liver (i.e., those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results: Radiation doses from 45 to 84 Gy resulted in undetectable regional portal vein perfusion 1 month after treatment. The volume of each liver with undetectable portal vein perfusion ranged from 0 to 39% and depended both on the patient's sensitivity and on dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (p < 0.001). Conclusion: This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function and has the potential to be a tool for individualizing therapy.

  8. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion

    PubMed Central

    Lee, Dae Hyun; Dane, Martijn J. C.; van den Berg, Bernard M.; Boels, Margien G. S.; van Teeffelen, Jurgen W.; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R.; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.