Sample records for deeper stratigraphic levels

  1. Subsurface geology of the Lusi region: preliminary results from a comprehensive seismic-stratigraphic study.

    NASA Astrophysics Data System (ADS)

    Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano

    2016-04-01

    We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid circulation. Seismic stratigraphic study of the basin margin (closer to volcanic accumulations) will also allow reconstructing the relationships between present and past volcanic activity recorded in the deep subsurface with the genesis of piercement structures and development of vertical deformation zones

  2. Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, V.L.; Randazzo, A.F.

    1993-03-01

    Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less

  3. SDAR 1.0 a New Quantitative Toolkit for Analyze Stratigraphic Data

    NASA Astrophysics Data System (ADS)

    Ortiz, John; Moreno, Carlos; Cardenas, Andres; Jaramillo, Carlos

    2015-04-01

    Since the foundation of stratigraphy geoscientists have recognized that data obtained from stratigraphic columns (SC), two dimensional schemes recording descriptions of both geological and paleontological features (e.g., thickness of rock packages, grain size, fossil and lithological components, and sedimentary structures), are key elements for establishing reliable hypotheses about the distribution in space and time of rock sequences, and ancient sedimentary environmental and paleobiological dynamics. Despite the tremendous advances on the way geoscientists store, plot, and quantitatively analyze sedimentological and paleontological data (e.g., Macrostrat [http://www.macrostrat.org/], Paleobiology Database [http://www.paleodb.org/], respectively), there is still a lack of computational methodologies designed to quantitatively examine data from a highly detailed SCs. Moreover, frequently the stratigraphic information is plotted "manually" using vector graphics editors (e.g., Corel Draw, Illustrator), however, this information although store on a digital format, cannot be used readily for any quantitative analysis. Therefore, any attempt to examine the stratigraphic data in an analytical fashion necessarily takes further steps. Given these issues, we have developed the sofware 'Stratigraphic Data Analysis in R' (SDAR), which stores in a database all sedimentological, stratigraphic, and paleontological information collected from a SC, allowing users to generate high-quality graphic plots (including one or multiple features stored in the database). SDAR also encompasses quantitative analyses helping users to quantify stratigraphic information (e.g. grain size, sorting and rounding, proportion of sand/shale). Finally, given that the SDAR analysis module, has been written in the open-source high-level computer language "R graphics/statistics language" [R Development Core Team, 2014], it is already loaded with many of the crucial features required to accomplish basic and complex tasks of statistical analysis (i.e., R language provide more than hundred spatial libraries that allow users to explore various Geostatistics and spatial analysis). Consequently, SDAR allows a deeper exploration of the stratigraphic data collected in the field, it will allow the geoscientific community in the near future to develop complex analyses related with the distribution in space and time of rock sequences, such as lithofacial correlations, by a multivariate comparison between empirical SCs with quantitative lithofacial models established from modern sedimentary environments.

  4. Sedimentology and paleogeography of the Natih carbonate platform in the Oman mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, J.M.; Borgomano, J.R.; Al Maskiry, S.

    1993-09-01

    Field study of the Natih Formation in the Jebel Akhdar and the Oman foothills allows us to establish a new stratigraphical and sedimentological model of this important hydrocarbon reservoir unit. Thanks to the study of rudists and the discovery of ammonites, a new precisions can be given to the chronostratigraphy of the Natih Formation. It was especially demonstrated by the presence of Hippuritids (rudists) that the top of the Natih Formation matches the Cenomanian/Turonian boundary and corresponds to either rudist-rich layers or hard grounds and condensed levels. The stratigraphical correlations between several outcrop section allow one to establish a conceptualmore » sequence stratigraphic model which can be compared to the subsurface by using the Natih subdivisions [open quotes]A to G.[close quotes] The recognition of sequence boundaries, maximum flooding surfaces, and system tracts might help to understand the seismo-stratigraphic expression of the Natih interval in the subsurface. Furthermore, this sequence stratigraphic model clearly illustrates the interfingering of the carbonate reservoir intervals and the organic-rich units (Fitri Mb) at the top of the Natih Formation. We also have identified a clear zonation from deeper marine to shallow-marine carbonate deposits, the most significant of which are the rudistid facies. They form banks, thickets, and biostroms and do not constitute anomalous build ups such as bioherms. Good leaching potentials generally are related to these rudistid facies, especially when they are very rich in skeletal aragonite from the Caprinids shells. Significant primary porosity may be related also to the Hippuritid skeletal cavities at the top of the Natih. Reservoir potentials can be enhanced if these Caprinid-rich intervals are related to exposure surfaces such as the top Natih E and the top Natih A.« less

  5. Latest Proterozoic stratigraphy and Earth history.

    PubMed

    Knoll, A H; Walter, M R

    1992-04-23

    The end of the Proterozoic Eon was a time of pronounced biological, biogeochemical, climatic and tectonic change. New bio- and chemostratigraphic data provide an improved framework for stratigraphic correlation, making possible a deeper understanding of latest Proterozoic Earth history and providing tools for a chronostratigraphic division of late Proterozoic time.

  6. Correlation of the Jurassic through Oligocene Stratigraphic Units of Trinidad and Northeastern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algar, S.; Erikson, J.P.

    1995-04-01

    The Jurassic through Oligocene stratigraphies of Trinidad and the Serrenia del Interior of eastern Venezuela exhibit many similarities because of their proximity on the passive continental margins of northeastern South America. A slightly later subsidence in eastern Venezuela, and the generally deeper-water sedimentation in Trinidad, is interpreted to be the result of a serration of the original rift margin, producing an eastern Venezuela promontory and Trinidadian re-entrant. We interpret these serrations to be the result of oblique (NW-SE) spreading of North and South America during Middle and late Jurassic time. The stratigraphies of northeastern Venezuela and Trinidad contrast in themore » Hauterivan-Albian interval, with dynamic shallow shelf environments prevailing in the Serrenia del Interior and deeper marine submarine-fan deposition in Trinidad. Both areas develop middle to Upper Cretaceous source rocks during a time of eustatic sea level high and widespread oceanic anoxia. 15 refs., 4 fig.« less

  7. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA

    USGS Publications Warehouse

    Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.

    2010-01-01

    Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution of the geomorphology and stratigraphy of this marginal system. ?? 2009 Elsevier B.V.

  8. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1990-05-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less

  9. Quantitative allochem compositional analysis of Lochkovian-Pragian boundary sections in the Prague Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich

    2017-06-01

    Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.

  10. Investigation of stratigraphic mapping in paintings using micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios Th.; Apostolidis, Georgios K.

    2016-04-01

    In this work, microRaman spectroscopy is used to investigate the stratigraphic mapping in paintings. The objective of mapping imaging is to segment the dataset, here spectra, into clusters each of which consisting spectra that have similar characteristics; hence, similar chemical composition. The spatial distribution of such clusters can be illustrated in pseudocolor images, in which each pixel of image is colored according to its cluster membership. Such mapping images convey information about the spatial distribution of the chemical substances in an object. Moreover, the laser light source that is used has excitation in 1064 nm, i.e., near infrared (NIR), allowing the penetration of the radiation in deeper layers. Thus, the mapping images that are produced by clustering the acquired spectra (specifying specific bands of Raman shifts) can provide stratigraphic information in the mapping images, i.e., images that convey information of the distribution of substances from deeper, as well. To cluster the spectra, unsupervised machine learning algorithms are applied, e.g., hierarchical clustering. Furthermore, the optical microscopy camera (×50), where the Raman probe (B and WTek iRaman EX) is plugged in, is attached to a computerized numerical control (CNC) system which is driven by a software that is specially developed for Raman mapping. This software except for the conventional CNC operation allows the user to parameterize the spectrometer and check each and every measurement to ensure proper acquisition. This facility is important in painting investigation because some materials are vulnerable to such specific parameterization that other materials demand. The technique is tested on a portable experimental overpainted icon of a known stratigraphy. Specifically, the under icon, i.e., the wavy hair of "Saint James", can be separated from upper icon, i.e., the halo of Mother of God in the "Descent of the Cross".

  11. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1991-02-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less

  12. Tectonic evolution of the Paranoá basin: New evidence from gravimetric and stratigraphic data

    NASA Astrophysics Data System (ADS)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro

    2018-06-01

    Field gravimetric and stratigraphic surveys were conducted with the aim to constraint the mechanisms responsible for the initiation of the Stenian-Tonian Paranoá basin, central Brazil, a subject not yet studied in detail. The Paranoá Group crops out in the external zone of the Brasília Belt, a Neoproterozoic orogen in the western margin of the São Francisco Craton. Detailed geological mapping confirmed the existence of a regional scale fault that controlled sedimentation of the Paranoá Group during the deposition of its basal formations, revealing important details about basin initiation and early evolution. Gravimetric modeling indicates the existence of paleorift structures beneath the Paranoá sequence in the study area. Results from both stratigraphic and gravimetric surveys show strong evidence of mechanical subsidence by faulting during basin initiation. Unsorted, angular, clasts cut by quartz veins and brecciated boulders present in the basal conglomerate, support this hypothesis. Basin initiation faults coincide with deeper paleorift faults and are thus interpreted as reactivations of the older Statherian Araí Rift. The reactivations favored an initial regime of mechanical subsidence, dominated by the development of epirogenic arches subsiding at different rates. Apart from faulting activity, the post-basal sequence presents no evidence of rift environment in the strict sense. Besides, the great lateral continuity and relatively constant thickness of facies, indicate that an initial mechanic subsidence rapidly gave way to flexural subsidence during subsequent stages of basin evolution. The Paranoá Group do not present reliable characteristics that would allow its strict classification as a passive margin. Its main stratigraphic characteristics, tectonic location and basement architecture, indicate that the Paranoá Group was deposited in a cratonic margin basin, and may have been either connected to a passive margin basin at times of sea level rise, or evolved to a passive margin later in time.

  13. Stratigraphic architecture and gamma ray logs of deeper ramp carbonates (Upper Jurassic, SW Germany)

    NASA Astrophysics Data System (ADS)

    Pawellek, T.; Aigner, T.

    2003-07-01

    The objective of this paper is to contribute to the development of sequence stratigraphic models for extensive epicontinental carbonate systems deposited over cratonic areas. Epicontinental carbonates of the SW German Upper Jurassic were analysed in terms of microfacies, sedimentology and sequence stratigraphy based on 2.5 km of core, 70 borehole gamma ray logs and 24 quarries. Facies analysis revealed six major facies belts across the deeper parts of the carbonate ramp, situated generally below fair-weather wave base, and mostly below average storm wave base but in the reach of occasional storm events. Observed stratigraphic patterns differ in some aspects from widely published sequence stratigraphic models: Elementary sedimentary cycles are mostly more or less symmetrical and are, thus, referred to as "genetic sequences" or "genetic units" [AAAPG Bull. 55 (1971) 1137; Frazier, D.E., 1974. Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin. University of Texas, Austin, Bureau of Economic Geology Geologicalo Circular 71-1; AAPG Bull. 73 (1989) 125; Galloway, W.E., Hobday, D.K., 1996. Terrigenous Clastic Depositional Systems. 489 pp., Springer; Cross, T.A., Baker, M.R., Chapin, M.S., Clark, M.S., Gardner, M.H., Hanson, M.S., Lessenger, M.A., Little, L.D., McDonough, K.J., Sonnenfeld, M.D., Valasek, D.W., Williams, M.R., Witter, D.N., 1993. Applications of high-resolution sequence stratigraphy to reservoir analysis. Edition Technip 1993, 11-33; Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 16 (1992) 357; Homewood, P., Mauriaud, P., Lafont, F., 2000. Best practices in sequence stratigraphy. Elf EP Mem. 25, 81 pp.; Homewood, P., Eberli, G.P., 2000. Genetic stratigraphy on the exploration and production scales. Elf EP Mem. 24, 290 pp.], in contrast to the asymmetrical, shallowing-upward "parasequences" of the EXXON approach. Neither sequence boundaries nor maximum flooding surfaces could be clearly delineated. Cycle boundaries are generally not represented by sharp stratal surfaces but are always transitional and, thus, referred to as "turnarounds" [Nor. Pet. Soc. Spec. Publ. 8 (1998) 171]. Several types of genetic sequences were delineated. Both major types of facies and sequences show characteristic gamma ray log signatures. Based on the cycle stacking and the gamma ray patterns, a hierarchy of sequences was recognized, probably driven in part by 100,000- and 400,000-year Milankovitch signals. The cyclicity allowed regional correlations across various depositional environments such as sponge-microbial bioherms and coeval basins. The basin-wide correlation revealed evidence for a subtle clinoform-type stratigraphic architecture along very gentle slopes, rather than a so far assumed simple "layer cake" pattern.

  14. Identification of third-order (approx. 10{sup 6} yrs) and fourth-order (approx. 10{sup 5}/10{sup 4} yrs) stratigraphic cycles in the South Addition, West Cameron Lease Area, Louisiana offshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrie, A.; Meeks, P.; Hoffman, K.

    In the highly explored South Addition of the West Cameron Lease Area, Louisiana offshore, interpretation of a six-mile ({approx}10 km) seismic section across a single intraslope basin yielded 20 sediment packages. Several interpretive tools were necessary. Seismic stratigraphy indicated that the shallower zone was an outer shelf marked by 8 major sea level oscillations. In the portion between 1 and 3 seconds, seismic stratigraphy and paleontology led to the interpretation of depositional environments such as upper slope, and paleobathymetrically deeper intervals with descent through the section. The intraslope basin, while small, may be viewed as a micro-continental margin. Each seamore » level oscillation cycle apparently made a distinct progradational unit, decipherable in the seismic data. Fourth order cycles have been provisionally interpreted, throughout most of the entire 3.7 second section. Such precision is possible only in explored basins with excellent seismic data. The sequence thickness showed a seven-fold variability, from 0.08 to 0.58 seconds. The shallower section, deposited along an outer shelf, has an average individual sequence thickness of 0.13 seconds. Individual seismic sequences in the deeper section, interpreted to have been deposited on an upper slope, have average thicknesses of 0.25 seconds. The thinner sequences of the shallower section are compatible with the notion that the outer shelf was a bypass zone during a glacial epoch. The thicker sequences of the deeper section are the result of deposition onto an aggrading upper slope within an intraslope basin during a highstand.« less

  15. Sequence stratigraphy and hydrocarbon habitat of the Natih formation in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikkema, W.; Borgomano, J.

    1993-09-01

    The Natih Formation is part of the Mesozoic platform carbonate succession deposited on the southeastern Arabian peninsula and one of the main hydrocarbon producing reservoirs in Oman. It is separated from the underlying carbonates of the Shuaiba Formation by the Nahr Umr Formation and is overlain by the Fiqa Formation, both acting as regional seals. The age of the Natih Formation is late Albian to early Turonian, and its deposition was terminated by early Turonian uplift. Various lithofacies are present in the Natih Formation. The Natih Formation is cyclic, with a succession of coarsening-upward cycles of deeper marine shales andmore » mudstones grading to shallow marine rudistid packstones and grainstones, each terminated by an emergence surface. The cyclicity is the result of eustatic sea level changes. Two deeper marine shales rich in planktonic foraminifera and organic material are intercalated within the sequence. The cycles have been used to subdivide the Natih into members labeled a to g. A sequence stratigraphic model has been applied to the observed cyclicity, which helps to understand (1) the distribution of shallow marine grainstones (reservoir) and deeper marine shales and mudstones (seal, source rock), and (2) where the reservoir quality may have been enhanced by emergence and leaching. The model has been tested both on a regional scale and on a field scale, e.g., on seismic lines over the Sirat Prospect area in central north Oman and the Marmul area of south Oman.« less

  16. Subsurface stratigraphy of upper Devonian clastics in southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.W.; Patchen, D.G.

    Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less

  17. The Influence of Inherited Topography and/or Tectonics on Paleo-channel Systems and Incised Valleys Offshore of South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2016-12-01

    The Quaternary paleo-channel and incised valley systems of the Southeastern United States have been well documented onshore; however, few studies have focused on the positions and fill histories of these systems on the continental shelf. The effects of inherited topography can be studied through the integration of seismo-acoustic and core data. Existing offshore datasets have been used to document underlying structural and stratigraphic fabrics deeper than the Quaternary in the sedimentary record. By integrating these results with the published tectonic setting and onshore interpretations, some of the controls on paleo-channel/incised valley positions can be inferred. Preliminary results suggest the stress caused by the uplift along the Cape Fear Arch has been accommodated by shallow folding and reactivation of deeper structures in the South Carolina offshore province. The resultant topography may have dictated both the position and geometry of the fluvial incisions across the shelf. This in turn influences the accommodation space available to be filled in as sea level fluctuates. The depositional facies within the paleo-channel and incised valley range from single, uninterrupted fill to complex and repeated scour and fill with at least four different episodes of erosion and deposition. The observations and interpretations proposed here are the first steps in unraveling the complex interplay between sea level, climate, and tectonic changes on the morphology and stratigraphy of incised valleys and paleo-channels observed offshore of South Carolina.

  18. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Hutchinson, D. R.

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian-American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100m deep, and the base of the cores is only 670ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past 2-3Ma.

  19. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)

  20. Sea-level and environmental changes around the Devonian-Carboniferous boundary in the Namur-Dinant Basin (S Belgium, NE France): A multi-proxy stratigraphic analysis of carbonate ramp archives and its use in regional and interregional correlations

    NASA Astrophysics Data System (ADS)

    Kumpan, Tomáš; Bábek, Ondřej; Kalvoda, Jiří; Matys Grygar, Tomáš; Frýda, Jiří

    2014-08-01

    The paper focuses on high-resolution multidisciplinary research on three Devonian-Carboniferous boundary sections in shallow-water carbonate rocks in the Namur-Dinant Basin (Belgium, France). The aim of the study is to provide palaeo-environmental reconstructions and correlations supported by several independent quantitative proxies. We describe several correlative horizons and provide their sequence-stratigraphic interpretation based on facies analysis, spectral gamma-ray data, element concentrations (XRF) and δ13Ccarb, with foraminifer-biostratigraphy age control. The most prominent surface is a basal surface of forced regression, which is indicated by a sharp basinwards facies shift and a drop in clay-gamma-ray values and Al concentrations at the base of the Hastière and Avesnelles formations in more distal settings. In proximal settings, this surface merges with a hiatus at the Devonian-Carboniferous boundary inferred from foraminifer biostratigraphy. This hiatus can be correlated with the global Hangenberg sandstone event, which indicates a glacioeustatic sea-level fall. Increasing values of Zr/Al, K/Al, Sr/Al and Mn/Al coincide with the proximal facies of the falling stage system tract and lowstand system tract in the Hastière and Avesnelles formations as a consequence of the enhanced input of siliciclastics and nutrients during low sea levels. The top of the middle Hastière member is interpreted as the maximum regression surface, which is overlain by transgressive system tract of the upper Hastière member. The patterns of gamma-ray, δ13Ccarb, Th/K, Al and Zr/Al curves are well correlated between the studied sections. The δ13Ccarb excursions are correlated with the unnamed excursion in the Upper expansa conodont zone (Carnic Alps) and with the global Hangenberg event s.l. excursion in the kockeli conodont zone. This sequence-stratigraphic framework is used for correlations with deltaic successions from the Tafilalt Basin, Morocco. The basal surface of the forced regression equivalent to the Hangenberg sandstone event, which is typical for deeper-water settings, is easily recognisable and correlatable with gaps in more-shallow water settings. We suggest that it should be taken into account as a possible candidate for the “natural solution” of the Devonian-Carboniferous boundary in discussions concerning its redefinition.

  1. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.

  2. Eustatic and tectonic controls on development and demise of Waulsortian carbonate buildups, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precht, W.F.; Shepard, W.

    1989-03-01

    Deeper water Waulsortian carbonate buildups of Kinderhookian age are known from four localities in Montana. These buildups are situated within rhythmically bedded carbonate mudstones in the Paine Member of the Lodgepole formation. These buildups are mud-rich, byrozoan-crinoid mounds which contain abundant stromatactoid-like spar-filled cavities. The buildups are located along downdropped blocks on bounding faults of the Central Montana trough related to reactivation of a middle Proterozoic intracratonic rift margin (aulacogen). Sequence stratigraphic analyses of the Lodgepole throughout central Montana forms the basis for interpretation of buildup development and demise. Opening of the trough coupled with sea level rise formed threemore » distinct members of the Lodgepole, including (1) a transgressive surface marked by shallow-water deposits of the Cottonwood Canyon Member, (2) a transgressive systems tract of the Paine Member which can be separated into two distinct facies - a condensed section of deeper water carbonate mudstones to wackestones and the Waulsortian buildup facies which are encased within these rhythmically bedded deposits, and (3) a high-stand systems tract characterized by high-energy, cyclic, shoaling-upward crinoidal grainstones and oolites of the Woodhurst Member. Rapid eustatic rise and syntectonic subsidence during the transgressive systems tract outpassed buildup development and led to subsequent drowning. The lack of rapid reef building metazoans during the Mississippian is also suspect in explaining Waulsortian buildup demise.« less

  3. The Provo shoreline of Lake Bonneville: Chapter 7

    USGS Publications Warehouse

    Miller, David

    2016-01-01

    G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.

  4. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    USGS Publications Warehouse

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100 m deep, and the base of the cores is only ∼670 ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400 ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past ∼2–3 Ma.

  5. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.

    2010-01-01

    Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.

  6. Stratigraphic Units in Las Vegas Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Donovan, D.

    2013-12-01

    Using 25 well logs, 15 of which also had accompanying geophysical and aquifer test data were used to describe and establish three alloformations including the Tule Spring and Paradise Valley Alloformations and four aquiformations, the most well defined being, the Las Vegas Springs Aquiformation, in the west central part of the bolson (Donovan, 1996), primarily in Township 20 South, Range 60 East, Mount Diablo Baseline and Meridian (MDBLM), with the stratotypes designated in T20S, R61E S31 MDBLM (36° 9'59.89"N 115°11'26.34"W). The allostratigraphic units were developed using the recommendations in the North American Code of Stratigraphic Nomenclature (NACSN, 1983 and 2005). The hydrostratigraphic units were developed following the recommendations of Seaber (1992). The units constitute the bulk of the upper 500 meter section. Twenty additional wells in the same geographic area, drilled and completed between 1995 and 2005 with detailed geologic and hydrologic information provided confirmation of these units. The proposed stratigraphic units are not part of either, and are located between, the two previously named and non-contiguous formations in the bolson (the Miocene Muddy Creek Formation and the late Pleistocene Las Vegas Formation) (Longwell et al 1965). Las Vegas Valley contains a metropolitan area of approximately two million people. The deeper part of the alluvial basin below 300 ft below ground surface is of interest for supply and storage. The shallower part is of interest for water quality and the interaction between the ground water system and engineered structures.

  7. Geology and geochemistry of gas-charged sediment on Kodiak Shelf, Alaska

    USGS Publications Warehouse

    Hampton, M.A.; Kvenvolden, K.A.

    1981-01-01

    Methane concentrations in some sediment cores from the Kodiak Shelf and adjacent continental slope increase with depth by three or four orders of magnitude and exceed the solubility in water at ambient conditions. Acoustic anomalies in seismic-reflection records imply that methane-rich sediment is widespread. Molecular composition of hydrocarbon gases and isotopic composition of methane indicate gas formation by shallow biogenic processes. Stratigraphic positions of acoustic anomalies in Quaternary glacial and posttransgressive sediments suggest that these units are likely sources of gas. A seep along the extension of a fault may be gas venting from a deeper thermogenic source. ?? 1981 A.M. Dowden, Inc.

  8. Storage Thresholds for Relative Sea Level Signals in the Stratigraphic Record

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yu, L.; Straub, K. M.

    2015-12-01

    Many argue that the tug of Relative Sea Level (RSL) change represents the most important allogenic forcing affecting deltas and is the primary control on stratigraphic architecture of deltas. However, the range of amplitudes and periodicities of RSL cycles stored in stratigraphy remains unknown. Here we use a suite of physical experiments to show that RSL cycles with magnitudes and periodicities less than the spatial and temporal scales of deltaic internal (autogenic) dynamics cannot confidently be extracted from the physical stratigraphic record. Additional analysis of deltaic morphodynamics also suggest no significant differences between an experiment with constant boundary conditions (control experiment) and an experiment with small magnitude and short periodicity RSL cycles, relative to the autogenic dynamics. Significant differences in the aspect ratio of channel bodies and deposit sand fractions do exists between our control experiment and those experiments with either large magnitudes or long periodicities RSL cycles. Using a compilation of data from major river delta systems, we show that our predicted thresholds for RSL signal storage often overlap with the magnitudes and periodicities of commonly discussed drivers of global sea level. This theory defines quantitative limits on the range of paleo-RSL information that can be extracted from the stratigraphic record, which could aid stratigraphic prediction and the inversion of stratigraphy for paleo- deltaic response to climate change.

  9. Stratigraphical and sedimentary characters of Late Cretaceous formations outcropping in central and southern Tunisia, Tethyan southern margin

    NASA Astrophysics Data System (ADS)

    Jaballah, J.; Negra, M. H.

    2016-12-01

    The main goals of our approach are to identify some local to global events in relation with tectonic instabilities and/or sea-level changes, occurring during the deposition of Cenomanian-Coniacian carbonate series in Tunisia. Several sections surveyed in Central-Southern Tunisia, along a North-South transect extending from Sidi Bouzid to Gafsa area, show that the Cenomanian-Coniacian series include rudist-rich facies associated to other shallow marine to deeper deposits. Detailed sedimentological studies supported by new biostratigraphical data (provided by H. Bismuth, oral comm.), have allowed to add more precisions on the lithostratigraphical stacking and thus on the Central Tunisia Stratigraphic Chart. Some carbonate members such as the Middle Turonian Bireno and the Late Turonian-Coniacian Douleb have been identified in certain localities for the first time. Indeed, these members were never described before at Jebel el Kébar and Jebel Meloussi. In the Sidi Bouzid area, especially at Jebel el Kébar, the Cenomanian-Coniacian carbonate members are characterized by frequent and rapid changes, related to the existence of highs (horsts, probably) and depressed depositional domains (grabens, probably), which formed during the deposition of the two lower Units of the Middle Turonian Bireno Member. Above, the Late Turonian to Coniacian deposits, have tended to seal the irregular paleotopography affected, at least locally, by Middle Turonian extensional tectonic movements. They could be related, in contrast, to a drowning linked to a sea level rise. Similar events were described abroad during Late Turonian times; a partial drowning of carbonate platforms was already identified in other localities of the African Tethyan margin. However, the global drowning corresponding to the C/T event was not identified in the present study, although previous works have described this event North of the studied sector. As demonstrated in other localities, a global eustatic event could be locally interrupted by tectonic events, which could mask the eustatic message and leave their record in the deposit cycle.

  10. Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska

    USGS Publications Warehouse

    Clift, P.D.; Draut, A.E.; Kelemen, P.B.; Blusztajn, J.; Greene, A.

    2005-01-01

    The Early Jurassic Talkeetna Volcanic Formation forms the upper stratigraphic level of an oceanic volcanic arc complex within the Peninsular Terrane of south-central Alaska. The section comprises a series of lavas, tuffs, and volcaniclastic debris-How and flow turbidite deposits, showing significant lateral facies variability. There is a general trend toward more volcaniclastic sediment at the top of the section and more lavas and tuff breccias toward the base. Evidence for dominant submarine, mostly mid-bathyal or deeper (>500 m) emplacement is seen throughout the section, which totals ???7 km in thickness, similar to modern western Pacific arcs, and far more than any other known exposed section. Subaerial sedimentation was rare but occurred over short intervals in the middle of the section. The Talkeetna Volcanic Formation is dominantly calc-alkatine and shows no clear trend to increasing SiO2 up-section. An oceanic subduction petrogenesis is shown by trace element and Nd isotope data. Rocks at the base of the section show no relative enrichment of light rare earth elements (LREEs) versus heavy rare earth elements (REES) or in melt-incompatible versus compatible high field strength elements (HFSEs). Relative enrichment of LREEs and HFSEs increases slightly up-section. The Talkeetna Volcanic Formation is typically more REE depleted than average continental crust, although small volumes of light REE-enriched and heavy REE-depleted mafic lavas are recognized low in the stratigraphy. The Talkeetna Volcanic Formation was formed in an intraoceanic arc above a north-dipping subduction zone and contains no preserved record of its subsequent collisions with Wrangellia or North America. ?? 2005 Geological Society of America.

  11. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska

    USGS Publications Warehouse

    Kelley, K.D.; Wilkinson, J.J.; Chapman, J.B.; Crowther, H.L.; Weiss, D.J.

    2009-01-01

    Analyses of sphalerite samples from shale-hosted massive sulfide and stratigraphically underlying vein breccia deposits in the Red Dog district in northern Alaska show a range ??66Zn values from zero to 0.60 per mil. The lowest values are observed in the vein breccia deposits, and the stratigraphically overlying (but structurally displaced) shale-hosted massive sulfide deposits show a systematic trend of increasing ??66Zn values from south to north (Main-Aqqaluk-Paalaaq-Anarraaq). The ??66Zn values are inversely correlated with sphalerite Fe/Mn ratio and also tend to be higher in low Cu sphalerite, consistent with precipitation of lower ??66Zn sphalerite closer to the principal hydrothermal fluid conduits. The most likely control on isotopic variation is Rayleigh fractionation during sulfide precipitation, with lighter zinc isotopes preferentially incorporated in the earliest sphalerite to precipitate from ore fluids at deeper levels (vein breccias) and close to the principal fluid conduits in the orebodies, followed by precipitation of sulfides with higher ??66Zn values in shallower and/or more distal parts of the flow path. There is no systematic variation among the paragenetic stages of sphalerite from a single deposit, suggesting an isotopically homogeneous zinc source and consistent transport-deposition conditions and/or dissolution-reprecipitation of earlier sphalerite without significant fractionation. Decoupled Zn and S isotope compositions are best explained by mixing of separate metal- and sulfur-bearing fluids at the depositional site. The results confirm that Zn isotopes may be a useful tracer for distinguishing between the central and distal parts of large hydrothermal systems as previously suggested and could therefore be of use in exploration. ?? 2009 by Economic Geology.

  12. Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia

    USGS Publications Warehouse

    Matthews, S.E.; Krause, R.E.

    1983-01-01

    Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)

  13. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Crémière, Antoine; Lepland, Aivo; Thorsnes, Terje; Brunstad, Harald; Stoddart, Daniel

    2017-06-01

    Gas seepage through the seafloor into the water column is inferred based on acoustic mapping, video observations and geochemical analyses at multiple locations in the Viking Graben and Utsira High areas of the central North Sea. Flares in the Viking Graben occur both inside and along the periphery of a submarine melt water channel where pockmarks (up to 500 m in diameter) and methane-derived carbonate crusts are found on the seafloor, indicating focussing of fluid flow in the vicinity of the channel. The flares can be related to gas accumulations close to the seafloor as well as in Quaternary and deeper strata, observed as high-amplitude reflections on seismic data. Many palaeo-channels, which act as accumulation zones, are observed in the subsurface of both the Viking Graben and Utsira High areas. The deeper origin of gas is partially supported by results of isotope analyses of headspace gas collected from sediment samples of the Viking Graben, which show a mixed microbial/thermogenic origin whereas isotope data on free seeping gas in the Viking Graben indicate a predominantly microbial origin. Based on these lines of evidence, a structure-controlled fluid flow model is proposed whereby hydrocarbons migrate in limited amount from deep thermogenic reservoirs along faults, and these deep fluids are strongly diluted by microbial methane. Moreover, the existence of subsurface pockmarks at several stratigraphic levels indicates long-term fluid flow, interpreted to be caused by gas hydrate destabilisation and stress-related high overpressures.

  14. Integration Of Digital Methodologies (Field, Processing, and Presentation) In A Combined Sedimentology/Stratigraphy and Structure Course

    NASA Astrophysics Data System (ADS)

    Malinconico, L. L., Jr.; Sunderlin, D.; Liew, C. W.

    2015-12-01

    Over the course of the last three years we have designed, developed and refined two Apps for the iPad. GeoFieldBook and StratLogger allow for the real-time display of spatial (structural) and temporal (stratigraphic) field data as well as very easy in-field navigation. Field techniques and methods for data acquisition and mapping in the field have dramatically advanced and simplified how we collect and analyze data while in the field. The Apps are not geologic mapping programs, but rather a way of bypassing the analog field book step to acquire digital data directly that can then be used in various analysis programs (GIS, Google Earth, Stereonet, spreadsheet and drawing programs). We now complete all of our fieldwork digitally. GeoFieldBook can be used to collect structural and other field observations. Each record includes location/date/time information, orientation measurements, formation names, text observations and photos taken with the tablet camera. Records are customizable, so users can add fields of their own choosing. Data are displayed on an image base in real time with oriented structural symbols. The image base is also used for in-field navigation. In StratLogger, the user records bed thickness, lithofacies, biofacies, and contact data in preset and modifiable fields. Each bed/unit record may also be photographed and geo-referenced. As each record is collected, a column diagram of the stratigraphic sequence is built in real time, complete with lithology color, lithology texture, and fossil symbols. The recorded data from any measured stratigraphic sequence can be exported as both the live-drawn column image and as a .csv formatted file for use in spreadsheet or other applications. Common to both Apps is the ability to export the data (via .csv files), photographs and maps or stratigraphic columns (images). Since the data are digital they are easily imported into various processing programs (for example for stereoplot analysis). Requiring that all maps, stratigraphic columns and cross-sections be produced digitally continues our integration on the use of digital technologies throughout the curriculum. Initial evaluation suggests that students using the Apps more quickly progress towards synthesis and interpretation of the data as well as a deeper understanding of complex 4D field relationships.

  15. Stratigraphic and structural characterization of the OU-1 area at the former George Air Force Base, Adelanto, Southern California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.

    2001-01-01

    The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better characterize the shallow (upper 100 m) stratigraphy beneath GAFB, the US Environmental Protection Agency (USEPA) contracted the US Geological Survey (USGS) to acquire three seismic reflection/refraction profiles within an area known as Operational Unit #1 (OU-1). The principal objective of the seismic survey was to laterally characterize the subsurface with respect to structure and stratigraphy. In particular, we desired to (1) laterally “map” stratigraphic units (particularly aquifer layers) that were previously identified in monitoring wells within the OU-1 area and (2) identify structures, such as faults and folds, that affect the movement of ground water. Knowledge of lateral variations in stratigraphic units and structures that may affect those units is useful in constructing ground-water flow models, which aid in identifying possible TCE migration paths within the subsurface. Stratigraphic and structural characterization may also be useful in identifying surface locations and target depths for future wells (Catchings et al., 1996). Proper siting of wells is important because a welldefined aquifer is apparently not present in all locations at GAFB, as indicated by lithologic logs from existing wells (Montgomery Watson, 1995). Proper depth placement of monitoring and extraction wells is important because wells that are too shallow will not sample within the aquifer, and wells that are too deep risk puncturing the aquitard and allowing contaminants to flow to deeper levels.

  16. Fossils out of sequence: Computer simulations and strategies for dealing with stratigraphic disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, A.H.; Flessa, K.W.

    Microstratigraphic resolution is limited by vertical mixing and reworking of fossils. Stratigraphic disorder is the degree to which fossils within a stratigraphic sequence are not in proper chronological order. Stratigraphic disorder arises through in situ vertical mixing of fossils and reworking of older fossils into younger deposits. The authors simulated the effects of mixing and reworking by simple computer models, and measured stratigraphic disorder using rank correlation between age and stratigraphic position (Spearman and Kendall coefficients). Mixing was simulated by randomly transposing pairs of adjacent fossils in a sequence. Reworking was simulated by randomly inserting older fossils into a youngermore » sequence. Mixing is an inefficient means of producing disorder; after 500 mixing steps stratigraphic order is still significant at the 99% to 95% level, depending on the coefficient used. Reworking disorders sequences very efficiently: significant order begins to be lost when reworked shells make up 35% of the sequence. Thus a sequence can be dominated by undisturbed, autochthonous shells and still be disordered. The effects of mixing-produced disorder can be minimized by increasing sample size at each horizon. Increased spacing between samples is of limited utility in dealing with disordered sequences: while widely separated samples are more likely to be stratigraphically ordered, the smaller number of samples makes the detection of trends problematic.« less

  17. Middle Tertiary stratigraphic sequences of the San Joaquin Basin, California: Chapter 6 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Johnson, Cari L.; Graham, Stephan A.

    2007-01-01

    An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.

  18. Genesis of Miocene litho-stratigraphic trap and hydrocarbon accumulation in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi

    2018-12-01

    In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.

  19. Application of ground penetrating radar for identification of washover deposits and other stratigraphic features: Assateague Island, MD

    USGS Publications Warehouse

    Zaremba, Nicholas; Smith, Christopher G.; Bernier, Julie C.; Forde, Arnell S.

    2016-01-01

    A combination of ground penetrating radar (GPR) data, core data, and aerial photographs were analyzed to better understand the evolution of two portions of Assateague Island, Maryland. The focus of the study was to investigate the applicability of using GPR data to image washover deposits in the stratigraphic record. High amplitude reflections observed in two shore-perpendicular GPR profiles were correlated to shallow (<1 m) lithologic contacts observed in sediment cores. At these contacts, deposits consisting primarily of quartz sand overlie sediments with organic matter that include degraded plant root or stem material. The underlying organic matter likely represents the vegetated portion of the barrier island that was buried by washover fans deposited during hurricanes Irene (2011) and Sandy (2012), as indicated in high-resolution aerial photographs. The GPR data were able to delineate the washover deposits from the underlying stratigraphic unit; however, the radar data did not resolve finer structures necessary to definitively differentiate washover facies from other sand-rich deposits (e.g., flood-tide deltas and dunes). Other GPR profiles contain reflections that likely correlate to geomorphic features like tidal channels and vegetated zones observed in historical aerial imagery. Burial of these features by overwash fluxes were observed in the aerial imagery and thus the resulting radar sequence is largely interpreted as washover deposits. Deeper, channel-like features that have been infilled were also observed in shore-parallel profiles and these features coincide with scour channels observed in the 1966 aerial photography. Additional sedimentological data are required to determine what role overwash played in the in-filling of these features.

  20. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

    USGS Publications Warehouse

    Boss, S.K.; Hoffman, C.W.; Cooper, B.

    2002-01-01

    Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and provides a framework for development of better Quaternary sea-level data, especially offshore North Carolina where such data are sparse. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Zonal subdivision of marine sequences: achievements and discrepancies

    NASA Astrophysics Data System (ADS)

    Gladenkov, Yuri

    2010-05-01

    It was 150 years ago when a notion of zone was introduced into stratigraphy. By the present time zonal units with a duration of 0.3-3.0 M.y. in average have been established virtually for all systems and stages of the Phanerozoic. Their quantity reached 300. It is not a chance that zonal stratigraphy is considered to be one of the most significant achievement of the modern geology. There are different interpretations of essence and goals of zonal stratigraphy, techniques of separation of zones, and evaluation of zones as stratigraphic units. Particularly it is reflected in International Stratigraphic Guide (Murphy, Salvador, 1999), Russian Stratigraphic Code (Zhamoida, 2006), and a number of stratigraphic reports of the last years. It concerns different approaches to: (a) establishment of different types of zones (biostratigraphic zones and chronozones, oppel-zones and biohorizons, etc.); (b) assessment of spatial distribution of zones (global or provincial) and a role of sedimentological factor; (c) definition of zones as stratigraphic units (relationships with geostratigraphic units of the standard and regional scales). The latest publications show that because of the different interpretations of zones, authors should explain usage of certain type of zone (for example, when they use the terms "interval-zone" or "assemblage-zone", what limitations stem from application of datum-levels, and others). It is common opinion, that biostratigraphic zones used widely by paleontologists and stratigraphers cannot be a final goal of stratigraphy although they provide a base for solution of many important problems (definition of certain stratigraphic levels, correlation of different biofacies, and others). At the same time, the most important stratigraphic units are chronozones, which correspond to stages or phases of geological evolutio of basins and are marked by distinct fossil assemblages and other properties (magnetic and other characteristics) in the type sections. Therefore, in Russian Stratigraphic Code biostratigraphic zones are regarded as special units and chronozones as general units of integrated substantiation. Now it becomes clear that unlike chronozones, biostratigraphic zones often have diachronous boundaries and provincial but not global distribution. This is not frequently taken into account at practical correlations. A special attention should be paid to a scale of these occurrences when refining stratigraphic scales. It should not be forgotten that magneto-, litho-, and cyclostratigraphic markers should be used to assess isochronism of zonal boundaries. Many zonal reconstructions do not look faultless without such a control. If we consider zonal stratigraphy not only in applied aspect but in a wide scientific one, it fits in with the geohistorical concept of stratigraphy, which is now reflected in "dynamic", or "ecosystem", or biosphere stratigraphy (Gladenkov, 2004). Establishment of stages of geological development of the Earth and its separate parts, reconstructions of changes in the organic world at the biogeocoenotic and biospheric levels, complex study of paleobiotic assemblages are thought to be one of principal lines of stratigraphic investigations. At present discussions are being organized and experience of zonal stratigraphy is being summarized in Russia. In particular, a large book titled "Biozonal stratigraphy of the Phanerozoic in Russia" and devoted to this problem has been published recently (Koren, 2006). References 1. Gladenkov, Yu.B., 2004. Biosphere Stratigraphy (Stratigraphic Problems in the Early XXI Century). Moscow: GEOS, 120 pp. (in Russian). 2. Koren, T.N., ed., 2006. Biozonal stratigraphy of the Phanerozoic in Russia. Saint-Petersburg: VSEGEI Press, 256 рp. (in Russian). 3. Murphy, M.A., and Salvador, A., eds., 1999. International Stratigraphic Guide: An abridged version. Episodes, 22 (4): 255-271. 4. Zhamoida. A.I., ed., 2006. Russian Stratigraphic Guide (3rd Edition). Saint-Petersburg: VSEGEI Press, 95 pp. (in Russian).

  2. Quantitative characterization and modeling of lithologic heterogeneity

    NASA Astrophysics Data System (ADS)

    Deshpande, Anil

    The fundamental goal of this thesis is to gain a better understanding of the vertical and lateral stratigraphic heterogeneities in sedimentary deposits. Two approaches are taken: Statistical characterization of lithologic variation recorded by geophysical data such as reflection seismic and wireline logs, and stochastic forward modeling of sediment accumulation in basins. Analysis of reflection seismic and wireline log data from Pleistocene fluvial and deltaic deposits in the Eugene Island 330 field, offshore Gulf of Mexico reveal scale-invariant statistics and strong anisotropy in rock properties. Systematic quantification of lateral lithologic heterogeneity within a stratigraphic framework, using reflection seismic data, indicates that fluvial and deltaic depositional systems exhibit statistical behavior related to stratigraphic fabric. Well log and seismic data profiles show a decay in power spectra with wavenumber, k, according to ksp{-beta} with beta between 1 and 2.3. The question of how surface processes are recorded in bed thickness distributions as a function of basin accommodation space is addressed with stochastic sedimentation model. In zones of high accommodation, random, uncorrelated, driving events produce a range of spatially correlated lithology fields. In zones of low accommodation, bed thickness distributions deviate from the random forcing imposed (an exponential thickness distribution). Model results are similar to that of a shallowing upward parasequence recorded in 15 meters of offshore Gulf of Mexico Pleistocene core. These data record a deviation from exponentially distributed bed thicknesses from the deeper water part of the cycle to the shallow part of the cycle where bed amalgamation dominates. Finally, a stochastic basin-fill model is used to explore the primary controls on stratigraphic architecture of turbidite channel-fill in the South Timbalier 295 field, offshore Louisiana Gulf Coast. Spatial and temporal changes in topography and subsidence rate are shown to be the main controls on turbidite channel stacking pattern within this basin. The model predicts the deposition of thick, amalgamated turbidite channel sands in the basin during a period of high initial subsidence followed by deposition of thinner, less connected sands when basin subsidence rate and accommodation space are low.

  3. Luminescence chronology of cave sediments at the Atapuerca paleoanthropological site, Spain.

    PubMed

    Berger, G W; Pérez-González, A; Carbonell, E; Arsuaga, J L; Bermúdez de Castro, J-M; Ku, T-L

    2008-08-01

    Ascertaining the timing of the peopling of Europe, after the first out-of-Africa demographic expansion at the end of the Pliocene, is of great interest to paleoanthropologists. One of the earliest direct evidences for fossil hominins in western Europe comes from an infilled karstic cave site called Gran Dolina at Atapuerca, in a stratum approximately 1.5m below the Brunhes-Matuyama (B-M) geomagnetic boundary (780ka) within lithostratigraphic unit TD6. However, most of the meters of fossil- and tool-bearing strata at Gran Dolina have been difficult to date. Therefore, we applied both thermoluminescence (TL) and infrared-stimulated-luminescence (IRSL) multi-aliquot dating methods to fine-silt fractions from sediment samples within Gran Dolina and the nearby Galería cave site. We also applied these methods to samples from the present-day surface soils on the surrounding limestone hill slopes to test the luminescence-clock-zeroing-by-daylight assumption. Within the uppermost 4m of the cave deposits at Gran Dolina, TL and paired TL and IRSL ages range stratigraphically from 198+/-19ka to 244+/-26ka. Throughout Gran Dolina, all luminescence results are stratigraphically self-consistent and, excepting results from two stratigraphic units, are consistent with prior ESR-U-series ages from progressively deeper strata. Thermoluminescence ages culminate at 960+/-120ka approximately 1m below the 780ka B-M boundary. At Galería, with one exception, TL and IRSL ages range stratigraphically downward from 185+/-26ka to 503+/-95ka at the base of the lowermost surface-inwash facies. These results indicate that TL and (sometimes) IRSL are useful dating tools for karstic inwash sediments older than ca. 100ka, and that a more accurate chronostratigraphic correlation is now possible among the main Atapuerca sites (Gran Dolina, Galería, Sima de los Huesos). Furthermore, the oldest TL age of ca. 960ka from Gran Dolina, consistent with biostratigraphic and paleomagnetic evidence, implies a probable numeric age of 900-950ka for the oldest hominin remains ( approximately 0.8m below the TL sample). This age window suggests a correspondence to Marine Isotope Stage (MIS) 25, a relatively warm and humid interglaciation.

  4. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  5. A Deeper Level of Network Intelligence: Combating Cyber Warfare

    DTIC Science & Technology

    2010-04-01

    A Deeper Level of Network Intelligence: Combating Cyber Warfare This information is provided for your review only and is not for any distribution...A Deeper Level of Network Intelligence: Combating Cyber Warfare 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  6. Structural architecture of the central Brooks Range foothills, Alaska

    USGS Publications Warehouse

    Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.

    2002-01-01

    Five structural levels underlie the Brooks Range foothills, from lowest to highest: (1) autochthon, at a depth of ~9 km; (2) Endicott Mountains allochthon (EMA), thickest under the northern Brooks Range (>15 km) and wedging out northward above the autochthon; (3) higher allochthons (HA), with a composite thickness of 1.5+ km, wedging out northward at or beyond the termination of EMA; (4) Aptian-Albian Fortress Mountain Formation (FM), deposited unconformably on deformed EMA and HA and thickening northward into a >7-km-thick succession of deformed turbidites (Torok Formation); (5) gently folded Albian-Cenomanian deltaic deposits (Nanushuk Group). The dominant faulting pattern in levels 2-3 is thin-skinned thrusting and thrust-related folds formed before deposition of Cretaceous strata. These structures are cut by younger steeply south-dipping reverse faults that truncate and juxtapose structural levels 1-4 and expose progressively deeper structural levels to the south. Structural levels 4-5 are juxtaposed along a north-dipping zone of south-vergent folds and thrusts. Stratigraphic and fission-track age data suggest a kinematic model wherein the foothills belt was formed first, by thrusting of HA and EMA as deformational wedges onto the regionally south-dipping authochon at 140-120Ma. After deposition of FM and Torok during mid-Cretaceous hinterland extension and uplift, a second episode of contractional deformation at 60 Ma shortened the older allochthonous deformational wedges (EMA, HA) and overlying strata on north-vergent reverse faults. To the north, where the allochthons wedge out, shortening caused duplexing in the Torok and development of a triangle zone south of the Tuktu escarpment.

  7. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus , Equinoxiodus, Lavocatodus and Neoceratodus , but reject those to Ceratodus and Ferganoceratodus . The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also for independent tests of stratigraphic scenarios.

  8. Bed II Sequence Stratigraphic context of EF-HR and HWK EE archaeological sites, and the Oldowan/Acheulean succession at Olduvai Gorge, Tanzania.

    PubMed

    Stanistreet, Ian G; McHenry, Lindsay J; Stollhofen, Harald; de la Torre, Ignacio

    2018-04-20

    Archaeological excavations at EF-HR and HWK EE allow reassessment of Bed II stratigraphy within the Junction Area and eastern Olduvai Gorge. Application of Sequence Stratigraphic methods provides a time-stratigraphic framework enabling correlation of sedimentary units across facies boundaries, applicable even in those areas where conventional timelines, such as tephrostratigraphic markers, are absent, eroded, or reworked. Sequence Stratigraphically, Bed II subdivides into five major Sequences 1 to 5, all floored by major disconformities that incise deeply into the underlying succession, proving that simple "layer cake" stratigraphy is inappropriate. Previous establishment of the Lemuta Member has invalidated the use of Tuff IIA as the boundary between Lower and Middle Bed II, now redefined at the disconformity between Sequences 2 and 3, a lithostratigraphic contact underlying the succession containing the Lower, Middle, and Upper Augitic Sandstones. HWK EE site records Oldowan technology in the Lower Augitic Sandstone at the base of Sequence 3, within Middle Bed II. We suggest placement of recently reported Acheulean levels at FLK W within the Middle Augitic Sandstone, thus emphasizing that handaxes are yet to be found in earlier stratigraphic units of the Olduvai sequence. This would place a boundary between the Oldowan and Acheulean technologies at Olduvai in the Tuff IIB zone or earliest Middle Augitic Sandstone. A major disconformity between Sequences 3 and 4 at and near EF-HR cuts through the level of Tuff IIC, placing the main Acheulean EF-HR assemblage at the base of Sequence 4, within Upper rather than Middle Bed II. Sequence stratigraphic methods also yield a more highly resolved Bed II stratigraphic framework. Backwall and sidewall surveying of archaeological trenches at EF-HR and HWK EE permits definition of "Lake-parasequences" nested within the major Sequences that record downcutting of disconformities associated with lake regression, then sedimentation associated with lake transgression, capped finally by another erosional disconformity or hiatal paraconformity caused by the next lake withdrawal. On a relative time-scale rather than a vertical metre scale, the resulting Wheeler diagram framework provides a basis for recognizing time-equivalent depositional episodes and the position of time gaps at various scales. Relative timing of archaeological assemblage levels can then be differentiated at a millennial scale within this framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  10. Stratigraphic and structural reconstruction of an Upper Ordovician super-eruption (Catalan Pyrenees)

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Casas, Josep Maria; Muñoz, Josep A.

    2017-04-01

    Pre-Variscan basement of the Pyrenees includes evidence of many magmatic episodes represented by different types of granitoids and volcanic rocks, which indicates the complex geodynamic history of this peri-Gondwana terrane during Palaeozoic. One of the most significative magmatic episodes is that of Upper Ordovician (Caradocian) age, which is represented by several granitic and granodioritic bodies and volcanic rocks mostly of pyroclastic nature. In the Catalan Pyrenees this magmatism is well represented in the Ribes de Freser and Nuria area, where the orthogneisses from the Nuria massif and the Ribes granophyre, both with a similar age of 457 Ma, seem to form a calc-alkaline plutonic suite covering terms from deeper to shallower levels. The presence of numerous pyroclastic deposits and lavas interbedded with Caradocian sediments and intruded by and immediately above the Ribes granophyre, suggests that this intrusive episode also generated significant volcanism. The area also hosts an important volume of rhyolitic ignimbrites and andesitic lavas strongly affected by Alpine tectonics and commonly showing tectonised contacts at the base and top of the sequences. These volcanic rocks were previously attributed to the Upper Carboniferous late-Variscan volcanism, extensively represented in the Pyrenees. However, new laser ablation U-Pb zircon geochronology from these rocks has revealed an Upper Ordovician age ( 455 Ma), similar to that of the plutonic rocks of the same area, thus suggesting a probable genetic relation between all them. The palinspatic reconstruction of the Alpine and Variscan tectonic units that affect this area has permitted to infer the geometry, facies distribution, original position, and thickness of these volcanic rocks previously attributed to the late-Variscan volcanism, and reveals how they are spatially (and stratigraphically) associated with the previously identified Late Ordovician volcanic rocks. In particular, the volcanic rocks cropping out at the Ribes de Fresser area correspond to intra-caldera deposits representing a minimum volume of 600 km3, (DRE), which confirm the existence of super-eruptions of Upper Ordovician age in the Pyrenees.

  11. Diatom community and palaeoenvironmental properties of Karacaören diatomite deposits (Nevşehir, Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldız, Ayşegül; Gürel, Ali; Dursun, Yusuf Gökhan

    2017-10-01

    The diatom community and palaeoenvironmental properties of volcano genetic diatomite deposits that outcrop in the Karacaören (Nevşehir) area are described. Two stratigraphic sections were measured in the study area. One of these sections was measured in Quaternary lake units (K1), and the other in lacustrine sediments of the late Miocene-Pliocene Ürgüp Formation's Bayramhacılı Member (K2). According to stratigraphic and chemical characteristics of the sections, two distinct paleogeographic domains were determined in the study area. One of these, the shallow lacustrine to fluvial area (Quaternary) which is represented by an alternating sequence of diatomite, silt/mud, and tuffite. The other was the deeper lacustrine stage (late Miocene) which is represented by diatomites with some interbedded mud facies, chert and volcanics. From the diatomite samples of these sections, twenty-five species of 10 different diatom genera were identified. When evaluated together, the ecological properties and the distribution of numerical values of the determined diatom genera and species, showed that the study area's diatomite was generally deposited in shallow, high temperature, nutrient-rich water, where nitrogen and phosphorus were abundant and which was an alkaline (pH > 7) freshwater lake environment. Over time the pH value of the environment decreased (pH < 7), and the environment became acidic.

  12. Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and ³⁹Ar Transport Modeling.

    PubMed

    Sonnenborg, Torben O; Scharling, Peter B; Hinsby, Klaus; Rasmussen, Erik S; Engesgaard, Peter

    2016-03-01

    A large-scale groundwater flow and transport model is developed for a deep-seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three-dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of (39)Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two-dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep-seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers. © 2015, National Ground Water Association.

  13. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.

    2017-12-01

    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of flux changes, reaching an apex prior to flood basalt termination. The origin of these pulses remains enigmatic and may relate to heterogeneities in plume composition, upwelling rate, or mantle potential temperature. The results of this study provide first order modeling constraints for future modeling of plume-lithosphere interactions.

  14. Morphodynamics and stratigraphic architecture of shelf-edge deltas subject to constant vs. dynamic environmental forcings

    NASA Astrophysics Data System (ADS)

    Straub, K. M.

    2017-12-01

    When deltas dock at the edge of continental margins they generally construct thick stratigraphic intervals and activate channelized continental slope systems. Deposits of shelf-edge deltas have the capacity to store detailed paleo-environmental records, given their location in the source to sink system. However, present day highstand sea-level conditions have pushed most deltaic systems well inbound of their shelf-edges, making it difficult to study their space-time dynamics and resulting stratigraphic products. Several competing theories describe how deltas and their downslope environments respond to sea-level cycles of varying magnitude and periodicity. We explore these hypotheses in a physical experiment where the topographic evolution of a coupled delta and downdip slope system was monitored at high temporal and spatial resolution. The experiment had three stages. In the first stage a delta aggraded at the shelf-edge under constant water and sediment supply, in addition to a constant generation of accommodation through a sea-level rise. In the second stage the sediment transport system responded to low magnitude and high frequency sea-level cycles. Finally, in the third stage the transport system responded to a high magnitude and long period sea-level cycle. In each stage, fine sediment from the input grain size distribution and dissolved salt in the input water supply promoted plunging hyperpycnal flows. Specifically, we compare the mean and temporal variability of the sediment delivered to the slope system between stages. In addition, we compare stratigraphic architecture and sediment sizes delivered to the slope system in each stage. These results are used to improve inversion of slope deposits for paleo-environmental forcings.

  15. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA

    USGS Publications Warehouse

    Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.

    2006-01-01

    Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA

    USGS Publications Warehouse

    Nishikawa, T.; Siade, A.J.; Reichard, E.G.; Ponti, D.J.; Canales, A.G.; Johnson, T.A.

    2009-01-01

    Groundwater pumping has led to extensive water-level declines and seawater intrusion in coastal Los Angeles, California (USA). A SUTRA-based solute-transport model was developed to test the hydraulic implications of a sequence-stratigraphic model of the Dominguez Gap area and to assess the effects of water-management scenarios. The model is two-dimensional, vertical and follows an approximate flow line extending from the Pacific Ocean through the Dominguez Gap area. Results indicate that a newly identified fault system can provide a pathway for transport of seawater and that a stratigraphic boundary located between the Bent Spring and Upper Wilmington sequences may control the vertical movement of seawater. Three 50-year water-management scenarios were considered: (1) no change in water-management practices; (2) installation of a slurry wall; and (3) raising inland water levels to 7.6 m above sea level. Scenario 3 was the most effective by reversing seawater intrusion. The effects of an instantaneous 1-m sea-level rise were also tested using water-management scenarios 1 and 3. Results from two 100-year simulations indicate that a 1-m sea-level rise may accelerate seawater intrusion for scenario 1; however, scenario 3 remains effective for controlling seawater intrusion. ?? Springer-Verlag 2009.

  17. Industry shows faith in deep Anadarko

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroblewski, E.F.

    1973-10-08

    The shallow shelf of the Anadarko Basin furnished much gas from the Pennsylvanian and Mississippian reservoirs during the 1950s and 1960s. The search for gas reserves on the shelf will continue to go on for many years, because of the relatively low drilling cost even though the reserves per well on the shelf tend to be limited to about 1 to 3 billion cu ft/well. The much greater reserves of up to 50 billion cu ft/well found in the deeper part of the Anadarko Basin have made the deep Anadarko Basin an enticing area to look for major gas reserves.more » A regional Hunton map of the deep Anadarko Basin is presented showing fields that are producing from the Hunton and Simpson at depths of more than 15,000 ft. The fields shown on this map represent about 5 trillion cu ft of gas reserve. A generalized section showing only the major features and gross stratigraphic intervals also is presented. A seismic interpretation of the N. Carter structure on which the Lone Star l Baden is drilled is shown, one the seismic Springer structure and the other the seismic Hunton structure. The latter shows the faulting that exists below the Springer level.« less

  18. Sedimentary sequence evolution in a Foredeep basin: Eastern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, C.; Funes, D.; Sarzalho, S.

    1996-08-01

    Well log-seismic sequence stratigraphy analysis in the Eastern Venezuela Foreland Basin leads to study of the evolution of sedimentary sequences onto the Cretaceous-Paleocene passive margin. This basin comprises two different foredeep sub-basins: The Guarico subbasin to the west, older, and the Maturin sub-basin to the east, younger. A foredeep switching between these two sub-basins is observed at 12.5 m.y. Seismic interpretation and well log sections across the study area show sedimentary sequences with transgressive sands and coastal onlaps to the east-southeast for the Guarico sub-basin, as well as truncations below the switching sequence (12.5 m.y.), and the Maturin sub-basin showsmore » apparent coastal onlaps to the west-northwest, as well as a marine onlap (deeper water) in the west, where it starts to establish. Sequence stratigraphy analysis of these sequences with well logs allowed the study of the evolution of stratigraphic section from Paleocene to middle Miocene (68.0-12.0 m.y.). On the basis of well log patterns, the sequences were divided in regressive-transgressive-regressive sedimentary cycles caused by changes in relative sea level. Facies distributions were analyzed and the sequences were divided into simple sequences or sub- sequences of a greater frequencies than third order depositional sequences.« less

  19. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2016-05-01

    Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity.

  20. From initiation to termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J.; Yirgu, G.; Ayalew, D.

    2018-05-01

    Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.

  1. Movement sense determination in sheared rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1985-01-01

    Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less

  2. Cyclicity in Silurian island-arc carbonates, Alexander terrane, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittredge, L.E.; Soja, C.M.

    1993-03-01

    Silurian carbonates from Alaska (Alexander terrane) record the evolution of a submarine platform during waning volcanism in an island arc. A detailed stratigraphic analysis of a 47 meter-thick sequence revealed the existence of cyclically repeated limestones: coral-stromatoporoid wackestones alternate with oncoid packstones and bioturbated, silty lime mudstones. The coral-stromatoporoid deposits are characterized by a low-diversity assemblage of dendroid corals, massive stromatoporoids, Atrypoidea brachiopods, and rare occurrences of biostromes associated with Solenopora, high-spired gastropods, and crinoids. Oncoids typically are 2-6 mm in diameter and form massive, meter-thick units. Coated grains are symmetrically developed, have a shell or algal nucleus, and aremore » also a minor component of coral-stromatoporoid beds. These lithologic units form seven, shallowing-upwards cycles (parasequences) that range in thickness from 3-9 meters. Coral-stomatoporoid wackestones form the base of each cycle and grade upwards into oncoid packstones with silty, lime mudstones at the top. This succession of lithofacies within each cycle reflects an increase in energy levels from relatively deeper water environments to relatively shallower ones. The lack of abrasion in the corals and stromatoporoids suggests predominantly quiet-water conditions in shallow subtidal areas affected by periodic turbulence. Comparison with correlative sections in Alaska and lack of correspondence with global sea level curves suggest that the primary cause of cyclicity was tectonic perturbations with secondary eustatic effects. Cyclic deposition in peri/subtidal sites was terminated by rapid drowning of the carbonate platform during late Silurian orogenesis.« less

  3. Stratigraphic implications of trace element and strontium-isotope analyses of Kimmeridgian shell calcite from the Lower Saxony Basin, Germany

    NASA Astrophysics Data System (ADS)

    Zuo, Fanfan; Heimhofer, Ulrich; Huck, Stefan; Erbacher, Jochen; Bodin, Stephane

    2017-04-01

    Stratigraphic uncertainties due to the lack of open marine marker fossils (e.g. ammonites) hamper the precise age assignment and stratigraphic correlation of Kimmeridgian strata found in the Lower Saxony Basin of Northern Germany. Correlation of these deposits with the Jurassic standard ammonite zonation is still difficult, since the existing ostracod biostratigraphy is facies-controlled and of only limited stratigraphic precision. In this study, a chemostratigraphic approach has been chosen and biogenic shell material produced by brachiopods, oysters and lithiotids is evaluated for its reliability to act as proxy of the original Jurassic seawater strontium isotope composition. Low-Mg calcite shells have been collected from three stratigraphic sections accessible in open-cast quarries located in the Lower Saxony Basin of Northern Germany. In order to identify diagenetically altered shell calcite, trace element and stable isotope analysis of 227 calcite samples (oysters=101; brachiopods=60; Trichites=52) has been carried out. The geochemical results reveal that (1) concentration of different trace elements varies between the different groups of shell-forming organisms, which may be related to vital effects and (2) high strontium contents, low Mn and Fe contents and the lack of correlation between these elements indicate near-pristine calcite shells, and therefore shells are supposed to record the ambient sea water composition during the Late Jurassic. Strontium-isotope (87Sr/86Sr) analysis of diagenetically screened samples indicates an Early Kimmeridgian age of the studied deposits, which is in accordance with ostracod biostratigraphic data. An increasing trend in 87Sr/86Sr with stratigraphic height fits well with the global strontium-isotope curve. Besides, similar 87Sr/86Sr ratios derived from different organisms from a single stratigraphic level highlight the suitability of the shells for strontium-isotope stratigraphy. Despite the shallow-marine character of the studied deposits, no evidence for significant riverine influence on the strontium-isotope signature is observed. The new chemostratigraphic data will provide a more precise age assignment for Kimmeridgian strata in the Lower Saxony Basin and thus enable the establishment of a solid integrated stratigraphic scheme that can be used for correlation on both regional and global scale.

  4. The Anthropocene is functionally and stratigraphically distinct from the Holocene.

    PubMed

    Waters, Colin N; Zalasiewicz, Jan; Summerhayes, Colin; Barnosky, Anthony D; Poirier, Clément; Gałuszka, Agnieszka; Cearreta, Alejandro; Edgeworth, Matt; Ellis, Erle C; Ellis, Michael; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, J R; Richter, Daniel deB; Steffen, Will; Syvitski, James; Vidas, Davor; Wagreich, Michael; Williams, Mark; Zhisheng, An; Grinevald, Jacques; Odada, Eric; Oreskes, Naomi; Wolfe, Alexander P

    2016-01-08

    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs. Copyright © 2016, American Association for the Advancement of Science.

  5. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line was also run across a large active scarp in Queen Valley near Boundary Peak. Due to slope steepness and extensive boulder armoring shot and receiver locations had to be skipped within several meters of the actual scarp location. Initial structural and stratigraphic interpretations are similar to those in the Fish Lake Valley location. Overall the data prove that the actively deforming fans can be imaged in detail sufficient to perform structural and possibly seismic stratigraphic analysis within the upper one hundred meters of the fans, if not deeper.

  6. Looking for the Kellwasser Event in all the wrong places: a multiproxy study of island arc paleoenvironments in the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Carmichael, S. K.; Wang, Z.; Waters, J. A.; Dombrowski, A. D.; Batchelor, C. J.; Coleman, D. S.; Suttner, T.; Kido, E.

    2017-12-01

    The Late Devonian Frasnian-Famennian (F-F) boundary at 372 Ma is associated with the Kellwasser Event, an ocean anoxia event that is often associated with positive δ13C excursions and commonly represented by black shales. However, approximately 88% of the studies of the Kellwasser Event are based on sites from deep epicontinental basins and epeiric seas, and most of these sites are located on the Euramerican paleocontinent. In contrast to the positive δ13C excursions found in most basinal study sites, the δ13C signatures in three separate shallow water, island-arc F-F sections in the Junggar Basin in northwestern China (Wulankeshun, Boulongour Reservoir, and Genare) all show negative excursions in the stratigraphic location of the Kellwasser Event [1-3]. The δ18O values in both carbonates and/or conodont apatite likewise show negative excursions within the shallow water facies at each site, but have relatively constant signatures within the deeper water facies. 87Sr/86Sr values range from 0.70636-0.70906 at the base of the Boulongour Reservoir section and 0.70746-0.71383 at the base of the Wulankeshun section but both Sr signaures stabilize with relatively constant values closer to modeled Late Devonian seawater in deeper water and/or offshore facies. The fossil assemblages at the base of the Boulongour and Wulankeshun sections each correspond to euryhaline/brackish conditions, while microtextures in Ti-bearing phases within clastic sediments as well as isotope mixing models suggest submarine groundwater discharge signatures rather than diagenetic alteration. Preliminary framboidal pyrite distributions in these sections also show evidence for sub/dysoxic (rather than euxinic or anoxic) conditions that correspond to the stratigraphic Kellwasser interval. Positive δ13C excursions and the presence of black shales are thus not prerequisites for recognition of the Kellwasser Event, particularly in shallow water paleoenvironments that are not topographically favorable to shale accumulation and may have significant coastal groundwater or surface water inputs. [1] Suttner et al. (2014) J. of Asian Earth Sci. 80, 101-118. [2] Carmichael et al. (2014) Paleo3 399, 394-403. [3] Wang et al. (2016) Paleo3 448, 279-297.

  7. Outsourcing goes to a deeper level.

    PubMed

    Davies, Julie

    2003-12-01

    Medical device manufacturers and diagnostics companies are among the fastest adopters of the outsourcing model. This article outlines how a deeper level of outsourcing is evolving and how this will transform just about every part of a company's business.

  8. Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) formations in the vicinity of Davis and Lavender Canyons, southeastern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, J.R.; Romie, J.E.

    1986-04-01

    This study developed a three-dimensional computer model of stratigraphic and structural relationships within a 3497-km/sup 2/ (1350-mi/sup 2/) study area centered on the proposed site for a high-level nuclear waste repository in southeastern Utah. The model consists of a sequence of internally reconciled isopach and structure contour maps horizontally registered and stored in stratigraphic order. This model can be used to display cross sections, perspective block diagrams, or fence diagrams at any orientation; estimate depth of formation contacts and thicknesses for any new stratigraphic or hydrologic boreholes; facilitate ground-water modeling studies; and evaluate the structural and stratigraphic evolution of themore » study area. This study also includes limited evaluations of aquifer continuity in the Elephant Canyon and Honaker Trail Formations, and of salt dissolution and flowage features as interpreted from geophysical logs. The study identified a long history of movement in the fault system in the north-central part of the study area and a major salt flowage feature in the northeastern part. It describes the Elephant Canyon Formation aquifer as laterally limited, the Honaker Trail Formation aquifer as fairly continuous over the area, and Beef Basin in the southern part of the area as a probable dissolution feature. It also concludes that the Shay-Bridger Jack-Salt Creek Graben system is apparently a vertically continuous feature between the basement and ground surface. No stratigraphic or structural discontinuities were detected in the vicinity of Davis Canyon that appear to be detrimental to the siting of a waste repository.« less

  9. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka

    2017-06-01

    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable for hydrocarbon exploration and development.

  10. A unique fossil record from neptunian sills: the world's most extreme example of stratigraphic condensation (Jurassic, western Sicily)

    NASA Astrophysics Data System (ADS)

    Wendt, Jobst

    2017-06-01

    Neptunian sills at Rocca Busambra, a fragment of the Trapanese/Saccense Domain in western Sicily, host the most abundant ammonite and gastropod fauna which has ever been recorded from the Jurassic of the western Tethys. The fauna is dominated by parautochthonous organisms which were swept into the sills by gentle transport. Ammonites are characterized by perfect preservation and small size, a feature which is due to the predominance of microconchs but also of stunting. The most complete sill is 0.7 m thick and could be separated into 17 levels which range in age from the early Toarcian into the late Kimmeridgian, thus representing the most extreme case of palaeontologically and depositionally documented stratigraphic condensation in Earth history. The unique feature of the Rocca Busambra sills is due to the interaction of three processes: extreme stratigraphic condensation on the sea floor, weak tectonic fracturing of the host rock and repeated reopening on top of already existing sills. Contrasting percentages of gastropods in individual levels reflect sea-level oscillations which correspond to long known low- and highstands during the Jurassic of the western Tethys. Comparisons with other ammonite-bearing sill faunas reveal several similarities, but represent only short-timed phases of tectonic pulses and deposition.

  11. Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A Test Corehole and Its Relation to Carbonate Porosity and Regional Transmissivity in the Floridan Aquifer System, Highlands County, Florida

    USGS Publications Warehouse

    Ward, W. C.; Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Carlson, J.I.

    2003-01-01

    An analysis was made to describe and interpret the lithology of a part of the Upper Floridan aquifer penetrated by the Regional Observation Monitoring Program (ROMP) 29A test corehole in Highlands County, Florida. This information was integrated into a one-dimensional hydrostratigraphic model that delineates candidate flow zones and confining units in the context of sequence stratigraphy. Results from this test corehole will serve as a starting point to build a robust three-dimensional sequence-stratigraphic framework of the Floridan aquifer system. The ROMP 29A test corehole penetrated the Avon Park Formation, Ocala Limestone, Suwannee Limestone, and Hawthorn Group of middle Eocene to Pliocene age. The part of the Avon Park Formation penetrated in the ROMP 29A test corehole contains two composite depositional sequences. A transgressive systems tract and a highstand systems tract were interpreted for the upper composite sequence; however, only a highstand systems tract was interpreted for the lower composite sequence of the deeper Avon Park stratigraphic section. The composite depositional sequences are composed of at least five high-frequency depositional sequences. These sequences contain high-frequency cycle sets that are an amalgamation of vertically stacked high-frequency cycles. Three types of high-frequency cycles have been identified in the Avon Park Formation: peritidal, shallow subtidal, and deeper subtidal high-frequency cycles. The vertical distribution of carbonate-rock diffuse flow zones within the Avon Park Formation is heterogeneous. Porous vuggy intervals are less than 10 feet, and most are much thinner. The volumetric arrangement of the diffuse flow zones shows that most occur in the highstand systems tract of the lower composite sequence of the Avon Park Formation as compared to the upper composite sequence, which contains both a backstepping transgressive systems tract and a prograding highstand systems tract. Although the porous and permeable layers are not thick, some intervals may exhibit lateral continuity because of their deposition on a broad low-relief ramp. A thick interval of thin vuggy zones and open faults forms thin conduit flow zones mixed with relatively thicker carbonate-rock diffuse flow zones between a depth of 1,070 and 1,244 feet below land surface (bottom of the test corehole). This interval is the most transmissive part of the Avon Park Formation penetrated in the ROMP 29A test corehole and is included in the highstand systems tract of the lower composite sequence. The Ocala Limestone is considered to be a semiconfining unit and contains three depositional sequences penetrated by the ROMP 29A test corehole. Deposited within deeper subtidal depositional cycles, no zones of enhanced porosity and permeability are expected in the Ocala Limestone. A thin erosional remnant of the shallow marine Suwannee Limestone overlies the Ocala Limestone, and permeability seems to be comparatively low because moldic porosity is poorly connected. Rocks that comprise the lower Hawthorn Group, Suwannee Limestone, and Ocala Limestone form a permeable upper zone of the Upper Floridan aquifer, and rocks of the lower Ocala Limestone and Avon Park Formation form a permeable lower zone of the Upper Floridan aquifer. On the basis of a preliminary analysis of transmissivity estimates for wells located north of Lake Okeechobee, spatial relations among groups of relatively high and low transmissivity values within the upper zone are evident. Upper zone transmissivity is generally less than 10,000 feet squared per day in areas located south of a line that extends through Charlotte, Sarasota, DeSoto, Highlands, Polk, Osceola, Okeechobee, and St. Lucie Counties. Transmissivity patterns within the lower zone of the Avon Park Formation cannot be regionally assessed because insufficient data over a wide areal extent have not been compiled.

  12. Seismic stratigraphic interpretations suggest that sectors of the central and western Ross Sea were near or above sea level during earliest Oligocene time

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Sauli, C.; De Santis, L.; Luyendyk, B. P.; Wardell, N.; Davis, S. M.; Wilson, D. S.; Brazell, S.; Bartek, L., III; Bart, P. J.

    2016-12-01

    Most of West Antarctica has been interpreted as a high-elevation plateau that has subsided between about 100 Ma and present. Ross Sea was characterized by subaerial ridges and islands up to mid-Cenozoic time. It was in such an environment that Oligocene ice sheets and glaciers advanced and retreated within Ross Embayment. The extent to which Oligocene ice affected the embayment north of the current ice shelf has not been established, with either ice caps on islands, or broad glaciers affecting basins having been proposed. We used all available data from the Seismic Data Library System to interpret stratigraphic horizons through most of Ross Sea. A new 3D velocity model was constructed for the western 2/3 of Ross Sea. Stratigraphic age control was provided by deep scientific coring, including Deep Sea Drilling Program sites, the Cape Roberts Drilling Program, and published correlations to ANDRILL sites. The correlation with recent drill records and much additional seismic reflection data allowed a new interpretation of Ross Sea, which differs from the previous comprehensive seismic stratigraphic interpretation (ANTOSTRAT 1995). Sedimentary rocks of given ages are twice as deep within Terror Rift in westernmost Ross Sea in our interpretation. In contrast, acoustic basement is 1 km shallower in part of Central Trough. The 200 km-wide smooth acoustic basement on Central High eroded sub-aerially until it subsided differentially through sea level toward the centers of Cretaceous and Cenozoic rifts. If the subsiding basins were kept filled with sediment eroded by Oligocene ice sheets, then the age the strata aggrading above the planar rock platform date subsidence through sea level at each location. Using such an assumption, much of central and western Ross Sea was near or above sea level during earliest Oligocene time. These assumptions will be tested by backstripping and thermal subsidence models.

  13. Paleozoic-involving thrust array in the central Sierras Interiores (South Pyrenean Zone, Central Pyrenees): regional implications

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper thrust system) affecting the Marboré sandstones and the Paleocene limestones, deformed by angular south-vergent folds and their related axial plane foliation. The transect explained above clearly summarizes the alpine evolution of northern part of the Sierras Interiores. Moreover, well data available indicate the presence of two thrust soled in the lower calcareous section covering Triassic evaporites at 5 km depth and 8 km to the south of the Sierras Interiores. Because the Triassic evaporites constitute a main decollement level in the South Pyrenean Zone, the deeper thrust system is associated to the emplacement of the Gavarnie nappe. Lanaja, J.M., 1987, Contribución de la exploración petrolífera al conocimiento de la Geología de España, IGME, Madrid, 465 p. Rodríguez, L., Cuevas, J., 2008. Geogaceta 44, 51-54. Rodríguez, L., Cuevas, J., Tubia, J.M., 2011. Geophysical Research Abstracts 13, 2273.

  14. Lower Badenian coarse-grained Gilbert deltas in the southern margin of the Western Carpathian Foredeep basin

    NASA Astrophysics Data System (ADS)

    Nehyba, Slavomír

    2018-02-01

    Two coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).

  15. Triassic-Jurassic sediments and multiple volcanic events in North Victoria Land, Antarctica: A revised stratigraphic model

    USGS Publications Warehouse

    Schöner, R.; Viereck-Goette, L.; Schneider, J.; Bomfleur, B.

    2007-01-01

    Field investigations in North Victoria Land, Antarctica during GANOVEX IX (2005/2006) allow the revision of the Triassic-Jurassic stratigraphy of ~300 m thick continental deposits in between the crystalline basement and the Kirkpatrick lava flows of the Ferrar Group. The lower stratigraphic unit (Section Peak Formation) is characterised by braided river-type quartzose sandstone deposits with intercalations of shale and coal occurring at the top. It is overlain by a homogeneous unit of reworked tuffs composed of fine-grained silicic shards, quartz and feldspar (new name: "Shafer Peak Formation"). These deposits can be correlated with parts of the Hanson Formation in the Central Transantarctic Mountains and require a distal yet unknown source of massive silicic volcanism. Clastic products of mafic volcanic eruptions, formerly described as a separate stratigraphic formation (Exposure Hill Formation), occur within local diatreme structures as well as intercalated at various stratigraphic levels within the sedimentary succession. These dominantly hydroclastic eruptions are the first subaerial expression of Ferrar magmatism. The initial Kirkpatrick lavas/pillow lavas were generated from local eruptive centres and again may be overlain by thin sediments, which are covered by the thick plateau lava succession known throughout the Transantarctic Mountain Range.

  16. North American Commission on Stratigraphic Nomenclature Note 66: records of Stratigraphic Commission, 2003-2013

    USGS Publications Warehouse

    Easton, Robert M.; Catuneanu, Octavian; Donovan, Art D.; Fluegeman, Richard H.; Hamblin, A.P.; Harper, Howard; Lasca, Norman P.; Morrow, Jared R.; Orndorff, Randall C.; Sadler, Peter; Scott, Robert W.; Tew, Berry H.

    2014-01-01

    Note 66 summarizes activities of the North American Commission on Stratigraphic Nomenclature (NACSN) from November 2003 to October 2013 and is condensed from the minutes of the NACSN’s 58th to 68th annual meetings1. The purposes of the Commission are to develop statements of stratigraphic principles,recommend procedures applicable to the classification and nomenclature of stratigraphic and related units, review problems in classifying and naming stratigraphic and related units, and formulate expressions of judgment on these matters.

  17. Geophysical constraints on Rio Grande rift structure and stratigraphy from magnetotelluric models and borehole resistivity logs, northern New Mexico

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sawyer, David A.; Hudson, Mark R.; Grauch, V.J.S.

    2013-01-01

    Two- and three-dimensional electrical resistivity models derived from the magnetotelluric method were interpreted to provide more accurate hydrogeologic parameters for the Albuquerque and Española Basins. Analysis and interpretation of the resistivity models are aided by regional borehole resistivity data. Examination of the magnetotelluric response of hypothetical stratigraphic cases using resistivity characterizations from the borehole data elucidates two scenarios where the magnetotelluric method provides the strongest constraints. In the first scenario, the magnetotelluric method constrains the thickness of extensive volcanic cover, the underlying thickness of coarser-grained facies of buried Santa Fe Group sediments, and the depth to Precambrian basement or overlying Pennsylvanian limestones. In the second scenario, in the absence of volcanic cover, the magnetotelluric method constrains the thickness of coarser-grained facies of buried Santa Fe Group sediments and the depth to Precambrian basement or overlying Pennsylvanian limestones. Magnetotelluric surveys provide additional constraints on the relative positions of basement rocks and the thicknesses of Paleozoic, Mesozoic, and Tertiary sedimentary rocks in the region of the Albuquerque and Española Basins. The northern extent of a basement high beneath the Cerros del Rio volcanic field is delineated. Our results also reveal that the largest offset of the Hubbell Spring fault zone is located 5 km west of the exposed scarp. By correlating our resistivity models with surface geology and the deeper stratigraphic horizons using deep well log data, we are able to identify which of the resistivity variations in the upper 2 km belong to the upper Santa Fe Group sediment

  18. Structural and petrographic constraints on the stratigraphy of the Lapataia Formation, with implications for the tectonic evolution of the Fuegian Andes

    NASA Astrophysics Data System (ADS)

    Cao, Sebastián J.; Torres Carbonell, Pablo J.; Dimieri, Luis V.

    2018-07-01

    The structure of the Fuegian Andes central belt is characterized by a first phase of peak metamorphism and ductile deformation, followed by a brittle-ductile thrusting phase including juxtaposition of different (first phase) structural levels; both related to the closure and inversion of the Late Jurassic-Early Cretaceous Rocas Verdes basin. The second phase involved thrust sheets of pre-Jurassic basement, as well as Upper Jurassic and Lower Cretaceous units from the volcanic-sedimentary fill of the basin. Rock exposures in the Parque Nacional Tierra del Fuego reveal a diversity of metamorphic mineral assemblages, dynamic recrystallization grades and associated structures, evidencing a variety of protoliths and positions in the crust during their orogenic evolution. Among the units present in this sector, the Lapataia Formation portrays the higher metamorphic grade reported in the Argentine side of the Fuegian Andes, and since no precise radiometric ages have been established to date, its stratigraphic position remains a matter of debate: the discussion being whether it belongs to the pre-Jurassic basement, or the Upper Jurassic volcanic/volcaniclastic initial fill of the Rocas Verdes basin. The mapping and petrographic/microstructural study of the Lapataia Formation and those of undoubtedly Mesozoic age, allow to characterize the former as a group of rocks with great lithological affinity with the Upper Jurassic metamorphic rocks found elsewhere in the central belt of the Fuegian Andes. The main differences in metamorphic grade are indebted to its deformation at deeper crustal levels, but during the same stages than the Mesozoic rocks. Accordingly, we interpret the regional structure to be associated with the stacking of thrust sheets from different structural levels through the emplacement of a duplex system during the growth of the Fuegian Andes.

  19. The contexts and early Acheulean archaeology of the EF-HR paleo-landscape (Olduvai Gorge, Tanzania).

    PubMed

    de la Torre, Ignacio; Albert, Rosa M; Macphail, Richard; McHenry, Lindsay J; Pante, Michael C; Rodríguez-Cintas, Ágata; Stanistreet, Ian G; Stollhofen, Harald

    2017-08-03

    Renewed fieldwork at the early Acheulean site of EF-HR (Olduvai Gorge, Tanzania) has included detailed stratigraphic studies of the sequence, extended excavations in the main site, and has placed eleven additional trenches within an area of nearly 1 km 2 , to sample the same stratigraphic interval as in the main trench across the broader paleo-landscape. Our new stratigraphic work suggests that EF-HR is positioned higher in the Bed II sequence than previously proposed, which has implications for the age of the site and its stratigraphic correlation to other Olduvai Middle Bed II sites. Geological research shows that the main EF-HR site was situated at the deepest part of an incised valley formed through river erosion. Archaeological excavations at the main site and nearby trenches have unearthed a large new assemblage, with more than 3000 fossils and artefacts, including a hundred handaxes in stratigraphic position. In addition, our test-trenching approach has detected conspicuous differences in the density of artefacts across the landscape, with a large cluster of archaeological material in and around the main trench, and less intense human activity at the same level in the more distant satellite trenches. All of these aspects are discussed in this paper in the light of site formation processes, behavioral contexts, and their implications for our understanding of the early Acheulean at Olduvai Gorge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes

    NASA Astrophysics Data System (ADS)

    Godet, Alexis

    2013-07-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that parameters other than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different times during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea level rise and fall cycles, and may be linked to strengthened upwelling currents. With the return to more oligotrophic conditions during the late Barremian, photozoan, Urgonian-type communities took up again. Their development has been abruptly stopped at the end of the early Aptian by a major emersion phase. The subsequent drowning is documented in various peritethyan areas. This initial crisis is followed by three other drowning phases that ultimately led to the replacement of shallow ecosystems by a deeper marine sedimentation in the Cenomanian. This long-term trend in the evolution of the Helvetic carbonate platform and of other peritethyan ecosystems may have been driven by more global phenomena. In particular, the progressive opening of the northern and equatorial Atlantic may have impacted sea level by creating new oceanic basins. The emplacement of submarine volcanic plateaus may have triggered sea level rise and fertilized deep oceanic waters through hydrothermal processes. Drowning unconformities thus record the interplay of local with long-term processes, and constitute regional sedimentary archives of global phenomena.

  1. Cenomanian-Turonian transition in a shallow water sequence of the Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Gertsch, B.; Keller, G.; Adatte, T.; Berner, Z.; Kassab, A. S.; Tantawy, A. A. A.; El-Sabbagh, A. M.; Stueben, D.

    2010-01-01

    Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian-early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.

  2. New Constraints from the Seychelles on the Timing and Magnitude of Peak Global Mean Sea Level during the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.; Edwards, R. L.

    2016-12-01

    Projecting the rate of future sea-level rise remains a primary challenge associated with continued climate change. However, uncertainties remain in our understanding of the rate of polar ice sheet retreat in warmer-than-present climates. To address this issue, we present a new sea level reconstruction from the tectonically stable granitic Seychelles based on Last Interglacial coral ages and elevations within their sedimentary and stratigraphic context, including estimates of paleo-water depth based on newly defined coralgal assemblages. The reef facies analyzed here has a narrow and shallow paleowater depth range (<2 m) providing increased control on the absolute position of sea level during this time period. Corrected for local glacial isostatic adjustment effects including the fingerprint associated with polar ice sheet mass loss, corals found in primary growth position within in situ coralgal reef framework confirm that global mean sea level (GMSL) was nearly 6 m above present early in the interglacial period. Each coral was dated in triplicate and screened for anomalous U-series geochemistry parameters. The combination of age-elevation data with the sedimentary micro and macro facies and stratigraphic analysis reveals a sea-level rise over 5-6 thousand years that is punctuated by repeated episodes of reef disturbance. These episodes are marked stratigraphically by coral rubble layers or extensive lateral encrustations of Millepora sp. that are infested with coral-dwelling barnacles. These disturbance layers may have been generated through internal reef processes and/or external agents, including coral disease, bleaching, predation, hurricanes, or sub-aerial exposure. In total, these new observations provide improved constraints on the timing, magnitude, and rates of sea-level rise during the Last Interglacial.

  3. Biostratigraphic, chronostratigraphic, and stratigraphic sequence analysis of Lower Tertiary marine sediments of Alabama for indicators of sea-level change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P.R.; Baum, G.R.

    1991-03-01

    Early Eocene to late Oligocene marine sedimentary units in southwestern Alabama were sampled at closely spaced intervals to derive a precise time-stratigraphic framework and to determine the paleoecological and mineralogical responses to fluctuations in sea level. Paleontologic control consisted of planktonic, smaller and larger benthonic foraminifera, calcareous nannofossils, dinoflagellates, and megafossils. Paleomagnetic reversals were delineated in two boreholes which, when supplemented by strontium isotope dates and the biostratigraphic control, provided a robust in situ chronostratigraphy for the Gulf Coast lower Tertiary. Paleoecologic trends in regression and transgression can be clearly correlated across major regional facies changes. Using the chronostratigraphy developedmore » here, the second-, third-, and fourth-orders of Vail's global sea-level cycles can be recognized and demonstrate the influence of sea-level change on sedimentation. Stratigraphic systems tracts (SSTs) and bounding surfaces in outcrop were determined by lithologic variations and paleoecologic trends, and additionally by gamma logs in the cores. The lower sequence boundary occurs at a contact where an older, relatively fine-grained, deep-water, fossiliferous unit was abruptly succeeded by a coarse-grained, shallow-water, poorly fossiliferous unit. The transgressive surface occurs at the base of a fining- and deepening-upwards unit that was commonly glauconitic and very fossiliferous. Transgression culminated with a pulse of planktonic microfossils in a bed having reduced clastic sedimentation; on the log the surface of maximum starvation was marked by a gamma spike.« less

  4. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  5. Stratigraphy, climate and downhole logging data - an example from the ICDP Dead Sea deep drilling project

    NASA Astrophysics Data System (ADS)

    Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael

    2017-04-01

    During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake levels were synchronous across the northern Dead Sea, although differences do exist. These discrepancies can possibly be explained in part by the tectonic nature of the basin. Within the 5017-1-A section, the interpreted changes in depositional environments derived primarily from the gamma ray log patterns show a good correlation in time with sequence-chronostratigraphic framework, extracted lake level curves and paleohydrological records of other areas worldwide. Sequence stratigraphic analysis presented here allows for a detailed, high resolution examination of the sedimentary sequences in the Northern Dead Sea Basin together with an independent proxy that is an indirect indicator of changes in relative lake level.

  6. 3D stratigraphic forward modelling of Shu'aiba Platform stratigraphy in the Bu Hasa Field, Abu Dhabi, United Arab Emirates.

    NASA Astrophysics Data System (ADS)

    Hu, J.; Lokier, S. W.

    2012-04-01

    This paper presents the results of three dimensional sequence stratigraphic forward modelling of the Aptian age Shu'aiba Formation from Abu Dhabi, United Arab Emirates (UAE). The Shu'aiba Formation lies within the uppermost part of the Lower Cretaceous Thamama Group and forms one of the most prolific hydrocarbon reservoir intervals of the Middle East with production dating back to the 1960's. The Shu'aiba Formation developed as a series of laterally-extensive shallow-water carbonate platforms in an epeiric sea that extended over the northern margin of the African-Arabian Plate. This shallow sea was bounded by the Arabian Shield to the west and the passive margin with the Neo-Tethys Ocean towards the north and east (Droste, 2010). The exposed Arabian Shield acted as a source of siliciclastic sediments to westernmost regions, however, more offshore areas were dominated by shallow-water carbonate deposition. Carbonate production was variously dominated by Lithocodium-Baccinella, orbitolinid foraminifera and rudist bivalves depending on local conditions. While there have been numerous studies of this important stratigraphic interval (for examples see van Buchem et al., 2010), there has been little attempt to simulate the sequence stratigraphic development of the formation. During the present study modelling was undertaken utilising the CARBONATE-3D stratigraphic forward modelling software (Warrlich et al., 2008; Warrlich et al., 2002)) thus allowing for the control of a diverse range of internal and external parameters on carbonate sequence development. This study focuses on platform development in the onshore Bu Hasa Field - the first giant oilfield to produce from the Shu'aiba Formation in Abu Dhabi. The carbonates of the Bu Hasa field were deposited on the southwest slope of the intra-shelf Bab Basin, siliciclastic content is minor. Initially these carbonates were algal dominated with rudist mounds becoming increasingly important over time (Alsharhan, 1987). Numerous simulations were undertaken, employing different sea level curves, platform geometries, etc. in order to accurately constrain and compare simulated facies geometries with those hypothesised from subsurface correlations. An initial low-angle ramp geometry was later overprinted by the development of localised relief through faulting and salt diapirism. Areas of bathymetric relief became sites of enhanced carbonate development with over-production resulting in aggradational geometries rapidly evolving to progradational systems. Several different regional, global and composite relative sea level curves were employed in the simulations in order to produce stratigraphic geometries comparable to those reported from previous studies. We conclude that none of the published sea level curves produce facies geometries directly analogous to those hypothesised from the sub-surface. We infer that this disparity primarily results from previous models lacking sufficient accommodation space and employing unrealistic carbonate production rates.

  7. Integrated tephrostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Sagawa, Takuya; Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Holbourn, Ann; Itaki, Takuya; Gallagher, Stephen J.; Saavedra-Pellitero, Mariem; Ikehara, Ken; Irino, Tomohisa; Tada, Ryuji

    2018-12-01

    Integrated Ocean Drilling Program Expedition 346 "Asian Monsoon" obtained sediment successions at seven sites in the Japan Sea (Sites U1422-U1427 and U1430) and at two closely located sites in the northern East China Sea (Sites U1428 and U1429). The Quaternary sediments of the Japan Sea are characterized by centimeter- to decimeter-scale dark-light alternations at all sites deeper than 500 m water depth. The sedimentary records from these sites allow an investigation of the regional environmental response to global climate change, including changes in the Asian Monsoon and eustatic sea level. However, the discontinuous occurrence of calcareous microfossils in the deep-sea sediments and their distinct isotope signature that deviates from standard marine δ18O records do not permit the development of a detailed stable isotope stratigraphy for Japan Sea sediments. Here, we present the tephrostratigraphy for the two southernmost sites drilled in the Japan Sea (Sites U1426 and U1427) and for one site drilled in the East China Sea (Site U1429) along with the benthic δ18O isotope stratigraphy for the shallower Site U1427 and the East China Sea Site U1429. Eighteen tephra layers can be correlated between sites using the major-element composition and morphology of volcanic glass shards, and the compositions of grains and heavy minerals. Tephra correlations show that negative δ18O peaks in the Japan Sea correspond to positive glacial maxima peaks in the East China Sea. Using this integrated stratigraphic approach, we establish an orbital-scale age model at Site U1427 for the past 1.1 Myr. The correlation of tephra layers between the shallower Site U1427 (330 m below sea level: mbsl) and the deeper Site U1426 (903 mbsl) in the southern Japan Sea provides the opportunity for further age constraints. Our results show that alternations in sediment color at Sites U1426 and U1427 can be correlated for the past 1.1 Myr with minor exceptions. Thus, the stable isotope stratigraphy established at the shallower Site U1427 can be correlated to Site U1426, and in turn to all sites drilled during Expedition 346, based on correlations of dark-light layering.

  8. Supergroup stratigraphy of the Atlantic and Gulf Coastal Plains (Middle? Jurassic through holocene, Eastern North America)

    USGS Publications Warehouse

    Weems, R.E.; ,; Edwards, L.E.

    2004-01-01

    An inclusive supergroup stratigraphic framework for the Atlantic and Gulf Coastal Plains is proposed herein. This framework consists of five supergroups that 1) are regionally inclusive and regionally applicable, 2) meaningfully reflect the overall stratigraphic and structural history of the Coastal Plains geologic province of the southeastern United States, and 3) create stratigraphic units that are readily mappable and useful at a regional level. Only the Marquesas Supergroup (Lower Cretaceous to lowest Upper Cretaceous) has been previously established. The Trent Supergroup (middle middle Eocene to basal lower Miocene) is an existing name here raised to supergroup rank. The Minden Supergroup (Middle? through Upper Jurassic), the Ancora Supergroup (Upper Cretaceous to lower middle Eocene), and the Nomini Supergroup (lower Miocene to Recent) are new stratigraphic concepts proposed herein. In order to bring existing groups and formations into accord with the supergroups described here, the following stratigraphic revisions are made. 1) The base of the Shark River Formation (Trent Supergroup) is moved upward. 2) The Old Church Formation is removed from the Chesapeake Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 3) The Tiger Leap and Penney Farms formations are removed from the Hawthorn Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 4) The Piney Point and Chickahominy formations are removed from the Pamunkey Group (Ancora Supergroup) and moved to the Trent Supergroup without group placement. 5) the Tallahatta Formation is removed from the Claiborne Group (Trent Supergroup) and placed within the Ancora Supergroup without group placement.

  9. Sequence stratigraphic controls on reservoir characterization and architecture: case study of the Messinian Abu Madi incised-valley fill, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Slatt, Roger M.

    2013-12-01

    Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.

  10. Stratigraphic cross sections of the Niobrara interval of the Cody Shale and associated rocks in the Wind River Basin, central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2017-02-07

    The Wind River Basin in Wyoming is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny. The basin is nearly 200 miles long, 70 miles wide, and encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek uplift, and southern Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and Wind River Range on the west.Many important conventional oil and gas fields producing from reservoirs ranging in age from Mississippian through Tertiary have been discovered in this basin. In addition, an extensive unconventional overpressured basin-centered gas accumulation has been identified in Cretaceous and Tertiary strata in the deeper parts of the basin. It has long been suggested that various Upper Cretaceous marine shales, including the Cody Shale, are the principal hydrocarbon source rocks for many of these accumulations. With recent advances and success in horizontal drilling and multistage fracture stimulation, there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks.The two stratigraphic cross sections presented in this report were constructed as part of a project carried out by the U.S. Geological Survey to characterize and evaluate the undiscovered continuous (unconventional) oil and gas resources of the Niobrara interval of the Upper Cretaceous Cody Shale in the Wind River Basin in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic relationship of the Niobrara equivalent strata and associated rocks in the lower part of the Cody Shale in the Wind River Basin. These two cross sections were constructed using borehole geophysical logs from 37 wells drilled for oil and gas exploration and production, and one surface section along East Sheep Creek near Shotgun Butte in the northwestern part of the basin. Both lines originate at the East Sheep Creek surface section and end near Clarkson Hill in the extreme southeastern part of the basin. The stratigraphic interval extends from the upper part of the Frontier Formation to the middle part of the Cody Shale. The datum is the base of the “chalk kick” marker bed, a distinctive resistivity peak or zone in the lower part of the Cody Shale. A gamma ray and (or) spontaneous potential (SP) log was used in combination with a resistivity log to identify and correlate units. Marine molluscan index fossils collected from nearby outcrop sections were projected into the subsurface to help determine the relative ages of the strata and aid in correlation.

  11. Distinguishing Long-Term Controls on Fluvial Architecture in the Lance Formation, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    McHarge, J. L.; Hajek, E. A.; Heller, P. L.

    2007-12-01

    Allogenic processes are considered a prime control on the stratigraphic distribution of channel bodies, however, recent studies have indicated that autogenic stratigraphic organization may occur within fluvial systems on basin- filling time scales (105-106 years). Groupings or clusters of closely-spaced channel bodies can be produced by several different mechanisms, including both allogenic and autogenic processes. Commonly, sand- dominated intervals in stratigraphic successions are interpreted as incised-valley fills produced by base-level changes. In contrast, long-timescale organization of river avulsion can generate similar stratigraphic patterns. For example, sand-dominated intervals in the fluvial Lance Formation (Maastrichtian; Bighorn Basin, WY) have been interpreted as incised-valley fills formed during sea-level lowstand. However, closely-spaced sand bodies in the Ferris Formation (Lance equivalent; Hanna Basin, WY) are interpreted as aggradational in origin, and have been compared to autogenic avulsion stratigraphy produced in experimental basins. We evaluate the Lance Formation in the southern Bighorn Basin in an effort to determine whether these sand-dominated intervals are truly incised- valley fills resulting from sea-level changes, or if they were generated by autogenic processes. The Lance Formation crops out in the western and southern margins of the basin, exposing relatively proximal and distal portions of the system. By comparing alluvial architecture between exposures, we evaluate similarities and differences from upstream to downstream and look for evidence of intrinsic and extrinsic controls on deposition. In both localities, the Lance Formation comprises multi-story sheet sandstones and smaller, single-story sandstones. Observed changes from upstream to downstream in the system include: 1) increasing paleoflow depths (from ~30-60 cm to ~70-120 cm); 2) decreasing preservation of fine-grained material within channel bodies; 3) increasing proportion of amalgamated, multi-story sand bodies; and 4) increasing lateral continuity of multi-story sand bodies. These results indicate that upstream, channel-body spacing is dominantly controlled by aggradational processes and may be the result of autogenic avulsion clustering, whereas downstream, evidence of incision and amalgamation indicate that base-level may have limited and controlled sand-body architecture.

  12. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.

    2018-04-01

    Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.

  13. Controlling factors of stratigraphic occurrences of fine-grained turbidites: Examples from the Japanese waters

    NASA Astrophysics Data System (ADS)

    Ikehara, K.

    2017-12-01

    Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.

  14. Source-to-Sink: An implicit and O(n) landscape evolution model and its application to the Ogooue Delta, Gabon

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Braun, J.; Guerit, L.; Simon, B.

    2017-12-01

    Limited attention has been given to linking continental erosion to transport and deposition of sediments in the marine environment in large-scale landscape evolution models. Although both environments have been thoroughly investigated, the details of how erosional or climatic events are recorded in the sedimentary and stratigraphic records have not been studied in a consistent quantitative manner. Here we propose a new numerical model for marine multi-lithology (sand and silt) coupling transport and deposition that is directly coupled to FastScape, a landscape evolution model that solves the continental stream power law and hillslope diffusion equation using implicit and O(n) algorithms. Marine transport and deposition is simulated by a nonlinear 2D diffusion model that incorporates a dual lithology (sand and slit) and where source terms represent the sediment flux from continental river erosion. Sediment compaction effects are also incorporated, taking into account the dual lithology, and are important to properly compute the details of the synthetic stratigraphic record. The algorithm used to represent marine transport and deposition is also implicit and O(n). The main purpose of our work is to invert stratigraphic data from offshore marginal basins to provide constraints on the tectonic, climatic and sea-level conditions that have affected the adjacent continental areas. In order to do so, we have incorporated the new model into a Bayesian inversion and optimisation scheme and tested and validated the approach with synthetic data. This is made possible due to the high efficient of the forward model. We are in the process of applying the inversion scheme to stratigraphic data from the Ogooue Delta (Gabon). By comparing real and synthetic stratigraphic geometries along cross-section of the delta, the shape and slope of seismic/time markers, and the sand to silt fraction in wells, we hope to obtain good constraints, not only of the value of the transport coefficients for sand and silt in the marine environment, but also of the uplift, erosional and climate history of the adjacent continental areas, as well as the amplitude of sea level variations.

  15. Assessing the duration of drowning episodes during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Godet, A.; Föllmi, K. B.

    2013-12-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that other parameters than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different time during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea level rise and fall cycles, and may be linked to strengthened upwelling currents. Moreover during the late Hauterivian - early Barremian time period, the correlation of platform carbonates with basinal sediments, by means of bio-, chemo- and sequence stratigraphy, allows to estimate the duration of a drowning episode. With the return to more oligotrophic conditions during the late Barremian, photozoan, Urgonian-type communities took up again. Their development has been abruptly stopped at the end of the early Aptian by a major emersion phase. The subsequent drowning is documented in various peritethyan areas. This initial crisis is followed by three other drowning phases that ultimately led to the replacement of shallow ecosystems by a deeper marine sedimentation in the Cenomanian. This long-term trend in the evolution of the Helvetic carbonate platform and of other peritethyan ecosystems may have been driven by more global phenomena.

  16. Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.

    2014-12-01

    Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.

  17. Evidence for late Holocene relative sea-level fall from reconnaissance stratigraphical studies in an area of earthquake-subsided intertidal deposits, Isla Chiloé, southern Chile

    USGS Publications Warehouse

    Frostick, L.E.; Steel, R.J.; Bartsch-Winkler, S.; Schmoll, H.R.

    1993-01-01

    At Río Pudeto and Quetalmahue, two estuaries along the northern shore of Isla Chiloé that subsided as much as 2 m in the great 1960 earthquake, reconnaissance stratigraphical studies reveal evidence of a regressive, nearshore marine sequence. The intertidal deposits include a peat-bearing, high-intertidal marsh sequence as thick as 1.4 m overlying shell- and foraminifera-bearing silt and clay layers presumed to represent a deeper water, low-intertidal environment.Stratigraphy indicates a relative sea-level fall since about 5000 years BP as evidenced by radiocarbon ages that constrain the peat-bearing sequences. Locally, low-intertidal silt and clay overlie high-intertidal peat layers, but such minor transgressions cannot be correlated from site to site. At Río Pudeto, the youngest foraminifera-bearing silt deposit is no younger than 1200 years BP. The youngest age of shells at Quetalmahue is about 2600 years BP. The oldest peat-bearing deposits that are not overlain by silt deposits are about 1350 years BP at Río Pudeto, and as old as 4900 years BP at Quetalmahue. At Río Pudeto, peat-bearing deposits, which are overlain by silt and clay, range in age from 760 to 5430 years BP, and at Quetalmahue from 290 to 5290 years BP. A beach terrace on the northwest coast of the Isla is estimated to have been emergent since 1150 + 130 years ago.Although some relatively abrupt transgressions may be due to sudden coseismic subsidence, data are not sufficient to document regional subsidence during individual plate-interface earthquakes. Seven earthquakes in south central Chile since 1520, especially those that occurred in 1575, 1737, and 1837, are thought to have been of a magnitude comparable to that of the 1960 earthquake. Although the sedimentological effects of the 1960 earthquake on the intertidal zone were dramatic, only limited evidence of possible historic earthquakes is found on Isla Chiloé and nearby islands; the ages and displacements of these earthquakes are indeterminable.Dead forests still mark some locations that subsided into the intertidal zone during the 1960 earthquake, particularly at Río Pudeto and southern coastal Chiloé. There is little evidence of post-1960 growth in any of these subsided areas. Tree-ring counts and tree-diameter measurements provide evidence that these trees survived the 1837 earthquake, and probably survived the 1737 earthquake, strongly suggesting that these earthquakes were of smaller magnitude than the 1960 event, or that the epicentre locations were further removed than the 1960 epicentre from Isla Chiloé, and that earthquake-induced relative sea-level changes differed from those occurring in 1960.

  18. Effect of the Interaction of Text Structure, Background Knowledge and Purpose on Attention to Text.

    DTIC Science & Technology

    1982-04-01

    in4 the sense proposed by Craik and Lockhart (1972). All levels of representation would entail such preliminary processing operations as perceptual...109. Craik , F. I., & Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11... processes this information to a deeper level than those text elements that are less important or irrelevant. The terminology "deeper" level is used here

  19. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.

  20. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Laura; Bennett, Patti

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  1. Evolution of the Middle Bengal Fan at 8°N in the Oligocene to Pliocene - Preliminary Results from IODP Expedition 354

    NASA Astrophysics Data System (ADS)

    Volkhard, Spiess; Tilmann, Schwenk; Fenna, Bergmann; Christian, France-Lanord; Adam, Klaus

    2016-04-01

    Three deep penetration and additional four shallow sites were drilled during IODP Expedition 354 in the Bay of Bengal at 8°N in February-March 2015 across a 320 km-long transect to study Neogene Bengal fan deposition. The three deeper sites located on top of the elevated crustal features of the Ninetyeast Ridge (Site U1451) and 85°Ridge (Site U1455/DSDP Site 218) as well as central between them (Site U1450) shall provide the stratigraphic framework for the Oligocene to Pliocene reconstruction of fan deposition and sedimentary fluxes driven by monsoon evolution and Himalayan erosion and weathering. Based on shipboard biostratigraphy, drilled material reach back in geologic time to the late Miocene (Site U1450), middle Miocene (Site U1455) and Oligocene (Site U1451). While core recovery was generally severely reduced due to the presence of unconsolidated sand and silt units, half-length APC coring technology provided valuable sand samples/recovery down to ~800 meters below seafloor. Increased compaction/diagenesis of units indicating the temporary absence of fan deposition due to major depocenter shifts, comprising of calcarous clay units of mostly pelagic origin, required a change to rotary coring between 600 and 800 mbsf, and thus the presence of sand is mostly uncertain for those deeper sections. However, derived from penetration rates, a high proportion of sand is anticipated back to early Miocene or Oligocene times. The calcareous clay units serve as stratigraphic marker horizons, which turned out to be suitable for seismic correlation across the drilling transect. This in turn allows to determine sedimentary budgets and overall fan growth for numerous time slices. Recovered sediments have Himalayan mineralogical and geochemical signatures suitable to analyze time series of erosion, weathering and changes in source regions as well as impacts on the global carbon cycle. Miocene shifts in terrestrial vegetation, in sediment budget and in style of sediment transport have been tracked. Moderate sedimentation rates. Preliminary seismic stratigraphy also reveals that crustal features evolved since the Miocene thus confining pathways for turbidite transport. The onset of channel-levee structures indentified since ~10 Ma in the seismic records, is correlated with an increase in sediment flux from moderate rates on the order of 30 m/m.y. to an order of magnitude high accumulation rates during phases of sand lobe deposition and levee growth. Expedition 354 has extended the record of early fan deposition by 10 Ma into the Late Oligocene.

  2. The role of sediment supply in large-scale stratigraphic architecture of ancient Gilbert-type deltas (Pliocene Siena-Radicofani Basin, Italy)

    NASA Astrophysics Data System (ADS)

    Martini, Ivan; Ambrosetti, Elisa; Sandrelli, Fabio

    2017-04-01

    Aggradation, progradation and retrogradation are the main patterns that define the large-scale architecture of Gilbert-type deltas. These patterns are governed by the ratio between the variation in accommodation space and sediment supply experienced during delta growth. Sediment supply variations are difficult to estimate in ancient settings; hence, it is rarely possible to assess its significance in the large-scale stratigraphic architecture of Gilbert-type deltas. This paper presents a stratigraphic analysis of a Pliocene deltaic complex composed of two coeval and narrowly spaced deltaic branches. The two branches recorded the same tectonic- and climate-induced accommodation space variations. As a result, this deltaic complex represents a natural laboratory for testing the effects of sediment supply variations on the stratigraphic architecture of Gilbert-type deltas. The field data suggest that a sediment supply which is able to counteract the accommodation generated over time promotes the aggradational/progradational attitude of Gilbert-type deltas, as well as the development of thick foreset deposits. By contrast, if the sediment supply is not sufficient for counterbalancing the generated accommodation, an aggradational/retrogradational stratigraphic architecture is promoted. In this case, the deltaic system is forced to withdraw during the different phases of generation of accommodation, with the subsequent flooding of previously deposited sub-horizontal topset deposits (i.e., the delta plain). The subsequent deltaic progradation occurs above these deposits and, consequently, the available space for foresets growth is limited to the water depth between the base-level and the older delta plain. This leads to the vertical stacking of relatively thin deltaic deposits with an overall aggradatational/retrogradational attitude.

  3. Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data

    NASA Astrophysics Data System (ADS)

    Oktariena, M.; Triyoso, W.

    2018-03-01

    Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the pitfall area is reduced and some morphed as background lithology. Gabor Deconvolution removes the attenuation by performing Gabor Domain spectral division, which in extension also reduces interpretation pitfall in deeper target seismic.

  4. Sea-level changes vs. organic productivity as controls on Early and Middle Devonian bioevents: Facies- and gamma-ray based sequence-stratigraphic correlation of the Prague Basin, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bábek, Ondřej; Faměra, Martin; Šimíček, Daniel; Weinerová, Hedvika; Hladil, Jindřich; Kalvoda, Jiří

    2018-01-01

    The Devonian marine stratigraphic record is characterized by a number of bioevents - overturns in pelagic and benthic faunal assemblages, which are associated with distinct changes in lithology. The coincidence of lithologic and biotic changes can be explained by the causal link between biotic evolution, carbonate production and relative sea-level changes. To gain insight into the sea-level history of Early and Middle Devonian bioevents (the Lochkovian/Pragian Event, Basal Zlíchovian E., Daleje E., and Choteč E.) we carried out a sequence-stratigraphic analysis of carbonate-dominated successions in the Prague Basin (peri-Gondwana), a classic area of Devonian bioevents. The study is based on a basin-wide correlation of facies and field gamma-ray spectrometry (GRS) logs from 18 sections (Lochkovian to Eifelian), supported by element geochemistry and published biostratigraphic and carbon isotope data. Devonian carbonate deposition in the Prague Basin alternated between two end-member modes: an oligotrophic, homoclinal ramp (Praha and Daleje-Třebotov Formations) and a mesotrophic, distally steepened ramp (Lochkov, Zlíchov, and Choteč Formations). They show contrasting facies, particularly the absence/presence of gravity-flow deposits, allochem composition, U/Th ratios, and geochemical composition (productivity proxies such as P/Al, Si/Al, Zn/Al, TOC and stable carbon isotopes). The mesotrophic systems reflect an increased availability of nutrients on the shelf during the late Lochkovian, early Emsian (Zlíchovian), and Eifelian periods when sea surface temperature, pCO2, and silicate weathering rates were higher. The oligotrophic systems deposited during the Pragian-to-earliest Emsian and late Emsian (Dalejan) periods reflect reversed palaeoclimatic trends. We identified three depositional sequences (DS), DS1 (base of Pragian to early Emsian); DS2 (early Emsian to mid Emsian); and DS3 (mid Emsian to mid Eifelian). These sequences were integrated into a peri-Gondwana relative sea-level curve, which was then compared with the Euramerican sea-level curve of Johnson et al. (1985). The bioevents coincided with several sequence stratigraphic surfaces, representing variable limbs of the relative sea-level curve. On the other hand, their conspicuous coincidence with the switching intervals between the colder oligotrophic and warmer mesotrophic modes suggests that organic production linked to global climate was the primary control on biotic overturns, while sea-level fluctuations may have only amplified its effects.

  5. Localized zones of denitrification in a floodplain aquifer in southern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Craig, Laura; Bahr, Jean M.; Roden, Eric E.

    2010-12-01

    A floodplain aquifer within an agricultural watershed near Madison, Wisconsin (USA), was studied to determine whether denitrification was occurring below the surface organic layer. Groundwater levels and concentrations of O2, Cl-, NO{3/-}, SO{4/2-}, dissolved organic carbon (DOC), and major cations were monitored over a 1-year period along a 230-m transect between an agricultural field and a stream discharge point. Seventeen groundwater samples were analyzed for δ15NNO3 and δ18ONO3 composition. Samples in which NO{3/-} was too low for stable isotope analysis were analyzed for excess dissolved N2. Groundwater NO{3/-} concentrations declined between the agricultural field and the discharge point. Chloride and δ15NNO3/δ18ONO3 data indicated that the drop in NO{3/-} was caused primarily by dilution of shallow NO{3/-}-rich water with deeper, NO{3/-}-depleted groundwater. Two localized zones of denitrification were identified in the upland-wetland transition by their δ15NNO3 and δ18ONO3 signatures, and two in the stream hyporheic zone by the presence of excess dissolved N2. The combined stratigraphic, hydrologic, and geochemical data in these locations correspond to groundwater mixing zones where NO{3/-} is delivered to subsurface layers that support denitrification fueled by dissolved (e.g. DOC or dissolved Fe(II)) and/or solid-phase (e.g. particulate organic carbon, solid-associated Fe(II), or pyrite) electron donors.

  6. North American Commission on Stratigraphic Nomenclature Report 12 – Revision of article 37, lithodemic units, of the North American Stratigraphic Code

    USGS Publications Warehouse

    Easton, Robert M.; Edwards, Lucy E.; Orndorff, Randall C.; Duguet, Manuel; Ferrusquia-Villafranca, Ismael

    2017-01-01

    At the 71st Annual Meeting of the North American Commission on Stratigraphic Nomenclature, 26 September, 2016, in Denver, Colorado, the Commission voted unanimously to accept the revision of Article 37 of the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 2005), printed below. It replaces all older versions of this Article. An application for this revision (Easton et al. 2015) was published in Stratigraphy more than one year prior to the meeting; thus, the vote on this application for revision follows Article 21 of the Code.

  7. Developments in the use of high-resolution X-Ray fluorescence core scanning data of varved sediments for paleoclimate studies: an example of Lake Meerfelder Maar, Germany.

    NASA Astrophysics Data System (ADS)

    Martin-Puertas, Celia; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim

    2015-04-01

    The annually laminated record of the Lake Meerfelder Maar (Germany) is one of the most significant paleoclimatic archives in central Europe because of i) its robust chronology based on varve counting and tephrochronology, and ii) its very high sensitivity to the North Atlantic climate variability. In this study, varve thickness and micro X-ray fluorescence (XRF) data are combined with the published decadal to centennial resolved pollen assemblage between 11,700 to 9,000 yr BP. This period covers two major biostratigraphic stages in Europe, i.e. the Preboreal and the Boreal climatic periods. We focus on the timing and duration of the Preboreal-Boreal climatic transition, as well as short-lived cooling events in the North Atlantic region such as the Preboreal Oscillation (PBO). Due to the predominantly basaltic composition of the MFM catchment, we use normalized Titanium (Ti) intensities as a proxy for detrital influx. This is in close agreement with changes in varve thickness indicating that the lake variability is mainly driven by the annual detrital discharge into the lake. Statistical clustering of the XRF data reveals six chemo-stratigraphic units coinciding with major changes in local vegetation. The stratigraphical boundary coinciding with the Preboreal-Boreal transition is dated at 10,690 varve yr BP. This is characterized by an abrupt increase in detrital material, likely because of a change to wetter conditions in the central Europe. Although the PBO is not clearly identified in the MFM pollen record, a individual cluster from 11,230 to 11,020 varve yr BP broadly coincides with the timing of the PBO in the North Atlantic region, suggesting this cool event lasted ca 200 years in central Europe. The most significant change in the lake occurred between 9,655 and 10,530 varve yr BP, when detrital influx nearly completely ceased and varves were poorly preserved. However, this interval within the Boreal period has no counterpart in the pollen record and, therefore, no clear climatic cause. Alternatively, an elevated lake level and the development of a river delta might have blocked detrital supply to the deeper part of the lake during this period.

  8. Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation

    NASA Astrophysics Data System (ADS)

    Ahm, Anne-Sofie C.; Bjerrum, Christian J.; Hammarlund, Emma U.

    2017-02-01

    The Late Ordovician stratigraphic record integrates glacio-eustatic processes, water-column redox conditions and carbon cycle dynamics. This complex stratigraphic record, however, is dominated by deposits from epeiric seas that are susceptible to local physical and chemical processes decoupled from the open ocean. This study contributes a unique deep water basinal perspective to the Late Ordovician (Hirnantian) glacial record and the perturbations in seawater chemistry that may have contributed to the Hirnantian mass extinction event. We analyze recently drilled cores and outcrop samples from the upper Vinini Formation in central Nevada and report combined trace- and major element geochemistry, Fe speciation (FePy /FeHR and FeHR /FeT), and stable isotope chemostratigraphy (δ13COrg and δ34SPy). Measurements of paired samples from outcrop and core reveal that reactive Fe is preserved mainly as pyrite in core samples, while outcrop samples have been significantly altered as pyrite has been oxidized and remobilized by modern weathering processes. Fe speciation in the more pristine core samples indicates persistent deep water anoxia, at least locally through the Late Ordovician, in contrast to the prevailing interpretation of increased Hirnantian water column oxygenation in shallower environments. Deep water redox conditions were likely decoupled from shallower environments by a basinal shift in organic matter export driven by decreasing rates of organic matter degradation and decreasing shelf areas. The variable magnitude in the record of the Hirnantian carbon isotope excursion may be explained by this increased storage of isotopically light carbon in the deep ocean which, in combination with increased glacio-eustatic restriction, would strengthen lateral- and vertical gradients in seawater chemistry. We adopt multivariate statistical methods to deconstruct the spatial and temporal re-organization of seawater chemistry during the Hirnantian glaciation and attempt to isolate the latent magnitude and global perturbation in the carbon cycle. We speculate, using a two component mixing model and residual estimates from principal component analysis, that the secular open ocean Hirnantian C isotope excursion possibly amounts to only ∼ +1.5‰. Such an increase could be mechanistically driven by the combination of sea-level fall, persistent deep water anoxia, and cooler glacial temperatures that increased the organic carbon burial efficiency in the deeper basins.

  9. Stratigraphic controls on saltwater intrusion in the Dominguez Gap area of coastal Los Angeles

    USGS Publications Warehouse

    Edwards, Brian D.; Ehman, Kenneth D.; Ponti, Daniel J.; Reichard, Eric G.; Tinsley, John; Rosenbauer, Robert J.; Land, Michael T.

    2009-01-01

    The Los Angeles Basin is a densely populated coastal area that significantly depends on groundwater. A part of this groundwater supply is at risk from saltwater intrusion-the impetus for this study. High-resolution seismic-reflection data collected from the Los Angeles-Long Beach Harbor Complex have been combined with borehole geophysical and descriptive geological data from four nearby ??400-m-deep continuously cored wells and with borehole geophysical data from adjacent water and oil wells to characterize the Pliocene to Holocene stratigraphy of the Dominguez Gap coastal aquifer system. The new data are shown as a north-south, two- dimensional, sequence-stratigraphic model that is compared to existing lithostratigraphic models of the Los Angeles Basin in an attempt to better understand pathways of saltwater intrusion into coastal aquifers. Intrusion of saltwater into the coastal aquifer system generally is attributed to over-pumping that caused the hydraulic gradient to reverse during the mid-1920s. Local water managers have used the existing lithostratigraphic model to site closely spaced injection wells of freshwater (barrier projects) attempting to hydraulically control the saltwater intrusion. Improved understanding of the stratigraphic relationships can guide modifications to barrier design that will allow more efficient operation. Allostratigraphic nomenclature is used to define a new sequence-stratigraphic model for the area because the existing lithostratigraphic correlations that have been used to define aquifer systems are shown not to be time-correlative. The youngest sequence, the Holocene Dominguez sequence, contains the Gaspur aquifer at its base. The Gaspur aquifer is intruded with saltwater and consists of essentially flat-lying gravelly sands deposited by the ancestral Los Angeles River as broad channels that occupied a paleovalley incised into the coastal plain during the last glacio-eustatic highstand. The underlying sequences are deformed into a broad anticlinal fold that occurs parallel to, but ??2 km north of, the axis of the Pliocene Wilmington anticline. The Dominguez sequence breaches the crest of the young anticline, cuts through the upper Pleistocene Mesa and Pacific sequences, and into the middle Pleistocene Harbor sequence. Saltwater migrates along channels within the Dominguez sequence and into the underlying sequences (composed mostly of shallow marine and tidal sands, silts, and clays) that contain the classically defined Gage and Lynwood aquifers. The newly recognized Pacific Coast Highway fault cuts through the core of this young fold and is downthrown on the northern side, thereby creating accommodation space for a thick succession of middle Pleistocene sediments that constitute the Upper Wilmington sequence. North of the Pacific Coast Highway fault, the Upper Wilmington sequence contains the classic Silverado aquifer (composed of fluviodeltaic deposits); the Silverado is the primary freshwater aquifer for the West Coast and Central Los Angeles Groundwater Basins. Pore fluid and electric log analyses show the upper part of this aquifer to be saline-intruded near the crest of the young fold. This relationship implies that some saltwater is migrating into deeper aquifers from above, across the regional unconformity that marks the base of the Harbor sequence (ca. 240-270 ka). This sequence-stratigraphic model provides new insight into the potential flow paths for saltwater intrusion, and as such, should allow improved characterization of fluidflow that will aid in transport model studies and in managing groundwater resources. ?? 2009 Geological Society of America.

  10. 40Ar/39Ar dating of a Langhian biotite-rich clay layer in the pelagic sequence of the Cònero Riviera, Ancona, Italy

    NASA Astrophysics Data System (ADS)

    Mader, Dieter; Montanari, Alessandro; Gattacceca, Jérôme; Koeberl, Christian; Handler, Robert; Coccioni, Rodolfo

    2001-12-01

    A nearly complete and undisturbed Miocene carbonate sequence is present in the easternmost part of the Umbria-Marche basin, Italy, which is ideal for detailed and integrated stratigraphic investigations of the Miocene Epoch. In this study, we were trying to obtain evidence for the presence or absence of distal ejecta from the 15 Ma Ries impact structure in southern Germany, located about 600 km to the north-northwest of the Umbria-Marche basin. The first step is to find coeval strata in the Umbria-Marche sequence. At the La Vedova section, Cònero Riviera, we dated a volcaniclastic biotite-rich clay layer, the Aldo Level, which is situated within planktonic foraminiferal Zone N8, at 14.9±0.2 Ma, using the 40Ar/39Ar method. Together with detailed geologic and stratigraphic information about the Aldo Level, the resulting age can be used confidentially to calibrate the Langhian stage. Besides providing new constraints on Miocene geochronology, this age can now be used for impact stratigraphic studies. To directly correlate the biotite ages of the La Vedova section with rocks from the Ries impact event, Ries impact glass was also analyzed and found to be coeval. Although unrelated to this impact event, the biotite-rich clay layer should help in the search for evidence of distal ejecta related to the Ries crater.

  11. Potentiometric-surface map of the Wyodak-Anderson Coal Bed, Powder River Structural Basin, Wyoming, 1973-84

    USGS Publications Warehouse

    Daddow, Pamela B.

    1986-01-01

    Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)

  12. Proglacial deltaic landforms and stratigraphic architecture as a proxy for reconstructing past ice-sheet margin positions

    NASA Astrophysics Data System (ADS)

    Dietrich, Pierre; Ghienne, Jean-François; Normandeau, Alexandre; Lajeunesse, Patrick

    2016-04-01

    Deltaic landforms and related stratigraphic architectures are frequently used as proxy for reconstruction of past continental or marine environmental evolutions. Indeed, in addition to autocyclic processes, emplacement of deltaic systems is primarily controlled by changes in sediment supply and relative sea-level (RSL). In our study, we investigated several proglacial deltaic complexes emplaced since the last deglaciation over more than 700 km along the St. Lawrence North Shore (Québec, Canada). Their geomorphic and stratigraphic records allowed us to infer the retreat pattern of the Laurentide Ice Sheet fronts. Field investigation of representative deltaic complexes revealed an archetypal morphostratigraphic evolution forced by the retreat of the ice margin in a context of falling RSL (glacio-isostatic rebound). The base of the stratigraphic successions consists of outwash fan deposits emplaced in the early deglaciation when ice margin stillstanded immediately beyond the depositional area. The middle part of the succession consists of proglacial delta deposits corresponding to the retreat of the ice margin in the hinterland. At that time, glaciogenic supplies allowed an active progradation preventing fluvial entrenchment in spite of the forced regressive context. The upper part of the succession consists of staged shoreline deposits reworking the rim of the proglacial deltas. These deposits mark the retreat of the ice margin from the drainage basin and the subsequent drop in glaciogenics. Important fluvial entrenchment occurred in the same time, though rates of RSL fall were reduced. We generalize this stratigraphic framework by using solely the landforms (from DEM, aerial photographs or satellite images) tied to deltaic complex developments along the St. Lawrence North Shore. This approach permits an integrated study at the scale of the whole basin even where no field data is available. Recognizing the three steps evidenced from the stratigraphic record ads constrains on the successive ice margin positions through deglaciation. Top surface of the outwash fans, marking the deglaciation of the area, lies at or near the marine limit (highest altitude reached by the post-glacial sea) and is commonly flat; the top surface of the proglacial deltas, recording the upland recession of the ice margin, is gently-sloped basinward, without evidence of fluvial entrenchment; finally, the top surface of coastal deposits, marking the retreat of the ice margin from the drainage basin, is characterized by raised beaches incised by meandering rivers. Determining ages of these successive landforms (14C dating, sea-level curves) allowed us to reconstruct the pattern of ice-sheet retreat since the Younger Dryas up to almost the final disappearance of the Quebec Ice Dome at ~6 kyr BP.

  13. Trait-based diversification shifts reflect differential extinction among fossil taxa.

    PubMed

    Wagner, Peter J; Estabrook, George F

    2014-11-18

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.

  14. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  15. The massive dolomitization of platformal and basinal sequences: proposed models from the Paleocene, Northeast Sirte Basin, Libya

    NASA Astrophysics Data System (ADS)

    Mresah, Mohamed H.

    1998-03-01

    The Paleocene carbonate succession in the Northeast Sirte Basin is composed of two shallowing-upward ramp cycles, where each cycle is under- and overlain by deeper-water, pelagic facies. A significant proportion of each of these two cycles is dolomitized. Petrographic study, supported by geochemical data (stoichiometry, stable isotopes, trace elements, and fluid inclusions), and integrated with broader tectono-sedimentary information, has provided the basis for interpreting these Paleocene dolomites. The use of this integrated approach in the study of dolomites suggests that, despite the much publicized uncertainties in interpreting geochemical analyses of ancient dolomites, the results of the Paleocene dolomites show that the geochemical characteristics are generally consistent with regional stratigraphic distribution and petrographic observations. Four distinct types of dolomite have been recognized in this part of the Sirte Basin. Based on the stratigraphic position and petrographic criteria, two of these types have a platformal setting and the other two are basinal. The platform varieties consist of dolomicrites and pervasive stratal dolomites. The dolomicrites, interpreted to be of syn-sedimentary origin, were probably a product of reflux of seawater, with elevated salinity, as suggested by palaeoenvironmental analysis and supported by geochemical evidence (the average S'80 value is -0.1‰ PDB; the average Sr content is 639 ppm). The pervasive dolomites were formed during the progradation of the platform sequences, and probably stabilized and augmented during shallow burial. A meteoric-marine mixing-zone is thought to have been the most likely process for the formation of these dolomites. This interpretation is supported by geochemical evidence (the average δ18O is -2.4‰ PDB; the average Sr content is 72 ppm) combined with a favourable stratigraphic position. The most characteristic feature related to both mixing-zone and reflux dolomitization is the basinward movement of the dolomitizing fluids, which suggests that the formation of these platform dolomites was related to a lowstand system tract. The two basinal varieties comprise thick (over 300 m) basinal dolomudstones and fracture-filling, sparry dolomites. The stratigraphic position of the finely crystalline basinal dolomudstones, within very thick shale successions (as a result of being very close to the depocentre of the Sirte Basin) combined with geochemical evidence (the average δ18O is -6.4‰ PDB), suggest that the dolomitizing fluids were basin-derived, with Mg 2+ released from dewatering through compaction of basinal shales. The occurrence of this type of dolomite provides one of the rare examples of large-scale dolomitization of thick, basinal sequences. Late diagenetic fracture-filling dolomites exhibit a structural control on their distribution. Geochemical evidence (including fluid inclusion analysis and the lightest oxygen isotopic signature of -7.3‰ PDB) suggests that highly saline formation brines were the solutions responsible for their formation.

  16. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America

    USGS Publications Warehouse

    Nelson, Alan R.; Shennan, Ian; Long, Antony J.

    1996-01-01

    Tidal-wetland stratigraphy reveals that great plate boundary earthquakes have caused hundreds of kilometers of coast to subside at the Cascadia subduction zone. However, determining earthquake recurrence intervals and mapping the coastal extent of past great earthquake ruptures in this region are complicated by the effects of many sedimentologic, hydrographic, and oceanographic processes that occur on the coasts of tectonically passive as well as active continental margins. Tidal-wetland stratigraphy at many Cascadia estuaries differs little from that at similar sites on passive-margin coasts where stratigraphic sequences form through nonseismic processes unrelated to coseismic land level changes. Methods developed through study of similar stratigraphic sequences in Europe provide a framework for investigating the Cascadia estuarine record. Five kinds of criteria must be evaluated when inferring regional coastal subsidence due to great plate boundary earthquakes: the suddenness and amount of submergence, the lateral extent of submerged tidal-wetland soils, the coincidence of submergence with tsunami deposits, and the degree of synchroneity of submergence events at widely spaced sites. Evaluation of such criteria at the Cascadia subduction zone indicates regional coastal subsidence during at least two great earthquakes. Evidence for a coseismic origin remains equivocal, however, for the many peat-mud contacts in Cascadia stratigraphic sequences that lack (1) contrasts in lithology or fossils indicative of more than half a meter of submergence, (2) well-studied tsunami deposits, or (3) precise ages needed for regional correlation. Paleoecologic studies of fossil assemblages are particularly important in estimating the size of sudden sea level changes recorded by abrupt peat-mud contacts and in helping to distinguish erosional and gradually formed contacts from coseismic contacts. Reconstruction of a history of great earthquakes for the Cascadia subduction zone will require rigorous application of the above criteria and many detailed investigations.

  17. Rapid and Accurate Idea Transfer: Presenting Ideas with Concept Maps

    DTIC Science & Technology

    2008-07-30

    AndolanerAncholik Itihas (Regional Histor of the State Language Movement), Dhaka: Bangla Academy. Muhith. A.M.A. (1978) Bangladesh. Emergence qf a Nation, Dhaka...The incidental learning paradigm presumes that information processed at deeper (i.e., more conceptually connected) levels will result in superior...consideration dovetails with Kinchen and Cabot’s (2007) results showing that Concept Maps enable deeper levels of information processing over PowerPoint

  18. Vombat: an open source proof-of-concept for the use of Digital outcrop models as reference frame for stratigraphic observations

    NASA Astrophysics Data System (ADS)

    Penasa, Luca; Franceschi, Marco; Preto, Nereo; Girardeau-Montaut, Daniel

    2015-04-01

    Three-dimensional Virtual Outcrop Models (VOMs), often produced using terrestrial laser scanning or photogrammetry, have become popular in the Geosciences. The main feature of a VOM is that it allows for a quantification of the 3D geometry and/or distribution of geologic features that range from rock properties to structural elements. This actually generated much of the interest in VOMs by the oil and gas industry. The potential importance of a VOM in stratigraphy, however, does not seems completely disclosed yet. Indeed outcrops are the primary sources of data for a number of stratigraphic studies (e.g. palaeontology, sedimentology, cyclostratigraphy, geochemistry...). All the observations are typically reported on stratigraphic logs which constitute an idealized representation of the stratigraphic series, drawn by the researcher on the basis of the features that has to be highlighted. The observations are localized by means of manual measurements and a certain amount of subjectivity in log drawing is involved. These facts can prevent the log from being properly pinned to the real outcrop. Moreover, the integration of stratigraphic logs made by different researchers studying the same outcrop may be difficult. The exposure conditions of outcrops can change through time, to the point that they can become unaccessible or even be destroyed. In such a case, linking the stratigraphic log to its physical counterpart becomes impossible. This can be particularly relevant when a classical outcrop or even a GSSP is considered. A VOM may prove useful to tackle these issues, by providing a more objective stratigraphic reference for measurements and by preserving an outcrop through time as a visual representation, thus permitting reference and accurate comparison between observations made through time. Finally, a VOM itself may contain relevant stratigraphic information (e.g. scalar fields associated with the point cloud as intensity, rgb data or hyperspectral information from passive remote sensing devices). This information requires to be merged with geological data collected in the field, in a consistent and reproducible way. We present Vombat, a proof-of-concept of open-source software to illustrate some of the possibilities in terms of information storage, visualization and exploitation of outcrop stratigraphic information. Our solution integrates with CloudCompare, a software that permits to visualize and edit point clouds. A dedicated algorithm estimates stratigraphic attitudes from point cloud data, without the need of exposed planar bedding surfaces. These attitudes can be used to define a virtual stratigraphic section. Composite sections can then be realized defining stratigraphic constraints between different reference frames. Any observation can be displayed in a stratigraphic framework that is directly generated from a VOM. The virtual outcrop, the samples and the stratigraphic reference frames can be saved into an XML file. In the future, the adoption of a standard format (e.g. GeoSciML) will permit easier exchange of stratigraphic data among researchers. The software constitutes a first step towards the full exploitation of VOMs in stratigraphy, is stored at http://github.com/luca-penasa/vombat‏ and is open source. Comments and suggestions are most welcome and will help focusing and refining the software and its tools.

  19. Correspondence of Mesozoic Eustatic Sea-Level Change with Palaeoclimate Proxies: Evidence for Glacio-Eustasy?

    NASA Astrophysics Data System (ADS)

    Simmons, M.; Davies, A.; Gréselle, B.

    2011-12-01

    Large-scale changes in stratigraphic architecture and facies that are brought about by changes in relative sea-level have been the focus of much academic and industry study over the last few decades. The authors, plus numerous colleagues, have studied over 11,000 stratigraphic sections worldwide. By applying biostratigraphic and chemostratigraphic calibration in suitable locations from this dataset it is possible to demonstrate over 250 synchronous global sequence stratigraphic events in the Phanerozoic including over 100 in the Mesozoic. This then raises the question - what causes globally synchronous eustatic sea-level change? To answer this question requires an understanding of both the pace and amplitude of the observed eustatic sea-level change. In successions where duration can be deduced from orbital forcing cycles, our observed sea-level changes appear to be relatively rapid - less than 500,000 years, for example, for sea-level rises in the Late Jurassic. The amplitude of such rises is in the order of tens of metres. Such rates and amplitudes as inferred from our global model preclude tectonism as a primary driver and implicate glacio-eustacy as a key driving mechanism, even in supposed "greenhouse times". Given the clear economic importance of understanding the underlying mechanisms driving this eustatic change we have compiled records of key isotopic proxies through the entire Mesozoic in an effort to explore the relationship between global sea-level and palaeoclimate. Our research reveals a clear link between many large-scale maximum flooding events with known episodes of palaeoclimatic warming and between climatic cooling events and lowstand intervals, further implicating glacio-eustacy. In addition to the isotopic proxy evidence we have also compiled direct indicators for the occurrence of cold polar conditions, including the presence of ice sheets, in the Mesozoic (e.g. tillites, glendonites). This has been incorporated into plate tectonic reconstructions in order to explore the relationship with the presence of significant polar land masses. Both isotopic and direct evidence suggest the episodic presence of polar ice sheets for periods previously supposed as ice free and that glacio-eustacy can be suggested as a major driver of Mesozoic eustatic sea-level change.

  20. Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada

    USGS Publications Warehouse

    Collett, T.S.; Dallimore, S.R.

    1999-01-01

    Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C1/(C2 + C3) hydrocarbon gas ratios and CH4-C isotopic compositions (??13C CH4) indicative of microbially sourced CH4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C2) concentrations, decreases in C1/(C2 + C3) hydrocarbon gas ratios, and CH4-C isotopic (??13C CH4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks.

  1. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  2. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments

    NASA Astrophysics Data System (ADS)

    Bertini, Adele

    2006-06-01

    The Messinian stage has long been associated with an overall warm and dry climate whereas recent researches indicate either a warm and humid or a cool and dry climate. The integrated stratigraphic record of vegetation and climatic changes from Northern Apennines sites provides the solution to this apparent contradiction. Its integration with the updated geological and sedimentological studies provides additional data for the reconstruction of the depositional palaeoenvironments in both marginal and deeper sub-basins of the Apennines foredeep. The onset of the Mediterranean salinity crisis (MSC) is recorded in the Gessoso-Solfifera of the Vena del Gesso (marginal sub-basin). Cyclical humid conditions, corresponding to precession minima, developed during the deposition of the shales interbedded with the gypsum (5.9 to 5.6 Ma); some cooler events took also place under the effects of global (glacial stadials) and regional factors (Apennines uplift). At present no major changes from moist to dry conditions are attested to just before the salinity crisis, as well as in Sicily. So climate did not play a major role in the onset of the MSC despite the favourable context provided by inferred thermo-xeric conditions in southern Italy. A drier episode indicated by the expansion of the open vegetation including the northward migration of Lygeum postdates the onset of the salinity crisis of about 400 kyr, in the lower post-evaporitic deposits of Maccarone (deeper sub-basin). It falls within a period of global warming whereas at a regional scale it could correlate p.p. to the evaporite deposition in deeper basins and to hiatuses in the marginal basins of Sicily and of the western sector of Northern Apennines. Its sudden end, about 100 kyr later, in coincidence with a significant increase of Pinaceae, indicates a turnover in the terrestrial setting not linked to major climate changes but possibly to a complex interaction between other palaeoenvironmental factors (e.g., tectonics and eustatism). In contrast organic-walled dinoflagellate cysts exclude significant modifications in aquatic settings (insaturation of either open marine or brackish conditions). In the latter, a later change is marked by the arrival of Impagidinium (?) sp. 1., a species here referred instead to Caspidinium rugosum, about 7 m below the first colombaccio. This occurrence together with the spread of Pediastrum indicates a freshwater dilution i.e. the "Lago-Mare" event during wetter climatic conditions on the adjacent landmass (increase of Tsuga and Cedrus). The successive arrival and/or dominance of other "Paratethyan" taxa such as I. (?) sp. 2, I. (?) sp. 3 and Galeacysta etrusca indicate highly variable water environments (marine vs. continental water inputs) during the deposition of the uppermost post-evaporitic deposits. The Lago-Mare is stratigraphically sandwiched between an ash layer (130 m below) dated at 5.5 Ma and the beginning of the Pliocene where a peak of Impagidinium patulum marks the onset of open marine conditions. The dominant humid, subtropical to warm temperate climate indicates differences in both temperature and moisture values with respect to the coeval southern sections, revealing climatic gradients within the Mediterranean, at least from the Messinian. No dramatic vegetation and climate changes have been recorded during the MSC; major changes occurred later as indicated by the palynological record from 2.6 Ma. This palynostratigraphic record is a good reference for more recent models of the development of the MSC and for establishing time-relationships between the Apennine and Sicilian successions.

  3. Estimating Temporal Redistribution of Surface Melt Water into Upper Stratigraphy of the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.

    2015-12-01

    The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.

  4. Sequence stratigraphy of the siliciclastic East Puolanka Group, the Palaeoproterozoic Kainuu Belt, Finland

    NASA Astrophysics Data System (ADS)

    Strand, Kari

    2005-04-01

    The 2300-2600 m thick Palaeoproterozoic East Puolanka Group within the central Fennoscandian Shield records four major transgressions on the cratonic margin within the approximate time period 2.25-2.10 Ga. Stacking of siliciclastic facies in parasequences and parasequence sets provides data to evaluate oscillation of relative sea-level and subsidence on different temporal scales. The lowermost part of the passive margin prism is characterized by alluvial plain to shallow marine sediments deposited in incised valleys. The succeeding highstand period is recorded by ca. 250 m of progradational parasequence sets of predominantly rippled and horizontally laminated sandstones, representing stacked wave-dominated shoreline units in sequence 1, capped by a hiatus or, in some places, by a subaerial lava. As relative sea-level rose again, sand-rich barrier-beach complexes developed with microtidal lagoons and inlets, corresponding to a retrogradational parasequence set. This was followed by a highstand period, with aggradation and progradation of alluvial plain and coastal sediments grading up into wave-tide influenced shoreline deposits in sequence 2. In sequence 3, the succeeding mudstones represent tidal flat deposits in a back-barrier region. With continued transgression, the parasequences stacked retrogradationally, each flooding episode being recorded by increasingly deeper water deposits above low-angle cross-bedded sandstones of the swash zones. The succeeding highstand progradation is represented by alluvial plain deposits. The next transgressive systems tract, overlying an inferred erosional ravinement surface, is recorded by a retrogradational parasequence set dominated by low-angle cross-stratified swash zone deposits in sequence 4. The large-scale trough cross-bed sets in these parasequences represent sand shoals and sheets of the inner shelf system. The overall major transgression recorded in the lowermost part of the Palaeoproterozoic cratonic margin succession was related to first- to second-order sea-level changes, probably due to increasing regional thermal subsidence of the lithosphere following partial continental breakup. The stratigraphic evolution can be related to changes of relative sea-level with a frequency of ca. 25 million years, probably propagated by episodic thermal subsidence. The parasequences identified here are related to high-frequency cycles of relative sea-level change due to low-magnitude eustatic oscillations.

  5. Late Holocene paleoseismicity, tsunamis and relative sea- level changes along the south-central Cascadia subduction zone, southern Oregon, United States of America

    NASA Astrophysics Data System (ADS)

    Witter, Robert Carleton

    1999-10-01

    This dissertation investigates stratigraphic evidence for great (M w >= 8) earthquakes, tsunamis and relative sea-level change at three coastal sites above the Cascadia subduction zone (CSZ). Accelerator mass spectrometry radiocarbon analyses, diatom analyses and vibracoring techniques were employed. Euchre Creek marsh stratigraphic sequences contain four sand beds deposited by extreme storm waves within the last 600 years and a tsunami ~300 years ago. A 150- year recurrence interval for sand deposition compared to an average recurrence interval of 500-540 years for great Cascadia, earthquakes precludes local tsunamis that accompany Cascadia earthquakes as the only candidate depositional mechanism for the sand beds. Alternatively, magnitude-frequency analyses of extreme ocean levels generated during El Niño years suggest that storm- wave runup is a more likely mechanism for sand deposition in washover settings than either locally or remotely generated tsunamis. Late Holocene stratigraphic sequences at the Coquille River estuary provide a ~6600-year record of twelve great Cascadia earthquakes and attendant tsunamis in southern Oregon. A relative sea-level history chronicles repeated sudden expansion followed by gradual emergence of the Coquille estuary in response to the earthquake cycle. The average earthquake-recurrence interval for the central CSZ (~570-590 yrs) overlaps similar estimates for northern Oregon estuaries. In contrast, more inferred earthquakes recorded at Willapa and Humboldt Bays in the last ~2000 years compared to the earthquake record at Coquille suggest that segmented rupture of the CSZ occurs. Late Holocene (since 6.3 ka) relative sea-level data generated within the Coquille estuary allow 20 m of vertical deformation across the Coquille anticline in the last 80 ky. Contrasting relative sea-level histories in southern Oregon provide evidence for late Holocene contraction on upper-plate anticlines. Two relative sea-level curves, 35 km apart, show 0.5-0.6 m/ka difference in uplift rate, although both sites demonstrate long-term tectonic uplift. Upper-plate structures above the central CSZ probably deform during megathrust events. The Cape Blanco and Coquille anticlines overlie a candidate segment boundary because they separate subduction zone segments with different earthquake histories. This dissertation includes co-authored material.

  6. Palaeogeography and relative sea-level history forcing eco-sedimentary contexts in Late Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): An ecostratigraphic approach

    NASA Astrophysics Data System (ADS)

    Olóriz, Federico; Reolid, Matías; Rodríguez-Tovar, Francisco J.

    2012-02-01

    The analysis of macroinvertebrate and foraminiferal assemblages from Upper Jurassic (Middle Oxfordian to Lower Kimmeridgian) epicontinental shelf deposits in the Prebetic (Betic Cordillera, southern Spain) reveals the influence of environmental changes. They are expressed as selected parameters in palaeogeographic and stratigraphic trends (litho- and microfacies, faunal composition, taphonomy), which are interpreted in the context of relative sea-level histories. Middle Oxfordian to early Kimmeridgian (Transversarium to Planula Chrones) rocks and faunal assemblages in comparatively distal sectors (distal shelf) show lower sedimentation rates (lumpy lithofacies), and higher proportions of ammonoids, planktic foraminifera, corrasion degree, microboring and encrustation. Landwards, towards the mid-shelf, eco-sedimentary conditions resulted in spongiolithic limestones and marl-limestone rhythmites with local development of microbial-sponge buildups. Greater distance from shore during relative sea-level highs accords with greater: (1) stratigraphic condensation; (2) abundance in ammonoids, planktic foraminifera and nubeculariids; and (3) degrees of corrasion, microboring and encrustation. These trends in faunal composition and taphonomy agree with backstepping phases, increasing ecospace and a longer exposition of shelly remains on the sea bottom. Decreasing distance from shore during relative sea-level lows relates to opposite trends, as evidenced by: (4) increasing terrigenous input and decreasing stratigraphic condensation; (5) impoverishment in ammonoids and planktic foraminifera; and (6) diminution of corrasion, microboring and encrustation. Phases of forestepping/progradation and aggradation, a reduction of ecospace for nekto-planktic organisms, and comparatively rapid burial of shell remains are interpreted to force the recorded trends. An ecostratigraphic approach is used here to correlate and characterise sea-level changes, applying high resolution stratigraphy to sections where the identification of relevant surfaces is more difficult. The changes in distance from shore and ecospace, triggered by relative sea-level fluctuations, are considered prime factors forcing trade-offs in faunal communities of the studied fossil assemblages. Ecostratigraphy was used as a template for the characterization, correlation and interpretation of relative sea-levels and associated sedimentary packages in a time span from just above the Milankovitch band to the million-year scale.

  7. Application of TIMS data in stratigraphic analysis

    NASA Technical Reports Server (NTRS)

    Lang, H. R.

    1986-01-01

    An in-progress study demonstrates the utility of Thermal Infrared Multispectral Scanner (TIMS) data for unraveling the stratigraphic sequence of a western interior, North American foreland basin. The TIMS data can be used to determine the stratigraphic distribution of minerals that are diagnostic of specific depositional distribution. The thematic mapper (TM) and TIMS data were acquired in the Wind River/Bighorn area of central Wyoming in November 1982, and July 1983, respectively. Combined image processing, photogeologic, and spectral analysis methods were used to: map strata; construct stratigraphic columns; correlate data; and identify mineralogical facies.

  8. Glaciotectonic deformation and reinterpretation of the Worth Point stratigraphic sequence: Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica M.; England, John H.; Evans, David J. A.

    2014-05-01

    Hill-hole pairs, comprising an ice-pushed hill and associated source depression, cluster in a belt along the west coast of Banks Island, NT. Ongoing coastal erosion at Worth Point, southwest Banks Island, has exposed a section (6 km long and ˜30 m high) through an ice-pushed hill that was transported ˜ 2 km from a corresponding source depression to the southeast. The exposed stratigraphic sequence is polydeformed and comprises folded and faulted rafts of Early Cretaceous and Late Tertiary bedrock, a prominent organic raft, Quaternary glacial sediments, and buried glacial ice. Three distinct structural domains can be identified within the stratigraphic sequence that represent proximal to distal deformation in an ice-marginal setting. Complex thrust sequences, interfering fold-sets, brecciated bedrock and widespread shear structures superimposed on this ice-marginally deformed sequence record subsequent deformation in a subglacial shear zone. Analysis of cross-cutting relationships within the stratigraphic sequence combined with OSL dating indicate that the Worth Point hill-hole pair was deformed during two separate glaciotectonic events. Firstly, ice sheet advance constructed the hill-hole pair and glaciotectonized the strata ice-marginally, producing a proximal to distal deformation sequence. A glacioisostatically forced marine transgression resulted in extensive reworking of the strata and the deposition of a glaciomarine diamict. A readvance during this initial stage redeformed the strata in a subglacial shear zone, overprinting complex deformation structures and depositing a glaciotectonite ˜20 m thick. Outwash channels that incise the subglacially deformed strata record a deglacial marine regression, whereas aggradation of glaciofluvial sand and gravel infilling the channels record a subsequent marine transgression. Secondly, a later, largely non-erosive ice margin overrode Worth Point, deforming only the most surficial units in the section and depositing a capping till. The investigation of the Worth Point stratigraphic sequence provides the first detailed description of the internal architecture of a polydeformed hill-hole pair, and as such provides an insight into the formation and evolution of an enigmatic landform. Notably, the stratigraphic sequence documents ice-marginal and subglacial glaciotectonics in permafrost terrain, as well as regional glacial and relative sea level histories. The reinterpreted stratigraphy fundamentally rejects the long-established paleoenvironmental history of Worth Point that assumed a simple ‘layer-cake’ stratigraphy including the type-site for an organically rich, preglacial interval (Worth Point Fm).

  9. Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA

    USGS Publications Warehouse

    Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.

    2010-01-01

    The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided, yielding a total of at least eight stratigraphically and statistically distinct aminozones. Kinetic modeling, supplemented with local calibration, indicates that these aminozones represent depositional events ranging from ∼80 ka to nearly 2 Ma. Three prominent seismic reflections are interpreted to represent the base of the early, middle, and late Pleistocene, respectively, roughly 2 Ma, 800 ka, and 130 ka. The large number of samples and the available stratigraphic control provide new insights into the capabilities and limitations of aminostratigraphic methods in assessing relative and numerical ages of Atlantic Coastal Plain Quaternary deposits.

  10. The application of geologic remote sensing to vertebrate biostratigraphy - General results from the Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard

    1991-01-01

    Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.

  11. A three-dimensional stratigraphic model for aggrading submarine channels based on laboratory experiments, numerical modeling, and sediment cores

    NASA Astrophysics Data System (ADS)

    Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.

    2017-12-01

    Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.

  12. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum

    NASA Astrophysics Data System (ADS)

    Kelly, D. Clay; Zachos, James C.; Bralower, Timothy J.; Schellenberg, Stephen A.

    2005-12-01

    The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ˜80 kyr, is represented by an expanded (˜2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997; Zachos et al., 2005).

  13. Trait-based diversification shifts reflect differential extinction among fossil taxa

    PubMed Central

    Wagner, Peter J.; Estabrook, George F.

    2014-01-01

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898

  14. Sequence stratigraphic re-interpretation of [open quotes]stray[close quotes] sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-01-01

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discretemore » stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.« less

  15. Sequence stratigraphic re-interpretation of {open_quotes}stray{close_quotes} sandstones in the Cretaceous Mancos Shale, Book Cliffs, Utah: Implications for exploration models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, G.J.; Howell, J.A.; Flint, S.S.

    1996-12-31

    The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby definingmore » incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.« less

  16. The stratigraphic filter and bias in measurement of geologic rates

    USGS Publications Warehouse

    Schumer, Rina; Jerolmack, Douglas; McElroy, Brandon

    2011-01-01

    Erosion and deposition rates estimated from the stratigraphic record frequently exhibit a power-law dependence on measurement interval. This dependence can result from a power-law distribution of stratigraphic hiatuses. By representing the stratigraphic filter as a stochastic process called a reverse ascending ladder, we describe a likely origin of power-law hiatuses, and thus, rate scaling. While power-law hiatuses in certain environments can be a direct result of power-law periods of stasis (no deposition or erosion), they are more generally the result of randomness in surface fluctuations irrespective of mean subsidence or uplift. Autocorrelation in fluctuations can make hiatuses more or less heavy-tailed, but still exhibit power-law characteristics. In addition we show that by passing stratigraphic data backward through the filter, certain statistics of surface kinematics from their formative environments can be inferred.

  17. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  18. Interdecadal changes in the community, population and individual levels of the fish fauna of an extensively modified estuary.

    PubMed

    Valesini, F J; Cottingham, A; Hallett, C S; Clarke, K R

    2017-05-01

    This study examined inter-period changes over two to three decades in the fish fauna of an urbanized estuary experiencing rapid population growth and a drying climate (Swan-Canning Estuary, Western Australia). Responses were compared at the fish community level (species composition; 1978-2009 in the shallows and 1993-2009 in deeper waters) and at the population and individual levels of an estuarine indicator species, black bream Acanthopagrus butcheri (biomass-abundance and per capita mass at age, respectively; 1993-2009). All three levels showed distinct shifts from earlier to later periods, but their patterns, sensitivity and breadth differed. Community composition changed markedly in the shallows of the lower-middle estuary between the late 1970s and all later periods and moderately between more disparate periods from 1995 to 2009. Several species trends could be linked to the increasing salinity of the estuary or declining dissolved oxygen levels in its middle-upper reaches. Community changes were, however, small or insignificant in the shallow and deeper waters of the upper estuary and deeper waters of the middle estuary, where environmental perturbations are often most pronounced. This may reflect the resilience of the limited suite of species that typify those reaches and thus their lack of sensitivity in reflecting longer-term change at the coarser level of mean abundance. One such species, the selected indicator, A. butcheri, did, however, show marked temporal changes at both the population and individual levels. Biomass decreased markedly in deeper waters while increasing in the shallows from earlier to later periods, presumably reflecting an onshore movement of fish, and per capita body mass in the 2+, 3+ and 4+ year classes fell steadily over time. Such changes probably indicate deteriorating habitat quality in the deeper waters. The study outcomes provide support for a multifaceted approach to the biomonitoring of estuaries using fishes and highlight the need for complementary monitoring of relevant stressors to better disentangle cause-effect pathways. © 2017 The Fisheries Society of the British Isles.

  19. Storm deposits as graves in Early Life: the Fezouata Lagerstätte case (Lower Ordovician, Morocco)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Hormière, Hélène; Martin, Emmanuel L. O.; Lefebvre, Bertrand

    2016-04-01

    The Fezouata Shale (Early Ordovician, Morocco) is renowned in the palaeontological community for its Konservat-Lagerstätte (Tremadocian in age) that yielded thousands of exceptionally well-preserved fossils (EPF) from the Great Ordovician Biodiversification Event. Lower Ordovician deposits in the central Anti-Atlas Mountain (Zagora area) are expressed by the Fezouata Shale and the Zini Formation. They consist in ca. 900m of siltstones and sandstones deposited in an epicontinental sea at the periphery of the Gondwanaland. Sedimentologic field analysis and sequence analysis were achieved on ten stratigraphic sections in order to constrain the palaeoenvironmental context of the Fezouata Biota and to predict the location (geographically and stratigraphically) of new Lagerstätten. Sedimentary structures (cm- to m-scale symmetrical ripples) and geometries (lobe, lobe-channel) point to storm dominance on the sedimentation but peculiar sedimentary features suggest a tide modulation. Thus, a wave-dominated tide-modulated model of deposition recording proximal offshore to shoreface environments for the Fezouata Shale and shoreface to foreshore environments for the overlying Zini Fm is proposed. Layers yielding EPF are argillaceous siltstones (with wave ripples of cm-scale wavelength) always overlain by fine-grained sandstones (distal storm deposits, few cm-thick, several m-long, with cm- to dm-scale hummocky cross-stratifications). Fast burying by storm deposits appear to be of prime importance to initiate the exceptional preservation of the soft tissues of animals in the fossil record. According to the model of deposition it correspond to environments close to the storm weather wave base. Lower Ordovician succession was deposited during a 2nd order cycle, although 3rd and 4th order cycles were also identified. Encoding these different orders of sea level fluctuations giving a value of "1" for the deepest part of sequences (for each order) and a value of "0" for the shallowest, a reconstruction of the sea level fluctuation is then proposed. This reconstruction clearly highlights the stratigraphic position of the today discovered Lagerstätte. It also suggests that a second, younger (Floian in age) stratigraphic interval has very comparable sedimentary conditions in terms of facies and sea level, and has the potential for being a new Lagerstätte in the Fezouata Shale.

  20. 30 CFR 280.71 - What is the timetable for release of data and information?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... related to the deep stratigraphic test at the earlier of the following times: (1) Twenty-five years after...) of this section. (a) If the data and information are not related to a deep stratigraphic test, we... party submit the information (4) Data and information related to a deep stratigraphic test 25 years...

  1. Terrestrial spore-pollen record across the Cenomanian-Turonian hothouse episode

    NASA Astrophysics Data System (ADS)

    Heimhofer, Ulrich; Wucherpfennig, Nina; Adatte, Thierry; Schouten, Stefan; Kujau, Ariane

    2017-04-01

    The Cenomanian-Turonian boundary interval (CTBE) witnessed major perturbations in global biogeochemical cycling, oceanography and climate expressed in the widespread deposition of organic-rich marine shales (OAE2) and a positive carbon isotope excursion (CIE). Whereas the response of marine biota has received considerable attention during the last decades, information on the dynamics of continental ecosystems during the CTBE is still lacking. Given the outstanding warm sea-surface temperatures (SSTs) reconstructed from proxy data for the CTBE, the composition of terrestrial biomes is expected to have responded to the inferred changes in climate. However, global sea-level high-stand and the widespread deposition of organic-rich shales composed almost exclusively of marine organic matter (OM) have hampered attempts to extract terrestrial palynological information from strata covering the CTBE. Here we present palynological and organic-geochemical data from a stratigraphically well-constrained marine succession from the Southern Provence Basin (SPB) located in the western Tethys domain. Carbon isotope data from both carbonate fine-fraction as well as bulk OM show a positive CIE, although of smaller amplitude compared to existing records. TEX86 data indicate very warm SSTs of up to 33°C, which is in line with previous mid-latitude temperature records. The stratigraphic distribution of particulate OM shows high amounts and a stable flux of well-preserved continental OM to the basin, supported by RockEval pyrolysis data and BIT-index. The spore-pollen assemblage is dominated by non-saccate gymnosperm pollen (Inaperturopollenites, Araucariacites, Classopollis) and by angiosperm pollen of the Normapolles group (mainly representatives of Atlantopollis and Complexiopollis). Pteridophyte spores are diverse, but quantitatively less important. With stratigraphic height, the assemblage shows a distinct change due to an up-section increase in Inaperturopollenites and paralleled by a decline in certain species of Atlantopollis (most pronounced in Atlantopollis microreticulatus). These changes occur in concert with the onset of the positive CIE (in organic carbon) and predate the Cenomanian-Turonian boundary. The integrated palynological and geochemical dataset from the SPB documents the composition of mid-latitude floral assemblages during a phase of exceptional global warmth. Despite the outstanding temperatures, a diverse and rich flora occupying various habitats in the hinterland of the SPB is observed. The prominent shift in the spore-pollen stratigraphic distribution may reflect increasing temperatures during OAE2 resulting in an impoverished hothouse flora. However, effects of sea-level fluctuations and changing oceanographic patterns may also play a role in the observed stratigraphic patterns.

  2. Two stages of deformation and fluid migration in the central Brooks Range fold-and-thrust belt

    USGS Publications Warehouse

    Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.; Shelton, Kevin L.; Underwood, Michael B.

    2004-01-01

    We conclude that hydrocarbon generation from Triassic and Jurassic source strata and migration into stratigraphic traps occurred primarily by sedimentary burial principally at 100-90 Ma, between the times of the two major episodes of deformation. Subsequent sedimentary burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and initiated some new hydrocarbon generation progressively higher in the section. Structural disruption of the traps in the early Tertiary released sequestered hydrocarbons. The hydrocarbons remigrated into newly formed structural traps, which formed at higher structural levels or were lost to the surface. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas.

  3. Upper Albian to Lower Turonian deposits and associated breccias along the Dahar cuestas (southeastern Tunisia): Origin and depositional environments

    NASA Astrophysics Data System (ADS)

    Krimi, Mabrouk; Ouaja, Mohamed; Zargouni, Fouad

    2017-11-01

    The carbonate Zebbag Formation of Upper Albian to Lower Turonian age which outcrops along the Dahar cuestas (south eastern Tunisia) includes several breccia intervals. The stratigraphic hierarchy of these breccia levels led to achieving a detailed sequential analysis within a spectrum of depositional environments extending from subtidal to inner to middle ramp settings. Six major transgressive/regressive sequences make up the stacking of the elementary sequences beginning with transgressive and/or storm wave breccias capped by desiccation and/or collapse breccias. The stratigraphic evolutionary history of the breccia facies are interpreted as the result of the interplay between eustatic and tectonic factors. This model is in accord with the tectonic activities common during Upper Albian-Lower Turonian responsible for the sequences onlapping.

  4. Lavas and Sills in the Ferrar Large Igneous Province: Field and Geochemical Evidence for the Order of Emplacement.

    NASA Astrophysics Data System (ADS)

    Elliot, D. H.; Fleming, T. H.

    2005-12-01

    Many large igneous provinces, particularly those associated with Gondwana break-up, include major sill complexes as well as flood basalt fields. In the Ferrar province, radiometric dates of lavas and sills are indistinguishable. Nevertheless, in north Victoria Land (NVL) field evidence suggests the lavas had to have been erupted first in order to create the overburden needed for emplacement at shallow depths of thick sills, lacking vesicles, in a thin (100 m) Upper Triassic sedimentary sequence overlying basement. Elsewhere in the Transantarctic Mountains sills occur almost exclusively in a thick (2-2.5 km) Devonian-Triassic sedimentary sequence (Beacon Supergroup) that was possibly capped by 500+m of lavas before sill emplacement. For south Victoria Land (SVL), Marsh (2004) proposed that the most evolved rocks were erupted first as lavas, and sills were emplaced at progressively greater depth as increasingly more magnesian magmas and crystal mushes were injected into supracrustal and finally basement rocks. In NVL most lavas have MgO between 6-8% with a few as low as 4.5% MgO, whereas analyzed chilled margins of sills range from 3.7-5.6% MgO. In the Prince Albert Mountains (PAM), SVL, lava and sill compositions overlap (3.9-7.3% MgO). In the greater Dry Valleys region (SVL) lavas at Carapace Nunatak range from 3.6-6.7% MgO; chilled margins of Dry Valleys sills range from about 4.2 to 7.2% MgO. In the Queen Alexandra Range, central Transantarctic Mountains (CTM), lavas are predominantly 2.6-5.7% MgO; sills in the region range from 4.5% to 10.7% MgO. In the Otway Massif region (head of the Shackleton Glacier, CTM) most lavas are strongly evolved (2.7-3.4% MgO); sills in the Shackleton Glacier region range from 4.3-7.3% MgO. Nowhere do lavas show unequivocal systematic temporal change in MgO, and notably in CTM the initial flows are the most mafic (7.5-8.0% MgO). Olivine dolerite sills (chilled margins: -9% MgO) tend to occur low in the stratigraphic section. Except for NVL where Beacon strata exposures are limited, sills are thicker (100-200 m) and more regular in lower stratigraphic levels. Sills with orthopyroxene crystal-mush tongues are not known outside the Dry Valleys except perhaps the Warren Range (SVL). No province-wide systematic relationship is apparent between compositions of lavas and sill chilled margins. Nevertheless, in CTM most lavas are significantly more evolved than the sills; within the sills there is no clear relationship between MgO and stratigraphy, and some less evolved compositions occur at relatively high stratigraphic levels. In SVL compositional overlap is almost complete; locally, cross-cutting relations show more mafic sills and sheets cutting less mafic compositions. In NVL the chemical relations between lavas and sills are opposite from those that have been advocated for SVL. Interpretation is compounded by sills that exchange stratigraphic position or climb stratigraphically. Factors affecting magma emplacement include magma density, lithostatic pressure, overpressures required for lateral emplacement, and rock physical properties; when and where the evolving source was tapped may play an equal role in the emplacement order. Further, detailed work on the sills will show whether crystallization might have yielded lower density residual liquids that could have migrated and formed distal fingers of sills or migrated to higher stratigraphic levels.

  5. Transitions in Lava Emplacement Recorded in the Deccan Traps Sequence (India)

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2015-12-01

    Transitions in the style of lava flow emplacement are recognized in the stratigraphic sequence of several mafic large igneous provinces (LIPs), including the Etendeka (Namibia), the Faeroe Islands (North Atlantic LIP), the Ethiopian Traps, and the Deccan Traps (India). These transitions, from units dominated by meter-sized pāhoehoe toes and lobes to those dominated by inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, seems to be a fundamental feature of LIP emplacement. In the Deccan, this volcanological transition is thought to coincide with deeper changes to the volcano-magmatic system expressed, notably, in the trace element and isotopic signature of erupted flows. We investigated this transition in the Deccan Traps by logging eight sequences along the Western Ghats, an escarpment in western India where the Deccan province is thickest and best exposed. The Deccan province, which once covered ~1 million km2 of west-central India, is subdivided in eleven chemo-stratigraphic formations in the type sections of the Western Ghats. Where the lower Deccan formations are exposed, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. On this basis, the traditional view that inflated sheet lobes are an exclusive feature of the upper part of the stratigraphy must be challenged. Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  6. Paleolimnology of lacustrine rocks in Stewart Valley, Nevada: Evidence for Middle Miocene climatic cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starrat, S.W.

    1993-04-01

    Three diatom floras from Middle Miocene (Barstovian and Clarendonian) lacustrine rocks in Stewart Valley, Nevada have been distinguished. The change in floral composition between the two youngest floras may be indicative of climatic cooling over a period of about 3 m.y. (15--12 Ma). Age control is provided by radiometric (K-Ar) and vertebrate fossil data. The oldest flora is dominated by members of the genus Fragilaria'. Although most common in modern-day marshy areas, the laminated nature of the Stewart Valley strata in which this flora is found suggest that large numbers of these diatoms were washed into deeper waters, where theymore » continued to thrive as a significant part of the planktonic biomass. Stratigraphically equivalent rocks elsewhere in Stewart Valley contain abundant clusters of unopened prasinophyte algae. These unopened algal structures are thought to indicate extreme environmental stress. Environmental stress would also explain the presence of several beds of well-preserved fish fossils in stratigraphically adjacent beds. The other tow floras are preserved in a 45-m-thick section of diatomaceous shale, located about 95 m above the flora discussed above. The flora in the lower part of this section is dominated by the genus Aulacoseira (primarily A. granulata). Modern-day members of this genus are common in areas with abundant summer precipitation and mild winters. The flora in the upper part of the section is dominated by Actinocyclus cedarensis Bradbury and Krebs. If A. cedarensis can be considered an ecological analog of the late Pleistocene (glacial) representatives of the genus Stephanodiscus, then its dominant position in the flora may be indicative of a cooling event. This climate trend is also evident in paleobotanical (leaf and pollen) data from Stewart Valley, as well as many other localities across the Great Basin.« less

  7. Ash Shutbah: A possible impact structure in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Gnos, Edwin; Hofmann, Beda A.; Schmieder, Martin; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.; Matter, Albert; Alwmark, Carl

    2014-10-01

    We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37'N 45°39'E) using satellite imagery, field mapping, thin-section petrography, and X-ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat-lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz-rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea- or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward-dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat-lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.

  8. Improving the Hydro-stratigraphic Model of the Oxnard Forebay, Ventura County, California, using Transient Electromagnetic Surveying

    NASA Astrophysics Data System (ADS)

    Quady, Maura Colleen

    2013-01-01

    To characterize the hydro-stratigraphy of an area, drilling and well logs provide high resolution electrical resistivity data, albeit for limited areas (points). The expense of drilling indirectly leads to sparse data and it is necessary to assume lateral homogeneity between wells when creating stratigraphic maps. Unfortunately, this assumption may not apply to areas in complex depositional and tectonically active settings. The goal of this study is to fill in data gaps between wells in a groundwater basin in order to better characterize the hydro-stratigraphy under existing and potential sites for managed aquifer recharge. Basins in the southern California study area have been used for decades to recharge surface water to an upper aquifer system; this work also addresses whether the local hydro-stratigraphy favors surface infiltration as a means to recharge water to the lower aquifer system. Here, soundings of transient electromagnetism (TEM), a surface geophysical method, are correlated with nearby down-hole resistivity and lithology well logs for grain size interpretations of the subsurface in unsaturated conditions. Grain size is used as a proxy for permeability (hydraulic conductivity), with resistivity contrasts highlighting variations in the media, which would affect groundwater flow in both vertical and horizontal directions. Results suggest a nearly horizontal, extensive, low permeability layer exists in the area and only a few noted locations are favorable for surface -to-lower aquifer system recharge. Furthermore, zones of higher permeability deeper than the upper aquifer system are discontinuous and isolated among lower permeability zones. However, the TEM profiles show areas where lower permeability zones are thin, and where alternatives to surface percolation methods could be explored. In addition, the survey adds information about the transition between the upper and lower aquifer systems, and adds detail to the topography of the base of freshwater. Finally, this work effectively decreases the interpolation distance between data points of wellbores, and when viewed in sequence the TEM profiles present a 3D depiction of basin hydro-stratigraphy.

  9. Burial history of Upper Cretaceous and Tertiary rocks interpreted from vitrinite reflectance, northern Green River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, W.W.; Law, B.E.

    1985-05-01

    The burial history of Upper Cretaceous and Tertiary rocks in the northern Green River basin is difficult to reconstruct for three reasons: (1) most of these rocks do not crop out, (2) there are few stratigraphic markers in the subsurface, and (3) regional uplift beginning during the Pliocene caused erosion that removed most upper Tertiary rocks. To understand better the burial and thermal history of the basin, published vitrinite reflectance (R/sub o/) data from three wells were compared to TTI (time-temperature index) maturation units calculated from Lopatin reconstructions. For each well, burial reconstructions were made as follows. Maximum depth ofmore » burial was first estimated by stratigraphic and structural evidence and by extrapolation to a paleosurface intercept of R/sub o/ = 0.2%. This burial was completed by early Oligocene (35 Ma), after which there was no net deposition. The present geothermal gradient in each well as used because there is no geologic evidence for elevated paleotemperature gradients. Using these reconstructions, calculated TTI units agreed with measured R/sub o/ values when minor adjustments were made to the estimated burial depths. Reconstructed maximum burials were deeper than present by 2500-3000 ft (762-914 m) in the Pacific Creek area, by 4000-4500 ft (1219-1372 m) in the Pinedale area, and by 0-1000 ft (0-305 m) in the Merna area. However, at Pinedale geologic evidence can only account for about 3000 ft (914 m) of additional burial. This discrepancy is explained by isoreflectance lines, which parallel the Pinedale anticline and indicate that approximately 2000 ft (610 m) of structural relief occurred after maximum burial. In other parts of the basin, isoreflectance lines also reveal significant structural deformation after maximum burial during early Oligocene to early Pliocene time.« less

  10. Geological evidence for a 2.6-Ga strewn field of impact spherules in the Hamersley Basin of Western Australia

    NASA Technical Reports Server (NTRS)

    Simonson, Bruce M.

    1992-01-01

    Sand-sized spherules up to 1.7 mm across with spherulitic, vesicular, and other crystalline textures that consist mainly of K-feldspar help define a unique horizon in the well-preserved 2.6-Ga Wittenoom Formation in the Hamersley Basin of Western Australia. This layer is informally known as the spherule marker bed. In the northeastern part of the Hamersley Basin, similar spherules again occur at only one horizon, but here they are a minor constituent of a dolomitic debris-flow deposit known as the dolomixtite layer. The dolomixtite layer occurs in the Carawine Dolomite, which is stratigraphically equivalent to the Wittenoom Formation. Moreover, paleocurrent data from closely associated carbonate and volcaniclastic turbidites indicate the spherule marker bed was deposited in deeper-water paleoenvironments than the dolomixtite layer. Therefore, the dolomixtite layer is believed to be a proximal equivalent of the spherule marker bed. The layers that host the spherules are interpreted to be the deposits of a major sediment gravity flow that exhumed and redeposited most of the spherules after shallow burial, although the flow is not believed to have been a direct result of the proposed impact. The most likely site for the proposed impact would have been in the early Precambrian ocean close to the northeastern edge of the Pilbara Craton. Another thin horizon in the overlying Brockman Iron Formation contains spherules that again consist largely of K-feldspar and have internal textures strikingly similar to those of the Wittenoom Formation and Carawine Dolomite. The close resemblance of these spherules to those of the Wittenoom Formation and Carawine Dolomite suggests they also originated as impact melt droplets, even though they are admixed with volcaniclastic detritus. The stratigraphic separation between the two suggests that a second major impact occurred near the Hamersley Basin after a time interval of about 75 m.y. elapsed. This suggests the record of impacts in early Precambrian strata is richer than is generally appreciated.

  11. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios observed in coatings from the TCw, these data indicate that evaporation decreases with depth in the UZ. Evaporation at the repository horizon and in the overlying units is an important process that reduces the amount of seepage at the repository horizon.

  12. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America

    PubMed Central

    Fowler, Denver Warwick

    2017-01-01

    Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy. PMID:29166406

  13. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America.

    PubMed

    Fowler, Denver Warwick

    2017-01-01

    Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy.

  14. The stratigraphic filter and bias in measurement of geologic rates

    USGS Publications Warehouse

    Schumer, R.; Jerolmack, D.; McElroy, B.

    2011-01-01

    Erosion and deposition rates estimated from the stratigraphic record frequently exhibit a power-law dependence on measurement interval. This dependence can result from a power-law distribution of stratigraphic hiatuses. By representing the stratigraphic filter as a stochastic process called a reverse ascending ladder, we describe a likely origin of power-law hiatuses, and thus, rate scaling. While power-law hiatuses in certain environments can be a direct result of power-law periods of stasis (no deposition or erosion), they are more generally the result of randomness in surface fluctuations irrespective of mean subsidence or uplift. Autocorrelation in fluctuations can make hiatuses more or less heavy-tailed, but still exhibit power-law characteristics. In addition we show that by passing stratigraphic data backward through the filter, certain statistics of surface kinematics from their formative environments can be inferred. Copyright ?? 2011 by the American Geophysical Union.

  15. Sedimentological indicators of paleoenvironments and siliciclastic stratigraphic sequences in some Miocene deposits of the Calvert Cliffs, southern Maryland

    USGS Publications Warehouse

    Shideler, G.L.

    1994-01-01

    Middle Miocene siliciclastic deposits comprising the Calvert Cliffs section at the Baltimore Gas and Electric Company's (BG&E) nuclear power plant site in southern Maryland were analyzed in terms of lithostratigraphy, sedimentary structures, and granulometric parameters, to interprete paleo-environments within a sequence-stratigraphic framework. In terms of sequence-stratigraphic models, the BG&E section can be interpreted as consisting of two genetic stratigraphic sequences (Galloway model), namely, a shelf sequence and an overlying deltaic sequence. Using the Exxon model, the section consists of two third-order (1-5 m.y. duration) depositional sequences. The stratigraphic sequences of the BG&E section reflect both relatively short-term eustatic transgressive events, as well as a long-term regressive trend with associated local deltation and coastal progradation. The regression probably signified a regional basinward shift of depocenters within the Salisbury embayment during Miocene time. -from Author

  16. Some debatable problems of stratigraphic classification

    NASA Astrophysics Data System (ADS)

    Gladenkov, Yury

    2014-05-01

    Russian geologists perform large-scale geological mapping in Russia and abroad. Therefore we urge unification of legends of geological maps compiled in different countries. It seems important to continuously organize discussions on problems of stratigraphic classification. 1. The stratigraphic schools (conventionally called "European" and "American") define "stratigraphy" in different ways. The former prefers "single" stratigraphy that uses data proved by many methods. The latter divides stratigraphy into several independent stratigraphers (litho-, bio-, magneto- and others). Russian geologists classify stratigraphic units into general (chronostratigraphic) and special (in accordance with a method applied). 2. There exist different interpretations of chronostratigraphy. Some stratigraphers suppose that a chronostratigraphic unit corresponds to rock strata formed during a certain time interval (it is somewhat formalistic because a length of interval is frequently unspecified). Russian specialists emphasize the historical-geological background of chronostratigraphic units. Every stratigraphic unit (global and regional) reflects a stage of geological evolution of biosphere and stratisphere. 3. In the view of Russian stratigraphers, the main stratigraphic units may have different extent: a) global (stage), b) regional (regional stage,local zone), and c) local (suite). There is no such hierarchy in the ISG. 4. Russian specialists think that local "lithostratigraphic" units (formations) which may have diachronous boundaries are not chronostratigraphic ones in strict sense (actually they are lithological bodies). In this case "lithostratigraphy" can be considered as "prostratigraphy" and employed in initial studies of sequences. Therefore, a suite is a main local unit of the Russian Code and differs from a formation, although it is somewhat similar. It does not mean that lithostratigraphy is unnecessary. Usage of marker horizons, members and other bodies is of great help. Lithostratigraphy may be regarded as the start of geological mapping on scales of 1 : 10 000, 1 : 25 000 or 1 : 50 000, and lithostratigraphic subdivisions can be used as the mapping units because they practically have isochronic boundaries when we deal with geological mapping on these scales. 5. Russian geologists interpret a chronozone (defined with due account of the standard assemblage-zone) as a part of a stage. In opinion of other specialists, zones serve as correction markers. This gives rise to controversy where zonal scales are needed for the Phanerozoic or whether stage scales are sufficient. In the Russian Code a chronozone is referred to general stratigraphic units (less than a stage). 6. The popular GSSP "concept" may be is inadequate in the broad sense because stages remain "empty" and do not reflect geological events. The search of "golden spikes" can be useful as a part of comprehensive investigations of stratigraphic subdivisions. "Silver" and other type spike-markers can be used as well as recommended by event stratigraphy (Ager, 1973). 7. A new version of "International Stratigraphic Guide" should include not only recommendations but also alternative views. However the work must not be done in a hurry! In avoid bias representatives of interested countries should be involved. Finally, I would like to make two proposals. Proposal 1. A special symposium should be held during the second International Congress on Stratigraphy-2015 to review national stratigraphic codes (USA, Germany, Great Britain, China, Russia, Australia and other countries). This can provide better understanding of their similarities and dissimilarities and enable to realize how much they differ from each other. The review may show the present state of the stratigraphic classification and reveal both pressing and alleged problems of stratigraphy of the early XXI century. Proposal 2. It would be appropriate to prepare a special publication presenting briefly codes of different countries. Every national code is described on two pages: a tabled stratigraphic classification on one page and comments on another. Such publication would be most helpful.

  17. Site Effects estimation in the Po Plain area (Northern Italy): correlation between passive geophysical surveys and stratigraphic evidence

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Argnani, Andrea; Poggi, Valerio; Martelli, Luca; Albarello, Dario; Pergalani, Floriana; Compagnoni, Massimo; Lovati, Sara

    2017-04-01

    The recent case of the 2012, Mw 6.1, Emilia seismic sequence (Northern Italy) highlighted the importance of the site effects estimation in the Po Plain, the larger and deeper Italian sedimentary basin. This study, applied on extensive collection of geophysical and geological data in the entire area, allows a macrozonation of the site effects estimation, useful for scientific and applied purpose. In particular, site-response analysis can be performed in defined macrozones, where the geological-geotecnical and geophysical characteristics are homogeneous at macroscale. The collection of the available stratigraphic discontinuities and passive geophysical surveys (single station and array measurements) allowed defining a general macrozonation in terms of amplified frequencies and shear waves velocity (Vs) gradients. The correlation between the obtained geophysical evidence and the known geological information can then be crucial in order to define the most important stratigraphic discontinuities responsible for the local seismic amplification. In particular, ambient vibration data, recorded by all permanent and temporary seismic stations installed in the target region, were collected and then analyzed with the Nakamura technique, to determine the H/V spectral ratio. Moreover, all the available ambient vibration arrays where collected and analyzes to assess the local Vs profile, considering the Rayleigh waves fundamental mode. The Po Plain stratigraphy is defined by regional unconformities (aquifer limits) that have been extensively mapped throughout the basin and by regional geological and structural maps. In general, the H/V results show two ranges of amplified frequencies, both lower than 1 Hz: the former at frequencies lower than about 0.25 Hz and the latter between 0.4 and 1 Hz. The higher frequency range moves from about 0.4 Hz, in the eastern-Adriatic part of the plain, to about 0.8-1.0 Hz in the central and western part. Based on the available seismic array results, this amplification peak seems related to a velocity discontinuity, located in general between 100 m and 300 m of depth, where the Vs exceed 800 m/s. This interface can be ascribed to the seismic bedrock according to the actual seismic code (NTC 2008, Vs> 800 m/s, class A) and may be related to different stratigraphic discontinuities moving from East to West. In order to verify the supposed correspondence between geophysical and geological data, also the H/V ratio where inverted, considering the Sanchez-Sesma method and the nearest array velocity profile as indicative for the target inversion. Finally, an empirical relation between amplified frequencies and depths was calculated, allowing to preliminary map, at regional scale, the most important geological discontinuities for the site effects evaluation. An example of site-specific hazard analysis was performed in correspondence of the INGV seismic station CTL8 in terms of displacement response spectra for periods up to 10 s. The results show that neglecting the effects of the deep discontinuities implies underestimation in hazard evaluation of up to about 49% for MRP of 475 years and about 57% for MRP of 2,475 years, with possible consequences on the design of very tall buildings and large bridges.

  18. The Offshore New Harbor (ONH) Seismic Expedition: Revealing the Stratigraphic History in the Southern McMurdo Sound Region, Ross Sea, Antarctica from the Greenhouse to Icehouse Worlds

    NASA Astrophysics Data System (ADS)

    Pekar, S. F.; Speece, M. A.; Wilson, G. S.; Sunwall, D. A.; Tinto, K. J.

    2010-12-01

    In the austral spring 2008, the ANDRILL (ANtarctic geological DRILLing) Program’s Offshore New Harbor Expedition successfully collected over 48 km of multi-channel seismic (MCS) data to investigate the stratigraphic and tectonic history of westernmost Southern McMurdo Sound during the Greenhouse World (Eocene) and the start of the Icehouse World (Oligocene). This survey represents an important step for identifying future drilling targets for ANDRILL, which is a multinational program, with the aim to recover stratigraphic intervals for interpreting Antarctica’s climate and glacial history over the past 50 million years. The goal of the Offshore New Harbor Project is to recover proximal archives from two widely recognized but unresolved time intervals regarding Antarctica’s history: 1) the mid-Paleogene cryospheric development on Antarctica; and 2) the abrupt climate shift across the Eocene/Oligocene transition. The ONH seismic survey used methods successfully employed by previous ANDRILL’s surveys in Southern McMurdo Sound (2005) and in Mackay Sea Valley (2007), which included deploying a Generator Injector (G.I.) airgun through holes drilled through the ice and a 1.5 km long streamer that used 60 gimbled geophones to measure the returning reflected seismic energy. Processing of the seismic data was successfully able to remove the bottom water multiple, permitting deeper seismic reflectors to be identified for the first time in this area. Since one of the two seismic lines crossed close to the previously drilled CIROS-1, correlation was possible between the seismic reflectors and the entire stratigraphic section at CIROS-1, which has been dated as old as Late Eocene (~37 Ma). Additionally, seismic and gravity data indicated that a thick sedimentary wedge of up to 5 km lie immediately east of CIROS-1. With the Devonian Beacon Sandstone Formation having been observed to be no thicker than 2 km on land, an additional 3 km of Cenozoic sediments may lie below and down dip of CIROS-1. The Oligocene strata are characterized by a clinoformal geometry, with reflectors down lapping onto the two prominent reflectors that correspond to the Eocene / Oligocene Boundary and the “mid” Oligocene hiatus recognized in the CIROS-1 borehole. These new data support the idea that substantial Eocene and Oligocene strata can be recovered by drilling east of the location of the CIROS-1 borehole. The upper units imaged below the base of CIROS-1 represent the potential for future drilling objectives for the ANDRILL Program. Additionally, reflectors that contained trough-like shapes were interpreted as representing incised valleys, which were most likely cut by ice streams. These valleys provide prima facie documentation of when the ice sheet extended beyond the present-day coastline. These reflectors were correlated to CIROS-1 as well as the ANDRILL AND-2A borehole, providing ages on the timing of major ice stream advances of the East Antarctic Ice Sheet in the western Ross Sea area.

  19. Environmental and faunal change in the Jurassic Sundance Seaway, western United States: a stratigraphic palaeobiological approach

    NASA Astrophysics Data System (ADS)

    Danise, Silvia; Holland, Steven

    2017-04-01

    Understanding how regional ecosystems respond to sea level and environmental perturbations is a main challenge in palaeoecology. Here we use quantitative abundance estimates, integrated within a sequence stratigraphic and environmental framework, to reconstruct benthic community changes through the 13 myr history of the Jurassic Sundance Seaway in the western United States. Faunal censuses of macroinvertebrates were obtained from marine rocks of the Gypsum Spring, Sundance and Twin Creek formations at 44 localities in Wyoming, Montana and South Dakota. Fossils were identified to species wherever possible. Ordination of samples shows a main turnover event at the Middle-Upper Jurassic transition, which coincided with the shift from carbonate to siliciclastic depositional systems in the Seaway. This shift was probably initiated by the northward migration of the North American Plate, which moved the study area from subtropical latitudes, fostering an arid climate, into progressively more humid conditions, and possibly also by global cooling at this time. Turnover was not uniform across the onshore-offshore gradient, but was higher in offshore environments, in both carbonate and siliciclastic settings. Both the Jaccard and the Bray-Curtis similarity measures indicate that taxonomic similarity decreases from onshore to offshore in successive third-order depositional sequences, although similarity values are low for both onshore and offshore environments The higher resilience of onshore communities to third-order sea-level fluctuations and to the change from a carbonate to a siliciclastic system was driven by a few abundant eurytopic species that persisted from the opening to the closing of the Seaway and that were not restricted to single depositional environments or sequences. Lower stability in offshore facies was instead controlled by the presence of more volatile stenotopic species. Such increased onshore stability in community composition contrasts with the well-documented onshore increase in taxonomic turnover rates, and indicates the need for ecological studies to complement taxonomic studies of macroevolutionary events. This study also shows how a stratigraphic palaeobiological approach is essential for understanding the link between environmental and faunal gradients, and for understanding the long-term changes in these gradients over time that produce the local stratigraphical pattern of changes in community composition.

  20. Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

    NASA Astrophysics Data System (ADS)

    Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda

    2018-06-01

    Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.

  1. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    NASA Astrophysics Data System (ADS)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight correlation to fracture spacing. Furthermore, bed thickness is found to be only one factor in determining fracture density but with increasing strain, internal bedforms and rock petrophysical heterogeneities influence fracture density patterns. This study illustrates how integrating sedimentologic and sequence stratigraphic interpretations with data on structural kinematics can lead to refined predictive understanding of fracture attributes.

  2. An investigation into the blood-flow characteristics of telangiectatic skin lesions in systemic sclerosis using dual-wavelength laser Doppler imaging.

    PubMed

    Murray, A K; Moore, T L; Griffiths, C E M; Herrick, A L

    2009-07-01

    Superficial telangiectases associated with systemic sclerosis may be more responsive to treatment than those deeper in the dermis. We investigated whether dual-wavelength laser Doppler imaging (LDI) is sufficiently sensitive to ascertain the distribution of blood flow within telangiectases and whether blood flow relates to telangiectatic diameter. The perfusion and diameter of 20 telangiectases were measured in superficial and deeper layers of the skin using dual-wavelength LDI. Of 20 telangiectases, 18 had higher blood flow in the red (representing deeper blood flow), rather than the green (representing superficial blood flow) wavelength images. Clinically apparent diameters correlated with those of the superficial (r = 0.61, P = 0.01), but not with the deeper blood flow images. Hence, the apparent size of telangiectases at the skin surface does not predict blood flow through the microvessel(s) at deeper levels, and thus clinically apparent size is unlikely to predict treatment response. Dual-wavelength LDI may help predict treatment response.

  3. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada

    USGS Publications Warehouse

    Silberling, Norman J.; Nichols, K.M.

    1982-01-01

    Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide the basis for revising the classic monograph on Middle Triassic marine invertebrates of North America published in 1914 by J. P. Smith and based largely on stratigraphically uncontrolled collections from the Humboldt Range. Taxonomic treatment of these collections, old and new, from the Humboldt Range provides the documentation necessary to establish this Middle Triassic succession as a biostratigraphic standard of reference.Of the 68 species of ammonites described or discussed, 4 are from the lower Anisian, 20 from the middle Anisian, 39 from the upper Anisian, 4 from the lower Ladinian, and 1 from the upper Ladinian. A few additional ammonite species from other localities in Nevada are also treated in order to clarify their morphologic characteristics and stratigraphic occurrence. Other elements in the Middle Triassic molluscan faunas of the Humboldt Range comprise five species of nautiloids and three of coleoids from the middle and upper Anisian parts of the section. Eight more or less stratigraphically restricted species of Daonella occur in the upper Anisian and Ladinian.

  4. Relationship of geological and geothermal field properties: Midcontinent area, USA, an example

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Brower, J.C.

    1993-01-01

    Quantitative approaches to data analysis in the last decade have become important in basin modeling and mineral-resource estimation. The interrelation of geological, geophysical, geochemical, and geohydrological variables is important in adjusting a model to a real-world situation. Revealing the interdependences of variables can contribute in understanding the processes interacting in sedimentary basins. It is reasonably simple to compare spatial data of the same type but more difficult if different properties are involved. Statistical techniques, such as cluster analysis or principal components analysis, or some algebraic approaches can be used to ascertain the relations of standardized spatial data. In this example, structural configuration on five different stratigraphic horizons, one total sediment thickness map, and four maps of geothermal data were copared. As expected, the structural maps are highly related because all had undergone about the same deformation with differing degrees of intensity. The temperature gradients derived (1) from shallow borehole logging measurements under equilibrium conditions with the surrounding rock, and (2) from non-equilibrium bottom-hole temperatures (BHT) from deeper depths are mainly independent of each other. This was expected and confirmed also for the two temperature maps at 1000 ft which were constructed using both types of gradient values. Thus, it is evident that the use of a 2-point (BHT and surface temperature) straightline calculation of a mean temperature gradient gives different information about the geothermal regime than using gradients from temperatures logged under equilibrium conditions. Nevertheless, it is useful to determine to what a degree the larger dataset of nonequilibrium temperatures could reflect quantitative relationships to geologic conditions. Comparing all maps of geothermal information vs. the structural and the sediment thickness maps, it was determined that all correlations are moderately negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.

  5. Agglutinated foraminifera from the Ludlow (Silurian) of Ireland

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael; Ferretti, Annalisa; Messori, Fabio; Papazzoni, Cesare Andrea; Sevastopulo, George

    2017-04-01

    Agglutinated foraminifera are one of the most primitive groups of foraminifera, possibly already appearing in the Cryogenian but usually rare in lower Paleozoic rocks. Their mean standing diversity slowly increased during Cambrian and Ordovician times, reaching a stable value of about 50 genera in the mid-Silurian which remained fairly constant up to the Triassic. An assemblage of agglutinated foraminifera was unexpectedly found in conodont residue from material collected in the Dingle Peninsula, County Kerry, southwestern Ireland. This material comes from rare calcareous occurrences in volcanoclastics previously known for their rich trilobite and conodont assemblages. The limestones are trilobite-crinoidal silty wackestone to packstone, with local brachiopod concentrations, documenting brachiopod-trilobite-crinoidal dominated communities of shallow and well-ventilated water that might have periodically colonized the bottom intercalating with volcanic events and then successively redeposited in deeper waters. The conodont fauna indicates an early Ludlow (Gorstian-earliest Ludfordian) age (Kaminski et al., 2016). The foraminiferal assemblage has limited potential for stratigraphical correlation as long-range taxa are present, but it represents the first record from the Silurian of Ireland. The assemblage is dominated by tubothalamids (Rectoammodiscus and rare Sansabaina), with less abundant monothalamids (Psammosiphonella and Psammosphaera). The assemblage displays low diversity compared with other assemblages described from the British Isles (Kircher & Brasier, 1989). At the species level, this assemblage is identical to those described previously from the Silurian of North America but with lower diversity. Only Rectoammodiscus diai had apparently a wider geographic distribution, including not only the central USA (Oklahoma and Kansas) but also the Welsh Borderlands and Senegal. The affinities with the assemblages reported at several localities in the central United States that were parts of Laurentia during Silurian times appears to confirm data derived from paleomagnetic analysis of Homerian (upper Wenlock) sediments from the Dingle Peninsula (Mac Niocaill, 2000) indicating that the ocean between Laurentia and Avalonia had narrowed to below the limits of paleomagnetic resolution already by Wenlock time. Kaminski M.A, Ferretti A., Messori F., Papazzoni C.A. & Sevastopulo G. 2016. Silurian agglutinated foraminifera from the Dingle Peninsula, Ireland. Bollettino della Società Paleontologica Italiana, 55, 127-138. Kircher J.M. & Brasier M.D. 1989. Cambrian to Devonian. In Jenkins D.G. & Murray J.W. (eds), Stratigraphical Atlas of Fossil Foraminifera. 593 pp. Ellis Horwood Ltd., Chichester. Mac Niocaill C. 2000. A new Silurian palaeolatitude for eastern Avalonia and evidence for crustal rotations in the Avalonian margin of southwestern Ireland. Geophysical Journal International, 141, 661-671.

  6. Storm-related sedimentation influenced by coastal configuration in the stratigraphic record of a tectonically active shelf (Upper Pleistocene Le Castella terrace, Italy)

    NASA Astrophysics Data System (ADS)

    Nalin, Ronald; Massari, Francesco

    2018-03-01

    Analysis of patterns of coastal circulation and sediment dispersal is an essential step for the study of controlling factors influencing the long-term dynamics of coastal systems. Modern settings offer the possibility to monitor relevant parameters over relatively short time spans. However, geological examples complement this perspective by providing a time-averaged record where longer trends and stratigraphically significant processes can be evaluated. This study investigates the shallow marine deposits of Le Castella terrace (Upper Pleistocene, southern Italy) to document how patterns of circulation influenced by coastline configuration can affect the preserved millennial-scale depositional record of a progradational shoreline system. The regressive portion of the Le Castella terrace deposits, developed during a relative sea-level highstand and falling stage, consists of a progradational wedge mainly composed of redistributed skeletal particles of a coeval shallow water carbonate factory. Preservation of the morphology of the paleocoastline and abundant current-related sedimentary structures allow reconstruction of the predominant sediment dispersal dynamics responsible for the formation of this sedimentary wedge. Facies and paleocurrent analysis indicate offshore and alongshore sediment transport modes, consistent with coastal circulation driven by storms normally incident to the shoreline and a sharp change in coastline orientation. This coastal inflection influenced circulation patterns causing flow separation and eddy formation in the lee of the curved coastline. Syndepositional tectonic deformation also affected the architecture of the preserved deposits, controlling the nucleation and development of a clinostratified body and determining localized lateral stratigraphic variability. This study illustrates how transient but recurrent circulation patterns associated with changes in coastal orientation and related to high-energy storm events can leave a predominant signature in the stratigraphic record of microtidal shallow-marine successions.

  7. Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin, NE Iran

    NASA Astrophysics Data System (ADS)

    Zand-Moghadam, Hamed; Moussavi-Harami, Reza; Mahboubi, Asadollah; Aghaei, Ali

    2016-05-01

    The Upper Jurassic (Oxfordian-Kimmeridgian) Mozduran Formation is the most important gas reservoirs of the northeast Iran. Siliciclastic facies of this formation in eastern most parts of the basin have not been studied yet. Therefore, four stratigraphic sections of Mozduran Formation have been selected in the Kole-Malekabad, Kale-Karab, Deraz-Ab and Karizak to interpret depositional history and analyze depositional sequences. Based on texture and sedimentary structures, 14 slilciclastic lithofacies were identified and classified into four categories, including conglomerate (Gms, Gp, Gt), sandstone (Sh, Sp, St, Sr, Sl, Sm, Se), mud rock (Fl) and intermediate sandstone-mud rock (Sr (Fl), Sr/Fl, Fl (Sr)). Identified lithofacies formed four architectural elements CH, SB, LA and FF. Lithofacies characteristics and architectural elements with mostly bimodal pattern of paleocurrents show that the majority of Mozduran lithofacies deposited in the coastal environment (tidal influence). Sequence stratigraphic analysis shows that the Kole-Malekabad section consists of two depositional sequences while other sections are characterized by three depositional sequences. The lower and upper sequence boundaries of the Mozduran Formation in all stratigraphic sections are SB1 that are distinguished by paleosol and sometime conglomerate horizons. Most of depositional sequences in studied sections are composed only of TST and HST. The TST deposits consist mostly of quartzarenite and litharenite petrofacies that have been deposited in the tidal zone. HST packages are mostly including mud rocks with interdeds of sandstone lithofacies that are deposited in supratidal setting. The LST facies is recognized only in the DS3 (equivalent to the second depositional sequences of the Kole-Malekabad), which consist of conglomerate facies. Instead, the Kole-Malekabad section is often composed of supratidal gypsiferrous shales, indicating sea level fall in the study area.

  8. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling

    NASA Astrophysics Data System (ADS)

    Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni

    2014-03-01

    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.

  9. The Daptocephalus Assemblage Zone (Lopingian), South Africa: A proposed biostratigraphy based on a new compilation of stratigraphic ranges

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Smith, Roger M. H.; Angielczyk, Kenneth D.; Kammerer, Christian F.; Fröbisch, Jörg; Rubidge, Bruce S.

    2016-01-01

    The Dicynodon Assemblage Zone (DiAZ) of South Africa's Karoo Basin is one of the eight biostratigraphic zones of the Beaufort Group. It spans the uppermost Permian strata (Balfour, Teekloof, and Normandien formations) and traditionally has been considered to terminate with the disappearance of Dicynodon lacerticeps at the Permo-Triassic Boundary. We demonstrate that the three index fossils currently used to define the Dicynodon Assemblage Zone (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) have first appearance datums (FADs) below its traditionally recognized lower boundary and have ranges mostly restricted to the lower portion of the biozone, well below the Permo-Triassic Boundary. We propose re-establishing Daptocephalus leoniceps as an index fossil for this stratigraphic interval, and reinstating the name Daptocephalus Assemblage Zone (DaAZ) for this unit. Furthermore, the FAD of Lystrosaurus maccaigi in the uppermost reaches of the biozone calls for the establishment of a two-fold subdivision of the current Dicynodon Assemblage Zone. The biostratigraphic utility of Da. leoniceps and other South African dicynodontoids outside of the Karoo Basin is limited due to basinal endemism at the species level and varying temporal ranges of dicynodontoids globally. Therefore, we recommend their use only for correlation within the Karoo Basin at this time. Revision of the stratigraphic ranges of all late Permian tetrapods does not reveal a significant change in faunal diversity between the lower and upper DaAZ. However, the last appearance datums of the abundant taxa Di. lacerticeps, T. microps, P. delaharpeae, and Diictodon feliceps occur below the three extinction phases associated with the end-Permian mass extinction event. Due to northward attenuation of the strata, however, the stratigraphic position of the extinction phases may need to be reconsidered.

  10. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey

    2018-02-01

    Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.

  11. Understanding Mississippi Delta Subsidence through Stratigraphic and Geotechnical Analysis of a Continuous Holocene Core at a Subsidence Superstation

    NASA Astrophysics Data System (ADS)

    Bridgeman, J.; Tornqvist, T. E.; Jafari, N.; Allison, M. A.

    2017-12-01

    Land-surface subsidence can be a major contributor to the relative sea-level rise that is threatening coastal communities. Loosely constrained subsidence rate estimates across the Mississippi Delta make it difficult to differentiate between subsidence mechanisms and complicate modeling efforts. New data from a nearly 40 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the stratigraphic and geotechnical properties of the Holocene succession. Stratigraphically, the core can be grouped into three sections. The top 12 m is dominated by clastic overbank sediment with interspersed organic-rich layers. The middle section, 12-35 m consists predominately of mud, and the bottom section, 35-38.7 m, is marked by a transition into a Holocene-aged basal peat (11,350-11,190 cal BP) which overlies densely packed Pleistocene sediment. Radiocarbon and OSL ages show up to 6 m of vertical displacement since 3,000 cal BP. We infer that most of this was due to compaction of the thick underlying mud package. The top ­­­­­ 70 cm of the core is a peat that represents the modern marsh surface and is inducing minimal surface loading. This is consistent with the negligible shallow subsidence rate as seen at a nearby rod-surface elevation table - marker horizon station and the initial strainmeter data. Future compaction scenarios for the superstation can be modeled from the stratigraphic and geotechnical properties of the core, including the loading from the planned Mid-Barataria sediment diversion which is expected to dramatically change the coastal landscape in this region.

  12. Stratigraphic Paleobiology of the Taranto Area

    NASA Astrophysics Data System (ADS)

    Scarponi, Daniele; Angeletti, Lorenzo; Taviani, Marco; Huntley, John Warren; Amorosi, Alessandro; Negri, Alessandra; Battista Vai, Gian

    2015-04-01

    The area surrounding Taranto, Italy is chronostratigraphically very important, as it is one of the few areas in the world where Upper Pleistocene marine successions are well exposed, easily accessible, and relatively thick. Several outcrops in this area were investigated as suitable marine sections for defining the Late Pleistocene GSSP. At these locations, the late Pleistocene bathymetric history of the Taranto area was depicted using macrobenthic assemblages from a network of outcrops and cores. Outcrops at Pontile, Fronte, and Garitta, along with two cores drilled at Cimino and Cantoro were densely sampled to conduct quantitatively-derived paleobathymetric reconstructions. These deposits yielded relatively diverse mollusk associations (> 250 species and > 9.000 specimens distributed among 55 samples), dominated by extant mollusk species of known bathymetric distribution. Multiple analytical approaches were applied to the macrobenthic dataset in a comparative fashion: (i) direct calibration by weighted averaging of taxa with known preferred depth recovered in a sample, (ii) posteriori-calibrated ordination (DCA) using bathymetric data of key extant taxa. These analyses were conducted at both species and genus level. Regardless of the choice of the analytical method, mollusk assemblages yielded bathymetric trends congruent with previous qualitative and semi-quantitative paleoecological and stratigraphic analyses: the bathymetric range of sampled deposits is bracketed between 140 and 0 meters. Secondly, macrobenthos-derived proxies provided an improved characterization of the marine deposits in terms of sample bathymetry and by discriminating shallowing-upward (regressive) trends from deepening-upward (transgressive) tendencies. Thirdly, mollusk-derived bathymetric inferences suggest spatial bathymetric gradients that are coherent with the morphology of the study area. In conclusion, the results provided an improved characterization of coastal depositional facies in a sequence stratigraphic perspective, which is one of the primary research goals of Stratigraphic Paleobiology.

  13. A not-so-big crisis: re-reading Silurian conodont diversity in a sequence-stratigraphic framework

    NASA Astrophysics Data System (ADS)

    Jarochowska, Emilia; Munnecke, Axel

    2016-04-01

    Conodonts are extensively used in Ordovician through Triassic biostratigraphy and fossil-based geochemistry. However, their distribution in rock successions is commonly taken at face value, without taking into account their diverse and poorly understood ecology. Multielement taxonomy, ontogenetic and environmental variability, difficulties in extraction, and relative rarity all contribute to the general lack of quantitative studies on conodont stratigraphic distribution and temporal turnover. With respect to Silurian conodonts, the concept of recurrent conodont extinction events - the so called Ireviken, Mulde and Lau events - has become a standard in the stratigraphic literature. The concept has been proposed based on qualitative observations of local extirpations of open-marine pelagic or nekto-benthic taxa and temporary dominance of shallow-water species in the Silurian succession of the Swedish island of Gotland. These changes coincided with positive carbon isotope excursions, abrupt facies shifts, "blooms" of benthic fauna, and changes in reef communities, which have all been combined into a general view of Silurian bio-geochemical events. This view posits a deterministic, reproducible pattern in Silurian conodont diversity, attributed to recurrent ecological or geochemical conditions. The growing body of sequence-stratigraphic interpretations across these events in Gotland and other sections worldwide indicate that in all cases the Silurian "events" are associated with rapid global regressions. This suggests that faunal changes such as the dominance of shallow-water, low-diversity conodont fauna and the increase of benthic invertebrate diversity and abundance represent predictable consequences of the variation in the completeness of the rock record and preservation potential of different environments. Our studies in Poland and Ukraine indicate that the magnitude of change in the taxonomic composition of conodont assemblages across the middle Silurian global regression and the hypothesized Mulde Event is proportional to the associated facies shift. Quantitative data on facies distribution of individual conodont species combined with sequence stratigraphic architecture provides a testable model for the impact of sea-level changes on perceived conodont diversity in a section or basin. This approach highlights the need for quantitative data on conodont distribution in their environmental context, their integration into conodont-based stratigraphy and geochemistry, and for the regular use of Occam's razor to interpretations of paleobiodiversity.

  14. Reinterpretation of Mesozoic and Cenozoic tectonic events, Mountain Pass area, northeastern San Bernardino County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, M.A.

    1993-04-01

    Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less

  15. Late Albian dinosaur tracks from the cratonic (eastern) margin of the Western Interior Seaway, Nebraska, USA

    USGS Publications Warehouse

    Joeckel, R.M.; Cunningham, J.M.; Corner, R.G.; Brown, G.W.; Phillips, P.L.; Ludvigson, Greg A.

    2004-01-01

    At least 22 tridactyl dinosaur tracks, poorly preserved in various degrees of expression, have recently been found at an exposure in the Dakota Formation (Lower Cretaceous, Albian) in Jefferson County, Nebraska. These tracks generally have broad, blunt digits and a broad posterior margin. The largest of the tracks measures 57 cm in length and 58 cm in width. All of the tracks lie within a stratigraphic horizon of 40 cm or less, but they do not form a single trackway. We interpret the trackmakers to have been ornithopods.The Jefferson County tracks are in a well-cemented sandstone with oscillation ripples, at a stratigraphic level between two well-established sequence boundaries. Channel forms and lateral accretion units are common in the stratigraphic interval enclosing the tracks, and the site is interpreted as a bar or sand flat in a tidally influenced river.The Jefferson County tracks are only the second known occurrence of large Mesozoic tetrapod tracks east of the Rocky Mountain Front-High Plains Margin, including the Black Hills of South Dakota, west of the Atlantic Coastal Plain, and north of the Gulf Coastal Plain. Further, this paper is the first documentation of in situdinosaur fossils from the Nebraska-Iowa area.

  16. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  17. Pleistocene calcareous nannofossil biochronology at IODP Site U1385 (Expedition 339)

    NASA Astrophysics Data System (ADS)

    Balestra, B.; Flores, J.-A.; Hodell, D. A.; Hernández-Molina, F. J.; Stow, D. A. V.

    2015-12-01

    During Integrated Ocean Drilling Program (IODP) Expedition 339, Site U1385 (37°34‧N, 10°7‧W, 2578 m below sea level) was drilled in the lower slope of the Portuguese margin, to provide a marine reference section of Pleistocene millennial-scale climate variability. Five holes were cored using the Advanced Piston Corer (APC) to a depth of ~ 151 m below sea floor (mbsf) recovering a continuous stratigraphic record covering the past 1.4 Ma. Here we present results of the succession of standard and unconventional calcareous nannofossil biostratigraphic events. The quantitative study of calcareous nannofossils showed well-preserved and abundant assemblages throughout the core. Most conventional Pleistocene events were recognized and the timing of bioevents were calibrated using correlation to the new oxygen isotope stratigraphy record developed for the Site U1385. The analyses provide further data on the stratigraphic distribution of selected species and genera, such as the large Emiliania huxleyi (> 4 μm), Gephyrocapsa caribbeanica, Helicosphaera inversa, Gephyrocapsa omega and Reticulofenestra asanoi (> 6 μm) and other circular-subcircular small reticulofenestrids, resulting in new insights into the environmental control of their stratigraphic patterns. Finally, the comparison between nannofossil datums and oxygen isotope stratigraphy on the same samples has resulted in an accurate revision of timing of the events, providing valuable biochronologic information.

  18. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.

    PubMed

    Leffler, A Joshua; Klein, Eric S; Oberbauer, Steven F; Welker, Jeffrey M

    2016-05-01

    Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.

  19. Spectral stratigraphy

    NASA Technical Reports Server (NTRS)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  20. The modified gap excess ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies.

    PubMed

    Wills, Matthew A; Barrett, Paul M; Heathcote, Julia F

    2008-12-01

    Palaeontologists routinely map their cladograms onto what is known of the fossil record. Where sister taxa first appear as fossils at different times, a ghost range is inferred to bridge the gap between these dates. Some measure of the total extent of ghost ranges across the tree underlies several indices of cladistic/stratigraphic congruence. We investigate this congruence for 19 independent, published cladograms of major dinosaur groups and report exceptional agreement between the phylogenetic and stratigraphic patterns, evidenced by sums of ghost ranges near the theoretical minima. This implies that both phylogenetic and stratigraphic data reflect faithfully the evolutionary history of dinosaurs, at least for the taxa included in this study. We formally propose modifications to an existing index of congruence (the gap excess ratio; GER), designed to remove a bias in the range of values possible with trees of different shapes. We also propose a more informative index of congruence--GER*--that takes account of the underlying distribution of sums of ghost ranges possible when permuting stratigraphic range data across the tree. Finally, we incorporate data on the range of possible first occurrence dates into our estimates of congruence, extending a procedure originally implemented with the modified Manhattan stratigraphic measure and GER to our new indices. Most dinosaur data sets maintain extremely high congruence despite such modifications.

  1. The Inconvenient Truth of Fresh Sediment: Insights from a New Method for Quantifying Subsidence in the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Chamberlain, E. L.; Shen, Z.; Tornqvist, T. E.; Kim, W.

    2017-12-01

    Knowing the rates and drivers of subsidence in deltas is essential to coastal management. There is a growing consensus that relatively shallow processes such as compaction and artificial drainage are primary contributors to subsidence, although deeper processes such as faulting may be locally important. Here we present a new method to quantify subsidence of a 6000 km2 relict bayhead delta of the Mississippi Delta, using the depth of the mouthbar-overbank stratigraphic boundary that formed near the low tide level in combination with OSL chronology. The contributions of isostatic processes are removed by subtracting a relative sea-level rise term previously obtained from basal peat. We find that displacement rates of the boundary, averaged over 750 to 1500 years, are on the order of a few mm/yr. Cumulative displacement is strongly correlated to overburden thickness, decreases coastward coincident with thinning of the bayhead delta deposit, and appears unrelated to the thickness of underlying Holocene strata or the occurrence of previously mapped faults. This supports compaction of shallow strata as a dominant driver of subsidence in the Mississippi Delta. We find that at least 50% of elevation gained through overbank deposition is ultimately lost to subsidence, significantly greater than the 35% loss previously estimated for inland localities underlain by peat. Our results demonstrate that bayhead deltas are especially vulnerable to subsidence. This finding has major relevance to coastal restoration in the Mississippi Delta through engineered river-sediment diversions. While inactive regions of the delta may be fairly stable if not perturbed by humans, the introduction of fresh sediment to the delta plain will inevitably accelerate subsidence. Values obtained with our method will be applied to a delta growth model that predicts the land-building potential of river-sediment diversions discharging into open bays under realistic scenarios of load-driven subsidence.

  2. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)

    USGS Publications Warehouse

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2014-01-01

    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  3. Crustal-scale degassing and igneous mush re-organisation: a generic concept applied to episodic volcanism at the Soufrière Hills Volcano Montserrat

    NASA Astrophysics Data System (ADS)

    R Stephen J, S.; Cashman, K. V.

    2015-12-01

    A complete theory of episodic volcanism is lacking. Melt generation related to large scale tectonic processes is likely continuous but surface volcanic activity is typically episodic; for most volcanoes short-lived eruptions alternate with long periods of dormancy. Many models of volcanic activity and geophysical unrest are framed by a conceptual model of shallow magma chamber recharge, in which various phenomena are attributed to magma transport from deeper levels. While many aspects of volcanism are explained by this concept it has little explanatory power for key aspects of volcanism, including time scales of dormancy, eruption duration and eruption magnitude. Extensive trans-crustal igneous systems develop beneath active volcanoes in which much of the system is in a mushy state in which buoyancy-driven segregation of melt and magmatic fluid occurs to form layers, which are inherently unstable. We postulate that such systems are prone to destabilisation in which segregating layers amalgamate to form ephemeral magma chambers and in which melts and magmatic fluids decouple. Periods of dormancy relate to slow processes of segregation while short periods of volcanic unrest and eruption relate to episodic and rapid processes of destabilisation of the mush system. In this conceptual framework volatiles rather than magma recharge plays the key role in the dynamics of the shallow parts of the magmatic systems. Magma ascent during episodes of destabilisation does not itself cause pressurisation because melts and crystals are near incompressible, while volatile exsolution and decompression results in major pressure changes that can lead to unrest and eruption. These concepts are applied to the interpretation of stratigraphic, geochronological, geophysical, geochemical, petrological and volcanological data of volcanic activity at the Soufrière Hills Volcano (SHV), Montserrat.

  4. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less

  5. Recent and active tectonics of the external zone of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Boccaletti, Mario; Corti, Giacomo; Martelli, Luca

    2011-08-01

    We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.

  6. Provenance Analysis of Lower Miocene Sediments in the Lower Austrian Molasse Basin

    NASA Astrophysics Data System (ADS)

    Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael

    2015-04-01

    In the Early Miocene (Late Ottnangian) a global drop of the sea level and the continuous rise of the Alps caused a regression of the Paratethys. During this time interval the Traisen Formation (formerly Oncophora beds) was deposited in the Lower Austrian Molasse Basin. These yellowish-brownish to greyish mica-rich and carbonate-free sands and silts with clayish interlayers were originally named after a brackish water bivalve ("Oncophora"- now Rzehakia). The southeastern part of the TF partly interfingers with finer sands of the Dietersdorf Formation (DF). The Pixendorf Group combines the TF and the DF [coarse sands, conglomerates, blocks] of the Upper Ottnangian lithostratigraphic units in Lower Austria. West to the Waschberg Zone a deeper-water environment (so called Oncophora beds in former literature, herein [informally] renamed to Wildendürnbach Member) with sediment gravity flows (turbidites, muddy/sandy slumps) is inferred from OMV well data. Examinations of these fine sandstones, silts and laminated pelites have been carried out on the basis of the Wildendürnbach-4 OMV drilling core. Analyses of the TF revealed rather homogenous heavy mineral assemblages, dominated by high amounts of garnet (~65%) and relatively high amounts of epidote/zoisite (~10%) and amphiboles (~10%). Conducted surveys point towards a primary influence of metamorphic (metapelitic) source rocks of Austroalpine Crystalline Complexes of the rising Eastern Alps. Heavy mineral analysis of the WDK-4 drilling core showed even higher amounts of garnet (~80%) combined with minor amounts of rutile, staurolite, apatite, epidote/zoisite, tourmalines, zircon and amphiboles. Consistent heavy mineral assemblages and chemical data (EMPA) suggest a stratigraphical correlation with the Křepice Formation and the Ždánice-Hustopeče Formation in the Czech Republic and sedimentary influence from the Western Carpathian Flysch Belt.

  7. Assessing Biological and Stratigraphic Determinants of Fossil Abundance: A Case Example from the Late Quaternary of Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Kowalewski, Michal; Azzarone, Michele; Kusnerik, Kristopher; Dexter, Troy; Wittmer, Jacalyn; Scarponi, Daniele

    2017-04-01

    Absolute fossil abundance [AFA] can be defined as a relative concentration of identifiable fossils per unit of sediment. AFA, or "sediment shelliness", is controlled by the interplay between the rate of input of skeletal remains (biological productivity), pace of shell destruction (taphonomy), rate of sedimentation, and sediment compaction. Understanding the relative importance of those drivers can augment both stratigraphic and biological interpretations of the fossil record. Using 336 samples from a network of late Quaternary cores drilled in Po Plain (Italy), we examined the importance of those factors in controlling the stratigraphic distribution of fossils. All samples were vertically and volumetrically equivalent, each representing a 10 cm long interval of a core with a diameter of 7 cm ( 0.375 dm3 sediment per sample). Sample-level estimates of AFA (1) varied over 4 orders of magnitudes (from <4 to 44200 specimens per dm3 of sediment); (2) appeared invariant to core depth (rho=-0.04, p=0.72); (3) were statistically indistinguishable (chi-square=1.53, p=0.46) across systems tracts; and (4) did not vary substantially across facies (chi-square=6.04, p=0.20) representing a wide range of depositional and taphonomic settings. These outcomes indicate that compaction (which should increase downcore), sedimentation rates (which vary predictably across systems tracts), and pace of shell destruction (expected to differ across depositional settings) are unlikely to have played important role in controlling fossils density in the sampled cores. In contrast, samples with very high shell density (AFA > 4000 specimens per dm3) were characterized by exceedingly low evenness reflecting dominance by one super-abundant species (Berger-Parker index > 0.8 in all cases). These super-abundant species were limited to small r-selective mollusks capable of an explosive population growth: the marine corbulid bivalve Lentidium mediterraneum and the brackish hyrdobiid gastropod Ecrobia ventrosa. Moreover, despite high mollusk diversity (534 species total), >80% of samples are dominated by one of the five mollusk species, which all represent small, r-selective, deposit and suspension feeders. Trends in absolute fossil abundance within late Quaternary deposits of the Po Plain appear to have been driven primarily by biological productivity of opportunistic shelly species from lowest trophic levels. In the studied system, biodiversity and shelliness of samples is unlikely to reflect stratigraphic or taphonomic overprints, but rather records the ecological importance of r-selective species that dominated the investigated area throughout the late Quaternary. The joint consideration of sequence stratigraphy, facies architecture, and paleontological data, can provide insights regarding both stratigraphic (the origin of sedimentary biofabrics) and biological (the drivers of bio-productivity and observed biodiversity) aspects of the fossil record.

  8. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  9. Cenozoic stratigraphy of the Sahara, Northern Africa

    USGS Publications Warehouse

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.

  10. Stratigraphic Transfer Thresholds of Sediment Supply Signals in Channelized Systems

    NASA Astrophysics Data System (ADS)

    Toby, S. C.; De Angelis, S.; Duller, R.; Straub, K. M.

    2016-12-01

    The stratigraphic record is a unique physical archive for past climate and tectonic boundary conditions on Earth and other planetary bodies. These boundary and forcing conditions set the rate and volume of sediment delivered to sedimentary basins, which can be, theoretically, linked back to the stratigraphic record. However for sediment supply signals to make their way through to stratigraphy they must pass through the active layer of the Earth's surface, which is scaled to channel depth. For the long-term, the likelihood of this taking place can be evaluated using the vertical time-scale of autogenics. The current study tests whether or not cyclic sediment supply to an experimental delta can influence morphodynamics and if so, can this be recovered from synthetic and physical stratigraphic dataset collected during the experiments. Preliminary results suggest that short period sediment supply signals are less likely to be transferred to the stratigraphic record, which is predicted by our theoretical framework for channelized systems. Once fully validated by the experiments the theoretical approach will be applied to field stratigraphy and used to guide more reliable interpretation of ancient sediment supply signals.

  11. Pre-Wisconsin glacial stratigraphy of the central plains region in Iowa, Nebraska, Kansas, and Missouri

    USGS Publications Warehouse

    Hallberg, G.R.

    1986-01-01

    Recent investigations have documented the presence of several tills and interglacial paleosols that were not recognized in the simple Kansan-Aftonian-Nebraskan stratigraphic sequence. Also, the single 'Pearlette ash' recognized by early workers now is known to be three different Pearlette family ash beds of greatly contrasting ages. The complexity of the stratigraphy, as it is currently understood, and the miscorrelations of early work necessitate abandonment of the archaic terms Kansan, Aftonian, and Nebraskan in stratigraphic terminology. Continued use of those terms will only promote confusion of stratigraphic nomenclature and erroneous correlations of stratigraphic units. The limited chronometric control available within the early and middle Pleistocene stratigraphic sequence is provided directly by dating or by correlation of buried soils and volcanic ash beds and it is provided inferentially by interpretation of magnetic polarity data. These controls provide, at best, a general time framework to begin a new synthesis of the Quaternary history of the region. New methods of dating are needed to facilitate long-distance correlation of early and middle Pleistocene deposits. ?? 1986.

  12. Astronomical Pacing of Relative Sea Level through OAE2 from the Expanded SH#1 Core, Southern Utah

    NASA Astrophysics Data System (ADS)

    Jones, M. M.; Sageman, B. B.; Oakes, R. L.; Bralower, T. J.; Parker, A. L.; Leckie, R. M.

    2017-12-01

    Proximal marine strata of the North American Western Interior Basin (WIB) preserve a rich record of faunal turnover linked to Oceanic Anoxic Event 2 (OAE2 - 94 Ma), a pronounced Late Cretaceous carbon cycle perturbation interpreted to reflect global warming and possible ocean acidification. To develop a more robust synthesis of paleobiologic and geochemical datasets spanning this major Earth-life transition, we drilled a 131-meter core (SH#1) on the Kaiparowits Plateau of southern Utah, recovering the Cenomanian-Turonian Boundary (CTB) interval of the Tropic Shale. A 17.5-meter positive excursion in high-resolution bulk carbon isotope chemostratigraphy (δ13Corg) of SH#1 characterizes the most expanded and detailed record of OAE2 recovered from the WIB. Additionally, we detect statistically significant evidence for astronomical cycles in a companion δ13Ccarb dataset, using advanced spectral techniques (evolutive average spectral misfit). Bandpass filtering and tracing of the short eccentricity cycle (97 ka) permit development of a floating astronomical time scale (ATS) for the CTB interval. The presence of radioisotopic dates within the time series provides an independent check on astrochronologic interpretations. We attribute some depleted δ13Ccarb values in SH#1, which cyclically punctuate the OAE2 excursion, to preferential carbonate diagenesis driven by periodic sea level oscillations. Accordingly, major flooding surfaces in SH#1 correlate well to an existing sequence stratigraphic framework from shoreface facies of the Markagunt Plateau ( 100 km west). Comparing the ATS and sequence stratigraphic surfaces in SH#1, we observe that stable eccentricity cycles (405 ka) pace stratigraphic sequences and associated saw-toothed trends in sedimentation rate estimates through OAE2. Furthermore, short eccentricity cycles pace nested parasequences. These results confirm astronomical and, therefore, climatic pacing of relative sea level trends during OAE2 in the WIB. The ATS, δ13C chemostratigraphy, and basin-wide correlation of the CTB interval provide an expanded, temporally-resolved record of OAE2 within the chronostratigraphic framework of the WIB, and help to resolve rates of paleobiologic and paleoenvironmental change in the context of oscillating relative sea levels.

  13. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  14. Characterization of the Triassic Newark Basin of New York and New Jersey for geologic storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Daniel J.

    The Newark Basin is a Triassic-aged rift basin underlying densely populated, industrialized sections of New York, New Jersey and Pennsylvania. The Basin is an elongate half-graben encompassing an area of more than 7,510 square-kilometers (2,900 square-miles), and could represent a key storage component for commercial scale management of carbon dioxide emissions via geologic sequestration. The project team first acquired published reports, surface and subsurface maps, and seismic data, which formed the basis for a three-dimensional model framework for the northern end of the Basin incorporating stratigraphic, hydrologic, and water quality data. Field investigations included drilling, coring, and logging of two stratigraphic test borings in Clarkstown, NY (Exit 14 Tandem Lot Well No. 1), drilled to a depth of 2,099 meters (6,885 feet); and Palisades, NY (Lamont-Doherty Earth Observatory Test Well No. 4) drilled to a depth of 549 meters (1,802 feet). Two two-dimensional seismic reflection data lines arrayed perpendicularly were acquired by Schlumberger/WesternGeco to help characterize the structure and stratigraphy and as part of pre-drilling field screening activities for the deep stratigraphic borehole. A total of 47 meters (155 feet) of continuous whole core was recovered from the Tandem Lot boring from depths of 1,393 meters (4,570 feet) to 1,486 meters (4,877 feet). Twenty-five horizontal rotary cores were collected in mudstones and sandstones in the surface casing hole and fifty-two cores were taken in various lithologies in the deep borehole. Rotary core plugs were analyzed by Weatherford Laboratories for routine and advanced testing. Rotary core plug trim end thin sections were evaluated by the New York State Museum for mineralogical analysis and porosity estimation. Using core samples, Lawrence Berkley National Laboratory designed and completed laboratory experiments and numerical modeling analyses to characterize the dissolution and reaction of carbon dioxide with formation brine and minerals, and resulting effects on injection rate, pressure, effective storage volume, and carbon dioxide migration within a prospective sandstone reservoir.more » $$Three potential porous and permeable sandstone units were identified in the Passaic Formation at the New York State Thruway Exit 14 location. Potential Flow Unit 1, at a depth of 643 meters (2,110 feet) to 751 meters (2,465 feet); Potential Flow Unit 2 at a depth of 853 meters (2,798 feet) to 1,000 meters (3,280 feet); and Potential Flow Unit 3, at a depth of 1,114 meters (3,655 feet) to 1,294 meters (4,250 feet). Reactive transport simulations of interactions between carbon dioxide, brine and formation minerals were carried out to evaluate changes in formation water chemistry, mineral precipitation and dissolution reactions, and any potential resulting effects on formation permeability. The experimental and modeling analyses suggest that mineral precipitation and dissolution reactions (within the target formation) are not expected to lead to significant changes to the underground hydrologic system over time frames (~30 years) typically relevant for carbon dioxide injection operations. Key findings of this basin characterization study include an estimate of carbon dioxide storage capacity in the Newark Basin. Assuming an average porosity of twelve percent and an aquifer volume of 6.1E+12 meters3, calculated ranges of likely storage capacity range from 1.9 – 20.2 gigatonnes under high temperature (low carbon dioxide density) conditions; and 2.9 – 30.2 gigatonnes under low temperature (low carbon dioxide density) conditions. Intra-basin faulting, geometry of the Palisades Sill, and the presence of altered meta-sediments above and below the Sill, increase potential compartmentalization within the basin. A structural/stratigraphic trap type may occur where porous/permeable sediments are cross-cut by the Palisades Sill. Potential injection intervals are present within the Stockton Formation of the Newark Basin. Additional porous/permeable intervals may be present within sandstones of the Passaic Formation, increasing projected storage capacity. Deeper wedges of strata are likely present in the deeper portions of the basin in southern New York and into northern New Jersey. Abundant mudstones are present in the Passaic, Lockatong, and Stockton Formations. These intervals have the requisite petrophysical properties to form effective primary and secondary containment intervals to industrial-scale sequestration of carbon dioxide in the Newark Basin. Hydro-thermally altered meta-sediments in the region immediately surrounding the top and base of the Palisades Sill is devoid of porosity/permeability and forms an additional effective lateral/vertical sealing cap rock.« less

  15. Cognition and Self-Efficacy of Stratigraphy and Geologic Time: Implications for Improving Undergraduate Student Performance in Geological Reasoning

    ERIC Educational Resources Information Center

    Burton, Erin Peters; Mattietti, G. K.

    2011-01-01

    In general, integration of spatial information can be difficult for students. To study students' spatial thinking and their self-efficacy of interpreting stratigraphic columns, we designed an exercise that asks college-level students to interpret problems on the principles of superposition, original horizontality and lateral continuity, and…

  16. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, <5000 mg/L) groundwater lens underlies the Murray River in the Colignan-Nyah region of northern Victoria, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  17. 40Ar/39Ar dating of Glacial Termination VI: constraints on the duration of Marine Isotopic Stage 13.

    PubMed

    Marra, Fabrizio; Florindo, Fabio; Jicha, Brian R

    2017-08-21

    We present four new 40 Ar/ 39 Ar ages of tephra layers from an aggradational succession (Valle Giulia Formation) near the mouth of the Tiber Valley in Rome that was deposited in response to sea-level rise during Marine Isotopic Stage (MIS) 13. These new ages, integrated with seven previously determined ages, provide the only extant independent, radioisotopic age constraint on glacial termination VI and on the duration of MIS 13 sea-level rise. The new geochronologic constraints suggest a long duration for the period of sea-level rise (533 ± 2 through 498 ± 2 ka) encompassing two consecutive positive peaks of the δ 18 O curve (substages 13.3 and 13.1). Consistently, the litho-stratigraphic features of the sedimentary record account for two aggradational phases separated by an intervening erosional phase. Moreover, the ages obtained for this study give us the opportunity to compare the timing of the sea-level fluctuations inferred from the stratigraphic record and that provided by the astrochronologic calibration of the Oxygen isotopic curves, and to assess the calibrations of 40 Ar/ 39 Ar standards. Results of this comparison indicate that the best match is for an age of 1.186 Ma for the Alder Creek Rhyolite sanidine and 28.201 Ma for the Fish Canyon Tuff sanidine.

  18. Stratigraphic test well, Nantucket Island, Massachusetts

    USGS Publications Warehouse

    Folger, David W.; Hathaway, J.C.; Christopher, R.A.; Valentine, P.C.; Poag, C.W.

    1978-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Water Resources Commission and the Nantucket Conservation Foundation, continuously cored 514 m of sediment and volcanic rock in a stratigraphic and water-quality test near the geographic center of Nantucket Island. Stratified sediments were divided texturally into three zones: the upper zone (0-128 m) contains mostly coarse sand and gravel; the middle zone (128-349 m) contains mostly silty clay and a few beds of sand and silt; and the lower zone (349-457 m) contains soft, unconsolidated, clayey sand. Below the lower zone, a saprolite, composed mostly of clay, grades abruptly downward at 470 m into partially altered basalt that extends to the bottom of the hole at 514 m. Calculations based on the Ghyben-Herzberg principle predicted a zone of freshwater 120-150 m thick. This principle is the theory of hydrostatic equilibrium between freshwater and more dense seawater in a coastal aquifer; it states that for each meter of ground-water elevation above sea level, the freshwater lens will depress the saltwater interface about 40 m below sea level. Freshwater or low-salinity brackish water was found in sediments far below the depth predicted by the Ghyben-Herzberg principle. These interstitial waters are probably relict ground water emplaced during times of low sea level during the Pleistocene. (Woodard-USGS)

  19. Geologic and Fossil Locality Maps of the West-Central Part of the Howard Pass Quadrangle and Part of the Adjacent Misheguk Mountain Quadrangle, Western Brooks Range, Alaska

    USGS Publications Warehouse

    Dover, James H.; Tailleur, Irvin L.; Dumoulin, Julie A.

    2004-01-01

    The map depicts the field distribution and contact relations between stratigraphic units, the tectonic relations between major stratigraphic sequences, and the detailed internal structure of these sequences. The stratigraphic sequences formed in a variety of continental margin depositional environments, and subsequently underwent a complexde formational history of imbricate thrust faulting and folding. A compilation of micro and macro fossil identifications is included in this data set.

  20. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II-Sauk III boundary in the Upper Mississippi Valley

    USGS Publications Warehouse

    Runkel, Anthony C.; McKay, R.M.; Palmer, A.R.

    1998-01-01

    The origin of cratonic sheet sandstones of Proterozoic and early Paleozoic age has been a long-standing problem for sedimentologists. Lower Paleozoic strata in the Upper Mississippi Valley are best known for several such sandstone bodies, the regional depositional histories of which are poorly understood. We have combined outcrop and subsurface data from six states to place the Upper Cambrian Wonewoc (Ironton and Galesville) Sandstone in a well-constrained stratigraphic framework across thousands of square kilometers. This framework makes it possible for the first time to construct a regional-scale depositional model that explains the origin of this and other cratonic sheet sandstones. The Wonewoc Sandstone, although mapped as a single contiguous sheet, is a stratigraphically complex unit that was deposited during three distinct conditions of relative sea level that span parts of four trilobite zones. During a relative highstand of sea level in Crepicephalus Zone time, quartzose sandstone lithofacies aggraded more or less vertically in nearshore-marine and terrestrial environments across much of the present-day out-crop belt around the Wisconsin arch. At the same time, finer grained, feldspathic sandstone, siltstone, and shale aggraded in deeper water immediately seaward of the quartzose sand, and shale and carbonate sediment accumulated in the most distal areas. During Aphelaspis and Dunderbergia Zones time a relative fall in sea level led to the dispersal of quartzose sand into a basinward-tapering, sheet-like body across much of the Upper Mississippi Valley. During early Elvinia Zone time a major transgression led to deposition of a second sheet sandstone that is generally similar to the underlying regressive sheet. The results of this investigation also demonstrate how subtle sequence-bounding unconformities may be recognized in mature, cratonic siliciclastics. We place the Sauk II-Sauk III subsequence boundary at the base of the coarsest bed in the Wonewoc Sandstone, a lag developed through erosion that occurred during the regional regressive-transgressive event that spanned Aphelaspis to early Elvinia Zones time. Such sequence-bounding unconformities are difficult to recognize where they are contained within coarse siliciclastics of the Upper Mississippi Valley, because they separate strata that are texturally and mineralogically similar, and because erosion occurred on a loose, sandy substrate along a low, uniform gradient, and in a nonvegetated terrestrial environment. Furthermore, the ultramature mineral composition of the exposed substrate is resistant to the development of a recognizable weathering profile. The well-known sheet geometry of the Wonewoc and other units of lower Paleozoic sandstone of this area is not dependent on atypical terrestrial depositional conditions conducive to the widespread distribution of sand, as commonly believed. Sand was spread into a sheet dominantly within the marine realm in a manner similar to that inferred for many better-known sandstone bodies deposited in the North American Cretaceous Western Interior seaway and Tertiary Gulf of Mexico. The laterally extensive, thin character of the Upper Mississippi Valley sandstone bodies compared to these other sandstone bodies simply reflects deposition of a continuously abundant supply of sand on a relatively stable, nearly flat basin of slow, uniform subsidence during changes in sea level. The dearth of shale in this and other cratonic sandstones can be indirectly attributed to the same controls, which led to an uncommonly low preservation potential for fairweather deposits on the shoreface.

  1. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time

    PubMed Central

    O'Connor, Anne; Wills, Matthew A.

    2016-01-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence—however measured—also varied throughout the Phanerozoic, reflecting the taxonomic composition of our sample. Notably, periods containing a high proportion of arthropods had poorer congruence overall than those with higher proportions of tetrapods. [Fossil calibration; gap excess ratio; manhattan stratigraphic metric; molecular clocks; stratigraphic congruence.] PMID:27155010

  2. Colorstratigraphy; A New Stratigraphic Correlation Technique

    NASA Astrophysics Data System (ADS)

    Nanayakkara, N. U.; Ranasinghage, P. N.; Priyantha, C.; Abillapitiya, T.

    2016-12-01

    Here we introduce a novel stratigraphic technique namely colorstratigraphy for correlating sedimentary sequences. Minihagalkanda is about 1 km long amphitheater like sedimentary terrain, situated at the southeastern coast of Sri Lanka. It has Miocene sedimentary sequences, separated in to 10-12 m high small hillocks by erosion, and bounded by about 30 m high escarpment. Sandstone, yellowish sandy clay, greenish silty clay sequences are capped by 4-5 m limestone bed in these hillocks but not at the boundary escarpment. Stratigraphic profiles at two hillocks and the boundary escarpment, separated each other by 200-300 m, were selected to test the new colorstartigraphic correlation technique. Color reflectance (DSR) was measured at four samples in each sequence at every profile and hence altogether 36 reflectance measurements were taken using Minolta 2500D hand-held color spectrophotometer. The first-derivative of the reflectance spectra (dR/dλ) defines the "spectral shape" of the sample. Therefore, DSR data (360-740 nm) measured at 10 nm resolution were used to calculate a center-weighted, first-derivative spectra for each reflectance sample consisting of 39 channels. Particle size of each sequence was measured at all 03 profiles using laser particle size analyzer to verify the stratigraphic correlation. Mean reflectance spectrum for each sequence at all 03 profiles were plotted on the same graph for comparison. Same was done for the grain size spectrums. Discriminant function analysis was performed separately for dsr data and grain size data using a number assigned to each sedimentary sequence as the grouping variable Color spectrums of sandstone, yellowish sandy clay, and greenish silty clay sequences at all three profiles perfectly match showing clear stratigraphic correlation among these three stratigraphic profiles. Matching grain size distribution curves of the three sequence at the three profiles verify the stratigraphic correlation. Perfect 100 % discrimination of the three sequences with color reflectance data proves the accuracy of the correlation. Similar 100 % discrimination resulted with grain size data further verifies the results. Therefore, colorstratigraphy based on DSR can be introduced as a quick and easy technique for stratigraphic correlation of sedimentary sequences.

  3. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time.

    PubMed

    O'Connor, Anne; Wills, Matthew A

    2016-09-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence-however measured-also varied throughout the Phanerozoic, reflecting the taxonomic composition of our sample. Notably, periods containing a high proportion of arthropods had poorer congruence overall than those with higher proportions of tetrapods. [Fossil calibration; gap excess ratio; manhattan stratigraphic metric; molecular clocks; stratigraphic congruence.]. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  4. Neogene Sediment Transport, Deposition, and Exhumation from the Southern Alaska Syntaxis to the Eastern Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Witmer, J. W.; Enkelmann, E.; Plafker, G.; Brennan, P. R.

    2011-12-01

    Over 5 km of Neogene sedimentary strata are well exposed in the Chugach-St. Elias Ranges within the southern Alaska syntaxis. This syntaxis forms where the Pacific-North America plate boundary changes from the northwest-trending Queen Charlotte-Fairweather transform system to the southwest-trending Alaska-Aleutian subduction zone. Active collision and subduction of the buoyant Yakutat microplate in the syntaxis results in a wide collisional zone defined by active mountain belts, extensive glaciation, and thick packages of synorogenic strata. New stratigraphic and U-Th/He thermochronologic data from Neogene synorogenic strata, named the Yakataga and Redwood Formations, provide insights on collisional tectonics, glacial erosion, and sediment transport, deposition, burial, and exhumation from the onshore Chugach and St. Elias Ranges to the exposed accretionary prism of the Aleutian trench. Stratigraphic analyses show that along the southeastern part of the syntaxis, Neogene strata are characterized by deposition in braid delta, shallow marine, and glaciomarine slope apron depositional systems that resulted in construction of a broad continental shelf. In the central part of the syntaxis, marine shelf and upper slope environments deposited thick-bedded sandstone and mudstone in a thrust belt/foreland basin system. Along the southwestern part of the syntaxis, Neogene strata were deposited in a regional submarine fan system that filled the easternmost part of the Aleutian trench. Geologic mapping of the contact between the Yakataga Formation and underlying strata along the syntaxis document an angular unconformity with maximum stratigraphic separation (> 5 km) in the central part of the syntaxis. Along strike, this unconformity becomes conformable along both the southwestern and southeastern parts of the syntaxis. The regional angular unconformity and facies transitions both point to the importance of the central part of the syntaxis in the generation and distribution of synorogenic sediment. Apatite and zircon U-Th/He thermochronologic data from granitoid and gneissic clasts in conglomerate suggest that Neogene sediments were buried no deeper than ~2 km in the central and southeastern parts of the syntaxis, and that burial temperatures did not exceed ~40-45°C. In contrast, Neogene sediment deposited by submarine fans in the Aleutian trench along the southwestern part of the syntaxis were buried at depths of 5 to 7.5 km and reached temperatures between ~120-160°C. These strata were subsequently exhumed as the trench fill was incorporated into the growing accretionary prism. Collectively, our data show that the first-order sediment pathway along a glaciated syntaxis is dynamically linked to tectonic uplift, focused glacial erosion, deposition of thick packages of glacial marine sediment, and rapid exhumation along thrust belts and accretionary prisms.

  5. The Purisima Formation and related rocks (upper Miocene - Pliocene), greater San Francisco Bay area, central California; review of literature and USGS collection now housed at the Museum of Paleontology, University of California, Berkeley

    USGS Publications Warehouse

    Powell, C.L.

    1998-01-01

    Sedimentary rocks more than 1.6 kilometers thick are attributed to the upper Miocene to upper Pliocene Purisima Formation in the greater San Francisco Bay area. These rocks occur as scattered, discontinuous outcrops from Point Reyes National Seashore in the north to south of Santa Cruz. Lithologic divisions of the Formation appear to be of local extent and are of limited use in correlating over this broad area. The Purisima Formation occurs in several fault-bounded terranes which demonstrate different stratigraphic histories and may be found to represent more than a single depositional basin. The precise age and stratigraphic relationship of these scattered outcrops are unresolved and until they are put into a stratigraphic and paleogeographic context the tectonic significance of the Purisima Foramtion can only be surmised. This paper will attempt to resolve some of these problems. Mollusks and echinoderms are recorded from the literature and more than 70 USGS collections that have not previously been reported. With the exception of one locality, the faunas suggest deposition in normal marine conditions at water depths of less than 50 m and with water temperatures the same or slightly cooler than exist along the present coast of central California. The single exception is a fauna from outcrops between Seal Cove and Pillar Point, where both mollusks and foraminifers suggest water depths greater than 100 m. Three molluscan faunas, the La Honda, the Pillar Point, and the Santa Cruz, are recognized based on USGS collections and published literature for the Purisima Formation. These biostratigraphically distinct faunas aid in the correlation of the scattered Purisima Formation outcrops. The lowermost La Honda fauna suggests shallow-water depths and an age of late Miocene to early Pliocene. This age is at odds with a younger age determination from an ash bed in the lower Purisima Formation along the central San Mateo County coast. The Pillar Point fauna contains only a single age diagnostic taxon, Lituyapecten purisimaensis (Arnold), which is reported as Pliocene in age, but it only occurs in the Purisima Formation, so its age here is an example of circular reasoning. However, based on tentative lithologic correlations this fauna may represent the same period of time as the upper part of the La Honda fauna. This fauna differs from either the La Honda or Santa Cruz faunas in that it represent significantly deeper water. The uppermost Santa Cruz fauna also suggests shallow-water depths and a possible age range of early to late Pliocene. The bivalve molluscan taxon Lyonsia, and gastropod taxon Rictaxis sp., cf. R. punctocaelatus (Carpenter) are reported here for the first time from the Purisima Formation.

  6. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2012-04-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  7. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2013-01-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  8. Let's Get Real: Deeper Learning and the Power of the Workplace. Deeper Learning Research Series. Executive Summary

    ERIC Educational Resources Information Center

    Hoffman, Nancy

    2015-01-01

    In the United States, we tend to assume that young people should become educated and then go to work, as though the two were entirely separate stages of life. This dichotomy blinds us to the fact that work itself can be a powerful means of education. Indeed, the workplace is where many young people become most engaged in learning high-level skills…

  9. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  10. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.

  11. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The porosity-feet for the 'Winnipeg' and Flathead Sandstones and four regional geologic sections are also shown.

  12. Seismic model study of Patrick Draw field, Wyoming: a stratigraphic trap in the Upper Cretaceous Almond Formation

    USGS Publications Warehouse

    Anderson, Robert C.; Ryder, Robert T.

    1978-01-01

    The Patrick Draw field, located on the eastern flank of the Rock Springs uplift in the Washakie basin of southwestern Wyoming, was discovered in 1959 without the use of geophysical methods. The field is a classic example of a stratigraphic trap, where Upper Cretaceous porous sandstone units pinch out on a structural nose. Two-dimensional seismic modeling was used to construct the seismic waveform expressions of the Patrick Draw field, and to better understand how to explore for other 'Patrick Draw' fields. Interpretation of the model shows that the detection of the reservoir sand is very difficult, owing to a combination of acoustic contrasts and bed thickness. Because the model included other major stratigraphic units in the subsurface, several stratigraphic traps are suggested as potential exploration targets.

  13. Recovering data from historical collections: stratigraphic and spatial reconstruction of the outstanding carnivoran record from the Late Pleistocene Equi cave (Apuane Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Ghezzo, Elena; Palchetti, Alessandro; Rook, Lorenzo

    2014-07-01

    Equi Terme is a hamlet located in northern Tuscany, in Apuan Alps regional Park. An outstanding fossil vertebrate collection housed in Florence is the result of excavations in the Equi cave and shelter during the period 1911-1919. This faunal assemblage (associated with Mousterian artefacts) may be correlated with the middle of MIS 3. All of the specimens recovered at Equi early in the last century were collected with attention to their stratigraphical positions. Detailed field annotation for nearly every specimen allowed us to organize them and attempt a stratigraphical and spatial reconstruction of the fossiliferous deposits. We present the results of the study of the spatial and stratigraphic distribution of the carnivoran species in the Equi cave and shelter, and re-evaluate the taphonomic agents of accumulation and the fossil distribution within the stratigraphic record. In particular, we evaluated the distribution of Panthera pardus, which, unusually for Europe, is abundant in the Equi cave assemblage. This analysis highlights the importance of the re-evaluation of historical collections and allows for future comparisons with data from more recent excavations at the Equi site. The analysis also provides an account of the distribution of carnivorans throughout the stratigraphic record. The constant presence and the predominance of leopards and wolves over lions and smaller carnivorans, allow for evaluations of their ethology and may be related to a short period of sediment accumulation.

  14. Well network installation and hydrogeologic data collection, Assateague Island National Seashore, Worcester County, Maryland, 2010

    USGS Publications Warehouse

    Banks, William S.L.; Masterson, John P.; Johnson, Carole D.

    2012-01-01

    The U.S. Geological Survey, as part of its Climate and Land Use Change Research and Development Program, is conducting a multi-year investigation to assess potential impacts on the natural resources of Assateague Island National Seashore, Maryland that may result from changes in the hydrologic system in response to projected sea-level rise. As part of this effort, 26 monitoring wells were installed in pairs along five east-west trending transects. Each of the five transects has between two and four pairs of wells, consisting of a shallow well and a deeper well. The shallow well typically was installed several feet below the water table—usually in freshwater about 10 feet below land surface (ft bls)—to measure water-level changes in the shallow groundwater system. The deeper well was installed below the anticipated depth to the freshwater-saltwater interface—usually in saltwater about 45 to 55 ft bls—for the purpose of borehole geophysical logging to characterize local differences in lithology and salinity and to monitor tidal influences on groundwater. Four of the 13 shallow wells and 5 of the 13 deeper wells were instrumented with water-level recorders that collected water-level data at 15-minute intervals from August 12 through September 28, 2010. Data collected from these instrumented wells were compared with tide data collected north of Assateague Island at the Ocean City Inlet tide gage, and precipitation data collected by National Park Service staff on Assateague Island. These data indicate that precipitation events coupled with changes in ambient sea level had the largest effect on groundwater levels in all monitoring wells near the Atlantic Ocean and Chincoteague and Sinepuxent Bays, whereas precipitation events alone had the greatest impact on shallow groundwater levels near the center of the island. Daily and bi-monthly tidal cycles appeared to have minimal influence on groundwater levels throughout the island and the water-level changes that were observed appeared to vary among well sites, indicating that changes in lithology and salinity also may affect the response of water levels in the shallow and deeper groundwater systems throughout the island. Borehole geophysical logs were collected at each of the 13 deeper wells along the 5 transects. Electromagnetic induction logs were collected to identify changes in lithology; determine the approximate location of the freshwater-saltwater interface; and characterize the distribution of fresh and brackish water in the shallow aquifer, and the geometry of the fresh groundwater lens beneath the island. Natural gamma logs were collected to provide information on the geologic framework of the island including the presence and thickness of finer-grained deposits found in the subsurface throughout the island during previous investigations. Results of this investigation show the need for collection of continuous water-level data in both the shallow and deeper parts of the flow system and electromagnetic induction and natural gamma geophysical logging data to better understand the response of this groundwater system to changes in precipitation and tidal forcing. Hydrologic data collected as part of this investigation will serve as the foundation for the development of numerical flow models to assess the potential effects of climate change on the coastal groundwater system of Assateague Island.

  15. Pre-drill predictions versus post-drill results: use of sequence stratigraphic methods in reduction of exploration risk, Sarawak Deep-water Blocks, Malaysia

    NASA Astrophysics Data System (ADS)

    Mansor, Md Yazid; Snedden, J. W.; Sarg, J. F.; Smith, B. S.; Kolich, T.; Carter, M.

    1999-04-01

    Limited well control, great distances from age-equivalent producing fields, and a largely unknown stratigraphy necessitated use of sequence stratigraphic methods to assess exploration risk associated with reservoir, source and seal distribution in the Mobil-operated Deep-water Blocks of Sarawak, Malaysia. These methods allowed predictions to be made and reservoir risks to be halved in each of the locations drilled in 1995. Predictions regarding reservoir and stratigraphy proved correct, as the Mulu-1 and Bako-1 wells penetrated numerous high-quality, thick sandstone reservoirs in the Middle to Lower Miocene section. Shallow marine sandstones dominate the vertical succession in both wells, with characteristic aggradational, upward-coarsening log motifs. Cores display classic wave-generated stratification and hummocky cross-bedding. Evidence, such as marginal-marine to neritic microfauna in cuttings of both wells, supports these interpretations. Lack of hydrocarbon charge in the two wells may be due to their position relative to coaly hydrocarbon source beds. These prospects have high trap and seal integrity, being well defined on seismics as high relief horst blocks covered by a very thick shale-prone section. The Mulu-1 well, for example, is located at least 20-30 km down stratigraphic dip from mapped coeval lower coastal-plain deposits. Amplitude anomalies on the flank of the Mulu horst are probably derived from transported organics buried in deep Plio-Pleistocene kitchens in the northwest portion of the Mobil blocks. Remaining potential of mapped prospects is high and efforts continue at characterizing the petroleum system of the Deep-water Blocks. Seismic attribute and interval velocity analyses provide new clues to the location of probable coaly source rocks, especially when viewed in their regional and sequence stratigraphic context. Future work is planned and will serve to reduce risk to acceptable levels and support further drilling in this prospective hydrocarbon province.

  16. Impacts of variable channel hydraulics on the stratigraphic record: an example provided from the Tullig Sandstone, Western Irish Namurian Basin

    NASA Astrophysics Data System (ADS)

    Wu, C.; Nittrouer, J. A.; Burmeister, K. C.

    2017-12-01

    River hydrodynamic conditions are modified where a system approaches its terminal basin, characterized by the onset of non-uniform "backwater" flow. A decrease in boundary shear stress in the backwater region reduces transport capacity and results in sediment deposition on the channel bed. Although such morphodynamic conditions are common in modern fluvial-deltaic channels, the extent to which these processes are prevalent in the stratigraphic record remains unclear. For example, a few studies documenting changes in fluvial sandstone channel dimensions and grain size distributions near a river terminus attributed this variability to backwater hydrodynamics. However, quantitative tests using morphodynamic models bolstered by a variety of field observations, which could then be linked to sediment depositional patterns and stratigraphy, have yet to be produced. Here we calibrate a one-dimensional river flow model with measurements of paleo-slope and channel depth, and use the output to constrain a sediment transport model, with data from the Tullig Sandstone in the Western Irish Namurian Basin. Based on the model results, our analyses indicate that: (1) backwater hydrodynamics influence the spatial variation of sandstone dimensions and grain size across the delta, and (2) backwater hydrodynamics drive channel bed aggradation and progradation of the river mouth for conditions of constant sea level. Field data indicate that the reach-average story thickness increases, and then decreases, progressing downstream over the backwater reach. Based on the inferred transport and depositional processes, the measured deltaic stratigraphy patterns shown here are assumed to be associated with backwater hydrodynamics, and are therefore largely autogenic in origin. These analyses indicate that non-uniform hydrodynamics can generate stratigraphic patterns that could be conflated as arising due to allogenic effects, based on traditional geometric or diffusion-based depositional models. Moreover, the signals of river hydrodynamics preserved in the stratigraphic record can be a useful tool for differentiating between short-term autogenic and long-term allogenic processes.

  17. The Antiquity of the Rhine River: Stratigraphic Coverage of the Dinotheriensande (Eppelsheim Formation) of the Mainz Basin (Germany)

    PubMed Central

    Böhme, Madelaine; Aiglstorfer, Manuela; Uhl, Dieter; Kullmer, Ottmar

    2012-01-01

    Background Mammalian fossils from the Eppelsheim Formation (Dinotheriensande) have been a benchmark for Neogene vertebrate palaeontology since 200 years. Worldwide famous sites like Eppelsheim serve as key localities for biochronologic, palaeobiologic, environmental, and mammal community studies. So far the formation is considered to be of early Late Miocene age (∼9.5 Ma, Vallesian), representing the oldest sediments of the Rhine River. The stratigraphic unity of the formation and of its fossil content was disputed at times, but persists unresolved. Principal Findings Here we investigate a new fossil sample from Sprendlingen, composed by over 300 mammalian specimens and silicified wood. The mammals comprise entirely Middle Miocene species, like cervids Dicrocerus elegans, Paradicrocerus elegantulus, and deinotheres Deinotherium bavaricum and D. levius. A stratigraphic evaluation of Miocene Central European deer and deinothere species proof the stratigraphic inhomogenity of the sample, and suggest late Middle Miocene (∼12.5 Ma) reworking of early Middle Miocene (∼15 Ma) sediments. This results agree with taxonomic and palaeoclimatic analysis of plant fossils from above and within the mammalian assemblage. Based on the new fossil sample and published data three biochronologic levels within the Dinotheriensand fauna can be differentiated, corresponding to early Middle Miocene (late Orleanian to early Astaracian), late Middle Miocene (late Astaracian), and early Late Miocene (Vallesian) ages. Conclusions/Significance This study documents complex faunal mixing of classical Dinotheriensand fauna, covering at least six million years, during a time of low subsidence in the Mainz Basin and shifts back the origination of the Rhine River by some five million years. Our results have severe implications for biostratigraphy and palaeobiology of the Middle to Late Miocene. They suggest that turnover events may be obliterated and challenge the proposed ‘supersaturated’ biodiversity, caused by Middle Miocene superstites, of Vallesian ecosystems in Central Europe. PMID:22615819

  18. Tephrochronology of Bed II, Olduvai Gorge, Tanzania, and placement of the Oldowan-Acheulean transition.

    PubMed

    McHenry, Lindsay J; Stanistreet, Ian G

    2018-04-12

    Tuffaceous marker beds, derived from volcanic products from the Ngorongoro Volcanic Highlands, help define a stratigraphic framework for the world-renowned fossil and stone tool record exposed at Olduvai Gorge, Tanzania. However, previous efforts to constrain this tuff record, especially for Olduvai Bed II, have been limited because of erosion, contamination, reworking, and the alteration of volcanic glass under saline-alkaline conditions. This paper applies previously defined geochemical and mineralogical "fingerprints" for several major Bed II marker tuffs, based on glass (where available) and phenocrysts more resistant to alteration (feldspar, hornblende, augite, and titanomagnetite), to tuffs from stratigraphic sections in the Olduvai Junction Area, including previously and recently excavated Acheulean and Oldowan sites (HWK EE (Locality (Loc) 42), EF-HR (Loc 12a), FLK (Loc 45), and MNK (Loc 88)). The Middle Bed II Bird Print Tuff (BPT) is found to be more compositionally variable than previously reported but is still valuable as a stratigraphic marker over short distances. The confirmation of blocks of Tuff IID in conglomerate helps constrain Upper Bed II stratigraphy at sites where in-situ tuffs are absent. This paper also compiles the results of published geochronological research, providing stratigraphic context and updating previously reported dates using a consistent 40 Ar/ 39 Ar reference standard age. The results of this work support the following paleoanthropologically relevant conclusions: 1) the early Acheulean site EF-HR (Loc 12a) is situated above the level of Hay's Tuff IIC, and thus sits in Upper rather than Middle Bed II, (2) the HWK EE (Loc 42) Oldowan site is constrained between Tuff IIA and Tuff IIB, just above the boundary between Lower and Middle Bed II, and 3) the Acheulean site at FLK W most likely lies within the Middle Augitic Sandstone, above Tuff IIB, similar to the placements by Leakey and Hay for the earliest Acheulean at Olduvai. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Stratigraphic and morphologic signatures of continental shelves, IGC 2016, Cape Town: an introduction

    NASA Astrophysics Data System (ADS)

    Green, A. N.; Cooper, J. A. G.

    2018-02-01

    This special issue of Geo-Marine Letters comprises seven contributions to the session "Stratigraphic and morphologic signatures of continental shelves" of the 35th International Geological Congress held in Cape Town (Republic of South Africa) on 27 August-4 September 2016. There is an additional article not presented at the conference but falling into the same general theme. The guest editors are A.N. Green and J.A.G. Cooper. The eight articles address several contemporary themes in continental shelf geology. They include the role of antecedent conditioning on the development of shelf stratigraphy and geomorphology; erosion of submerged shorelines and their preservation during (stepped) postglacial sea-level rise; the role of glacial processes (e.g. iceberg scouring during ice-sheet retreat); and the utility of archival data in addressing contemporary issues such as Holocene climate change and global oceanographic circulation systems. The continental shelf holds important information for understanding past and present global circulation and earth-ice-atmosphere interactions including sea-level change. It is hoped that these themes will spur further research that is slowly coming to the fore in several new and innovative mapping and exploration programmes emerging from an increasing number of coastal nations.

  20. Stratigraphic cross section of measured sections and drill holes of the Neslan Formation and adjacent formations, Book Cliffs Area, Colorado and Utah

    USGS Publications Warehouse

    Kirshbaum, Mark A.; Spear, Brianne D.

    2012-01-01

    This study updates a stratigraphic cross section published as plate 2 in Kirschbaum and Hettinger (2004) Digital Data Series 69-G (http://pubs.usgs.gov/dds/dds-069/dds-069-g/). The datum is a marine/tidal ravinement surface within the Cozzette Sandstone Member of the Iles Formation and the Thompson Canyon Sandstone and Sulphur Canyon Sandstone Beds of the Neslen Formation. One of the cores shown was included on the original cross section, and new core descriptions have been added to the upper part of the cored interval. A new core description (S178) is included in this report. Cores are stored in the U.S. Geological Survey Core Research Facility at the Denver Federal Center, Colorado. The following information has also been added to help define the stratigraphic framework: 1) At least five claystones interpreted as altered volcanic ashes have been identified and may give future workers a correlation tool within the largely continental section. 2) Thickness and general geometry of the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone have been added to provide additional stratigraphic context. 3) The geometry in the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone has been added to provide additional stratigraphic context. 4) Ammonite collections are from Gill and Hail. The zone of Didymoceras nebrascense projected into the East Salt Wash area is based on correlation of the flooding surface at the base of the Cozzette Member to this point as shown in Kirschbaum and Hettinger. 5) A leaf locality of the Denver Museum of Nature and Science is shown in its approximate stratigraphic position near Thompson Canyon. 6) A dinosaur locality of the Natural History Museum of Utah is shown in the Horse Canyon area measured section at the stratigraphic position where it was extracted.

  1. Stratigraphic Stacking of Deepmarine Channel Levee Turbidites: Scales of Cyclicity and their Origin. Examples from the Laingsburg Fm. (Karoo, South Africa) and the Rosario Fm. (Baja, Mexico)

    NASA Astrophysics Data System (ADS)

    Kane, I. A.; Hodgson, D.

    2009-12-01

    Thinning upwards of the turbidite beds that form deepmarine channel levees is a common motif reported from modern and recent levees on the seafloor, from subsurface examples, and from outcropping ancient examples. Because levees are thought to be built by deposition from turbidity currents superelevated over their channel form, the volume and style of overbank deposition are controlled primarily by the relationship between levee height (i.e., thalweg to crest) and flow thickness, determining the amount of overspill. Thus stratigraphic variability of turbidite thickness is explained by some change in either or both of those factors, which may arise autocyclicly or allocyclicly. Variation in the ratio of intra-channel and extra-channel deposition can be an autocyclic stratigraphic response, e.g., in bypass dominated systems, thalweg aggradation may be retarded with respect to levee aggradation, hence as levee relief increases, flows become more confined and, given a relatively narrow range of flow sizes, the volume of overbank flow and deposit thickness decrease with stratigraphic height. However, the same stratigraphic response of the levee may occur due to allocyclic flow magnitude variation, i.e., through decreasing flow magnitude. In both the autocyclic and allocyclic case the stratigraphic response of the levee may be one of thinning upwards, even if the overall system response may be one of progradation (autocyclic bypassing case) or retrogradation (allocyclic decreasing flow magnitude case), with entirely different connotations for sequence stratigraphic interpretation. Here we report examples of different scales of bed thickness cyclicity (both thickening and thinning upward cycles superimposed by smaller scale cycles) within levees of the Rosario Formation, Baja California, Mexico, and from the Laingsburg Formation, Karoo, South Africa, and, together with published examples, discuss criteria for the recognition, and drivers of, autocyclic and allocyclic bed thickness trends.

  2. Time averaging and stratigraphic disorder of molluscan assemblages in the Holocene sediments in the NE Adriatic (Piran)

    NASA Astrophysics Data System (ADS)

    Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin

    2016-04-01

    Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.

  3. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2010-01-01

    This report contains a simplified provisional correlation chart that was compiled from both published and unpublished data in order to fill a need to visualize the currently accepted stratigraphic relations between Appalachian basin formations, coal beds and coal zones, and key stratigraphic units in the northern, central, and southern Appalachian basin coal regions of Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. Appalachian basin coal beds and coal zones were deposited in a variety of geologic settings throughout the Lower, Middle, and Upper Pennsylvanian and Pennsylvanian formations were defined on the presence or absence of economic coal beds and coarse-grained sandstones that often are local or regionally discontinuous. The correlation chart illustrates how stratigraphic units (especially coal beds and coal zones) and their boundaries can differ between States and regions.

  4. Stratigraphic framework and coal correlation of the Upper Cretaceous Fruitland Formation, Bisti-Ah-Shi-Sle-Pah area, San Juan Basin, New Mexico

    USGS Publications Warehouse

    Flores, Romeo M.; Erpenbeck, Michael F.

    1982-01-01

    This report illustrates and describes the detailed stratigraphic framework and coal correlation of the Upper Cretaceous Fruitland Formation exposed in isolated badlands and along washes within a 20-mile outcrop belt in the Bisti-Ah-Shi-Sle-Pah area, southwestern San Juan Basin, Nex Mexico (see index). The stratigraphic framework showing the vertical and lateral distributions of rock types and the lateral continuity of coal beds is illustrated in cross sections. The cross sections were constructed from 112 stratigraphic sections measured at an average distance of 0.4 mi apart. Each section contained key marker beds (sandstone, coal, and tonstein) that were physically traced to adjacent sections. Each measured section was "hung" on multiple marker beds arranged in a geometric best-fit method that accounts for the differential compaction and facies associations of the deposits. 

  5. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Anderson, B.J.; Kurihara, M.; White, M.D.; Moridis, G.J.; Wilson, S.J.; Pooladi-Darvish, M.; Gaddipati, M.; Masuda, Y.; Collett, T.S.; Hunter, R.B.; Narita, H.; Rose, K.; Boswell, R.

    2011-01-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 ??C). This paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test. ?? 2010 Elsevier Ltd.

  6. The Quest for Carbon Sequestration in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Akintunde, O. M.; Knapp, J. H.; Brantley, D.; Lakshmi, V.

    2016-12-01

    Eighty percent of the world's energy relies on fossil fuel and under increasingly stricter national and international regulations on greenhouse gas emissions, storage of CO2 in geologic repositories is a feasible and vital solution for near- and mid-term reduction of carbon emissions in any climate change mitigation strategy. The U.S. Environmental Protection Agency estimates that about 40% of anthropogenic CO2 emissions in the U.S. are generated in the southeastern United States, mostly from point sources. The Earth Sciences and Resources Institute and the Department of Earth and Ocean Sciences at the University of South Carolina have received $11M in Department of Energy funding to evaluate the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift basin (SGR; 2009-2014), and (2) Cretaceous and Cenozoic formations along the Mid- and South Atlantic seaboard (2015-2018). ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. Our analyses have included integration of 2- and 3-D seismic surveys with core samples and geophysical well logs leading to a detailed stratigraphic, structural, petrophysical, and injection simulation model showing the heterogeneity and highly complex tectonic evolution of the target reservoirs. Our study shows that (1) the SGR basin manifests distinct porosity-permeability regimes; (2) CAMP is much more limited spatially than previously thought; (3) fractured igneous rocks hold promise for CO2 storage in the SGR basin; (4) the Tr section was buried 2.8 km deeper than present depth, (5) transfer fault zones represent major conduit for leakage; (6) the South Atlantic seaboard is a major frontier area for CO2 sequestration based on extensive 2-D seismic data with limited well control.

  7. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition during Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, Jeremy; Murphy, Jim

    2016-10-01

    Structural and compositional variability in the layering sequences comprising Mars' polar layered terrains (PLT's) is likely explained by orbital-forced climatic variations in the sedimentary cycles of water ice and dust from which they formed [1]. The PLT's therefore contain a direct, extensive record of the recent climate history of Mars encoded in their structure and stratigraphy, but deciphering this record requires understanding the depositional history of their dust and water ice constituents. 3D Mars atmosphere modeling enables direct simulation of atmospheric dynamics, aerosol transport and quantification of surface accumulation for a range of past and present orbital configurations. By quantifying the net yearly polar deposition rates of water ice and dust under Mars' current and past orbital configurations characteristic of the last several millions of years, and integrating these into the present with a time-stepping model, the formation history of the north and south PLT's will be investigated, further constraining their age and composition, and, if reproducible, revealing the processes responsible for prominent features and stratigraphy observed within the deposits. Simulating the formation of the deposits by quantifying net deposition rates during past orbital epochs and integrating these into the present, effectively 'rebuilding' the terrains, could aid in understanding deeper stratigraphic trends, correlating between geographically-separated deposits, explaining the presence and shapes of large-scale polar features, and correlating stratigraphy with geological time. Quantification of the magnitude and geographical distribution of surface aerosol accumulation will build on the work of previous GCM-based investigations [3]. Construction and analysis of hypothetical stratigraphic sequences in the PLT's will draw from previous climate-controlled stratigraphy methodologies [2,4], but will utilize GCM-derived net deposition rates to model orbital influences on sedimentation and erosion.[1] Milkovich S.M. and Head J. W. (2005) JGR, 110. [2] Laskar J.B. and Mustard J.F. (2002) Nature, 419, 375-377 [3] Newman C.E. et al. (2005) Icarus, 174, 135-160. [4] Hvidberg C.S. et al. (2012) Icarus, 221, 405-419.

  8. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. Allmore » of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3–3.9 °C). Finally, this paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test.« less

  9. Gas geochemistry of the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: implications for gas hydrate exploration in the Arctic

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.; Hunter, R.B.

    2011-01-01

    Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.

  10. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, W.; Walker, M.; Hunter, R.; Collett, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A.

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4. m-627.9. m); unit C-GH1 (649.8. m-660.8. m); and unit C-GH2 (663.2. m-666.3. m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7. mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude. ?? 2010.

  11. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, William J.; Walker, Michael; Hunter, Robert; Collett, Timothy S.; Boswell, Ray M.; Rose, Kelly K.; Waite, William F.; Torres, Marta; Patil, Shirish; Dandekar, Abhijit

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude.

  12. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  13. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.

  14. Geologic Map and GIS Data for the Wabuska Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross‐section.

  15. Changes in Groundwater Flow and Volatile Organic Compound Concentrations at the Fischer and Porter Superfund Site, Warminster Township, Bucks County, Pennsylvania, 1993-2009

    USGS Publications Warehouse

    Sloto, Ronald A.

    2010-01-01

    The 38-acre Fischer and Porter Company Superfund Site is in Warminster Township, Bucks County, Pa. Historically, as part of the manufacturing process, trichloroethylene (TCE) degreasers were used for parts cleaning. In 1979, the Bucks County Health Department detected TCE and other volatile organic compounds (VOCs) in water from the Fischer and Porter on-site supply wells and nearby public-supply wells. The Fischer and Porter Site was designated as a Superfund Site and placed on the National Priorities List in September 1983. A 1984 Record of Decision for the site required the Fischer and Porter Company to pump and treat groundwater contaminated by VOCs from three on-site wells at a combined rate of 75 gallons per minute to contain groundwater contamination on the property. Additionally, the Record of Decision recognized the need for treatment of the water from two nearby privately owned supply wells operated by the Warminster Heights Home Ownership Association. In 2004, the Warminster Heights Home Ownership Association sold its water distribution system, and both wells were taken out of service. The report describes changes in groundwater levels and contaminant concentrations and migration caused by the shutdown of the Warminster Heights supply wells and presents a delineation of the off-site groundwater-contamination plume. The U.S. Geological Survey (USGS) conducted this study (2006-09) in cooperation with the U.S. Environmental Protection Agency (USEPA). The Fischer and Porter Site and surrounding area are underlain by sedimentary rocks of the Stockton Formation of Late Triassic age. The rocks are chiefly interbedded arkosic sandstone and siltstone. The Stockton aquifer system is comprised of a series of gently dipping lithologic units with different hydraulic properties. A three-dimensional lithostratigraphic model was developed for the site on the basis of rock cores and borehole geophysical logs. The model was simplified by combining individual lithologic units into generalized units representing upward fining sedimentary cycles capped by a siltstone bed. These cycles were labeled units 1 through 8 and are called stratigraphic units in this report. Groundwater in the unweathered zone mainly moves through a network of interconnecting secondary openings--bedding-plane fractures and joints. Groundwater generally is unconfined in the shallower part of the aquifer and confined or semiconfined in the deeper part of the aquifer. The migration of VOCs from the Fischer and Porter Site source area is influenced by geologic and hydrologic controls. The hydrologic controls have changed with time. Stratigraphic units 2 and 3 crop out beneath the former Fischer and Porter plant. VOCs originating at the plant source area entered these stratigraphic units and moved downdip to the northwest. When the wells at and in the vicinity of the site were initially sampled in 1979-80, three public-supply wells (BK-366, BK-367, MG-946) and three industrial-supply wells (BK-368, BK-370, and BK-371) were pumping. Groundwater contaminated with VOCs flowed downdip and then northeast along strike toward well BK-366, downdip toward well BK-368, and downdip and then west along strike toward well MG-946. The long axis of the TCE plume is oriented about N. 18? W. in the direction of dip. In 1979-80, the leading edge of the plume was about 3,500 feet wide. With the cessation of pumping of the supply wells in 2004, the size of the plume has decreased. In 2007-09, the plume was approximately 2,000 feet long and 2,000 feet wide at the leading edge. On the western side of the site, TCE and tetrachloroethylene (PCE) appear to be moving downdip though stratigraphic unit 3. The downdip extent of TCE and PCE migration extended approximately 550 feet off-site to the northwest and 750 feet off-site to the north. TCE concentrations in water samples from wells at the western site boundary increased from 1996 to 2007. On the northern side of the site, TCE and P

  16. Structural plays in Ellesmerian sequence and correlative strata of the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Moore, Thomas E.; Potter, Christopher J.

    2003-01-01

    Reservoirs in deformed rocks of the Ellesmerian sequence in southern NPRA are assigned to two hydrocarbon plays, the Thrust-Belt play and the Ellesmerian Structural play. The two plays differ in that the Thrust-Belt play consists of reservoirs located in allochthonous strata in the frontal part of the Brooks Range fold-and-thrust belt, whereas those of the Ellesmerian Structural play are located in autochthonous or parautochthonous strata at deeper structural levels north of the Thrust-Belt play. Together, these structural plays are expected to contain about 3.5 TCF of gas but less than 6 million barrels of oil. These two plays are analyzed using a two-stage deformational model. The first stage of deformation occurred during the Neocomian, when distal strata of the Ellesmerian sequence were imbricated and assembled into deformational wedges emplaced northward onto regionally south-dipping authochon at 140-120 Ma. In the mid-Cretaceous following cessation of the deformation, the Colville basin, the foreland basin to the orogen, was filled with a thick clastic succession. During the second stage of deformation at about 60 Ma (early Tertiary), the combined older orogenic belt-foreland basin system was involved in another episode of north-vergent contractional deformation that deformed pre-existing stratigraphic and structurally trapped reservoir units, formed new structural traps, and caused significant amounts of uplift, although the amount of shortening was relatively small in comparison to the first episode of deformation. Hydrocarbon generation from source strata (Shublik Formation, Kingak Shale, and Otuk Formation) and migration into stratigraphic traps occurred primarily by sedimentary burial principally between 100-90 Ma, between the times of the two episodes of deformation. Subsequent burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and some new generation to begin progressively higher in the section. Structural disruption of the traps in the Early Tertiary is hypothesized to have released sequestered hydrocarbons and caused remigration into newly formed structural traps formed at higher structural levels. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas. In the the Thrust-Belt play, the primary reservoir lithology is expected to be dolomitic carbonate rocks of the Lisburne Group, which contain up to 15% porosity. Antiformal stacks of imbricated Lisburne Group strata form the primary trapping configuration, with chert and shale of the overlying Etivluk Group forming seals on closures. Traps are expected to have been charged primarily with remigrated gas, but oil generated from local sources in the Otuk Formation may have filled some traps at high structural levels. The timing for migration of gas into traps is excellent, but only moderate for oil because peak oil generation for the play as a whole occurred 30 to 40 m.y. before trap formation. Reservoir and seal quality in the play are questionable, reducing the likelyhood of hydrocarbon accumulations being present in the play. Our analysis suggests that the play will hold 5.7 million barrels of technically recoverable oil and 1.5 TCF gas (mean values). In the Ellesmerian Stuctural play, the primary reservoir lithologies will be dolomitic carbonate rocks of the Lisburne Group and, less likely, clastic units in the Ellesmerian sequence. Traps in the play are anticlinal closures caused by small amounts of strain in the footwall below the basal detachment for most early Tertiary thrusting. Because these traps lie beneath the main source rock units (Shublik, Kingak, lower Brookian sequence), reservoirs that are juxtaposed by faulting against source-rock units are expected to have the most favorable migration pathways. The charge will be primarily remigrated gas; no oil is expected because of the great depths (15,000 to 26,000 ft) and consequent high thermal maturity of this play. Although the the probability of charge and timeliness of trap formation and gas remigration are excellent, seal and reservoir qualities are anticipated to be poor. Our analysis suggests that about 2.0 TCF of techncially recoverable gas can be expected in the play.

  17. Sequence stratigraphy of the ANDRILL Southern McMurdo Sound (SMS) project drillcore, Antarctica: an expanded, near-field record of Antarctic Early to Middle Miocene climate and relative sea-level change

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.; Browne, G. H.; Field, B.; Florindo, F.; Harwood, D. M.; Krissek, L. A.; Levy, R. H.; Panter, K.; Passchier, S.; Pekar, S. F.; SMS Science Team

    2008-12-01

    Present understanding of Antarctic climate change during the Early to Middle Miocene, including definition of major cycles of glacial expansion and contraction, relies in large part on stable isotope proxy records from Ocean Drilling Program cores. Here, we present a sequence stratigraphic analysis of the Southern McMurdo Sound drillcore (AND-2A), which was acquired during the Austral Spring of 2007. This core offers a hitherto unavailable ice-proximal stratigraphic archive of the Early to Middle Miocene from a high-accommodation Antarctic continental margin setting, and provides clear evidence of repeated fluctuations in climate, ice expansion/contraction and attendant sea-level change over the period 20-14 Ma, with a more fragmentary record of the post-14 Ma period. A succession of seventy sequences is recognized, each bounded by a significant facies dislocation (sequence boundary), composed internally of deposits of glacimarine to open shallow marine environments, and each typically dominated by the transgressive systems tract. From changes in facies abundances and sequence character, a series of long-term (m.y.) changes in climate and relative sea-level is identified. The lithostratigraphy can be correlated confidently to glacial events Mi1b and Mi2, to the Miocene Climatic Optimum, and to the global eustatic sea-level curve. SMS provides a detailed, direct, ice-proximal reference point from which to evaluate stable isotope proxy records for Neogene Antarctic paleoclimate.

  18. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    USGS Publications Warehouse

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  19. Lateral propagation of folding and thrust faulting at Mahan, S.E. Iran

    NASA Astrophysics Data System (ADS)

    Walker, R. T.

    2003-12-01

    Folding identified near the town of Mahan in S.E. Iran has no record of historical activity, and yet there are clear geomorphological indications of recent fold growth, presumably driven by movements on underlying thrust faults. The structures at Mahan may still be capable of producing destructive earthquakes, posing a considerable hazard to local population centres. We describe a drainage evolution that shows the effect of lateral propagation of surface folding and the effect of tilting above an underlying thrust fault. River systems cross and incise through the fold segments. Each of these rivers show a distinct deflection parallel to the fold axis. This deflection starts several kilometres into the hanging-wall of the underlying thrust fault. Remnants of several abandoned drainage channels and abandoned alluvial fans are preserved within the folds. The westward lateral propagation of folding is also suggested by an increase in relief and exposure of deeper stratigraphic layers across fold segments in the east of the system, implying a greater cumulative displacement in the east than in the west. The preservation of numerous dry valleys across the fold suggests a continual forcing of drainage around the nose of the growing fold, rather than an along strike variation in slip-rate.

  20. Geologic and geomorphic controls on the occurrence of fens in the Oregon Cascades and implications for vulnerability and conservation

    USGS Publications Warehouse

    Aldous, A.; Gannett, Marshall W.; Keith, Mackenzie K.; O'Connor, James E.

    2015-01-01

    Montane fens are biologically diverse peat-forming wetlands that develop at points of groundwater discharge. To protect these ecosystems, it is critical to understand their locations on the landscape and the hydrogeologic systems that support them. The upper Deschutes Basin has a groundwater flow system that supports baseflow in many rivers, but little is known about the wetland types and groundwater dependence of the thousands of wetlands within the watershed. In 292 randomly selected wetlands, we quantified landscape metrics thought useful for discriminating montane fens from non-peat-forming wetlands. We inspected these wetlands and classified 67 of them as fens. Of the landscape metrics, only geology reliably differentiated fens from other types of wetlands. Nearly all fens develop in low-permeability glacial till found at approximately 1400–1800 m in elevation, and are concentrated in areas mantled by pumice deposits that originated primarily from the eruption of Mt. Mazama approximately 7700 years BP. Stratigraphic and hydrologic factors indicate the fens are supplied by perched aquifers in glacial till, instead of the deeper regional aquifer system. Their hydrogeologic setting makes the fens highly vulnerable to expected changes to recharge associated with climate change, but not to groundwater pumping from the regional aquifer.

  1. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton

    2007-01-01

    Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.

  2. The stratigraphic utility of the trace fossil Pteridichnites biseriatus in the Upper Devonian of eastern West Virginia and western Virginia, USA

    USGS Publications Warehouse

    McDowell, R.R.; Avary, K.L.; Matchen, D.L.; Britton, J.Q.

    2007-01-01

    Similar lithologies and lithofacies are present in two Upper Devonian siliciclastic units, the Brallier and Foreknobs formations, in eastern West Virginia and western Virginia, USA. Specimens of an unusual trace fossil, Pteridichnites biseriatus, occur in variable numbers throughout both stratigraphic units. P. biseriatus is present in abundance in the lowermost Brallier and this abundance-zone serves as a local stratigraphic marker for the Brallier. The trace fossil, originally suggested as an indication of polychaete or arthropod locomotion, is herein proposed as the locomotion trace of an unidentified ophiuroid.

  3. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    USGS Publications Warehouse

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  4. Geologic framework of oil and gas genesis in main sedimentary basins from Romania Oprea Dicea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, N.; Morariu, C.D.

    1991-03-01

    Oil and gas fields located in Moldavic nappes are encompassed in Oligocene and lower Miocene formations, mostly in the marginal folds nappe, where Kliwa Sandstone sequences have high porosity, and in the Black Sea Plateau. The origin of the hydrocarbon accumulations from the Carpathian foredeep seems to be connected to the Oligocene-lower Miocene bituminous formations of the marginal folds and sub-Carpathian nappes. In the Gethic depression, the hydrocarbon accumulations originate in Oligocene and Miocene source rocks and host in structural, stratigraphical, and lithological traps. The accumulations connected with tectonic lines that outline the areal extension of the Oligocene, Miocene, andmore » Pliocene formations are in the underthrusted Moesian platform. The hydrocarbon accumulations related to the Carpathian foreland represent about 40% of all known accumulations in Romania. Most of them are located in the Moesian platform. In this unit, the oil and gas fields present a vertical distribution at different stratigraphic levels, from paleozoic to Neogene, and in all types of reservoirs, suggesting multicycles of oleogenesis, migration, accumulation, and sealing conditions. The hydrocarbon deposits known so far on the Black Sea continental plateau are confined in the Albian, Cenomanian, Turonian-Senonian, and Eocene formations. The traps are of complex type structural, lithologic, and stratigraphic. The reservoirs are sandstones, calcareous sandstones, limestones, and sands. The hydrocarbon source rocks are pelitic and siltic Oligocene formations. Other older source rocks are probably Cretaceous.« less

  5. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologicmore » work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.« less

  6. Integrated stratigraphy of Contessa quarry section (Umbria-Marche Apennines): new data on a potentially reference section for the Burdigalian GSSP

    NASA Astrophysics Data System (ADS)

    Caricchi, Chiara; Baldassini, Niccolò; Di Stefano, Agata; Dinarès-Turell, Jaume; Fabbrini, Alessio; Foresi, Luca Maria; Lirer, Fabrizio; Patricolo, Simona; Sagnotti, Leonardo; Winkler, Aldo

    2017-04-01

    In the last two decades the Neogene Period underwent a deep chronostratigraphic revision, and several GSSPs were ratified with the exception of those of Langhian and Burdigalian stages. In particular, the Burdigalian GSSP has only been temporarily placed by Lourens et al. (2004) at 20.43 Ma, in correspondence of the First Occurrence (FO) of the calcareous nannofossil species Helicosphaera ampliaperta. In this framework, we present preliminary integrated stratigraphic studies from the Contessa quarry succession (Umbria-Marche Apennines). This well-exposed section has been sampled in the Scaglia Cinerea and Bisciaro formations, and is chronostratigraphically confined within the Aquitanian-Burdigalian time interval (Montanari et al., 1997). The sampled interval is about 18 m thick, and for the first 9 m, consists of alternating calcareous and marls nut-brown layers (Scaglia Cinerea Fm) and the upper part is made up of alternating calcareous and marls gray layers, interbedded with volcanic levels. A total of 73 oriented hand samples from different stratigraphic levels has been collected for paleomagnetic analyses, whereas 78 samples were taken for biostratigraphic studies. Paleomagnetic measurements were carried out at the laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV). For most of the samplings levels, pairs of standard regular specimens were cut in the laboratory. One specimen from each pair was subjected to stepwise AF demagnetization and the other "sister" specimen was subjected to thermal demagnetization. Paleomagnetic analyses have provided reliable directional data that allow the identification of a consistent sequence of magnetozones. Micropaleontological analyses were performed on the calcareous plankton content. Planktonic foraminifera and calcareous nannofossils assemblages are common to abundant. The degree of conservation is moderate to good as far as nannofossils concerns and moderate for the foraminifera content. Preliminary analyses performed on a limited number of samples, confirmed and detailed the biostratigraphic attributions reported in Montanari et al. (1997). The well exposed outcrops, the lithological cyclicity, the encouraging results from magnetostratigraphic and micropaleontological analyses, make this section suitable for high-resolution stratigraphic, cyclostratigraphic and astrochronologic studies, in the perspective of the definition of the Burdigalian GSSP.

  7. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  8. Harmonic Analysis of Sedimentary Cyclic Sequences in Kansas, Midcontinent, USA

    USGS Publications Warehouse

    Merriam, D.F.; Robinson, J.E.

    1997-01-01

    Several stratigraphic sequences in the Upper Carboniferous (Pennsylvanian) in Kansas (Midcontinent, USA) were analyzed quantitatively for periodic repetitions. The sequences were coded by lithologic type into strings of datasets. The strings then were analyzed by an adaptation of a one-dimensional Fourier transform analysis and examined for evidence of periodicity. The method was tested using different states in coding to determine the robustness of the method and data. The most persistent response is in multiples of 8-10 ft (2.5-3.0 m) and probably is dependent on the depositional thickness of the original lithologic units. Other cyclicities occurred in multiples of the basic frequency of 8-10 with persistent ones at 22 and 30 feet (6.5-9.0 m) and large ones at 80 and 160 feet (25-50 m). These levels of thickness relate well to the basic cyclothem and megacyclothem as measured on outcrop. We propose that this approach is a suitable one for analyzing cyclic events in the stratigraphic record.

  9. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap

  10. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  11. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  12. Teaching with Stratigraphic Profiles

    ERIC Educational Resources Information Center

    Stefanich, Greg P.

    1974-01-01

    Presents two exercises modeled after the ice age puzzle described in the ESCP textbook, including formation of terminal moraines and kettle lakes and intersection of normal faults with gold-quartz veins. Indicates that the stratigraphic profiles are usable in teaching earth science, geography, general science, and topographic problems. (CC)

  13. Stratigraphic and palaeoenvironmental summary of the south-east Georgia Embayment: a correlation of exploratory wells

    USGS Publications Warehouse

    Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.

    1995-01-01

    A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors

  14. Seismic Stratigraphic Evidence From SE Ross Sea for Late Oligocene Glaciers and ice Streams Issuing From Marie Byrd Land

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Luyendyk, B. P.; Wilson, D. S.; Decesari, R. C.; Bartek, L. R.; Diebold, J. B.

    2006-12-01

    The extent of the West Antarctic ice sheet during mid-Cenozoic time is controversial and important to climate models. High-resolution multichannel seismic reflection data were acquired using the RVIB Palmer along the edge of the Ross Ice Shelf across the Eastern Basin of Ross Sea, in an area where calving of the ice shelf has exposed seafloor that has not been accessible to marine geophysics in several decades. A sub-basin in the far southeast corner of Ross Sea contains a succession of sediment-filled troughs, each capped by an unconformity. These troughs range between 2 and 20 km across, are 100 to 150 m-deep, with the narrower ones bounded by flat-topped ridges interpreted as moraines. We interpret the troughs interval to slightly predate 25 Ma. Reflections just 100 m below the troughs interval can be directly correlated to near DSDP270 where they underlie strata dated at ~25 Ma. A deeper stack of prograding sequences associated with a flat- topped ridge are interpreted as pre-25 Ma, possibly early Oligocene, deltas formed adjacent to the grounding line of a glacier, and the flat-topped ridge to be a moraine. The shallowest of the stack of unconformities capping the broad troughs can be projected across a basement ridge on trend with Roosevelt Island to a regional angular unconformity ("Red"), present across 70 km to deep sedimentary Eastern Basin. This unconformity represents about 1 km of missing stratigraphic section, is smooth and level, and splits into several major sequence boundaries within deep Eastern Basin. The second shallowest of these boundaries is dated about 14 Ma at DSDP-270. We interpret this unconformity to be cut by regional thick, grounded ice at depths several hundred meters below sea level. Pre-25 Ma strata show evidence of narrow erosional troughs and reflective mounds or ridges on the west flank of the basement ridge, but such features are not present in southern deep Eastern Basin near the ice shelf edge. This is evidence that the troughs were carved by glaciers issuing from distant highlands of Marie Byrd Land and not from East Antarctica. Late Oligocene through mid Miocene and younger prograding and unconformities farther north in Eastern Basin indicate grounded ice there. One possible interpretation is that "Red" was cut by thick, grounded ice that affected all of the Eastern Ross Sea paleo-shelf, while the pre-25 Ma glaciers affected only the area proximal to Marie Byrd Land. Late Oligocene glaciation on the outer shelf above deep Eastern Basin may have been sourced from East Antarctica and/or Central High. Evidence for pre-25 Ma glaciation proximal to Marie Byrd Land, combined with evidence for Oligocene ice caps at widely-separated localities of West Antarctica, allow the interpretation that portions of the West Antarctic Ice Sheet developed during Oligocene time. The broad troughs and the stack of prograding sequences may be related to dynamic ice caps and sea level falls in mid Oligocene and earliest Oligocene time. The Middle Miocene Red unconformity may be related to development of polar (cold-base) ice sheets. Oligocene glaciation implies that Marie Byrd Land and eastern Ross Sea have subsided from higher elevation due to cooling after late Cretaceous crustal thinning.

  15. Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    USGS Publications Warehouse

    Barnhardt, W.A.; Jaffe, B.E.; Kayen, R.E.; Cochrane, G.R.

    2004-01-01

    Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3-4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.

  16. Integration of borehole and seismic data to unravel complex stratigraphy: Case studies from the Mannville Group, Western Canada

    NASA Astrophysics Data System (ADS)

    Sarzalejo Silva, Sabrina Ester

    Understanding the stratigraphic architecture of geologically complex reservoirs, such as the heavy oil deposits of Western Canada, is essential to achieve an efficient hydrocarbon recovery. Borehole and 3-D seismic data were integrated to define the stratigraphic architecture and generate 3-dimensional geological models of the Mannville Group in Saskatchewan. The Mannville is a stratigraphically complex unit formed of fluvial to marine deposits. Two areas in west-central and southern Saskatchewan were examined in this study. In west-central Saskatchewan, the area corresponds to a stratigraphically controlled heavy oil reservoir with production from the undifferentiated Dina-Cummings Members of the Lower Cretaceous Mannville Group. The southern area, although non-prospective for hydrocarbons, shares many similarities with time-equivalent strata in areas of heavy oil production. Seismic sequence stratigraphic principles together with log signatures permitted the subdivision of the Mannville into different packages. An initial geological model was generated integrating seismic and well-log data Multiattribute analysis and neural networks were used to generate a pseudo-lithology or gamma-ray volume. The incorporation of borehole core data to the model and the subsequent integration with the lithological prediction were crucial to capture the distribution of reservoir and non-reservoir deposits in the study area. The ability to visualize the 3-D seismic data in a variety of ways, including arbitrary lines and stratal or horizon slicing techniques helped the definition of stratigraphic features such as channels and scroll bars that affect fluid flow in hydrocarbon producing areas. Small-scale heterogeneities in the reservoir were not resolved due to the resolution of the seismic data. Although not undertaken in this study, the resulting stratigraphic framework could be used to help construct a static reservoir model. Because of the small size of the 3-D seismic surveys, horizontal slices through the data volume generally imaged only small portions of the paleogeomorphologic features thought to be present in this area. As such, it was only through the integration of datasets that the geological models were established.

  17. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    NASA Astrophysics Data System (ADS)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is available to analyse and model stratigraphic setting and subsidence evolution of the basin. The study area covers approximately 1200 km2 including 110 data points in the central part of the Vienna Basin.

  18. The stratigraphic distribution of large marine vertebrates and shell beds in the Pliocene of Tuscany

    NASA Astrophysics Data System (ADS)

    Dominici, Stefano; Benvenuti, Marco; Danise, Silvia

    2015-04-01

    The record of 337 shark fossils, 142 cetaceans and 10 sea cows from the Pliocene of Tuscany, mostly from historical museum collections, is revised. The majority of these fossils are concentrated at a few geographic sites from separated hinterland basins, on the South-Western side of the Northern Apennines. To better understand the meaning of these concentrations, the sequence stratigraphic distribution of more recent findings of large marine vertebrates is reconstructed against a high-resolution framework based on sedimentary facies analysis. These remains are usually covered by, or included in mudstones deposited far from the coast (N=12), skeletons being usually articulated, slightly displaced, and often bioeroded. A minor part of better preserved articulated skeletons is associated with sandstones from deltaic paleonenvironments (N=2). Marine mammal and shark remains may be associated with laterally-continuous shell accumulations, a type of concentration occurring at maximum flooding surfaces, separating relatively coarse-grained facies from open marine mudstones. Shell beds were bulk-sampled at 66 locations from six basins, covering a wide range of sedimentary facies, and spanning a chronologic interval of about 2.5 million years. A dataset of 62,655 mollusc specimens belonging to 496 species formed the basis of a statistical study to reconstruct the structure of the benthic communities, and to estimate paleodepths from intertidal to upper bathyal settings. Mollusc associations closely mirror the distribution of sedimentary facies, allowing for a fine tuning of the sequence stratigraphic architecture. Merging paleogeographic, stratigraphic and paleoecologic data, we conclude that the more abundant and diverse accumulations of large vertebrates took place in settings under the influence of coastal upwelling. A modern analogue occurs today in the Ligurian Sea, on the Tuscan offshore, where abundant nutrients carried by deep-marine currents of Western origin, within an otherwise oligotrophic Mediterranean Sea, sustain a rich and diverse cetacean and shark, epipelagic and mesopelagic community. The modern steep bathymetric gradient was displaced towards the East during the Pliocene, before the latest phases of uplift of the Northern Apennines. An open marine, nutrient-rich ecosystem influenced hinterland basins during major transgressive pulses, leading to a higher productivity and the formation of laterally-continuos accumulations of biogenic hard parts. A comparison with the few available studies on the sequence-stratigraphic distribution of large marine vertebrates and shell beds suggests that a model integrating high-productivity and sea level rise, favouring bone bed and shell bed formation, can be applied at other settings, and other geologic intervals.

  19. Integrating remote sensing and subsurface geological data to characterize a tidally-influenced paleodrainage from the mid-late Holocene succession of the Po Delta Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Giacomelli, Serena; Rossi, Veronica; Amorosi, Alessandro; Bruno, Luigi; Campo, Bruno; Ciampalini, Andrea; Civa, Andrea; de Souza Filho, Roberto Carlos; Sgavetti, Maria

    2017-04-01

    A tidally-influenced, mid-late Holocene paleodrainage system from the Po Delta Plain (N Adriatic Sea, Italy) is reconstructed coupling remote sensing (RS) and subsurface geological data. Optical satellite images, DTM LiDAR, soil reflectance spectral features and core stratigraphy were combined in a GIS environment following a fully integrated methodological approach. The stratigraphic significance of RS-derived data (traces) was defined in terms of both depositional facies and depth, furnishing new insights on the role of RS in reconstructing the recent evolution of paleodrainages in coastal-deltaic settings. Sixteen images from Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Sentinel-2 MSI (Multispectral Instruments), and Hyperion satellites were collected from the USGS and the Scientific Hub ESA-Copernicus on-line databases, and integrated with Google Earth imagery. The visual interpretation of the images, mostly based on the brightness contrast (high and low reflectance values) and aimed to the recognition of traces, has been facilitated by the RGB combinations of the spectral bands most sensitive to lithology and moisture content and supported by a semi-automatic processing, including unsupervised classification and the spectral bands Principal Component Analysis (PCA). Multitemporal analysis of satellite imagery have been also performed. Two main traces, interpreted as meanders, have been analyzed for their sedimentological and stratigraphic characteristics. Following a field survey aimed to describe the morphology, grain-size, colors, and accessory materials of surface deposits, 11 soil samples have been collected for the extraction of the reflectance spectral signature and coring along the traces and in adjacent areas (bright and dark portions). Cores have been sampled for benthic foraminifer/ostracod analysis (42 samples) and stratigraphic cross-sections were constructed transversal to the meandering traces. Nine radiocarbon ages allowed to set the depositional evolution of the two meanders into a definite chronological framework. The integrated, RS-stratigraphic methodological approach revealed a meandering paleodrainage system buried > 2 m below the ground level. Its surface visibility is guided by the spatial distribution of surface moisture, which mainly depends on subsurface stratigraphic architecture and, in particular, on the distribution of organic-rich deposits laterally to the migrating meanders. The formation and activity of the buried paleochannels dates back to the early Holocene highstand (6000-2500 cal yr BP), when a drainage system likely developed under tide-influenced conditions.

  20. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Chama-El Vado Area, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  1. Geologic evidence of earthquakes at the Snohomish Delta, Washington, in the past 1200 yr

    USGS Publications Warehouse

    Bourgeois, Joanne; Johnson, Samuel Y.

    2001-01-01

    Exposed channel banks along distributaries of the lower Snohomish delta in the Puget Lowland of Washingtonreveal evidence of at least three episodes of liquefaction, at least one event of abrupt subsidence, and at least one tsunami since ca. A.D. 800. The 45 measured stratigraphic sections consist mostly of 2-4 m of olive- gray, intertidal mud containing abundant marsh plant rhizomes. The most distinctive stratigraphic unit is a couplet comprising a 0.5-3-cm-thick, laminated, fining-upward, tsunami-laid sand bed overlain by 2-10 cm of gray clay. We correlated the couplet, which is generally approximately 2 m below the modern marsh surface, across an approximately 20 km (super 2) area. Sand dikes and sand-filled cracks to 1 m wide, which terminate upward at the couplet, and sand volcanoes preserved at the level of the sand bed record liquefaction at the same time as couplet deposition. Differences in the type and abundance of marsh plant rhizomes across the couplet horizon, as well as the gray clay layer, suggest that compaction during this liquefaction led to abrupt, local lowering of the marsh surface by as much as 50-75 cm. Radiocarbon ages show that the tsunami and liquefaction date from ca. A.D. 800 to 980, similar to the age of a large earthquake on the Seattle fault, 50 km to the south. We have found evidence for at least two, and possibly as many as five, other earthquakes in the measured sections. At two or more stratigraphic levels above the couplet, sand dikes locally feed sand volcanoes. Radiocarbon ages and stratigraphic position suggest that one set of these dikes formed ca. A.D. 910-990; radiocarbon ages on a younger set indicate a limiting maximum age of A.D. 1400-1640. We also interpret a sharp lithologic change, from olive-gray, rhizome-rich mud to grayer, rhizome-poor mud, approximately 1 m above the couplet, to indicate a second abrupt lowering of the marsh surface during an earthquake ca. A.D. 1040-1400, but no conclusive liquefaction structures have been identified at this horizon. Two distinctive coarse-sand laminae, 30-80 cm below the couplet, may record tsunamis older than A.D. 800. Thus, study shows that in the past approximately 1200 yr, this part of Washington's Puget Lowland has been subjected to stronger ground shaking than in historic times, since ca. 1870.

  2. Geologic Map and GID Data for the Salt Wells Geothermal Area

    DOE Data Explorer

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  3. Publications - GMC 57 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    from the Standard Oil Company of California Nimiuk Pt. #1 well Authors: Leverson, John, and American Stratigraphic Company Publication Date: 1977 Publisher: Alaska Division of Geological & Geophysical Surveys information. Bibliographic Reference Leverson, John, and American Stratigraphic Company, 1977, A mineral

  4. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2004-05-01

    Seventy-five types of ichnofossils documented during a four-year reconnaissance study in the Upper Jurassic Morrison Formation demonstrate that highly diverse and abundant plants, invertebrates, and vertebrates occur throughout most of the Morrison or equivalent strata. Invertebrate ichnofossils, preserving the most environmentally and climatically sensitive in situ behavior of Morrison organisms, are in nearly all outcrops. Terrestrial ichnofossils record biotic processes in soil formation, indicating soil moisture and water-table levels. Freshwater ichnofossils preserve evidence of water depth, salinity, and seasonality of water bodies. Ichnofossils, categorized as epiterraphilic, terraphilic, hygrophilic, and hydrophilic (new terms), reflect the moisture regime where they were constructed. The ichnofossils are vertically zoned with respect to physical, chemical, and biological factors in the environment that controlled their distribution and abundance, and are expressed as surficial, shallow, intermediate, and deep. The sedimentologic, stratigraphic, and geographic distribution of Morrison ichnofossils reflects the environmental and climatic variations across the basin through time. Marginal-marine, tidal to brackish-water ichnofossils are mainly restricted to the Windy Hill Member. Very large to small termite nests dominate the Salt Wash Member. Similar size ranges of ant nests dominate the Brushy Basin Member. Soil bee nests dominate in the Salt Wash, decreasing in abundance through the Brushy Basin. Deeper and larger insect nests indicate more seasonal distribution of precipitation and rainfall. Shallower and smaller insect nests indicate either dry or wet substrate conditions depending on the nest architecture and paleopedogenic and sedimentologic character of the substrate. Trace-fossil indicators of flowing or standing water conditions are dominant in the Tidwell Member and in fluvial sandstones of the Salt Wash and Brushy Basin Members. Large communities of perennial, freshwater bivalve traces are abundant in the Tidwell and Brushy Basin Members but to a lesser extent in the Salt Wash Member. Shallow crayfish burrows, indicating a water-table level close to the surface (<1 m), are restricted to channel bank and proximal alluvial deposits in the Salt Wash, Recapture, and Brushy Basin Members. Sauropod, theropod, pterosaur, and other vertebrate tracks occur throughout the Morrison Formation associated with alluvial, lacustrine, and transitional-marine shoreline deposits. Ichnofossils and co-occurring paleosols in the Morrison reflect the local and regional paleohydrologic settings, which record the annual soil moisture budget and were largely controlled by the climate in the basin. Contributions to near-surface biologic systems by groundwater from distant sources were minor, except where the water table perennially, seasonally, or ephemerally intersected the ground-surface. The Jurassic Morrison Formation in the southern portion of the basin experienced a mosaic of seasonal climates that varied from a drier (Tidwell/Windy Hill deposition) to a wetter (lower and middle Salt Wash deposition) and slightly drier (upper Salt Wash deposition) tropical wet-dry climate, returning to a wetter tropical wet-dry climate near the end of Morrison deposition (Brushy Basin deposition). The northern part of the basin experienced similar trends across a mosaic of Mediterranean climate types. The range and mosaic pattern of wet-dry Morrison climates is analogous to the range of climates (and their seasonal variability) that dominates the African savanna today.

  5. Assessing the statistical robustness of inter- and intra-basinal carbon isotope chemostratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Hay, C.; Creveling, J. R.; Huybers, P. J.

    2016-12-01

    Excursions in the stable carbon isotopic composition of carbonate rocks (δ13Ccarb) can facilitate correlation of Precambrian and Phanerozoic sedimentary successions at a higher temporal resolution than radiometric and biostratigraphic frameworks typically afford. Within the bounds of litho- and biostratigraphic constraints, stratigraphers often correlate isotopic patterns between distant stratigraphic sections through visual alignment of local maxima and minima of isotopic values. The reproducibility of this method can prove challenging and, thus, evaluating the statistical robustness of intrabasinal composite carbon isotope curves, and global correlations to these reference curves, remains difficult. To assess the reproducibility of stratigraphic alignment of δ13Ccarb data, and correlations between carbon isotope excursions, we employ a numerical dynamic time warping methodology that stretches and squeezes the time axis of a record to obtain an optimal correlation (in a least-squares sense) between time-uncertain series of data. In particular, we assess various alignments between series of Early Cambrian δ13Ccarb data with respect to plausible matches. We first show that an alignment of these records obtained visually, and published previously, is broadly reproducible using dynamic time warping. Alternative alignments with similar goodness of fits are also obtainable, and their stratigraphic plausibility are discussed. This approach should be generalizable to an algorithm for the purposes of developing a library of plausible alignments between multiple time-uncertain stratigraphic records.

  6. Regional Stratigraphy and Petroleum Systems of the Illinois Basin, U.S.A.

    USGS Publications Warehouse

    Swezey, Christopher S.

    2009-01-01

    The publication combines data on Paleozoic and Mesozoic stratigraphy and petroleum geology of the Illinois basin, U.S.A., in order to facilitate visualizing the stratigraphy on a regional scale and visualizing stratigraphic relations within the basin. Data are presented in eight schematic chronostratigraphic sections arranged approximately from north to south, with time denoted in equal increments along the sections, in addition to the areal extent of this structural basin. The stratigraphic data are modified from Hass (1956), Conant and Swanson (1961), Wilman and others (1975), American Association of Petroleum Geologists (1984, 1986), Olive and McDowell (1986), Shaver and others (1986), Thompson (1986), Mancini and others (1996), and Harrison and Litwin (1997). The time scale is taken from Gradstein and others (2004). Additional stratigraphic nomenclature is from Harland and others (1990), Babcock and others (2007), and Bergstrom and others (2008). Stratigraphic sequences as defined by Sloss (1963, 1988) and Wheeler (1963) also are included, as well as the locations of major petroleum source rocks and major petroleum plays. The stratigraphic units shown are colored according to predominant lithology, in order to emphasize general lithologic patterns and to provide a broad overview of the Illinois basin. For the purpose of comparison, three columns on the right show schematic depictions of stratigraphy and interpreted events in the Illinois basin and in the adjacent Michigan and Appalachian basins.

  7. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. < 1 m) regolith stratigraphy. The geophysics included: ground penetrating radar collected at a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo-registration, depth correction, etc.) each geophysical profile was evaluated by matching the core data. Applying traditional geophysical techniques, the best profiles were inverted using the core data creating two-dimensional (2-D) stratigraphic regolith models for each transect, and evaluated using independent validation. Next, in a test of an alternative method borrowed from digital soil mapping, the best preprocessed geophysical profiles were co-registered and stratigraphic models for each property created using multivariate environmental correlation. After independent validation, the qualities of the latest models were compared to the traditionally derived 2-D inverted models. Finally, the best overall stratigraphic models were used in conjunction with local environmental data (e.g. geology, geochemistry, terrain, soils) to create conceptual regolith hillslope models for each transect highlighting important features and processes, e.g. morphology, hydropedology and weathering characteristics. Results are presented with recommendations regarding the use of geophysics in modelling regolith stratigraphy at fine scales.

  8. Stratigraphy of the crater Copernicus

    NASA Technical Reports Server (NTRS)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  9. Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico

    USGS Publications Warehouse

    Pawlewicz, Mark; Barker, Charles E.; McDonald, Sargent

    2005-01-01

    This report presents a compilation of vitrinite reflectance (Ro) data based on analyses of samples of drill cuttings collected from 74 boreholes spread throughout the Permian Basin of west Texas and southeast New Mexico (fig. 1). The resulting data consist of 3 to 24 individual Ro analyses representing progressively deeper stratigraphic units in each of the boreholes (table 1). The samples, Cambrian-Ordovician to Cretaceous in age, were collected at depths ranging from 200 ft to more than 22,100 ft.The R0 data were plotted on maps that depict three different maturation levels for organic matter in the sedimentary rocks of the Permian Basin (figs. 2-4). These maps show depths at the various borehole locations where the R0 values were calculated to be 0.6 (fig. 2), 1.3 (fig. 3), and 2.0 (fig. 4) percent, which correspond, generally, to the onset of oil generation, the onset of oil cracking, and the limit of oil preservation, respectively.The four major geologic structural features within the Permian Basin–Midland Basin, Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1) differ in overall depth, thermal history and tectonic style. In the western Delaware Basin, for example, higher maturation is observed at relatively shallow depths, resulting from uplift and eastward basin tilting that began in the Mississippian and ultimately exposed older, thermally mature rocks. Maturity was further enhanced in this basin by the emplacement of early and mid-Tertiary intrusives. Volcanic activity also appears to have been a controlling factor for maturation of organic matter in the southern part of the otherwise tectonically stable Northwest Shelf (Barker and Pawlewicz, 1987). Depths to the three different Ro values are greatest in the eastern Delaware Basin and southern Midland Basin. This appears to be a function of tectonic activity related to the Marathon-Ouachita orogeny, during the Late-Middle Pennsylvanian, whose affects were widespread across the Permian Basin. The Central Basin Platform has been a positive feature since the mid to-late Paleozoic, during which time sedimentation occurred along its flanks. This nonsubsidence, along with the lack of supplemental heating (volcanism), implies lower maturation levels.

  10. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems

    USGS Publications Warehouse

    Stow, D.A.V.; Howell, D.G.; Nelson, C.H.

    1984-01-01

    To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. ?? 1984 Springer-Verlag New York Inc.

  11. Impact of absorption in the top layer of a two layer sample on spectroscopic spectral domain interferometry of the bottom layer

    NASA Astrophysics Data System (ADS)

    Fleischhauer, F.; Feuchter, T.; Leick, L.; Rajendram, R.; Podoleanu, A.

    2018-03-01

    Spectroscopic spectral domain interferometry and spectroscopic optical coherence tomography combine depth information with spectrally-resolved localised absorption data. These additional data can improve diagnostics by giving access to functional information of the investigated sample. One possible application is measuring oxygenation levels at the retina for earlier detection of several eye diseases. Here measurements with different hollow glass tube phantoms are shown to measure the impact of a superficial absorbing layer on the precision of reconstructed attenuation spectra of a deeper layer. Measurements show that a superficial absorber has no impact on the reconstructed absorption spectrum of the deeper absorber. Even when diluting the concentration of the deeper absorber so far that an incorrect absorption maximum is obtained, still no influence of the superficially placed absorber is identified.

  12. Stratigraphic Evidence for Environmental Change in a Bermudian Coastal Underwater Cave (Palm Cave System) in Response to Holocene Sea-level Rise

    NASA Astrophysics Data System (ADS)

    Cresswell, J. N.; van Hengstum, P. J.; Iliffe, T. M.

    2016-12-01

    Unique environments exist worldwide in coastal underwater caves, including those from Bermuda, which has been a global epicenter for interdisciplinary cave research. However, the development of environments, ecosystems, and sedimentary deposits in coastal underwater caves, particularly over millennial timescales is poorly understood, with previous research from Bermuda indicating a critical role for sea-level rise in driving environmental change. A multi-proxy stratigraphic analysis of 14 sediment cores that were collected from the Palm Cave System in Bermuda from 2 m to 20 m water depths was conducted to better understand Holocene-scale environmental change in coastal underwater caves (e.g., textural analysis, x-radiographs, microfossil analysis, radiocarbon dating). The rate of deposition was found to be variable throughout time and dependent upon the proximity of core locations to cave openings (`karst windows') and conduit geometry. The oldest recovered sediment was likely Pleistocene-aged, terra-rosa soil deposits that predate the Holocene inundation. By 9500 Cal yrs BP, deposition was dominated by organic-rich facies (gyttja), with agglutinated brackish foraminifera (Trochammina, Polysaccammina) and bivalves indicating brackish aquatic conditions in the system by 9200 Cal yrs BP. A system-wide shift to carbonate deposition occurred 8500 Cal yrs BP, which indicates the onset of oxygenated marine water entering the cave and development of a marine-dominated (i.e., submarine) cave environment. Comparison with local maximum sea-level indicators shows that inundation of the Bermuda platform by Holocene sea-level rise likely drove environmental change in the Palm Cave System.

  13. Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important Thermus species.

    PubMed

    Kumwenda, Benjamin; Litthauer, Derek; Reva, Oleg

    2014-09-25

    Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.

  14. Sequence stratigraphy of the Maastrichtian-Paleocene succession at the Dakhla Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Hewaidy, Abdel Galil A.; Farouk, Sherif; Bazeen, Youssef S.

    2017-12-01

    The Maastrichtian-Paleocene succession at the Dakhla Oasis is marked by the presence of a typical Nile Valley Facies represented by the Dakhla and Tarawan formations in Edmonstone and Qur El Malik sections in the central and western parts of the oasis, while a mixed Nile Valley and Garra Al-Arbain facies represented by Dakhla, Kurkur and Tarawan formations in Teneida section in the eastern part of the oasis adjacent to the Abu Tartur Plateau. These sections were examined for their foraminiferal contents, lithologic characters and stratigraphic boundaries. The distribution of foraminifera in the studied sections is variable and inconstant, as the planktonics are concentrated only at certain levels, which may be considered as a time intervals of transgression and maximum flooding surfaces. Eight planktonic biozones are distinguished in this work; of theses two are of Maastrichtain age and six are of Paleocene age. Eight 3rd order depositional sequences are recognized in the studied Maastrichtian-Paleocene succession based on the time stratigraphic boundaries released from the planktonic foraminifera and sea level changes which are released from the paleoecologic interpretations. The distinguished sequences are subdivided into their systems tracts based on the paleobathymetric interpretations of P/B% and benthic biofacies analysis. These sequences are bounded by eight sequence boundaries (SB A - SB H) represented by unconformity surfaces and depositional hiatuses. The correlation of the sequence boundaries of the established depositional sequences with the eustatic sea level curve, suggesting that these depositional sequences were resulted from the interplay of eustatic sea-level changes and local tectonic activities.

  15. Spatio-temporal variation in groundwater head affected by stratigraphic heterogeneity of the alluvial aquifer in Northwest India

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; Joshi, S. K.; Densmore, A. L.; Jackson, C. R.; Sutanudjaja, E.; Lafare, A. E. A.; Gupta, S.; Mackay, J. D.; Mason, P. J.; Sinha, R.

    2017-12-01

    Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial variation in the M0 for abstraction is controlled by stratigraphic and geomorphic heterogeneity. The fan margins and the interfan area are more affected by abstraction as these areas are underlain by fewer, and thinner, aquifer bodies them the fans themselves. Von Ashmuth et al,2008. Ground Water, 46 (1), 30-40

  16. Stratigraphic distribution, taphonomy and paleoenvironments of Spinicaudata in the Triassic and Jurassic of the Paraná Basin

    NASA Astrophysics Data System (ADS)

    Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio

    2017-12-01

    Due to the chitino-phosphatic nature of Spinicaudata conchostracan exoskeletons, their carapaces exhibit a low preservational potential compared to other bivalve groups. However, the recent studies point towards the increased tolerance of the carapace against the physical processes. Due to this peculiar characteristic, conchostracan carapace have been utilized as precise temporal markers in estimating stratigraphic and taphonomic parameters. The same characteristic also makes the spinicaudatans useful in evaluating the depositional processes and environments. The present work aims at providing a paleoenvironmental and stratigraphic analysis of conchostracans (Spinicaudata) from the Triassic-Jurassic of the Paraná Basin (Santa Maria and Caturrita formations) in terms of the sedimentary facies analysis, depositional system characterization, and analysis of the taphonomic signatures of the fossiliferous horizons within these formations. The results from the taphonomic study delineates the presence of 4 distinct fossil assemblages based on the causative mechanism and fundamental characteristics of the fossil concentrations: two taphonomic assemblages in the laminated mudstone beds deposited from the decanting fine-grained sediments in floodplains; the sandstone beds with plane parallel laminations and dune- and ripple-cross-stratifications deposited from the flooding-related overflow in the floodplains; and the association of laminated mudstone and massive sandstone beds deposited as the river mouth bars. The results show that the taphonomic signatures, e.g., closed valves, may indicate the various patterns of autochthony and allochthony. In the fine-grained floodplain assemblages, the high degree of preservation can be attributed to autochthony in the conchostracans, whereas the preservational condition of floodplain sandstone sheet and mouth bar assemblages point toward parautochthony and even allochthony. Therefore, the preservational quality of conchostracan exoskeletons is likely a function of parameters, e.g., the transport duration, the distance from life position, and the magnitude of events causing their final burial. Within the observed species, the recognition of Eustheria minuta in the stratigraphic level of the Passo das Tropas creek corroborates an age for these deposits between the late Middle Triassic and early Upper Triassic. The presence of a new form, likely related to the family Fushunograptidae in sediments from the Caturrita Formation, suggests a Jurassic age for these deposits.

  17. Characteristics, stratigraphic architecture, and time framework of multi-order mixed siliciclastic and carbonate depositional sequences, outcropping Cisco Group (Late Pennsylvanian and Early Permian), Eastern Shelf, north-central Texas, USA

    NASA Astrophysics Data System (ADS)

    Yang, Wan; Kominz, Michelle A.

    2003-01-01

    The Cisco Group on the Eastern Shelf of the Midland Basin is composed of fluvial, deltaic, shelf, shelf-margin, and slope-to-basin carbonate and siliciclastic rocks. Sedimentologic and stratigraphic analyses of 181 meter-to-decimeter-scale depositional sequences exposed in the up-dip shelf indicated that the siliciclastic and carbonate parasequences in the transgressive systems tracts (TST) are thin and upward deepening, whereas those in highstand systems tracts (HST) are thick and upward shallowing. The sequences can be subdivided into five types on the basis of principal lithofacies, and exhibit variable magnitude of facies shift corresponding to variable extents of marine transgression and regression on the shelf. The sequence stacking patterns and their regional persistence suggest a three-level sequence hierarchy controlled by eustasy, whereas local and regional changes in lithology, thickness, and sequence type, magnitude, and absence were controlled by interplay of eustasy, differential shelf subsidence, depositional topography, and pattern of siliciclastic supply. The outcropping Cisco Group is highly incomplete with an estimated 6-11% stratigraphic completeness. The average duration of deposition of the major (third-order) sequences is estimated as 67-102 ka on the up-dip shelf and increases down dip, while the average duration of the major sequence boundaries (SB) is estimated as 831-1066 ka and decreases down dip. The nondepositional and erosional hiatus on the up-dip shelf was represented by lowstand deltaic systems in the basin and slope.

  18. SAS program for quantitative stratigraphic correlation by principal components

    USGS Publications Warehouse

    Hohn, M.E.

    1985-01-01

    A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.

  19. Review of palaeozygopleurid gastropods (Palaeozygopleuridae, Gastropoda) from Devonian strata of the Perunica microplate (Bohemia), with a re-evaluation of their stratigraphic distribution, notes on their ontogeny, and descriptions of new taxa.

    PubMed

    Frýda, Jiři; Ferrová, Lenka; Frýdová, Barbora

    2013-01-01

    Review of all species of the family Palaeozygopleuridae Horný, 1955 (Gastropoda) known from the Perunica microplate (Bohemia) is presented with a description of three new species, Palaeozygopleura lukesi sp. nov., Cimrmaniela sveraki gen. et sp. nov. and Cimrmaniela smoljaki gen. et sp. nov. The stratigraphic distributions of the most of Bohemian palaeozygopleurid species are either corrected or refined, based on new records or modern stratigraphic studies. A complete list of the geographic occurrences of all known palaeozygopleurid gastropods from the Perunica microplate is also given together with notes on their ontogeny.

  20. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Mesa Golondrina and Mesa de los Viejos areas, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  1. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep boreholemore » is located kilometers away.« less

  2. Digital tabulation of stratigraphic data from oil and gas wells in Cuyama Valley and surrounding areas, central California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.; Langenheim, V.E.; Shumaker, Lauren E.; Scheirer, Daniel S.

    2013-01-01

    Stratigraphic information from 391 oil and gas exploration wells from Cuyama Valley, California, and surrounding areas are herein compiled in digital form from reports that were released originally in paper form. The Cuyama Basin is located within the southeasternmost part of the Coast Ranges and north of the western Transverse Ranges, west of the San Andreas fault. Knowledge of the location and elevation of stratigraphic tops of formations throughout the basin is a first step toward understanding depositional trends and the structural evolution of the basin through time, and helps in understanding the slip history and partitioning of slip on San Andreas and related faults.

  3. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Catuneanu, O.; Khalifa, M. A.; Wanas, H. A.

    2006-08-01

    The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3-6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences. The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability. This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.

  4. Time Not Our Time: Physical Controls on the Preservation and Measurement of Geologic Time

    NASA Astrophysics Data System (ADS)

    Paola, Chris; Ganti, Vamsi; Mohrig, David; Runkel, Anthony C.; Straub, Kyle M.

    2018-05-01

    Sadler's (1981) analysis of how measured sedimentation rate decreases with timescale of measurement quantified the vanishingly small fractional time preservation—completeness—of the stratigraphic record. Generalized numerical models have shown that the Sadler effect can be recovered, through the action of erosional clipping and time removal (the “stratigraphic filter”), from even fairly simple topographic sequences. However, several lines of evidence suggest that most of the missing time has not been eroded out but rather represents periods of inactivity or stasis. Low temporal completeness could also imply that the stratigraphic record is dominated by rare, extreme events, but paleotransport estimates suggest that this is not generally the case: The stratigraphic record is strangely ordinary. It appears that the organization of the topography into a hierarchy of forms also organizes the deposition into concentrated events that tend to preserve relatively ordinary conditions, albeit for very short intervals. Our understanding of time preservation would benefit from insight about how inactivity is recorded in strata; better ways to constrain localized, short-term rates of deposition; and a new focus on integrated time–space dynamics of deposition and preservation.

  5. Prehistoric floods on the Tennessee River—Assessing the use of stratigraphic records of past floods for improved flood-frequency analysis

    USGS Publications Warehouse

    Harden, Tessa M.; O'Connor, Jim E.

    2017-06-14

    Stratigraphic analysis, coupled with geochronologic techniques, indicates that a rich history of large Tennessee River floods is preserved in the Tennessee River Gorge area. Deposits of flood sediment from the 1867 peak discharge of record (460,000 cubic feet per second at Chattanooga, Tennessee) are preserved at many locations throughout the study area at sites with flood-sediment accumulation. Small exposures at two boulder overhangs reveal evidence of three to four other floods similar in size, or larger, than the 1867 flood in the last 3,000 years—one possibly as much or more than 50 percent larger. Records of floods also are preserved in stratigraphic sections at the mouth of the gorge at Williams Island and near Eaves Ferry, about 70 river miles upstream of the gorge. These stratigraphic records may extend as far back as about 9,000 years ago, giving a long history of Tennessee River floods. Although more evidence is needed to confirm these findings, a more in-depth comprehensive paleoflood study is feasible for the Tennessee River.

  6. How many histological levels should be examined from tissue blocks originating in cone biopsy and large loop excision of the transformation zone specimens of cervix?

    PubMed Central

    Heatley, M

    2001-01-01

    Aims—To establish the value of examining additional histological levels in cone biopsy and large loop excision of the transformation zone (LLETZ) specimens of cervix. Methods—Three deeper levels were examined from 200 consecutive cone biopsy and LLETZ specimens reported by a single pathologist. Results—Examination of the first deeper level resulted in cervical intraepithelial neoplasia (CIN) being identified for the first time in five cases and in CIN1 being upgraded in five more. Invasive cancer was discovered in two cases that had shown high grade CIN initially. Conclusion—Examination of a single further level appears to be sufficient in those patients in whom a specimen is compromised because epithelium including the squamocolumnar junction is missing, or if there is a discrepancy between the histological findings and the preceding colposcopic or cytological history. If invasive disease is suspected on the basis of the cytological, colposcopic, or histological features, one or preferably two further levels should be examined. Key Words: cervix uteri • quality control • diagnosis PMID:11477125

  7. Integration of the stratigraphic aspects of very large sea-floor databases using information processing

    USGS Publications Warehouse

    Jenkins, Clinton N.; Flocks, J.; Kulp, M.; ,

    2006-01-01

    Information-processing methods are described that integrate the stratigraphic aspects of large and diverse collections of sea-floor sample data. They efficiently convert common types of sea-floor data into database and GIS (geographical information system) tables, visual core logs, stratigraphic fence diagrams and sophisticated stratigraphic statistics. The input data are held in structured documents, essentially written core logs that are particularly efficient to create from raw input datasets. Techniques are described that permit efficient construction of regional databases consisting of hundreds of cores. The sedimentological observations in each core are located by their downhole depths (metres below sea floor - mbsf) and also by a verbal term that describes the sample 'situation' - a special fraction of the sediment or position in the core. The main processing creates a separate output event for each instance of top, bottom and situation, assigning top-base mbsf values from numeric or, where possible, from word-based relative locational information such as 'core catcher' in reference to sampler device, and recovery or penetration length. The processing outputs represent the sub-bottom as a sparse matrix of over 20 sediment properties of interest, such as grain size, porosity and colour. They can be plotted in a range of core-log programs including an in-built facility that better suits the requirements of sea-floor data. Finally, a suite of stratigraphic statistics are computed, including volumetric grades, overburdens, thicknesses and degrees of layering. ?? The Geological Society of London 2006.

  8. Archaeological Data Recovery at the Mary Ann Cole Site

    DTIC Science & Technology

    1981-06-01

    documents the methods and results of archaeological excavations conducted at the Mary Ann Cole Site (12Crl) near Leavenworth, Indiana. The purpose of the...the area now range from 363 feet to 953 feet above sea level (Wingard 1975). The pre-Pleistocene drainage systems differed substantially from the...defined for this report, the Wyandotte chert zone consists of different types of "chert which are often stratigraphically distinct, but also Intergrade

  9. Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea.

    PubMed

    Bertucci, Frédéric; Parmentier, Eric; Berthe, Cécile; Besson, Marc; Hawkins, Anthony D; Aubin, Thierry; Lecchini, David

    2017-01-01

    Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10-30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia). Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.

  10. Anesthesia Practice and Clinical Trends in Interventional Radiology: A European Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslam, Philip J.; Yap, Bernard; Mueller, Peter R.

    Purpose: To determine current European practice in interventional radiology regarding nursing care, anesthesia, and clinical care trends.Methods: A survey was sent to 977 European interventional radiologists to assess the use of sedoanalgesia, nursing care, monitoring equipment, pre- and postprocedural care, and clinical trends in interventional radiology. Patterns of sedoanalgesia were recorded for both vascular and visceral interventional procedures. Responders rated their preferred level of sedoanalgesia for each procedure as follows: (a) awake/alert, (b) drowsy/arousable, (c) asleep/arousable, (d) deep sedation, and (e) general anesthesia. Sedoanalgesic drugs and patient care trends were also recorded. A comparison was performed with data derived frommore » a similar survey of interventional practice in the United States.Results: Two hundred and forty-three of 977 radiologists responded (25%). The total number of procedures analyzed was 210,194. The majority (56%) of diagnostic and therapeutic vascular procedures were performed at the awake/alert level of sedation, 32% were performed at the drowsy/arousable level, and 12% at deeper levels of sedation. The majority of visceral interventional procedures were performed at the drowsy/arousable level of sedation (41%), 29% were performed at deeper levels of sedation, and 30% at the awake/alert level. In general, more sedoanalgesia is used in the United States. Eighty-three percent of respondents reported the use of a full-time radiology nurse, 67% used routine blood pressure/pulse oximetry monitoring, and 46% reported the presence of a dedicated recovery area. Forty-nine percent reported daily patient rounds, 30% had inpatient hospital beds, and 51% had day case beds.Conclusion: This survey shows clear differences in the use of sedation for vascular and visceral interventional procedures. Many, often complex, procedures are performed at the awake/alert level of sedation in Europe, whereas deeper levels of sedation are used in the United States. Trends toward making interventional radiology a clinical specialty are evident, with 51% of respondents having day case beds, and 30% having inpatient beds.« less

  11. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less

  12. Molecular Mechanisms and Modeling of Skin Irritation from JP-8

    DTIC Science & Technology

    2006-03-01

    levels of performance than shallow levels of processing ( Craik & Lockhart , 1972). Deeper levels of processing focus on the meaning of...of group processes for decision- making. New York: John Wiley & Sons. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing : A framework for...has been demonstrated to result in differential levels of memory performance ( Craik & Lockhart , 1972). If the objective is to store

  13. Effects of Arabia-Eurasia Collision on Strike-slip Faults in Central Anatolia?

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Lefebvre, C.; Thomson, S. N.; Idleman, L.; Cosca, M. A.; Kaymakci, N.; Teyssier, C. P.; Umhoefer, P. J.

    2013-12-01

    The North and East Anatolian faults accommodate much of the tectonic escape of Anatolia in response to Arabia-Eurasia collision and building of the Turkish-Iranian plateau, but these structures formed <10 m.y. ago, at least 25 m.y. after the onset of collision at ~35 Ma. Some of the major strike-slip fault zones located between the North and East Anatolian faults have had long and complex histories of displacement. These faults have deformed, and in some cases exhumed, metamorphic massifs located between fault strands. One example is the Nigde Massif, which was initially exhumed in the Late Cretaceous, then reburied and reheated, along with its overlying sedimentary basin, to a depth of ~10 km at 30 × 5 Ma. Final exhumation and cooling occurred by ~15-17 Ma (massif margin) to ~12 Ma (structurally deepest levels). This depth-temperature-time-deformation history is tracked by a combination of thermobarometric methods, structural and stratigraphic analysis, and geo/thermochronometry (U-Pb zircon, monazite; 40Ar/39Ar hornblende, muscovite, biotite, K-feldspar; zircon and apatite fission-track in metamorphic rocks and basin deposits; and apatite (U-Th)/He). Recent mapping shows the presence of at least two oblique-thrust slices; the structurally higher one accounts for the resetting of detrital apatite fission track and AHe ages in the basin rocks as well as metamorphic apatite near the margin of the massif. The structurally deeper one cuts through the metamorphic basement and explains why mineral lineations and metamorphic assemblages are different along the eastern margin relative to those in the core of the massif. Although the timing of displacement has not been dated directly, low-T thermochronology age and modeling results document a perturbation at ~30 Ma, consistent with the idea that the Ecemis Fault of the Central Anatolian Fault Zone, and probably other pre-existing strike-slip faults in central Anatolia, experienced Late Eocene-Oligocene displacement in response to Arabia-Eurasia collision to the south and SE.

  14. Facies analysis of tuffaceous volcaniclastics and felsic volcanics of Tadpatri Formation, Cuddapah basin, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Goswami, Sukanta; Dey, Sukanta

    2018-05-01

    The felsic volcanics, tuff and volcaniclastic rocks within the Tadpatri Formation of Proterozoic Cuddapah basin are not extensively studied so far. It is necessary to evaluate the extrusive environment of felsic lavas with associated ash fall tuffs and define the resedimented volcaniclastic components. The spatial and temporal bimodal association were addressed, but geochemical and petrographic studies of mafic volcanics are paid more attention so far. The limited exposures of eroded felsic volcanics and tuffaceous volcaniclastic components in this terrain are highly altered and that is the challenge of the present facies analysis. Based on field observation and mapping of different lithounits a number of facies are categorized. Unbiased lithogeochemical sampling have provided major and selective trace element data to characterize facies types. Thin-section studies are also carried out to interpret different syn- and post- volcanic features. The facies analysis are used to prepare a representative facies model to visualize the entire phenomenon with reference to the basin evolution. Different devitrification features and other textural as well as structural attributes typical of flow, surge and ash fall deposits are manifested in the middle, lower and upper stratigraphic levels. Spatial and temporal correlation of lithologs are also supportive of bimodal volcanism. Felsic and mafic lavas are interpreted to have erupted through the N-S trending rift-associated fissures due to lithospheric stretching during late Palaeoproterozoic. It is also established from the facies model that the volcaniclastics were deposited in the deeper part of the basin in the east. The rifting and associated pressure release must have provided suitable condition of decompression melting at shallow depth with high geothermal gradient and this partial melting of mantle derived material at lower crust must have produced mafic magmas. Such upwelling into cold crust also caused partial heat transfer and associated melting of the surrounding shallow crustal rocks to generate felsic magmas.

  15. Reconstruction of the Paleoproterozoic deeper ocean environment: Preliminary Report of the Ghana Birimian Greenstone Belt Drilling Project (GHB)

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Yoshimaru, S.; Miki, T.; Sakai, S.; Ikehara, M.; Yamaguchi, K. E.; Ito, T.; Onoue, T.; Takehara, M.; Tetteh, G. M.; Nyame, F. K.

    2016-12-01

    The Paleoproterozoic Era are one of the most rapid environmental change when the earth surface environment was affected by formation of continents and increasing atmospheric oxygen levels. Major oxidation of Great Oxidation Event (GOE) are reported this ages (eg. Holland, 2006; Condie, 2001; Lyons et al., 2014). The nature of deep sea environments at this time have not been clearly identified and oceanic sediments are mostly involved in subduction. The Paleoproterozoic Birimian Greenstone Belt is an ophiolitic volcaniclastic sequence in Ghana, with depositional age of over 2.3-2.2 Ga (Petersson et al., 2016). Detail research was conducted of the Ashanti (Axim-Konongo) Belt of the Birimian Greenstone Belt along the coast near Cape Three Points area. Very thick volcaniclastic and organic-rich sedimentary rocks, which we now refer to as the Cape Three Points Group, crop out in the lower part of the Birimian Greenstone Belt. Stratigraphically, three unit identified; the lower portion contains thick vesicular volcaniclastic rocks, the middle portion is made up of laminated volcaniclastics and black shale, and the upper portion dominated by fine laminated volcaniclastics with more black shale sequence. Continuous core drilling from Dec 3-12th 2015 of the upper part of the sequence intersected saprolite to a depth of 30m and fresh, well preserved stratigraphy with graded bedding and lamination to a depth of 195m. Half cut cores show well laminated organic rich black shale and relative carbonate rich layers with very fine pyrite grains. SHRIMP age data from a porphyry intrusion into this sequence indicate an age of 2250 Ma. Carbon isotope analysis shows δ13C = -43 to -37‰ for black shale with the very light isotope values for cyanobacterial signature.The fining-upward sequences, well laminated bed and black shales and REE data suggest this sequence situated partly silent stagnant with volcanic activity ocean floor environment around an oceanic island arc condition.

  16. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to resolve these unexpected 14C observations relative to stratigraphic ages.

  17. Chronostratigraphy of a salt marsh sediment core from North Cinder Island in the Town of Hempstead, Long Island, NY, using radiocarbon and pollen

    NASA Astrophysics Data System (ADS)

    Farmer, E. C.; Browne, J.; Peteet, D. M.; Cochran, K. K.; Heilbrun, C.; Chery, N.; LongJohn, T.; Mayo, J.; Ricigliano, V.

    2016-12-01

    A 122 cm long sediment core was collected from the salt marsh of North Cinder Island (73.6092W, 40.6097N), a small uninhabited island in Middle Bay between Oceanside and Point Lookout, in the Town of Hempstead, NY, on 2 July 2013, in order to investigate the age of the marsh and the history of trace metal pollution in the area. First, to determine the chronostratigraphy of the core, pollen counts were compared to radiocarbon measurements. Sediment samples at several depths in the core were analyzed for Pine, Oak, Hickory, Birch, Grass (S. alterniflora and S. patens), and Ragweed pollen. The concentration of Ragweed was below 3% in samples below 80cm, and greater than 7% in samples above 80cm. This proliferation of a disturbance species suggests that layers deeper than 81cm were deposited prior to widespread European settlement, sometime in the 1600s AD. Paired radiocarbon measurements on sieved fine sediment at 42-43 cm depth, however, match well with each other (their 1-sigma confidence intervals overlap), but suggest a calendar age between 932 and 997 years before present. Paired radiocarbon measurements from the 60-61 cm depth also match well with each other, but represent an age that is approximately 200 years younger. Additional paired radiocarbon measurements at 78-79 cm and 96-97 cm depths give older ages, as expected stratigraphically. Perhaps the reversal between 43 and 60 cm represents reworking of sediments in the marsh by tidal currents. Interestingly, root matter extracted from the sediment at the same depths gives radiocarbon ages that range from 600-1200 years younger. Perhaps the roots penetrate down through older sediment, or perhaps the fine sediment is comprised of recaptured sediment with lignin or other residual organic matter that is older because it is difficult to break down. This would explain the apparent contradiction between the radiocarbon dates on fine sediment and the younger pollen date at a deeper depth.

  18. Cup-shaped Intrusions, Morphology and Emplacement Mechanism Investigate Through Analogue Modelling

    NASA Astrophysics Data System (ADS)

    Mathieu, L.; van Wyk de Vries, B.

    2007-12-01

    We investigate the morphology of large-scale shallow-depth magma intrusions and sub-volcanic complexes with analogue models. Intrusions of analogue magma are done in a granular material that can contain a ductile layer. The model surface is flat to model the formation of plutonic intrusions and it is overlain by a cone when modelling late sub-volcanic complexes. For flat-top models, we obtain cup-shaped intrusions fed by dykes. Cup-shaped intrusions are inverted-cone like bodies. They are different from saucer-shaped intrusions as they possess neither a well developed sill-base, nor an outer rim. However, like saucers, cups are shallow depth intrusions that dome the country rocks. They initiate from an advancing dyke and first develop an inverted-cone like morphology. Then, the central thickness increases and thrusts form at the edge of the domed country rocks. At this stage, the intrusions progressively involve toward a lopolith shape. By using analogue magma of various viscosities we have been able to constrain key relationships: higher intrusion viscosity causes deeper initiation and the deeper they initiate, the larger is the intrusion diameter. A natural example of such intrusion might by the circles of volcanoes like the Azufre-Lastaria (Peru) that might be overlain be a large-scale cup-shaped intrusion. When adding a cone at the surface of the model and, sometimes, a thin ductile layer in the substratum, the morphology of cup-shaped intrusions vary. Note that the ductile layer of our models is not thick enough to induce the gravitational spreading of the cone. Generally, cup-shaped intrusions are asymmetric in cross section and elliptical in plan view. Their formation creates extension structures in the cone (croissant-shaped rift, straight rift or normal fault) and thrusts in some sectors below the cone. Both types of structures are bordered by strike-slip faults. Cups and saucers share many similarities, but differ probably in the fact that saucers are partially sills that are guided by stratigraphic horizons. However, the basic formation mechanisms may be the same and saucers could be regarded as a special form of cup.

  19. Reconstructed Oceanic Sedimentary Sequence in the Cape Three Points Area, Southern Axim-Konongo (Ashanti) Greenstone Belt in the Paleoproterozoic Birimian of Ghana.

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Frank, N. K.; George, T. M.

    2014-12-01

    The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons.

  20. A favorable course of palliative sedation: searching for indicators using caregivers' perspectives.

    PubMed

    Brinkkemper, Tijn; Rietjens, Judith A C; Deliens, Luc; Ribbe, Miel W; Swart, Siebe J; Loer, Stephan A; Zuurmond, Wouter W A; Perez, Roberto S G M

    2015-03-01

    Comparing characteristics of a favorable sedation course during palliative sedation to a less favorable course based on the reports Dutch physicians and nurses. Cases identified as having a favorable sedation course less often concerned a male patient (P = .019 nurses' cases), reached the intended sedation depth significantly quicker (P < .05 both nurses and physicians' cases), reached a deeper level of sedation (P = .015 physicians' cases), and had a shorter total duration of sedation compared (P < .001 physicians' cases) to patients with a less favorable sedation course. A favorable course during palliative sedation seems more probable when health care professionals report on a (relatively) shorter time to reach the required depth of sedation and when a deeper level of sedation can be obtained. © The Author(s) 2013.

  1. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    USGS Publications Warehouse

    Oki, D.S.; Souza, W.R.; Bolke, E.L.; Bauer, G.R.

    1998-01-01

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Ground-water flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units.

  2. Learning to tell Neoproterozoic time

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    2000-01-01

    In 1989, the International Commission on Stratigraphy established a Working Group on the Terminal Proterozoic Period. Nine years of intensive, multidisciplinary research by scientists from some two dozen countries have markedly improved the framework for the correlation and calibration of latest Proterozoic events. Three principal phenomena--the Marinoan ice age, Ediacaran animal diversification, and the beginning of the Cambrian Period--specify the limits and character of this interval, but chemostratigraphy and biostratigraphy based on single-celled microfossils (acritarchs), integrated with high-resolution radiometric dates, provide the temporal framework necessary to order and evaluate terminal Proterozoic tectonic, biogeochemical, climatic, and biological events. These data also provide a rational basis for choosing the Global Stratotype Section and Point (GSSP) that will define the beginning of this period. A comparable level of stratigraphic resolution may be achievable for the preceding Cryogenian Period, providing an opportunity to define this interval, as well, in chronostratigraphic terms--perhaps bounded at beginning and end by the onset of Sturtian glaciation and the decay of Marinoan ice sheets, respectively. Limited paleontological, isotopic, and radiometric data additionally suggest a real but more distant prospect of lower Neoproterozoic correlation and stratigraphic subdivision.

  3. Lithofacies and biofacies characteristics and whales skeletons distribution in the Eocene rock units of Fayoum Area, Egypt

    NASA Astrophysics Data System (ADS)

    Gameil, M.; Al Anbaawy, M.; Abdel Fattah, M.; Abu El-Kheir, G.

    2016-04-01

    At Wadi Al Hitan area, rapid lateral and vertical variation is observed among the exposed middle and upper Eocene rock units. The tradionally known formations (Gehannam, Briket Qaroun, Qasr El-Sagha formations) interfinger laterally and not chronologically stacked above each other in most areas. Fine siltstones and claystones characterize the Gehannam Formation, sandstones and calcareous sandstones are characteristic for Briket Qaroun Formation, dark gray claystones are attributed to Garet El-Naqb Formation and interbedded claystones are attributed to Qasr El-Sagha Formation, irrespective of their stratigraphic position. Within these formations large numbers of marine vertebrate and invertebrate fossils exist at different stratigraphic levels. Whales are classified into four species belonging to four genera, these include Basilosaurus isis, Dorudon atrox, Saghacetus Osiris and Anclacetus simonsi. Basilosaurus isis and Dorudon atrox are the most common whale species exist in these formations. No major break in sedimentation has been described within the Eocene formations in Fayoum region. Only a well marked low sea stand is indicated at the top of the Gehannam Formation where it overlain by Birket Qaroun Formation.

  4. Assessing Sedimentation Issues Within Aging Flood Control Reservoirs in Oklahoma

    NASA Astrophysics Data System (ADS)

    Bennet, Sean J.; Cooper, Charles M.; Ritchie, Jerry C.; Dunbar, John A.; Allen, Peter M.; Caldwell, Larry W.; McGee, Thomas M.

    2002-10-01

    Since 1948, the USDA-NRCS has constructed nearly 11,000 flood control dams across the United States, and many of the reservoirs are rapidly filling with sediment. To rehabilitate these structures, the impounded sediment must be assessed to determine the volume of accumulated sediment and the potential hazard this sediment may pose if reintroduced to the environment. An assessment of sedimentation issues within two reservoirs, Sugar Creek No. 12, Hinton, Oklahoma, and Sergeant Major No. 4, Cheyenne, Oklahoma, is presented. Sediment cores obtained using a vibracoring system were composed of alternating layers of gravel, sand, silt, and clay. Stratigraphic analysis coupled with 137Cs dating techniques enabled the discrimination of pre-construction sediment from post-construction deposition. An acoustic profiling system was unencumbered by the relatively shallow water depth at Sugar Creek No. 12 and the seismic horizons agreed well with the sediment core data. Total sediment volume determined from the acoustic survey and the sediment core data for comparable areas differed by only 1.4 percent. The seismic profiling system worked well in the relatively deeper lake of Sergeant Major No. 4 and showed good correspondence to the collected core data. Detailed chemical analyses showed that overall sediment quality was good at both locations and that chemical composition was spatially invariant. Implementation of these techniques will aid action agencies such as the USDA-NRCS in their assessment and effective management of aging flood control reservoirs.

  5. Pre-eruption recharge of the Bishop magma system

    USGS Publications Warehouse

    Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.

    2007-01-01

    The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.

  6. Middle and upper Miocene natural gas sands in onshore and offshore Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, R.M.; Mancini, E.A.; Bearden, B.L.

    1988-09-01

    Thirty Miocene natural gas fields have been established in onshore and offshore Alabama since the discovery of Miocene gas in this area in 1979. These fields have produced over 16 bcf of natural gas from the middle Miocene Amos sand (24 fields) and upper Miocene Luce (3 fields), Escambia (1 field), and Meyer (3 fields) sands. Production from the Amos transgressive sands represents over 92% of the cumulative shallow Miocene natural gas produced in onshore and offshore Alabama. In addition, over 127 bcf of natural gas has been produced from upper Miocene sands in the Chandeleur area. The productive Miocenemore » section in onshore and coastal Alabama is interpreted to present transgressive marine shelf and regressive shoreface sands. The middle Miocene Amos sand bars are the most productive reservoirs of natural gas in onshore and coastal Alabama, principally due to the porous and permeable nature of these transgressive sands and their stratigraphic relationship to the underlying basinal clays in this area. In offshore Alabama the upper Miocene sands become thicker and are generally more porous and permeable than their onshore equivalents. Because of their deeper burial depth in offshore Alabama, these upper Miocene sands are associated with marine clays that are thermally more mature. The combination of reservoir grade lithologies associated with moderately mature petroleum source rocks enhances the natural gas potential of the upper Miocene sands in offshore Alabama.« less

  7. Paleoenvironmental reconstruction based on palynofacies analyses of the Cansona Formation (Late Cretaceous), Sinú-San Jacinto Basin, northwest Colombia

    NASA Astrophysics Data System (ADS)

    Juliao-Lemus, Tatiana; Carvalho, Marcelo de Araujo; Torres, Diego; Plata, Angelo; Parra, Carlos

    2016-08-01

    To reconstruct the paleoenvironments of the Cansona Formation, a Cretaceous succession in Colombia that has controversial paleoenvironmental interpretation, occasionally deep marine and occasionally shallow marine, palynofacies analyses were conducted on 93 samples from four sections of the Sinú San Jacinto Basin in the north, midwest, and southwest sectors. For the palynofacies analyses, the kerogen categories were counted and subjected to cluster analyses. Four palynofacies associations were revealed for the four sections: Palynofacies Association I (PA I), which consisted of microforaminiferal linings, scolecodonts, dinoflagellate cysts, pollen grains, and fungi hyphae; PA II, which consisted of phytoclast translucent non-biostructured and biostructured, opaque phytoclasts (equidimensional and lath shaped); PA III, which consisted of pseudoamorphous particles, cuticles, resin, and fungal spores; and PA IV, which consisted of fluorescent and non-fluorescent amorphous organic matter and the fresh-water algae Botryococcus. In contrast to early studies that suggested a generalization of the depositional environment for the Cansona Formation (deep or shallow conditions), this study suggests that the formation reflects conspicuous stratigraphic and lateral changes and hence different depositional environments. The Cerro Cansona (CC4 section) and Chalán (AP section) areas are a more marine proximal settings (Early Campanian-Maastrichtian), and there is an intermediate setting for the Lorica area (SC section) and deeper conditions for the Montería area (CP2 section).

  8. Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)

    NASA Astrophysics Data System (ADS)

    Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco

    2016-04-01

    Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.

  9. Refining the timing of the MIS 5e signal, West Caicos, Bristish West Indies:implications for paleoclimatic interpretation of the stratigraphic record

    NASA Astrophysics Data System (ADS)

    Kerans, C.; Zahm, C.; Bachtel, S.; Hearty, P.; Cheng, H.

    2017-12-01

    The progressive refinement of the Last Interglacial (LIG) tropical carbonate record has focused attention on the dramatically abrupt and episodic nature of this critical approximate 12 ka time window. From initial carbonate platform flooding at 133 ka to rapid sea level fall and exposure at 118 ka, the majority of present-day Bahamian and Caribbean strata were produced in a remarkably similar pattern extending from Bermuda and the Bahamas through the Cayman Islands, Yucatan, and south to the Dominican Republic. The position of coral reefs and oolitic sands of the LIG to a first order fit the global insolation-driven climate warming signal. Less well accepted/resolved is the existence of two distinct SL peaks with an intervening sea level fall implying a non-orbitally forced climate shift during this broader highstand. West Caicos, a 10 x 5 km leeward island on the Caicos Platform is an excellent example of LIG carbonate stratigraphic complexity. We collected sub-meter-resolution whole-island airborn LIDAR and decimeter-resolution UAV-constructed DEM's of the western and southern coastal outcrops to serve as a base for decimeter-scale mapping of the MIS 11, 7?, 5e, and Holocene units of the island, with particular focus on the continuous 8.4 km west coast outcrop of the MIS 5e. Seventy-five AAR relative age assignments from ooid separates, pinned by 16 U/Th dates from corals coming from MIS stage 11, lower MIS 5e, and upper MIS 5e reefs helped establish the age model for the Pleistocene-Holocene stratigraphy. The lower MIS 5e reef system averages 128 ka with an onset age of 133 ka. Upper MIS 5e corals ranges from 123 ka to 116 ka, bracketing the intra-MIS 5e sea-level fall between to approximately 125 ka. The intra-MIS 5e fall is a distinct erosional unconformity across 5 km of continuous outcrop, truncating the upper 2.5 m of lower 5e reef. The complexity of MIS 5e record on West Caicos and in the Northern Atlantic and Caribbean platforms regionally provides important insights for those using the Pleistocene as a model for older stratigraphic successions and their linked paleoclimatic records.

  10. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its major tributaries. 3) Between 15,000 and 12,700 years ago, dozens of floods from Glacial Lake Missoula flowed up the Willamette Valley from the Columbia River, depositing up to 35 m of gravel, sand, silt, and clay. 4) Subsequent to 12,000 years ago, Willamette River sediment and flow regimes changed significantly: the Pleistocene braided river systems that had formed vast plains of sand and gravel evolved to incised and meandering rivers that are constructing today's fine-grained floodplains and gravelly channel deposits. Sub-surface channel facies of this unit are loose and unconsolidated and are highly permeable zones of substantial groundwater flow that is likely to be well connected to surface flow in the Willamette River and major tributaries. Stratigraphic exposures and drillers' logs indicate that this unit is mostly between 5 and 15 m thick.

  11. Stratigraphic framework and evolution of the Cretaceous continental sequences of the Bauru, Sanfranciscana, and Parecis basins, Brazil

    NASA Astrophysics Data System (ADS)

    Batezelli, Alessandro; Ladeira, Francisco Sergio Bernardes

    2016-01-01

    With the breakup of the supercontinent Gondwana, the South American Plate has undergone an intense process of tectonic restructuring that led to the genesis of the interior basins that encompassed continental sedimentary sequences. The Brazilian Bauru, Sanfranciscana and Parecis basins during Late Cretaceous have had their evolution linked to this process of structuring and therefore have very similar sedimentary characteristics. The purpose of this study is to establish a detailed understanding of alluvial sedimentary processes and architecture within a stratigraphic sequence framework using the concept of the stratigraphic base level or the ratio between the accommodation space and sediment supply. The integration of the stratigraphic and facies data contributed to defining the stratigraphic architecture of the Bauru, Sanfranciscana and Parecis Basins, supporting a model for continental sequences that depicts qualitative changes in the sedimentation rate (S) and accommodation space (A) that occurred during the Cretaceous. This study discusses the origin of the unconformity surfaces (K-0, K-1 and K-1A) that separate Sequences 1, 2A and 2B and the sedimentary characteristics of the Bauru, Sanfranciscana and Parecis Basins from the Aptian to the Maastrichtian, comparing the results with other Cretaceous Brazilian basins. The lower Cretaceous Sequence 1 (Caiuá and Areado groups) is interpreted as a low-accommodation systems tract compound by fluvial and aeolian systems. The upper Cretaceous lacustrine, braided river-dominated alluvial fan and aeolian systems display characteristics of the evolution from high-to low-accommodation systems tracts (Sequences 2A and 2B). Unconformity K-0 is related to the origin of the Bauru Basin itself in the Early Cretaceous. In Sanfranciscana and Parecis basins, the unconformity K-0 marks the contact between aeolian deposits from Lower Cretaceous and Upper Cretaceous alluvial systems (Sequences 1 and 2). Unconformity K-1, which was generated in the Late Cretaceous, is related to an increase of the A/S ratio, whereas Unconformity K-1A is the result of the decrease in the A/S ratio. Unconformity K-1A bound Sequence 2A (lacustrine and fluvial systems) and Sequence 2B (alluvial deposits) in Bauru Basin whereas in the Sanfranciscana and Parecis basins this unconformity marks the transition from alluvial system to aeolian system (Sequences 2A and 2B). Changes in depositional style in both basins correspond to two distinct tectonic moments occurring within the South American plate. The first associated with post-volcanic thermal subsidence of the Early Cretaceous (Serra Geral and Tapirapuã volcanismos), and the second moment associated with the uplift occurred in the Late Cretaceous (Alto Paranaíba, Vilhena and Serra Formosa Arcs).

  12. Geochemistry and mineralogy of Pd in the magnetitite layer within the upper gabbro of the Mesoarchean Nuasahi Massif (Orissa, India)

    NASA Astrophysics Data System (ADS)

    Prichard, Hazel M.; Mondal, Sisir K.; Mukherjee, Ria; Fisher, Peter C.; Giles, Nicolas

    2018-04-01

    Palladium concentrations of 1-3 ppm with an average Pt/Pd ratio of 0.15 have been located for the first time in a magnetitite layer in the Nuasahi Massif in Orissa India. This layer occurs at a high stratigraphic level in the complex and is nearly 4-km long and 5-12-m thick. The sections of the Pd-rich zone identified to date extend over a distance of 1 km at the southern end of the layer. Several phases of mineralization are evident. The first, primary assemblage of platinum-group minerals (PGM) contains Pd-sulfides (vysotskite), Pd-Pb alloys (zvyagintsevite), and a Pd-In alloy, a mineral probably new to mineralogy. These PGM are confined to central magnetite grains in the magnetitites. The magnetite grains with exsolved fine laths of ilmenite at centers are referred to as central magnetite grains. These central magnetite grains are commonly surrounded by blebs of ilmenite and magnetite that contain the majority of the PGM. These are dominated by Pd-antimonides, variably altered to Pd-oxides, and other PGM including PtAs2 (sperrylite), RuS2 (laurite), and IrRhAsS (irarsite/hollingwothite). Many of these PGM also occur in the interstitial silicates, with rare occurrences in the central magnetite grains. We propose that the platinum-group elements (PGE) crystallized during a minor sulfide saturation event that occurred as the magnetitites crystallized. This event produced the minor Cu-sulfides in these magnetitites. Later introduction of antimony and arsenic, during the alteration event that produced the blebby ilmenite and magnetite, led to the more primary PGM being succeeded by the main PGM assemblage, dominated by Pd-antimonides. These are associated with secondary Cu minerals and sperrylite. Subsequent oxidation during weathering in the hot wet Indian climate produced the Pd-oxides. The Nuasahi Massif is a sill-like Archean layered ultramafic-mafic intrusion genetically linked to high-Mg siliceous basalt or boninites and is characterized by unusually thick layers of chromitite. PGE are concentrated in these chromitites and in the base metal sulfide-bearing breccias in the overlying gabbro. The Pd in the magnetitites described here indicates the presence of a third level where PGE are concentrated and a magma that crystallized to produce PGE concentrations at three stratigraphic levels in the massif. This indicates that similar thin sill-like intrusions, hosting unusually thick chromitites, may also have PGE concentrations at a number of stratigraphic levels.

  13. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  14. Scale dependant compensational stacking of channelized sedimentary deposits

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Straub, K. M.; Hajek, E. A.

    2010-12-01

    Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.

  15. Widespread effects of middle Mississippian deformation in the Great Basin of western North America

    USGS Publications Warehouse

    Trexler, J.H.; Cashman, P.H.; Cole, J.C.; Snyder, W.S.; Tosdal, R.M.; Davydov, V.I.

    2003-01-01

    Stratigraphic analyses in central and eastern Nevada reveal the importance of a deformation event in middle Mississippian time that caused widespread deformation, uplift, and erosion. It occurred between middle Osagean and late Meramecian time and resulted in deposition of both synorogenic and postorogenic sediments. The deformation resulted in east-west shortening, expressed as east-vergent folding and east-directed thrusting; it involved sedimentary rocks of the Antler foredeep as well as strata associated with the Roberts Mountains allochthon. A latest Meramecian to early Chesterian unconformity, with correlative conformable lithofacies changes, postdates this deformation and occurs throughout Nevada. A tectonic highland-created in the middle Mississippian and lasting into the Pennsylvanian and centered in the area west and southwest of Carlin, Nevada- shed sediments eastward across the Antler foreland, burying the unconformity. Postorogenic strata are late Meramecian to early Chesterian at the base and are widespread throughout the Great Basin. The tectonism therefore occurred 20 to 30 m.y. after inception of the Late Devonian Antler orogeny, significantly extending the time span of this orogeny or representing a generally unrecognized orogenic event in the Paleozoic evolution of western North America. We propose a revised stratigraphic nomenclature for Mississippian strata in Nevada, based on detailed age control and the recognition of unconformities. This approach resolves the ambiguity of some stratigraphic names and emphasizes genetic relationships within the upper Paleozoic section. We take advantage of better stratigraphic understanding to propose two new stratigraphic units for southern and eastern Nevada: the middle Mississippian Gap Wash and Late Mississippian Captain Jack Formations.

  16. 2D and 3D Modeling of the Stratigraphic Sequences at the Adriatic and Rhone Continental Margins

    DTIC Science & Technology

    2005-09-30

    Grenerczy, D. Medak, S. Stein, and J. C. Weber (Eds.). The Adria Microplate : GPS Geodesy, Tectonics , and Hazards. Kluwer Academic Publisher, pp. 93-116... tectonics , and their influences on sequence architecture. John Swenson, with assistance from Chris Paola, Juan Fedele, myself and others have jointly...exploration of the margin’s response to variations in sea level, sediment supply, tectonic subsidence, and wave climate over longer timescales. I am

  17. Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium)

    NASA Astrophysics Data System (ADS)

    Laenen, B.; De Craen, M.

    2004-01-01

    Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.

  18. Facies analysis and sequence stratigraphy of neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni basin, West Africa

    NASA Astrophysics Data System (ADS)

    Benan, C. A. A.; Deynoux, M.

    The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive-regressive depositional sequences (S1-S5). Changes in the nature of the deposits forming the transgressive-regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800-700 m.y. ago.

  19. Geologic context of large karst springs and caves in the Ozark National Scenic Riverways, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.

    2016-01-01

    The ONSR is a karst park, containing many springs and caves. The “jewels” of the park are large springs, several of first magnitude, that contribute significantly to the flow and water quality of the Current River and its tributaries. Completion of 1:24,000-scale geologic mapping of the park and surrounding river basin, along with synthesis of published hydrologic data, allows us to examine the spatial relationships between the springs and the geologic framework to develop a conceptual model for genesis of these springs. Based on their similarity to mapped spring conduits, many of the caves in the ONSR are fossil conduit segments. Therefore, geologic control on the evolution of the springs also applies to speleogenesis in this part of the southern Missouri Ozarks.Large springs occur in the ONSR area because: (1) the Ozark aquifer, from which they rise, is chiefly dolomite affected by solution via various processes over a long time period, (2) Paleozoic hypogenic fluid migration through these rocks exploited and enhanced flow-paths, (3) a consistent and low regional dip of the rocks off of the Salem Plateau (less than 2° to the southeast) allows integration of flow into large groundwater basins with a few discreet outlets, (4) the springs are located where the rivers have cut down into structural highs, allowing access to water from stratigraphic units deeper in the aquifer thus allowing development of springsheds that have volumetrically larger storage than smaller springs higher in the section, and (5) quartz sandstone and bedded chert in the carbonate stratigraphic succession that are locally to regionally continuous, serve as aquitards that locally confine groundwater up dip of the springs creating artesian conditions. This subhorizontal partitioning of the Ozark aquifer allows contributing areas for different springs to overlap, as evidenced by dye traces that cross adjacent groundwater basin boundaries, and possibly contributes to alternate flow routes under different groundwater flow regimes.A better understanding of the 3-dimensional hydrogeologic framework for the large spring systems in the ONSR allows more precise mapping of the contributing areas for those springs, will guide future studies of groundwater flow paths, and inform development of groundwater resource management strategies for the park.

  20. Major structural controls on the distribution of pre-Tertiary rocks, Nevada Test Site vicinity, southern Nevada

    USGS Publications Warehouse

    Cole, James C.

    1997-01-01

    The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of these pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships.Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slopefacies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeastdirected thrusts that deformed the region in Permian or later time.Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section.Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered by Tertiary and younger deposits. These faults most likely result from significant lateral offset, most likely in the sinistral sense.Low-angle normal faults that are at least older than Oligocene, and may pre-date Late Cretaceous time, are also present in the region. These faults are shown to locally displace blocks of pre-Tertiary rock by several kilometers. However, none of these structures can be traced for significant distances beyond its outcrop extent, and the inference is made that they do not exert regional influence on the distribution of pre-Tertiary rocks. The extensional strain accommodated by these low-angle normal faults appears to be local and highly irregular.

  1. Understanding Demonstration-based Training: A Definition, Conceptual Framework, and Some Initial Guidelines

    DTIC Science & Technology

    2009-11-01

    promoting learning by inducing deeper levels of transfer appropriate processing in the observer ( Craik & Lockhart , 1972; Bransford et al., 1977). We...Vicarious learning from dialogue and discourse. Instructional science, 27, 431-458. Craik , F., & Lockhart , R. (1972). Levels of processing : A...attention, retention and production processes are driven by levels of motivation. Higher levels of motivation will lead to more focused attention

  2. High-resolution stratigraphic analyses of Permian-Triassic core material recovered in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group

    2017-04-01

    The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic conditions. The maximum flooding surface is recorded 6 m above the base of the Vikinghøgda Formation, in the middle of the laminated black shale and indicates that the lower ash-layers are tied to igneous activity at a time of relatively high sea level. The remaining succession above the laminated black shale is an overall aggradational interval of interbedded clay- and siltstones of the Vikinghøgda Formation, marking the return of biological activity at its base. The Vikinghøgda Formation includes 18 preserved zircon-bearing ash-layers, providing an opportunity for accurate U/Pb dating. Detailed cyclostratigraphic analyses of the laminated black shale suggest a sedimentation rate of approximately 0.5 cm/kyr, and provides thus, together with the U/Pb zircon ages, a great tool for high-resolution documentation of the PTB interval.

  3. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    NASA Astrophysics Data System (ADS)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.

  4. Multi-millennial record of erosion and fires in the southern Blue Ridge Mountains, USA In: Greenberg, CH and BS Collins (eds.)

    Treesearch

    David S. Leigh

    2016-01-01

    Bottomland sediments from the southern Blue Ridge Mountains provide a coarse-resolution, multi-millennial stratigraphic record of past regional forest disturbance (soil erosion). This record is represented by 12 separate vertical accretion stratigraphic profi les that have been dated by radiocarbon, luminescence, cesium-137, and correlation methods...

  5. Publications - PIR 2015-5-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., 2015, Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2015-5-5 Publication Details Title: Stratigraphic reconnaissance of the Middle Jurassic

  6. Exploring the Middle Pleistocene Lake Suguta Sr-isotope Stratigraphic record

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; Junginger, Annett; Agmon, Nadav; Trauth, Martin

    2017-04-01

    Several studies into the Quaternary stratigraphic record of the Sr-isotope composition of paleolake Turkana in the East African Rift System (EARS) show how variation of climate left a signal of changing lacustrine Sr isotope values. This Sr isotope signal was captured in the lacustrine fossil record of the Turkana Basin, and can be a useful chemostratigraphic tool (e.g. Joordens et al., 2011; van der Lubbe et al., submitted). Such lacustrine Sr-isotope changes are believed to be paced by orbital-forced insolation cyclicity, and interpreted to be the result of changing contribution of run-off from different sub-catchments of lake Turkana, as climate change shifted regional rainfall patterns. Here, we present a first set of data from a middle Pleistocene stratigraphical sequence in the Suguta Valley, South of the Turkana Basin in the EARS. This sequence spans a couple of sedimentological cycles that potentially represent precession-forced lake level variation. In this setting, the Sr-isotope data do not vary in phase with these sedimentological cycles, but demonstrate a long trend of Sr isotope change. This may suggest that the catchment configuration of the Suguta Valley in the Mid Pleistocene was less suitable to record precession-forced hydroclimate change in Lacustrine Sr isotope ratios. This may have implications for the Turkana Basin Sr isotope record as well, because the two basins are believed to have been hydrologically connected in the Middle Pleistocene. references: 1)Joordens, J.C.A. et al., 2011. An astronomically-tuned climate framework for hominins in the Turkana Basin. Earth and Planetary Science Letters 307, 1-8. 2)van der Lubbe et al., submitted. Gradual or abrupt? Changes in water source of Lake Turkana (Kenya) during the African Humid Period inferred from Sr isotope ratios

  7. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    PubMed Central

    Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-01-01

    Abstract During the Miocene prominent oxygen isotope events (Mi‐events) reflect major changes in glaciation, while carbonate isotope maxima (CM‐events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high‐resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long‐term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi‐events can now be recognized in the δ18O record and coincide with plankton‐rich, siliceous, or phosphatic horizons in the lithology of the section. PMID:27546980

  8. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  9. Paleontologic and stratigraphic relations of phosphate beds in Upper Cretaceous rocks of the Cordillera Oriental, Colombia

    USGS Publications Warehouse

    Maughan, Edwin K.; Zambrano O., Francisco; Mojica G., Pedro; Abozaglo M., Jacob; Pachon P., Fernando; Duran R., Raul

    1979-01-01

    Phosphorite crops out in the Cordillera Oriental of the Colombian Andes in rocks of Late Cretaceous age as strata composed mostly of pelletal carbonate fluorapatite. One stratum of Santonian age near the base of the Galembo Member of the La Luna Formation crops out at many places in the Departments of Santander and Norte de Santander and may be of commercial grade. This stratum is more than one meter thick at several places near Lebrija and near Sardinata, farther south it is locally one meter thick or more near the base of the Guadalupe Formation in the Department of Boyaca. Other phosphorite beds are found at higher stratigraphic levels in the Galembo Member and the Guadalupe Formation, and at some places these may be commercial also. A stratigraphically lower phosphorite occurs below the Galembo Member in the Capacho Formation (Cenomanian age) in at least one area near the town of San Andres, Santander. A phosphorite or pebbly phosphate conglomerate derived from erosion of the Galembo Member forms the base of the Umir Shale and the equivalent Colon Shale at many places. Deposition of the apatite took place upon the continental shelf in marine water of presumed moderate depth between the Andean geosyncline and near-shore detrital deposits adjacent to the Guayana shield. Preliminary calculations indicate phosphorite reserves of approximately 315 million metric tons in 9 areas, determined from measurements of thickness, length of the outcrop, and by projecting the reserves to a maximum of 1,000 meters down the dip of the strata into the subsurface. Two mines were producing phosphate rock in 1969; one near Turmeque, Boyaca, and the other near Tesalia, Huila.

  10. Chemical Contaminants as Stratigraphic Markers for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.

    2012-12-01

    Thousands and even millions of years from now, widespread anthropogenic contaminants in sediments would likely persist, incorporated into the geological record. They would inadvertently preserve evidence of our present era (informally designated as the Anthropocene Epoch) characterized by large human populations engaged in intensive industrial and agricultural activities. Hypothetical geologists in the distant future would likely find unusually high concentrations of a wide variety of contaminants at stratigraphic levels corresponding to our present time, analogous to the iridium anomaly marking the bolide impact event at the close of the Cretaceous Period. These would include both organic and inorganic substances, such as industrially-derived heavy metals (e.g., Hg, Pb, Cr, Zn) and hydrocarbons, both petrogenic (derived directly from petroleum) and pyrogenic (combustion products). While there are natural sources for these materials, such as volcanic eruptions, wildfires, and oil seeps, their co-occurrence would provide a signature characteristic of human activity. Diagnostic assemblages of organic compounds would carry an anthropogenic imprint. The distribution of polycyclic aromatic hydrocarbons (PAHs) in a sediment sample could distinguish between natural and human sources. Stable isotopic signatures would provide additional evidence. Concentrations of contaminants in the sedimentary record would increase exponentially with increasing proximity to urban source areas, where at present billions of people are collectively consuming vast quantities of fossil fuels and generating large amounts of waste. Aolian and marine transport prior to deposition has been seen at present to globally redistribute detectable amounts of contaminants including Hg and PAHs, even at great distances from principal source areas. For organic contaminants, deposition in an anoxic sedimentary environment could insure their preservation, increasing the likelihood of their inclusion in the long-term stratigraphic record, establishing markers of the Anthropocene Epoch for millions of years to come.

  11. Seismic stratigraphy of barrier-island arc retreat paths in Mississippi River delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penland, S.; Suter, J.R.

    1983-09-01

    The stratigraphic record preserved in the retreat path of Mississippi delta barrier-island arcs is controlled by erosional shoreface retreat processes, relative sea level rise, and sediment supply. More than 500 km (300 mi) of high resolution shallow seismic profiles correlated with vibracores from retreat paths fronting the Isles Dernieres and Chandeleur barrier-island arcs, show contrasting stratigraphic sequences preserved on the inner continental shelf (Mississippian delta). The Isles Dernieres barrier-island arc developed as a consequence of the Caillou Headland abandonment in the early Lafourche delta approximately 800 years B.P. On the lower shoreface, channels can be seen projecting seaward under themore » central part of the island arc; associated with it is a beach-ridge plain extending eastward. On the inner shelf, a sand sheet up to 60 cm (2 ft) thick marks the retreat path of the Isles Dernieres. The Chandeleur barrier-island arc was generated by abandonment of the St. Bernard delta complex 1,500 years ago. Scattered outcrops of shell reefs and lagoonal deposits occur on the lower shoreface. Beyond the shoreface, a 1 to 5 m (3 to 16 ft) thick sand sheet, caps tidal inlet scars up to 10 m (33 ft) thick, as well as the basal portions of migrating barrier-island sequences associated with earlier shoreline positions. Differences seen in the two stratigraphic sequences are a function of distributary size and depositional history of each barrier-island arc. The Isles Dernieres developed from a series of small sand-deficient distributaries in the Lafourche delta complex, whereas the Chandeleur Islands developed from large sand-rich distributaries of the St. Bernard delta complex.« less

  12. Stenian Estuarine System and Early Neoproterozoic Microbial Records of Capiru Formation, Southern Ribeira Belt.

    NASA Astrophysics Data System (ADS)

    Cury, L. F.; Santos, L. D. R.; Leandro, R.; Lange, L.; Bahniuk Rumbelsperger, A.

    2017-12-01

    The Capiru formation is a low-grade metasedimentary sequence composed by slates, rhythmic phyllites, quartzites and marbles, disposed and disrupted in tectonic blocks delimited by thrust and strike-slip faults related to oblique collisions in the southern Ribeira Belt, Curitiba terrane, southern Brazil. The rocks of the Capiru formation crops out as a thrust-folded belt, delimited on the north by the transcurrent faults of Lancinha Shear Zone (LSZ), and to the south by thrust faults with large isograde variation. Three lithological sequences are recognized mainly by their compositional and stratigraphic records, including a (i) ferruginous sequence with quartzites, metasandstones and metaconglomerates with goethite/hematite cements and phyllites with magnetite; ii) metadolomites with stromatolites, interbeded with pelitic layers and iii) a metapelitic sequence with metarhythmites and metasandstones with well preserved organic-rich material. The records of two tectonic-metamorphic events related to thrust and transpressive tectonics are heterogeneously developed in all sequences, still been recognized sections with the original stratigraphic succession. The stratigraphic record suggests an estuarine environment with rising sea level developing tidal flats and tidal channels. U-Pb detrital zircon analyses characterizes Rhyacian ages (between 2.2-2.1 Ga) as the main sources, and Stenian ages (between 1.08-1.20 Ga) as maximum age for sedimentation. The metapelites mineral assemblage is composed by quartz, muscovite, sericite, illite, kaolinite, sepiolite, magnetite, goethite, hematite and carbonaceous material with bulk organic carbon content (BOC) ranging from 0.09 to 1.21 (%), a precambrian microbial activity record. The metadolomites are characterized by the presence of stromatolites in different types and dimensions, with microbial activity records supported by SEM-EDS (up to 91% C), with EPS-like morphologies within microporosity, NaCl compounds and clay minerals, probably indicative of microorganism contribution during the deposition.

  13. A tapinocephalid dinocephalian (Synapsida, Therapsida) from the Rio do Rasto Formation (Paraná Basin, Brazil): Taxonomic, ontogenetic and biostratigraphic considerations

    NASA Astrophysics Data System (ADS)

    Boos, A. D. S.; Kammerer, C. F.; Schultz, C. L.; Paes Neto, V. D.

    2015-11-01

    Permian tetrapod fossils have been recovered from the Rio do Rasto Formation of Brazil since the 1970s. Previous studies of this fauna indicated strong affinities with the Guadalupian-Lopingian vertebrates of South Africa and Eastern Europe, suggesting biostratigraphic correlations between these areas. Here, a new dinocephalian specimen from the Rio do Rasto Formation in the Serra do Cadeado area (Paraná State, Brazil) is described based on fragmentary skull remains and an associated left lower jaw ramus. Despite the fragmentary nature of these remains, they represent the most complete tapinocephalid specimen known from South America. Comparison with other tapinocephalids indicates that the material described herein represents a juvenile or sub-adult specimen. Although it is not possible to identify this material to the genus level, it most closely resembles the 'moschopines' Moschops and Moschognathus from the Tapinocephalus Assemblage Zone of South Africa. As dinocephalians are known to be restricted to the Guadalupian, they are one of the best tetrapod biostratigraphic markers for the Rio do Rasto Formation, indicating that at least some of the strata in the areas where they occur [Serra do Cadeado (Paraná State), Fagundes farm and Boqueirão farm (Rio Grande do Sul State)] are Guadalupian. Vertebrate fossils from Rio do Rasto Formation occur in disperse, isolated and discontinuous outcrops, so that they have been grouped in 'local faunas'. However, most of the specimens lack precise stratigraphic provenance data and even occurring in locations near each other they are not necessarily contemporary. Thus, until a more robust stratigraphic framework is developed, we suggest discontinuing use of 'local faunas' to this stratigraphic unit.

  14. PRISM4: Pliocene Research, Interpretation and Synoptic Mapping mid Piacenzian paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Dolan, A. M.; Rowley, D. B.; Moucha, R.; Forte, A. M.; Mitrovica, J. X.; Pound, M. J.; Salzmann, U.; Robinson, M. M.; Chandler, M. A.; Foley, K.; Haywood, A.

    2016-12-01

    Past Intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval in the mid Piacenzian ( 3 million years ago). The PRISM4 reconstruction contains twelve internally consistent and integrated data sets representing our best synoptic understanding of surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. Starting points in the generation of our Piacenzian reconstruction are basic geochemical, faunal, floral, soil, cryospheric, topographic, bathymetric, sedimentologic, and stratigraphic data. Marine and terrestral temperature estimates are based upon multiple proxies (including faunal, floral, geochemical, and biomarker analyses). The reconstruction of Piacenzian global vegetation is based on the integration of paleobotanical data and BIOME4 model outputs. Antarctic and Greenland ice sheets are derived from the previous PRISM3 and PLISMIP (Pliocene Ice Sheet Model Intercomparison Project) results, respectively. Paleogeography is based upon an initial ETOPO1 digital elevation model incorporating PRISM4 ice sheets, GIA, and adjustments due to mantle convection. Soils are determined through comparison of sedimentological and stratigraphic data with the BIOME reconstruction. Lakes are determined from stratigraphic and sedimentological data. Sea-level equivalent (+20 m) is estimated from the reduced volume of the PRISM4 ice sheets and is consistent with our PRISM4 paleogeography. While not an analog for future conditions, the PRISM4 conceptual reconstruction provides insights into processes that occurred in the past and can inform us about the future. We will discuss the use of these data as boundary conditions and verification for global climate model simulations of the Pliocene, aimed at improving our understanding of the climate system as we prepare for future changes.

  15. Geodynamic Evolution of Northeastern Tunisia During the Maastrichtian-Paleocene Time: Insights from Integrated Seismic Stratigraphic Analysis

    NASA Astrophysics Data System (ADS)

    Abidi, Oussama; Inoubli, Mohamed Hédi; Sebei, Kawthar; Amiri, Adnen; Boussiga, Haifa; Nasr, Imen Hamdi; Salem, Abdelhamid Ben; Elabed, Mahmoud

    2017-05-01

    The Maastrichtian-Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian-Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian-Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian-Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of the geodynamic evolution of the region.

  16. [open quotes]Rejuvenation[close quotes] of a very mature productive area: Application of sequence stratigraphy, depositional facies and reservoir architectural studies in inactive old fields - Dorsal de Huincul - Neuquen Basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokogian, D.A.; Vasquez, J.R.

    1996-01-01

    The project objectives were to define the upside potential and identified drilling locations, both for exploratory and development wells, in Loma Negra-Nl-Huincul old fields, inactive due to pressure depletion Fields are located in Dorsal de Huincul area (Huincul Range) which is a highly complex structure associated with a major transtensive-transpressive wrench system. Several angular unconformities are very noticeable, having eroded hundreds of meters of the stratigraphic column. Study was focused on the fluvial-deltaic sediments of the Cuyo Group (Bajocian-Bathonian), the main productive levels in the area. An understanding of the stratigraphic units, visible at outcrop, seismic and well scales, providedmore » the appropriated framework for the analysis. Seismic facies, detailed log and core analysis allowed us to generate paleogeographic maps and predict the reservoir distribution into each individual stratigraphic unit, Fluvial channels, overbank, crevasses splay, mouth-bar, interdistributary and delta front facies were recognized. Finally, the integrated model was compared and adjusted with the outcrop data. As a result of this study, exploratory and development wells were proposed, being all of them productive either gas or oil. Several of the new drilled wells found new productive horizons with original reservoir pressure, proving the presence of different tanks predicted by the model. This fact encourages the evaluation of the whole adjacent areas. Summing up, this integrated approach using the best outputs of the geology and geophysics in subsurface as well as in surface has been proved as a powerful tool to explore and reactivate a very mature area.« less

  17. {open_quotes}Rejuvenation{close_quotes} of a very mature productive area: Application of sequence stratigraphy, depositional facies and reservoir architectural studies in inactive old fields - Dorsal de Huincul - Neuquen Basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokogian, D.A.; Vasquez, J.R.

    1996-12-31

    The project objectives were to define the upside potential and identified drilling locations, both for exploratory and development wells, in Loma Negra-Nl-Huincul old fields, inactive due to pressure depletion Fields are located in Dorsal de Huincul area (Huincul Range) which is a highly complex structure associated with a major transtensive-transpressive wrench system. Several angular unconformities are very noticeable, having eroded hundreds of meters of the stratigraphic column. Study was focused on the fluvial-deltaic sediments of the Cuyo Group (Bajocian-Bathonian), the main productive levels in the area. An understanding of the stratigraphic units, visible at outcrop, seismic and well scales, providedmore » the appropriated framework for the analysis. Seismic facies, detailed log and core analysis allowed us to generate paleogeographic maps and predict the reservoir distribution into each individual stratigraphic unit, Fluvial channels, overbank, crevasses splay, mouth-bar, interdistributary and delta front facies were recognized. Finally, the integrated model was compared and adjusted with the outcrop data. As a result of this study, exploratory and development wells were proposed, being all of them productive either gas or oil. Several of the new drilled wells found new productive horizons with original reservoir pressure, proving the presence of different tanks predicted by the model. This fact encourages the evaluation of the whole adjacent areas. Summing up, this integrated approach using the best outputs of the geology and geophysics in subsurface as well as in surface has been proved as a powerful tool to explore and reactivate a very mature area.« less

  18. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting

    NASA Astrophysics Data System (ADS)

    Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro

    2016-09-01

    The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.

  19. Lithofacies, paleoenvironment and high-resolution stratigraphy of the D5 and D6 members of the Middle Jurassic carbonates Dhruma Formation, outcrop analog, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Yousif, Ibrahim M.; Abdullatif, Osman M.; Makkawi, Mohammad H.; Bashri, Mazin A.; Abdulghani, Waleed M.

    2018-03-01

    This study characterizes the lithofacies, paleoenvironment and stratigraphic architecture of the D5 and D6 members of carbonates Dhruma Formation outcrops in central Saudi Arabia. The study integrates detailed lithofacies analysis based on vertical and lateral profiles, in addition to thin-sections petrography to reveal the high-resolution architecture framework. Nine lithofacies types (LFTs) were defined namely: (1) skeletal peletal spiculitic wackestone (15%), (2) peloidal echinoderm packstone (19%), (3) fissile shale (36%), (4) peloidal spiculitic echinoderm pack-grainstone (5%), (5) cross-bedded peloidal skeletal oolitic grainstone (7%), (6) oolitic grainstone (2%), (7) intraformational rudstone (<1%), (8) skeletal peloidal foraminiferal packstone (12%) and (9) skeletal foraminiferal wackestone (4%). These lithofacies types were grouped into five major carbonate paleoenvironments that range from distal-to-proximal carbonate ramp setting. The detailed stratigraphic analysis revealed around 53 cycles and cycle sets with 5th to 6th orders magnitude, and thickness ranges from a few centimeters up to 6 m with an average of 1.5 m. Those are stacked to form four high-frequency sequences with thickness range from 1 m up to 14 m. The latter were grouped into a single depositional sequence of 3rd order magnitude. The architectural analysis also shows that the potential reservoir units were intensively affected by muddy-textured rocks which act as reservoir seals. These variations in the stratigraphic sequences in Middle Jurassic Dhruma Formation and its equivalents could be attributed to the eustatic sea-level changes, climate, tectonics, and local paleoenvironments. This study attempts to provide detailed insight into reservoir heterogeneity and architecture. The analog may help to understand and predict lithofacies heterogeneity, architecture, and quality in the subsurface equivalent reservoirs.

  20. Government Draw Bentonite Beds: a newly identified stratigraphic marker in the Virgin Creek Member of the Pierre Shale, central South Dakota ( USA).

    USGS Publications Warehouse

    Nichols, T.C.; Chleborad, A.F.; Collins, D.S.

    1987-01-01

    A grouping of four bentonite beds, herein named the Government Draw Bentonite Beds, is identified as a stratigraphic marker within the Virgin Creek Member of the Pierre Shale. The beds are found west of Pierre, South Dakota, over an area of at least 130 mi2 (210 km2) where no other markers within the Virgin Creek Member have been identified. In this area, the Government Draw is a potential tool needed to determine the stratigraphic and structural relationships within the upper part of the Pierre Shale, heretofore little known. A better understanding of structural elements found in the Pierre Shale is needed to unravel the Late Cretaceous and younger geologic history of the area. -Authors

  1. Correlation of coal beds, coal zones, and key stratigraphic units in the Pennsylvanian rocks of eastern Kentucky

    USGS Publications Warehouse

    Rice, Charles L.; Smith, J. Hiram

    1980-01-01

    The Pennsylvanian rocks of the eastern Kentucky coal field unlderlie an area of about 27,000 square kilometers (see index map). Largely because of the size and stratigraphic complexity of the area, Huddle and others (1963, p. 31) divided it into six coal reserve districts (unofficial), utilizing state and county lines as well as geologic features, drainage areas, and cola producing areas. This division is followed herein because, in general, each of these districts has a characteristic stratigraphic nomenclature, particularly as related to coal bed names. The six districts shown on the index mat, are the Princess, Licking River, Big Sandy, Hazard, Southwestern, and Upper Cumberland River; the Upper Cumberland River district has been divided into the Harlan and Middlesboro subdistricts. 

  2. Evaluation of hydrothermal resources of North Dakota. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.

    1981-06-01

    The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less

  3. Cat-Eyed Saturn

    NASA Image and Video Library

    2006-04-13

    Bright, high altitude clouds, like those imaged here, often appear more filamentary or streak-like than clouds imaged at slightly deeper levels in Saturn atmosphere. This view also shows one of the many cat eye vortices.

  4. Stratal Control Volumes and Stratal Control Trajectories: A New Method to Constrain, Understand and Reconcile Results from Stratigraphic Outcrop Analysis, Subsurface Analysis and Analogue and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Burgess, P. M.; Steel, R. J.

    2016-12-01

    Decoding a history of Earth's surface dynamics from strata requires robust quantitative understanding of supply and accommodation controls. The concept of stratigraphic solution sets has proven useful in this decoding, but application and development of this approach has so far been surprisingly limited. Stratal control volumes, areas and trajectories are new approaches defined here, building on previous ideas about stratigraphic solution sets, to help analyse and understand the sedimentary record of Earth surface dynamics. They may have particular application reconciling results from outcrop and subsurface analysis with results from analogue and numerical experiments. Stratal control volumes are sets of points in a three-dimensional volume, with axes of subsidence, sediment supply and eustatic rates of change, populated with probabilities derived from analysis of subsidence, supply and eustasy timeseries (Figure 1). These empirical probabilities indicate the likelihood of occurrence of any particular combination of control rates defined by any point in the volume. The stratal control volume can then by analysed to determine which parts of the volume represent relative sea-level fall and rise, where in the volume particular stacking patterns will occur, and how probable those stacking patterns are. For outcrop and subsurface analysis, using a stratal control area with eustasy and subsidence combined on a relative sea-level axis allows similar analysis, and may be preferable. A stratal control trajectory is a history of supply and accommodation creation rates, interpreted from outcrop or subsurface data, or observed in analogue and numerical experiments, and plotted as a series of linked points forming a trajectory through the stratal control volume (Figure 1) or area. Three examples are presented, one from outcrop and two theoretical. Much work remains to be done to build a properly representative database of stratal controls, but careful comparison of stratal control volume and trajectories constructed from outcrop analysis, subsurface analysis and experimental models may help the convergence, reconciliation and future evolution of these different approaches.

  5. Discovery of a buried reef belt at the edge of the Israeli continental shelf: oceanographic implications for the Holocene East Mediterranean

    NASA Astrophysics Data System (ADS)

    Mordechi Bialik, Or; Makovsky, Yizhaq; Arnon, Mor; Taha, Nimer; Waldmann, Nicolas David

    2017-04-01

    Low sea level characterizing the last glacial maxima (LGM) allowed the establishment of shallow-water reefs at positions currently deeper than 100 m. Some of these reefs, like those of the Gulf of Eilat (Aqaba) and Hawaii, initiated during photic conditions and demised as sea level rose. Others, like in southern Australia, were initiated by changes in the nutrient regime but demised when conditions became unhospitable. Here we present new findings for the establishment of reefs and bioherms prior to the Holocene sea level rise in the Eastern Mediterranean, with implications on post glacial nutrients and turbidity changes in the region. A detailed Sparker seismic survey off Israel reveals the presence of high amplitude mounded features characterize by a chaotic internal seismic facies, located at depths of 172 to 190 msec ( 130-140 mbsl) below mean sea level. The unit is subsequently buried by a 38 msec ( 29 m) thick finely-layered sedimentary sequence that can be identified along most of the Israeli shelf edge as a discontinuous lineup of elements that range 7 to 50 msec ( 5-40 m) in elevation and widens <1.4 km. Interestingly, the mounded features are situated below a sudden change in the bathymetry in which seafloor angle varies from <0.5° in the east to 1.5° towards the west. The base of the mounded features resides on an unconformity surface of an unknown age, yet stratigraphical correlation with previous studies suggest a last glacial maxima age ( 20 Ka). Cores that penetrate this unit reveal a sequence of mud overlying highly calcareous sediments, with the upper portion composed primarily of tightly packed heterozoan assemblages, most notably serpulids and bryozoans. A sequence of radiocarbon ages recovered along the core reveal that the bioherm and reef biological assemblage were developed 8 Ka cal. Based on our chronology, we suggest that the reef prevailed during the post glacial maxima transgression and terminated in conjunction to the development of sapropel S1 in the deep basin. Considering the water depth at the demise of the reef (>80 m) and that the biological assemblage is not solely of phototrophic conditions, we postulate that drowning does not appear to be the most likely cause of the termination of the reef. The transition from a calcareous domain to a silisicalstic one suggests the forcing of an external change in the sediment influx regime to the East Mediterranean through the Nile River.

  6. Mapping the petroleum system - An investigative technique to explore the hydrocarbon fluid system

    USGS Publications Warehouse

    Magoon, L.B.; Dow, W.G.

    2000-01-01

    Creating a petroleum system map includes a series of logical steps that require specific information to explain the origin in time and space of discovered hydrocarbon occurrences. If used creatively, this map provides a basis on which to develop complementary plays and prospects. The logical steps include the characterization of a petroleum system (that is, to identify, map, and name the hydrocarbon fluid system) and the summary of these results on a folio sheet. A petroleum system map is based on the understanding that there are several levels of certainty from "guessing" to "knowing" that specific oil and gas accumulations emanated from a particular pod of active source rock. Levels of certainty start with the close geographic proximity of two or more accumulations, continues with the close stratigraphic proximity, followed by the similarities in bulk properties, and then detailed geochemical properties. The highest level of certainty includes the positive geochemical correlation of the hydrocarbon fluid in the accumulations to the extract of the active source rock. A petroleum system map is created when the following logic is implemented. Implementation starts when the oil and gas accumulations of a petroleum province are grouped stratigraphically and geographically. Bulk and geochemical properties are used to further refine the groups through the determination of genetically related oil and gas types. To this basic map, surface seeps and well shows are added. Similarly, the active source rock responsible for these hydrocarbon occurrences are mapped to further define the extent of the system. A folio sheet constructed for a hypothetical case study of the Deer-Boar(.) petroleum system illustrates this methodology.

  7. Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2013-01-01

    Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.

  8. Geologic framework for the coal-bearing rocks of the Central Appalachian Basin

    USGS Publications Warehouse

    Chesnut, D.R.

    1996-01-01

    Coal production has been an important economic factor in the Central Appalachian Basin. However, regional stratigraphic and structural relationships of the coal-bearing rocks of the basin have been poorly understood due to numerous separate nomenclatural schemes employed by various states. In order to estimate coal resources and understand mechanisms controlling the distribution of coal within the basin, a reliable geologic framework is necessary. Seven detailed cross sections across the Central Appalachian Basin were constructed in order to examine the stratigraphic and structural framework of the coal-bearing rocks in the basin. The cross sections were based on more than 1000 oil and gas well logs, measured sections, and borehole information from Kentucky, Ohio, Tennessee, Virginia and West Virginia. The cross sections revealed three main points discussed here: southeast thickening of the Pennsylvanian strata, unconformable northwestward onlapping relationship of Lower Pennsylvanian strata over underlying Lower Pennsylvanian and Mississippian strata and regional continuity of beds. The cross sections, geologic mapping, coal-resource studies, extensive new highway exposures and the occurrence of tonstein beds indicate that many coal beds and marine strata are laterally extensive, albeit locally variable across the basin. Certain quartzose sandstone bodies are also extensive over large areas of the basin. Existing stratigraphic nomenclature schemes obscured the geologic framework of the basin, so a new unified nomenclature scheme was devised to better describe stratigraphic features of the basin. The new stratigraphic nomenclature, now only formalized for Kentucky, was based on key stratigraphic units that proved to be extensive across the basin. Lower and Middle Pennsylvanian rocks are now recognized as the Breathitt Group (the Breathitt Formation was elevated to group rank). The Breathitt Group was subdivided into eight coal-bearing formations by relatively thick marine strata, and, in the lower part of the Breathitt Group, by quartzose sandstone formations. The new coal-bearing units are formally ranked as formations and, in ascending order, are the Pocahontas, Bottom Creek, Alvy Creek, Grundy, Pikeville, Hyden, Four Corners and Princess Formations. The quartzose sandstone units are also formally ranked as formations and are, in ascending order, the Warren Point, Sewanee, Bee Rock and Corbin Sandstones. The sandstone formations were previously recognized units in some states, but have been extended (formally in Kentucky) across the basin. The key stratigraphic marine units are formally ranked as members, and are, in ascending order, the Betsie Shale Member, the Kendrick Shale Member, Magoffin Member and Stoney Fork Member.

  9. Characterizing avulsion stratigraphy in ancient alluvial deposits

    NASA Astrophysics Data System (ADS)

    Jones, H. L.; Hajek, E. A.

    2007-11-01

    Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically abrupt, when a main paleochannel is stratigraphically juxtaposed directly atop floodplain/overbank deposits, and stratigraphically transitional, where crevasse splays and other non-floodplain/-overbank deposits stratigraphically precede a main paleochannel. This characterization provides a broader, more inclusive way to recognize and describe avulsion stratigraphy in ancient deposits and may be an important factor to consider when modeling connectivity in fluvial reservoirs. Furthermore, our observations show that one type of avulsion channel stratigraphy may prevail over another within an ancient basin, suggesting that system-wide factors such as splay-proneness or avulsion style (i.e. aggradational, incisional, etc.; [Slingerland, R., Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32, 257-285]) may be primary controls on the type of avulsion stratigraphy deposited and preserved in ancient basin-fills.

  10. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Abraham, Edward H.; Woo, Van H.; Harlin-Jones, Cheryl; Heselich, Anja; Frohns, Florian

    2014-02-01

    Benefit of concomitant infrared hyperthermia and low level laser therapy and ionizing radiation is evaluated in this study. The purpose/objectives: presentation with locally advanced bulky superficial tumors is clinically challenging. To enhance the efficacy of chemotherapy and IMRT (intensity-modulated radiation therapy) and/or electron beam therapy we have developed an inexpensive and clinically effective infrared hyperthermia approach that combines black-body infrared radiation with halogen spectrum radiation and discrete wave length infrared clinical lasers LLLT. The goal is to produce a composite spectrum extending from the far infrared to near infrared and portions of the visible spectrum with discrete penetrating wavelengths generated by the clinical infrared lasers with frequencies of 810 nm and/or 830 nm. The composite spectrum from these sources is applied before and after radiation therapy. We monitor the surface and in some cases deeper temperatures with thermal probes, but use an array of surface probes as the limiting safe thermal constraint in patient treatment while at the same time maximizing infrared entry to deeper tissue layers. Fever-grade infrared hyperthermia is produced in the first centimeters while non-thermal infrared effects act at deeper tissue layers. The combination of these effects with ionizing radiation leads to improved tumor control in many cancers.

  11. Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea

    PubMed Central

    Parmentier, Eric; Berthe, Cécile; Besson, Marc; Hawkins, Anthony D.; Aubin, Thierry; Lecchini, David

    2017-01-01

    Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10–30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia). Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself. PMID:29158970

  12. Presentations - Herriott, T.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    Details Title: Sequence stratigraphic framework of the Upper Jurassic Naknek Formation, Cook Inlet forearc Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of ., Wartes, M.A., and Decker, P.L., 2015, Sequence stratigraphic framework of the Upper Jurassic Naknek

  13. Earliest accumulation history of the north polar layered deposits, Mars from SHARAD

    NASA Astrophysics Data System (ADS)

    Nerozzi, Stefano; Holt, John W.

    2018-07-01

    The approximately 2 km thick north polar layered deposits (NPLD) are often considered to contain the most complete and detailed stratigraphic records of recent climate of Mars. Exposures of the dense layering within troughs and scarps allowed detailed reconstructions of the latest accumulation history of these water ice deposits, but we lack knowledge of their initial emplacement. The Shallow Radar (SHARAD) onboard Mars Reconnaissance Orbiter (MRO) penetrates the NPLD to their base and detects their internal layering, overcoming the limitation of scarce and scattered visible outcrops of the lowermost sequences. In this study, we map reflectors in SHARAD data that result from discrete stratigraphic horizons in order to delineate the three-dimensional stratigraphy of the lowermost ∼500 m NPLD sequence and reconstruct their accumulation history. We confirm the large-scale lateral continuity and thickness uniformity of the deposits previously detected within the lowermost NPLD. However, stratigraphic complexity-in the form of pinch-outs and significant thickness variations-arises when we examine single radar units. We find evidence of an initially limited geographic stability of water ice within two deposits that are centered at the North Pole and present-day Gemina Lingula. A period of lateral ice sheet growth followed, interrupted only once by a retreat episode. Lower net accumulation is observed on pre-existing slopes, suggesting a reduction of water ice stability due to increased solar radiation incidence and/or transport by katabatic winds. Lateral transport of water ice by wind is also suggested by thickness undulations toward the top of the sequence, resembling cyclic steps. Water ice accumulation models based on orbital forcing predict a sequence of deposition and retreat events that is generally compatible with our reconstructed accumulation history. Therefore, we interpret the stratigraphic complexity that we observe as regional and, possibly global, climate change induced by orbital forcing. We also find that at least two units are completely buried within the NPLD and do not outcrop, and that NPLD deposition in some places was contemporaneous with deposition of the stratigraphically underlying cavi unit in other places. Both of these findings show that radar reflector mapping is a necessary complement to any stratigraphic reconstruction based on visible exposures.

  14. 3D seismic attribute expressions of deep offshore Niger Delta

    NASA Astrophysics Data System (ADS)

    Anyiam, Uzonna Okenna

    Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.

  15. Integrating bio-, chemo- and sequence stratigraphy of the Late Ordovician, Early Katian: A connection between onshore and offshore facies using carbon isotope analysis: Kentucky, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Young, Allison; Brett, Carlton; McLaughlin, Patrick

    2017-04-01

    A common problem in stratigraphic correlation is the difficulty of bridging shallow water shelf carbonates and down ramp shale-rich facies. This issue is well exemplified by the Upper Ordovician (lower Katian) Lexington Limestone of Kentucky, USA and adjacent dark shale facies in the deeper water Sebree Trough, an elongate, narrow bathymetric low abruptly north of the outcrop belt in the Ohio subsurface. Chronostratigraphic schemes for this interval have been proposed on the basis of conodont and graptolite biostratigraphy, mapping of event beds, and sequence stratigraphy through facies analysis. The relation of the siliciclastic rich offshore records of the "Point Pleasant-Utica" interval, well known to drillers because of its oil and gas potential, with the up-ramp shallow water carbonate dominated equivalents of the Lexington Formation is complicated by convoluted nomenclature, a major, abrupt change in facies, and disparity in the availability and completeness of records. Current genetic models of organic rich shale intervals, such as the Point Pleasant-Utica interval, are still lacking in detail, and will greatly benefit from detailed correlation with shallow water settings where more is understood about paleoclimatic conditions. In order to understand the development and evolution of this Late Ordovician Laurentian basin, it is important to understand the age relationships of depositional processes occurring at a range of depths, particularly in the less well studied epeiric sea setting of the "Point Pleasant-Utica" interval of Ohio and partial lateral equivalent, Lexington Formation of central Kentucky. The outcrop area of central Kentucky, exposed by the later uplift of the Cincinnati Arch, hosts numerous world-class exposures of the Lexington Formation, nearly all of which are representative of the highly fossiliferous, shallow-water marine platform carbonates. These successions display well differentiated depositional sequences, with sharp facies offsets, and mineralized surfaces. They also contain well studied fossil assemblages and event beds, which at the scale of an outcrop, allow for detailed paleoenvironmental interpretation. The offshore record of this interval, known almost exclusively from a few drill cores, displays an abrupt transition to distal, siliciclastic dominated facies, recording a more dysoxic and organic rich interval. Internal correlation of these shales has relied mostly on limited graptolite biostratigraphic and geochemical analysis. Here we seek to establish age relationships across a major facies transition between these two interrelated paleoenvironmental settings using high resolution whole rock carbon isotope analysis to integrate new and previous work on lithostratigraphy, biostratigraphy, and sequence stratigraphy of a series of cores and outcrops. Results to date demonstrate the persistence of carbon isotopic patterns (including the globally recognized GICE positive carbon isotopic excursion) permitting extension of correlation into basinal facies where tracking of stratigraphic sequences becomes difficult. A complicated relationship across the region is emerging involving both rapid facies transitions and submarine erosional cutout of units toward the center of the Sebree Trough. This study demonstrates the utility of an integrated stratigraphic approach for establishing high resolution regional correlations allowing for interpretations across a major facies transitions.

  16. Hydrostratigraphic interpretation of test-hole and surface geophysical data, Elkhorn and Loup River Basins, Nebraska, 2008 to 2011

    USGS Publications Warehouse

    Hobza, Christopher M.; Bedrosian, Paul A.; Bloss, Benjamin R.

    2012-01-01

    The Elkhorn-Loup Model (ELM) was begun in 2006 to understand the effect of various groundwater-management scenarios on surface-water resources. During phase one of the ELM study, a lack of subsurface geological information was identified as a data gap. Test holes drilled to the base of the aquifer in the ELM study area are spaced as much as 25 miles apart, especially in areas of the western Sand Hills. Given the variable character of the hydrostratigraphic units that compose the High Plains aquifer system, substantial variation in aquifer thickness and characteristics can exist between test holes. To improve the hydrogeologic understanding of the ELM study area, the U.S. Geological Survey, in cooperation with the Nebraska Department of Natural Resources, multiple Natural Resources Districts participating in the ELM study, and the University of Nebraska-Lincoln Conservation and Survey Division, described the subsurface lithology at six test holes drilled in 2010 and concurrently collected borehole geophysical data to identify the base of the High Plains aquifer system. A total of 124 time-domain electromagnetic (TDEM) soundings of resistivity were collected at and between selected test-hole locations during 2008-11 as a quick, non-invasive means of identifying the base of the High Plains aquifer system. Test-hole drilling and geophysical logging indicated the base-of-aquifer elevation was less variable in the central ELM area than in previously reported results from the western part of the ELM study area, where deeper paleochannels were eroded into the Brule Formation. In total, more than 435 test holes were examined and compared with the modeled-TDEM soundings. Even where present, individual stratigraphic units could not always be identified in modeled-TDEM sounding results if sufficient resistivity contrast was not evident; however, in general, the base of aquifer [top of the aquifer confining unit (ACU)] is one of the best-resolved results from the TDEM-based models, and estimates of the base-of-aquifer elevation are in good accordance with those from existing test-hole data. Differences between ACU elevations based on modeled-TDEM and test-hole data ranged from 2 to 113 feet (0.6 to 34 meters). The modeled resistivity results reflect the eastward thinning of Miocene-age and older stratigraphic units, and generally allowed confident identification of the accompanying change in the stratigraphic unit forming the ACU. The differences in elevation of the top of the Ogallala, estimated on the basis of the modeled-TDEM resistivity, and the test-hole data ranged from 11 to 251 feet (3.4 to 77 meters), with two-thirds of model results being within 60 feet of the test-hole contact elevation. The modeled-TDEM soundings also provided information regarding the distribution of Plio-Pleistocene gravel deposits, which had an average thickness of 100 feet (30 meters) in the study area; however, in many cases the contact between the Plio-Pleistocene deposits and the overlying Quaternary deposits cannot be reliably distinguished using TDEM soundings alone because of insufficient thickness or resistivity contrast.

  17. Evidence for Holocenic uplift at Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana; Fedele, Lorenzo; Grifa, Celestino; Morra, Vincenzo; Berg, Ria; Varone, Antonio

    2009-07-01

    Detailed stratigraphical, archaeological, micropalaeontological, archaeometrical and petrochemical analyses of samples from trenches and boreholes at insula of Casti Amanti, in Pompeii, allowed a faithful reconstruction of the recent environmental evolution of the site. The present data clearly indicate the alternation of both subaerial and shallow marine conditions during Holocene times. Taking into account the relative local sea level variations, a ~ 30 m ground uplift event in the last 6 kyr (with an average vertical uplift rate of ~ 5 mm/yr) was inferred for the first time.

  18. Environmental trends in extinction during the Paleozoic

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.

    1987-01-01

    Extinction intensities calculated from 505 Paleozoic marine assemblages divided among six environmental zones and 40 stratigraphic intervals indicate that whole communities exhibit increasing extinction offshore but that genera within individual taxonomic classes tend to have their highest extinction onshore. The offshore trend at the community level results from a concentration of genera in classes with low characteristic extinction rates in nearshore environments. This finding is consistent with the ecologic expectation that organisms inhabiting unpredictably fluctuating environments should suffer more extinction than counterparts living under more predictably equitable conditions.

  19. Moving and Being Moved: Implications for Practice.

    ERIC Educational Resources Information Center

    Kretchmar, R. Scott

    2000-01-01

    Uses philosophical writings, a novel about baseball, and a nonfiction work on rowing to analyze levels of meaning in physical activity, showing why three popular methods for enhancing meaning have not succeeded and may have moved some students away from deeper levels of meaning. The paper suggests that using hints taken from the three books could…

  20. Field-scale forward modelling of a shallow marine carbonate ramp: the Upper Jurassic Arab Formation (onshore Abu Dhabi - UAE)

    NASA Astrophysics Data System (ADS)

    Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.

    2017-04-01

    The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.

  1. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  2. Differential compaction influences on structure in West Cameron Block 225 field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, W.R.

    The concept to be illustrated here is the influence on structural configuration of differential compaction caused by lateral variations in stratigraphy, specifically, changes from sand to shale within the same stratigraphic interval, The example chosen to illustrate this concept is West Cameron Block 225 field. As seen in structural stratigraphic cross sections as well as net sand maps constructed in the example field, several channel sands are seen to strongly influence the structural configuration. The basic structure within the field as defined by well and seismic data consists of a gentle, southerly dipping, north south-oriented ridge, bounded by a down-to-the-eastmore » fault on the west flank and a down-to-the-south fault to the north. Gentle roll into these faults closes the north flank of the structure. The stratigraphic section consists of alternating sands and shales of Miocene and Pliocene age. Several of these sands map out as linear sand bodies interpreted to be channels. These channels, representing thickened sand bodies that grade laterally into predominantly shale facies, are oriented in a general east-west direction. The juxtaposition of the basic structural orientation with the orientation of the channel sand(s) sets up a crossing point(s) on the southern flank of the structure. With the advent of differential compaction between the channel sands and the bounding shale faces, a stratigraphic structure is generated. This resulting compaction structure maps out as a double-lobed or saddled high. This effect is amplified as channels in the shallower section stack out over the southern flank of the structure until the southern crest dominates over the northern one. The overall result is one of migrating structural crests caused by variations in compactibility within the stratigraphic section.« less

  3. Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework

    NASA Astrophysics Data System (ADS)

    Rossetti, Lucas; Lima, Evandro F.; Waichel, Breno L.; Hole, Malcolm J.; Simões, Matheus S.; Scherer, Claiton M. S.

    2018-04-01

    The volcanic rocks of the Lower Cretaceous Paraná-Etendeka Igneous Province, in Brazil, are grouped in the Serra Geral Group. The province can be chemically divided into low-TiO2, and high-TiO2. In southern Brazil, the low-TiO2 lava pile reaches a thickness of 1 km and is formed of heterogeneous lava packages here divided into four lava formations. Torres Formation (TF) is characterized by chemically more primitive basaltic (> 5 wt% MgO) compound pahoehoe flow fields; these lavas stratigraphically overly aeolian sandstones of Botucatu Formation and represent the onset of the volcanic activity. Vale do Sol Formation (VSF) groups vertically stacked sheet-like rubbly pahoehoe basaltic andesites (SiO2 > 51 wt%; MgO < 5 wt%). These lavas covered the former basalts in the Torres Syncline axis and pinch out towards southwest and represent the most voluminous mafic lava flows. Dacites and rhyolites of Palmas Formation (PF) overlay VSF flows in the central and eastern outcrop area and rest directly upon TF lavas in the west. The acidic units were emplaced as lava domes and widespread tabular lava flows. Esmeralda Formation (EF) is the upper stratigraphic unit and it is formed by a basaltic pahoehoe flow field emplaced during the waning phase of volcanic activity of the low-TiO2 lava sequence. Sedimentary interbeds are preserved throughout the whole lava pile and were deposited during quiescence periods of volcanic activity, and represent important stratigraphic markers (e.g. TF-VSF contact). The newly proposed stratigraphy provides promptly recognized stratigraphic units in a regional framework of fundamental importance for future correlations and provide vital information in the understanding of how the Paraná-Etendeka Igneous Province evolved through time.

  4. Discovery of Jurassic ammonite-bearing series in Jebel Bou Hedma (South-Central Tunisian Atlas): Implications for stratigraphic correlations and paleogeographic reconstruction

    NASA Astrophysics Data System (ADS)

    Bahrouni, Néjib; Houla, Yassine; Soussi, Mohamed; Boughdiri, Mabrouk; Ali, Walid Ben; Nasri, Ahmed; Bouaziz, Samir

    2016-01-01

    Recent geological mapping undertaken in the Southern-Central Atlas of Tunisia led to the discovery of Jurassic ammonite-bearing series in the Jebel Bou Hedma E-W anticline structure. These series represent the Southernmost Jurassic rocks ever documented in the outcrops of the Tunisian Atlas. These series which outcrop in a transitional zone between the Southern Tunisian Atlas and the Chott basin offer a valuable benchmark for new stratigraphic correlation with the well-known Jurassic series of the North-South Axis of Central Tunisia and also with the Jurassic subsurface successions transected by petroleum wells in the study area. The preliminary investigations allowed the identification, within the most complete section outcropping in the center of the structure, of numerous useful biochronological and sedimentological markers helping in the establishment of an updated Jurassic stratigraphic framework chart of South-Western Tunisia. Additionally, the Late Jurassic succession documents syn-sedimentary features such as slumping, erosion and reworking of sediments and ammonite faunas that can be considered as strong witnesses of an important geodynamic event around the Jurassic-Cretaceous boundary. These stratigraphic and geodynamic new data make of the Jurassic of Jebel Bou Hedma a key succession for stratigraphic correlation attempt between Atlas Tunisian series and those currently buried in the Chott basin or outcropping in the Saharan platform. Furthermore, the several rich-ammonite identified horizons within the Middle and Upper Jurassic series constitute reliable time lines that can be useful for both paleogeographic and geodynamic reconstructions of this part of the North African Tethyan margin but also in the refinement of the potential migration routes for ammonite populations from the Maghrebian Southern Tethys to Arabia.

  5. Using Outcrop Exposures on the Road to Yellowknife Bay to Build a Stratigraphic Column, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Stack, K. M.; Grotzinger, J. P.; Sumner, D.; Ehlmann, B. L.; Milliken, R. E.; Eigenbrode, J. L.; Gupta, S.; Williams, R. M. E.; Kah, L. C.; Lewis, K. W.

    2013-01-01

    Since landing in Gale Crater on August 5, 2012, the Curiosity rover has driven 450 m east, descending approximately 15 m in elevation from the Bradbury landing site to Yellowknife Bay. Outcrop exposure along this drive has been discontinuous, but isolated outcrops may represent windows into underlying inplace stratigraphy. This study presents an inventory of outcrops targeted by Curiosity (Figs. 1-2), grouped by lithological properties observed in Mastcam and Navcam imagery. Outcrop locations are placed in a stratigraphic context using orbital imagery and first principles of stratigraphy. The stratigraphic models presented here represent an essential first step in understanding the relative age relationships of lithological units encountered at the Curiosity landing site. Such observations will provide crucial context for assessing habitability potential of ancient Gale crater environments and organic matter preservation.

  6. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  7. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  8. The effects of habitat on coral bleaching responses in Kenya.

    PubMed

    Grimsditch, Gabriel; Mwaura, Jelvas M; Kilonzo, Joseph; Amiyo, Nassir

    2010-06-01

    This study examines the bleaching responses of scleractinian corals at four sites in Kenya (Kanamai, Vipingo, Mombasa and Nyali) representing two distinct lagoon habitats (relatively shallow and relatively deep). Bleaching incidence was monitored for the whole coral community, while zooxanthellae densities and chlorophyll levels were monitored for target species (Pocillopora damicornis, Porites lutea, and Porites cylindrica) during a non-bleaching year (2006) and a year of mild-bleaching (2007). Differences in bleaching responses between habitats were observed, with shallower sites Kanamai and Vipingo exhibiting lower bleaching incidence than deeper sites Nyali and Mombasa. These shallower lagoons display more fluctuating thermal and light environments than the deeper sites, suggesting that corals in the shallower lagoons have acclimatized and/or adapted to the fluctuating environmental conditions they endure on a daily basis and have become more resistant to bleaching stress. In deeper sites that did exhibit higher bleaching (Mombasa and Nyali), it was found that coral recovery occurred more quickly in the protected area than in the non-protected area.

  9. TST from geofinder traverse data on HP41CV programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, G.J.

    Using program subroutines designed for the HP41CV programmable calculator and the geometric data recorded from Geofinder traversing or other pace-and-compass-type methods, the true stratigraphic thickness (TST) of dipping or gently folded strata is calculated at a rate of about 30 seconds per station. TST information is therefore readily available for reviewing stratigraphic and structure data and for post survey graphical plots.

  10. A Detailed Study of the Delacroix Island Major Fault and Its Role on Stratigraphic Horizons from the Middle Miocene to Present

    NASA Astrophysics Data System (ADS)

    Levesh, J. L.; McLindon, C.; Kulp, M. A.

    2017-12-01

    An in-depth field study of the Delacroix Island producing field illustrates the evolution of the main East-West trending Delacroix Island fault over the last thirteen million years. Well log correlation and 3-D seismic interpretation of eighteen bio-stratigraphic horizons across the fault reveal a range of stratigraphic thicknesses. A cross section, created with wells upthrown and downthrown to the fault, visually demonstrates varying degrees of thickening and displacement of the stratigraphic intervals across the fault. One upthrown and one downthrown well, with well log curve data up to 30 meters below the surface, were used to calculate interval thicknesses between the main tops as well as five more Pliocene/Pleistocene biostratigraphic markers. Isopach maps, created with these interval thicknesses, depict two styles of interval thickening both of which indicate differential subsidence across the fault. An interval thickness analysis was plotted in both depth and time as well as plots showing the rate of sediment accumulation and depth versus fault displacement. A lineation on the marsh surface consistent with a projection of the fault plane suggests that the fault movement has been episodically continuous to the present and that recent movement may have played a role in submerging the downthrown side of the surface fault trace.

  11. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Bird, Kenneth J.

    2003-01-01

    A revised stratigraphic nomenclature is proposed for Cretaceous and Tertiary geologic units of the central and western North Slope of Alaska. This revised nomenclature is a simplified and broadly applicable scheme suitable for a suite of digital geologic quadrangle maps being prepared jointly by the U.S. Geological Survey and the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas. This revised nomenclature scheme is a simplification of a complex stratigraphic terminology that developed piecemeal during five decades of geologic investigations of the North Slope. It is based on helicopter-supported geologic field investigations incorporating information from high-resolution aerial photography, satellite imagery, paleontology, reflection seismic records, and sequence stratigraphic concepts. This revised nomenclature proposes the abandonment of the Colville Group; demotion of the Nanushuk Group to formation status; abandonment of six formations (Kukpowruk, Tuktu, Grandstand, Corwin, Chandler, and Ninuluk); revision of four formations (Sagavanirktok, Prince Creek, Schrader Bluff, and Seabee); elevation of the Tuluvak Tongue of the Prince Creek Formation to formation status; revision of two members (Franklin Bluffs Member and Sagwon Member of the Sagavanirktok Formation); abandonment of eight members or tongues (Kogosukruk, Rogers Creek, Barrow Trail, Sentinel Hill, Ayiyak, Shale Wall, Niakogon, and Killik); and definition of one new member (White Hills Member of the Sagavanirktok Formation).

  12. In search of the Abrams post office, Trinity County

    USGS Publications Warehouse

    Lanphere, Marvin A.; Irwin, William P.

    1987-01-01

    An understanding of earth history depends in part on stratigraphy, a division of geology in which the distinctive features of natural units or formations of layered rocks are studied and described and names are assigned to them. The procedures for describing and naming rock units in a uniform way are incorporated in documents known as stratigraphic codes. The North American Stratigraphic Code (1983) is currently used by most geologists in the United States when formation names are selected. Rock unit names consist of a geographic name, generally taken from a natural feature near the locality where the unit was first described, followed by a descriptive feature, usually the dominant rock type in the unit. Although the procedure for naming a rock unit seems straightforward, stratigraphic nomenclature can lead to confusion when the principles outlined in the stratigraphic code are ignored or incorrectly applied. This paper traces the naming of the Abrams Mica Schist, one of the major units of the northern California Klamath Mountains. It describes how uncertainty about the location of the geographic feature after which the unit was named has led to conflicting terminology. The search revealed some interesting history of the early days of mining in the Coffee Creek region of the Trinity Alps in Trinity County. 

  13. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined from slug-test analysis and transmissivity estimated from specific capacity.Water-level fluctuations were measured in the 30 monitoring wells from 1999 to July 2001. Generally, water-level changes measured in wells on the west side of the valley followed a seasonal trend and wells on the east side showed less fluctuation or a gradual decline during the 2-year period. This may indicate that a larger percentage of recharge to the shallow ground-water system on the west side is from somewhat consistent seasonal sources, such as canals and unconsumed irrigation water, as compared to sources on the east side. Water levels measured in monitoring wells completed in the shallow ground-water system near large-capacity public-supply wells varied in response to ground-water withdrawals from the deeper confined aquifer. Water temperature was monitored in 23 wells. Generally, little or no change in water temperature was measured in monitoring wells with a depth to water greater than about 40 feet. The shallower the water level in the well, the greater the water-temperature change measured during the study.Comparison of water levels measured in the monitoring wells and deeper wells in the same area indicate a downward gradient on the east side of the valley. Water levels in the shallow and deeper aquifers in the secondary recharge area on the west side of the valley were similar to those on the east side. Water levels measured in the monitoring wells and nearby wells completed in the deeper aquifer indicate that the vertical gradient can change with time and stresses on the system.

  14. Assessing the cultural in culturally sensitive printed patient-education materials for Chinese Americans with type 2 diabetes.

    PubMed

    Ho, Evelyn Y; Tran, Henrietta; Chesla, Catherine A

    2015-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provides useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally available, Chinese- and English-language diabetes print documents from a surface level and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine whether and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods, and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increased health literacy and improved health outcomes.

  15. Evidence of Deeper Learning Outcomes: Findings from the Study of Deeper Learning

    ERIC Educational Resources Information Center

    Taylor, James

    2014-01-01

    The "Study of Deeper Learning: Opportunities and Outcomes", funded by the William and Flora Hewlett Foundation, is a "proof-of-concept" study to determine whether students attending high schools with a mature and at least moderately well-implemented approach to promoting deeper learning experience greater deeper learning…

  16. A test of uranium-series dating of fossil tooth enamel: results from Tournal Cave, France

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.; Tavoso, A.; de Lumley, Henry

    1988-01-01

    A series of well preserved mammal bones and horse teeth was analyzed from archaeological levels of Tournal Cave (Magdalenian, Aurignacian, and Mousterain) to test the hypothesis that well-crystallized enamel behaves more as a closed system than does whole bone. The isotopic composition of bones and tooth enamels from this deposit meet criteria for confidence, and gave no reasons to suspect contamination or open-system behavior. Two samples for which 231Pa could be analyzed showed internal concordance with the respective 230Th ages. In spite of the favourable isotopic criteria, however, comparison of the U-series ages of the bones and the tooth enamel with stratigraphic position and 14C control indicated the dates were not meaningful. In general, both bones and tooth enamels gave ages too young, although some were clearly too old. Neither group showed any systematic increase of age with stratigraphic depth. Tooth enamel, therefore, shows no advantage over bone for U-series dating for this site. In Tournal cave both bones and enamel are apparently open to U, which is probably cycling as a consequences of post-depositional groundwater movement. ?? 1988.

  17. Quantifying assemblage turnover and species contributions at ecologic boundaries.

    PubMed

    Hayek, Lee-Ann C; Wilson, Brent

    2013-01-01

    Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA.

  18. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less

  19. Quantifying Assemblage Turnover and Species Contributions at Ecologic Boundaries

    PubMed Central

    Hayek, Lee-Ann C.; Wilson, Brent

    2013-01-01

    Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA. PMID:24130679

  20. Periodicity in extinction and the problem of catastrophism in the history of life

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1989-01-01

    The hypothesis that extinction events have recurred periodically over the last quarter billion years is greatly strengthened by new data on the stratigraphic ranges of marine animal genera. In the interval from the Permian to Recent, these data encompass some 13,000 generic extinctions, providing a more sensitive indicator of species-level extinctions than previously used familial data. Extinction time series computed from the generic data display nine strong peaks that are nearly uniformly spaced at 26 Ma intervals over the last 270 Ma. Most of these peaks correspond to extinction events recognized in more detailed, if limited, biostratigraphic studies. These new data weaken or negate most arguments against periodicity, which have involved criticisms of the taxonomic data base, sampling intervals, chronometric time scales, and statistical methods used in previous analyses. The criticisms are reviewed in some detail and various new calculations and simulations, including one assessing the effects of paraphyletic taxa, are presented. Although the new data strengthen the case for periodicity, they offer little new insight into the deriving mechanism behind the pattern. However, they do suggest that many of the periodic events may not have been catastrophic, occurring instead over several stratigraphic stages or substages.

  1. Seismic stratigraphic architecture of the Disko Bay trough-mouth fan system, West Greenland

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia C.; Knutz, Paul C.

    2015-04-01

    Spatial and temporal changes of the Greenland Ice Sheet on the continental shelf bordering Baffin Bay remain poorly constrained. Then as now, fast-flowing ice streams and outlet glaciers have played a key role for the mass balance and stability of polar ice sheets. Despite their significance for Greenland Ice Sheet dynamics and evolution, our understanding of their long-term behaviour is limited. The central West Greenland margin is characterized by a broad continental shelf where a series of troughs extend from fjords to the shelf margin, acting as focal points for trough-mouth fan (TMF) accummulations. The sea-ward bulging morphology and abrupt shelf-break of these major depositional systems is generated by prograding depocentres that formed during glacial maxima when ice streams reached the shelf edge, delivering large amounts of subglacial sediment onto the continental slope (Ó Cofaigh et al., 2013). The aim of this study is to unravel the seismic stratigraphic architecture and depositional processes of the Disko Bay TMF, aerially the largest single sedimentary system in West Greenland, using 2D and 3D seismic reflection data, seabed bathymetry and stratigraphic information from exploration well Hellefisk-1. The south-west Disko Bay is intersected by a deep, narrow trough, Egedesminde Dyb, which extends towards the southwest and links to the shallower and broader cross-shelf Disko Trough (maximum water depths of > 1000 m and a trough length of c. 370 km). Another trough-like depression (trough length of c. 120 km) in the northern part of the TMF, indicating a previous position of the ice stream, can be distinguished on the seabed topographic map and the seismic images. The Disko Bay TMF itself extends from the shelf edge down to the abyssal plain (abyssal floor depths of 2000 m) of the southern Baffin Bay. Based on seismic stratigraphic configurations relating to reflection terminations, erosive patterns and seismic facies (Mitchum et al., 1977), the TMF succession has been divided into five seismic units, each representing different stages in the progradational accumulation of the TMF system. This poster and ongoing study will discuss how the ice-stream flow switching is linked to changes in depocentres of sedimentary sequences and further investigate the major controls, e.g. ice-sheet dynamics, ocean-climate changes, tectonic forcing and subglacial geology, that determined the evolution of the Disko Bay TMF. Essencial bibliography Mitchum, R.M. Jr., Vail, P.R., Sangree, J.B., 1977. Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. AAPG Memoir 26, 117-133. Ó Cofaigh, C., Andrews, J.T., Jennings, A.E., Dowdeswell, J.A., Hogan, K.A., Kilfeather, A.A., Sheldon, C., 2013. Glacimarine lithofacies, provenance and depositional processes on a West Greenland trough-mouth fan. Journal of Quaternary Science, 28(1), 13-26.

  2. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  3. A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan

    This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…

  4. Deposition and deformation of fluvial-lacustrine sediments of the Upper Triassic-Lower Jurassic Whitmore Point Member, Moenave Formation, northern Arizona

    NASA Astrophysics Data System (ADS)

    Tanner, Lawrence H.; Lucas, Spencer G.

    2010-01-01

    The stratigraphic section of the Upper Triassic-Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.

  5. A >400 kyrs archive of sedimentation in Scladina cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; Bonjean, Dominique; Pirson, Stéphane; van der Lubbe, Jeroen; Hellstrom, John; Scholz, Denis; Verheyden, Sophie

    2017-04-01

    Scladina Cave, near the Meuse River in Belgium, is well-known for its well preserved Neanderthal fossils and stone tools. Cave research started in the 1970's, when archeological findings near the entrance of the cave initiated a long-running excavation programme in the -at that time- almost completely sediment-infilled cave. Over the past decades, a wealth of mammal fossils, stone tools, and a mandible of a Neanderthal child were found, and the complex sedimentary context of the cave strata was reconstructed in high detail. Crucial to understanding the cave stratigraphy is the construction of an absolutely dated age model. Until recently, this age model was based on a number of OSL ages, pollen stratigraphy and a few U-series ages on flowstone and stalagmite calcite. These U-series ages, however, had much lower precision than can be obtained by modern MC-ICP-MS techniques. In this study, we present new and more precise U-series ages for the major flow stone levels in Scladina Cave (upper stratigraphical sequence), and two flowstone levels from Sous-Saint-Paul Cave (lower stratigraphical sequence). The oldest flow stone layer dates back to > 400 ka, and the youngest represents the Holocene. The age model shows that flow stone formation typically occurred during warm climate conditions. These findings help to improve the existing age model for Scladina Cave significantly, and place better constraints on the age of individual fossils, and fossil assemblages in the cave.

  6. Tectonic evolution of greenstone-Gneiss association in Dharwar Craton, South India: Problems and perspectives for future research

    NASA Technical Reports Server (NTRS)

    Rao, Y. J. B.

    1986-01-01

    The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-gneiss association of Dharwar craton into an older Sargur group (older than 2.9 Ga.) and a younger Dharwar Supergroup serves as an a priori stratigraphic model. The concordant greenstone (schist)-gneiss (Peninsular gneiss) relationships, ambiguities in stratigraphic correlations of the schist belts assigned to Sargur group and difficulties in deciphering the older gneiss units can be best appreciated if the Sargur group be regarded as a trimodal association of: (1) ultrabasic-mafic metavolcanics (including komatiites), (2) clastic and nonclastic metasediments and paragneisses and (3) mainly tonalite/trondhemite gneisses and migmatites of diverse ages which could be as old as c. 3.4 ga. or even older. The extensive occurrence of this greenstone-gneiss complex is evident from recent mapping in many areas of central and southern Karnataka State.

  7. Geophysical, stratigraphic, and flow-zone logs of selected test, monitor, and water-supply wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  8. Aquifer-nomenclature guidelines

    USGS Publications Warehouse

    Laney, R.L.; Davidson, C.B.

    1986-01-01

    Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)

  9. Providing Opportunities for Deeper Learning. Findings from the Study of Deeper Learning Opportunities and Outcomes: Report 2

    ERIC Educational Resources Information Center

    Bitter, Catherine; Taylor, James; Zeiser, Kristina L.; Rickles, Jordan

    2014-01-01

    The "Study of Deeper Learning: Opportunities and Outcomes"--funded by the William and Flora Hewlett Foundation--aimed to determine whether students attending high schools with a mature and at least moderately well implemented approach to promoting deeper learning actually experienced greater deeper learning opportunities and outcomes…

  10. Evidence of Deeper Learning Outcomes. Findings from the Study of Deeper Learning Opportunities and Outcomes: Report 3

    ERIC Educational Resources Information Center

    Zeiser, Kristina L.; Taylor, James; Rickles, Jordan; Garet, Michael S.; Segeritz, Michael

    2014-01-01

    The "Study of Deeper Learning: Opportunities and Outcomes"--funded by the William and Flora Hewlett Foundation--aimed to determine whether students attending high schools with a mature and at least moderately well implemented approach to promoting deeper learning actually experienced greater deeper learning opportunities and outcomes…

  11. Evaluation of a Spatial Data Management System for Basic Skills Education

    DTIC Science & Technology

    1986-03-01

    levels (see Craik & Lockhart , 1972). These methods include verbal and imaginal elaboration (Weinstein, 1978; Weinstein et al., 1979), and a variety of...strategies at a more specific level . I . Information processing strategies are methods to aid acquisition, retention, or retrieval of information. These...methods generally are designed to force students to process information at deeper, semantic or imaginal, levels of processing , rather than at shallower

  12. Large-scale retreat and advance of shallow seas in Southeast Asia driven by mantle flow

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Flament, Nicolas; Dietmar Müller, R.; Seton, Maria; Gurnis, Michael

    2016-04-01

    The Indonesian islands and surrounding region represent one of the most submerged, low-lying continental areas on Earth. Almost half of this region, known as Sundaland, is presently inundated by a shallow sea. The role of mantle convection in driving long-wavelength topography and vertical motion of the lithosphere in this region has largely been ignored when interpreting regional stratigraphic sections, despite a consensus that Southeast Asia presently situated on a "dynamic topography low" resulting from long-term post-Pangea subduction. However, dynamic topography is typically described as a temporally and spatially transient process, implying that Sundaland may have experienced significant vertical motions in the geological past, and thus must be considered when interpreting relative sea level changes and the paleogeographic indicators of advancing and retreating shallow seas. Although the present-day low regional elevation has been attributed to the massive volume of oceanic slabs sinking in the mantle beneath Southeast Asia, a Late Cretaceous to Eocene regional unconformity indicates that shallow seas retreated following regional flooding during the mid-Cretaceous sea level highstand. During the Eocene, less than one fifth of Sundaland was submerged, despite global sea level being ~200 m higher than at present. The regional nature of the switch from marine to terrestrial environments, that is out-of-sync with eustatic sea levels, suggests that broad mantle-driven dynamic uplift may have led to the emergence of Sundaland in the Late Cretaceous and Paleocene. We use numerical forward modelling of plate tectonics and mantle convection, and compare the predicted trends of dynamic topography with evidence from regional paleogeography and eustasy to determine the extent to which mantle-driven vertical motions of the lithosphere have influenced regional basin histories in Southeast Asia. A Late Cretaceous collision of Gondwana-derived terranes with Sundaland choked the active margin, leading to slab breakoff and a weakened mantle down-welling acting on the overriding plate, which resulted in regional dynamic uplift and emergence from a ~10-15 Myr-long subduction hiatus along the Sunda active margin. This explains the absence of sediment deposition across Sundaland and the emergence of Sundaland between ~80-60 Ma. Renewed subduction from ~60 Ma reinitiated dynamic subsidence of Sundaland, leading to submergence from ~40 Ma despite falling long-term global sea levels. Our results highlight a complete 'down-up-down' dynamic topography cycle experienced by Sundaland over 100 million years, with the transience of topography revealed in sedimentary basin stratigraphy punctuated with regional unconformities. Subduction-driven mantle convection models are now able to transform the geological record of basins into a dynamic surface history, enabling a deeper understanding of mechanisms that control landscape evolution across spatial and temporal scales.

  13. Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Golan, Arik; Sivan, Dorit

    2016-05-01

    Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.

  14. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  15. Surface processes in an active rift setting: a source to sink approach from the Sperchios delta, central Greece

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Gawthorpe, Rob

    2015-04-01

    This study presents an integrated source to sink approach to understand the controls on the distribution of sediments source areas, sediment routing and downstream fining in the Sperchios rift system, central Greece. The Sperchios Rift forms an active half-graben basin, which is controlled by major NW-SE trending faults. Detailed sedimentological analysis (grain size, macro/micro faunal, geochemical and mineral magnetic analysis) in conjunction with 14C age constraints reveal the stratigraphic evolution of the Sperchios delta, located at the eastern part of the rift, including the presence of a Holocene transgressive - regressive wedge overlying Late Pleistocene alluvial deposits. The process-based stratigraphic model SedFlux2D is used to simulate the delta evolution and model scenarios are compared with the measured data. A series of sensitivity tests are used to explore uncertainties associated with variations in sediment supply, tectonic subsidence rate, and Holocene relative sea level. We discuss the effects of the major controls, in particular the rate of relative sea-level rise and tectonic subsidence rate, on accommodation creation and thus delta architecture in this active rift setting during the Holocene. The transition from transgression to regression is found to be mainly controlled by the slowing rate of relative sea level rise that occurred approximately 5500 kyrs ago. Finally, we compare the sediment volumes and grain size variations preserved in the Sperchios delta to onshore erosion rates inferred from data collected on bedrock erodibility, measurements of downstream fining, as well as stream-power/transport capacity for both transverse and axial drainage networks. This comparison, when combined with information on relative uplift/subsidence patterns due to active extensional tectonics, allows us to develop a semi-quantitative, process-based source-to-sink model for this area.

  16. Detrital zircon U-Pb Geochronology of the Boleo Formation of Santa RosalÍa Basin, Baja California Sur, México

    NASA Astrophysics Data System (ADS)

    Henry, M.; Alvarez Ortega, K. G.; Banes, A.; Holm-Denoma, C.; Busby, C.; Niemi, T.

    2017-12-01

    The Santa Rosalía Basin (SRB) is a rift basin related to the opening of the Gulf of California. The Boleo Formation is the oldest and dominant sedimentary fill of the SRB, with a poorly constrained age. We carried out a U-Pb detrital zircon (DZ) study of the Boleo Formation to constrain its maximum depositional age. The Boleo Formation has a basal limestone-gypsum section, overlain by an up to 250 m thick clastic sequence, with coarsening upward cycles of mudstone, sandstone, and conglomerate. Cu-Zn-Co-Mn stratiform ore deposits ("mantos") cap the conglomerate in each cycle, numbered 0, 1, 2, 3 and 4 (from top to bottom of section1). Sandstone samples were collected for U-Pb detrital zircon geochronology from four stratigraphic levels beneath a manto, including one each below mantos 1, 3 and 4, as well as two localities beneath manto 2. Additionally, one sample was collected above the gypsum. The sandstones are lithic feldspathic wackes derived from erosion of andesitic arc volcanic rocks, which generally lack zircon, so large DZ samples were collected. A field Wilfley table was constructed from local materials as a first step to concentrate heavy minerals, from 88 kg/sample to 16 kg/sample. The field-processed samples were further concentrated in the lab using standard zircon separation methods. Yields were excellent, 1,000 zircons per sample. We analyzed 315 zircons per sample by LA-ICPMS, using the Arizona LaserChron Center. DZ ages from the Boleo Formation range dominantly from Late Miocene through Early Cretaceous, with minor Paleozoic and Precambrian ages. However, the maximum depositional age of the formation is constrained by 40 Ar/39 Ar age of 9.42 +/- 0.29 Ma on underlying volcanic rocks2. Only 5 to 22 zircons per sample are less than 10 Ma, and of those, all stratigraphic levels are dominated mostly by 9 Ma zircons, except for the stratigraphically highest sample. Zircons from this form a coherent group of 3 with a TuffZirc age of 6.04 +/- 0.02 (75% confidence level). Thus the age of the top of the Boleo Formation appears to be well-constrained at 6 Ma, while the remainder of the section remains poorly constrained at 6-9 Ma. Future work will examine the provenance of the zircon in a Gulf of California tectonic framework. 1 Wilson 1995 USGS PP 273 2 Gutierrez et al., 2016 GSA Annual Mtg abstr.

  17. Civic Education and Deeper Learning. Deeper Learning Research Series

    ERIC Educational Resources Information Center

    Levine, Peter; Kawashima-Ginsberg, Kei

    2015-01-01

    This report proposes that the turn toward deeper learning in education reform should go hand in hand with a renewed emphasis on high-quality civics education. Not only does deeper learning have great potential to promote civic outcomes and strengthen our democracy but, at the same time, civic education exemplifies deeper learning, in that it…

  18. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A-C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999-the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized event may be younger. There is abundant, subtle evidence for pre-1999 activity of the Lavic Lake fault in the playa area, even though the fault was not mapped near the playa prior to the Hector Mine earthquake. The most notable indicators for long-term presence of the fault are pronounced, persistent vegetation lineaments and uplifted basalt exposures. Primary and secondary slip occurred in 1999 on two southern vegetation lineaments, and minor slip locally formed on a northern lineament; trench exposures across the northern vegetation lineament revealed the post-A.D. 260 earthquake, and a geomorphic trough extends northward into alluvial fan deposits in line with this lineament. The presence of two basalt exposures in Lavic lake playa indicates the presence of persistent compressional steps and uplift along the fault. Fault-line scarps are additional geomorphic markers of repeated slip events in basalt exposures.

  19. Volatile Concentrations in Pyroclastic Obsidian: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Wearn, K. M.; Cashman, K. V.; Wallace, P. J.

    2002-12-01

    Pyroclastic obsidian is abundant in fall deposits associated with Mt. Mazama's Cleetwood eruption and South Sister's Rock Mesa eruption. Measured concentrations of H2Ototal and CO2 in >300 obsidian samples from these two eruptions provide important information about both the style of degassing (open- vs. closed-system) and changes in eruptive conditions through the course of both eruptions. Obsidian clasts preserve a range of total H2O contents, with samples from lower stratigraphic levels displaying a wider range of water concentrations than those from the uppermost tephra layer sampled. All samples from the Cleetwood section contain <=1 wt% water, with those from the top of that deposit containing <0.4 wt%. Obsidian from the basal ash layer of the subsequent climactic eruption contains 0.1 - 0.8 wt% water. Obsidian fragments from the Rock Mesa eruption show a broader range in H2Ototal contents (from 0.1 to >3 wt%) than those from the Cleetwood eruption. At Rock Mesa, maximum total water contents generally decrease with increased stratigraphic height. However, this decrease is not strictly monotonic: fluctuations in maximum total water contents correspond to stratigraphic unit boundaries. In addition, the Rock Mesa event produced abundant obsidian with very low H2Ototal concentrations throughout the eruption. Dissolved molecular CO2 levels are below the detection limit in all of the Cleetwood and Mazama samples. This is not surprising, given the low initial CO2 measured in Cleetwood and Mazama melt inclusions by Bacon et al. (1992). CO2 concentrations in the Rock Mesa clasts range from <5 ppm to ~44 ppm, and are positively correlated with H2Ototal concentrations. Fluorine concentrations in Cleetwood and Mazama climactic obsidian clasts vary between ~510 and ~695 ppm, with climactic samples averaging slightly lower concentrations than Cleetwood samples. Fluorine concentrations in Rock Mesa obsidians are uniformly low (~300 to ~510 ppm). Chlorine contents of Cleetwood and Mazama climactic samples range from ~1400 ppm to ~1610 ppm. The Rock Mesa samples all contain less chlorine (~510 to ~1120 ppm) than the Cleetwood and climactic samples, and in the Rock Mesa obsidian, chlorine and total water are positively correlated. Stratigraphic variations in the volatile contents of pyroclastic obsidian support previous work suggesting that obsidian forms along the margins of the volcanic conduit and is eroded from the conduit walls by fragmenting magma. Both the Cleetwood and the Rock Mesa deposits indicate initial evacuation of shallow vanguard magma followed by a rapid increase in fragmentation depth. Both deposits also show a gradual decrease in the fragmentation depth through time, consistent with subsequent effusive activity in both cases. More puzzling is the apparent closed-system degassing trend defined by the H2O-CO2-Cl relations in the Rock Mesa obsidian samples, despite the loss of volatiles required for obsidian formation. This suggests that volatile data may also provide information on the relative time scales of volatile exsolution and loss and obsidian formation.

  20. Identification of hydrochemical facies in the Roswell Artesian Basin, New Mexico (USA), using graphical and statistical methods

    NASA Astrophysics Data System (ADS)

    Newman, Brent D.; Havenor, Kay C.; Longmire, Patrick

    2016-06-01

    Analysis of groundwater chemistry can yield important insights about subsurface conditions, and provide an alternative and complementary method for characterizing basin hydrogeology, especially in areas where hydraulic data are limited. More specifically, hydrochemical facies have been used for decades to help understand basin flow and transport, and a set of facies were developed for the Roswell Artesian Basin (RAB) in a semi-arid part of New Mexico, USA. The RAB is an important agricultural water source, and is an excellent example of a rechargeable artesian system. However, substantial uncertainties about the RAB hydrogeology and groundwater chemistry exist. The RAB was a great opportunity to explore hydrochemcial facies definition. A set of facies, derived from fingerprint diagrams (graphical approach), existed as a basis for testing and for comparison to principal components, factor analysis, and cluster analyses (statistical approaches). Geochemical data from over 300 RAB wells in the central basin were examined. The statistical testing of fingerprint-diagram-based facies was useful in terms of quantitatively evaluating differences between facies, and for understanding potential controls on basin groundwater chemistry. This study suggests the presence of three hydrochemical facies in the shallower part of the RAB (mostly unconfined conditions) and three in the deeper artesian system of the RAB. These facies reflect significant spatial differences in chemistry in the basin that are associated with specific stratigraphic intervals as well as structural features. Substantial chemical variability across faults and within fault blocks was also observed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, D.W.

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Fort Union Formation (Paleocene) in the Powder River Basin of Wyoming. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Gas is believed to have accumulated in localized structural highs early in the burial history of lenticular sands. Structural relief is due to the compaction contrast between sand and stratigraphically-equivalent fine-grained sediments. A shallow Fort Union gas play was based on reports of shallow gas shows, the occurrencemore » of thick coals which could have served as sources for bacterial gas, and the presence of lenticular sandstones which may have promoted the development of compaction structures early in the burial process, to which bacterial gas migrated. Five geologic elements related to compactional trap development were used to rank prospects. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery of the Oedekoven Fort Union gas pool at a depth of 340 ft (104 m). The uncemented, very fine grained, well-sorted {open_quotes}Canyon sand{close_quotes} pay has extremely high intergranular porosity. Low drilling and completion costs associated with shallow, high-permeability reservoirs, an abundance of subsurface control with which to delineate prospects, and existing gas-gathering systems make Fort Union sandstones attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.« less

  2. Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA

    USGS Publications Warehouse

    Kingsbury Stewart, Esther; Mauk, Jeffrey L.

    2017-01-01

    We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental, periodic marine incursions are probable, especially across maximum transgressive surfaces.We demonstrate a sequence-stratigraphic approach may be applied to fine-grained Precambrian sediments using traditional rock description and supporting lithogeochemistry. Identification of a characteristic lithofacies succession in Mesoproterozoic sediments demonstrates fundamental controls commonly interpreted for Phanerozoic lake systems may be extended into the Precambrian. These controls result in a predictable association of lithofacies, with distinct physical, biological, and geochemical properties. This has regional significance for carbon sequestration and the distribution of mineral and hydrocarbon resources and broader significance for addressing Mesoproterozoic paleogeographic reconstructions and questions related to the evolution of terrestrial life.

  3. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (<25 m deep) paleo-channel complexes have previously been interpreted as the result of the southward migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic forcing from the uplift of the Cape Fear Arch. Preliminary results from this case study suggest that first order controls on the position and geometry of the paleo-channel complexes appears to be largely allogenic (i.e. tectonic and base level driven), while the depositional history of the fill may have been a mix of autogenic and allogenic processes.

  4. Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian-Cambrian Transition Levels) and the Tectonic Nature of Teya-Chapa Depression (Northeastern Yenisei Ridge)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. B.; Priyatkina, N. S.; Rud'ko, S. V.; Shatsillo, A. V.; Collins, W. J.; Romanyuk, T. V.

    2018-03-01

    The main results are presented on U/Pb-isotope dating of 100 detrital zircons and, selectively, on the Lu/Hf-isotope system of 43 grains from sandstones of the Lopatinskii formation (the lower stratigraphic level of the Chingasan group). Ages from 896 ± 51 to 2925 ± 38 Ma were obtained with a pronounced maximum of 1890 Ma in the curve of probability density, along with ɛHf estimates from +8.4 to-15.1, which allow one to throw doubt upon the molasse nature of the Lopatinskii formation.

  5. Stratigraphic response of salt marshes to slow rates of sea-level change

    NASA Astrophysics Data System (ADS)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  6. Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    NASA Technical Reports Server (NTRS)

    Avermann, M.; Bischoff, L.; Brockmeyer, P.; Buhl, D.; Deutsch, A.; Dressler, B. O.; Lakomy, R.; Mueller-Mohr, V.; Stoeffler, D.

    1992-01-01

    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion.

  7. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  8. Identification of last interglacial deposits in eastern Beringia: a cautionary note from the Palisades, interior Alaska

    USGS Publications Warehouse

    Reyes, Alberto V.; Zazula, Grant D.; Kuzmina, Svetlana; Ager, Thomas A.; Froese, Duane G.

    2011-01-01

    Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124 + or - 10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.

  9. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    NASA Astrophysics Data System (ADS)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  10. Cretaceous system stratigraphy and shallow gas resources on the Fort Peck reservation, northeastern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, L.M.; Lund, D.F.

    1991-06-01

    Five shallow gas-bearing Cretaceous intervals have been identified on the Fort Peck Reservation of northeastern Montana. They include the Lower Judith River Sandstone and shaly sandstone intervals in the Gammon, Niobrara, Greenhorn, and Mowry Formations, Stratigraphic correlations have been carried from southwestern Saskatchewan through the Bowdoin gas field to the reservation. Sparse yet widely distributed gas shows confirm this relatively untested resource. Each of these gas-bearing intervals belongs to a recognized stratigraphic cycle characterized by thick shales overlain by progradational shaly sandstones and siltstones. The bottom cycle (Skull Creek to Mowry) contains considerable nonmarine deposits, especially within the Muddy Sandstonemore » interval, which is thickly developed in the eastern part of the reservation as a large valley-fill network. Some individual sandstone units are not continuous across the reservation. These, and those that correlate, appear to be related to paleotectonic features defined by northwest-trending lineament zones, and by lineament zone intersections. Northeast-trending paleotectonic elements exert secondary influence on stratigraphic isopachs. Circular tectonic elements, which carry through to basement, also have anomalous stratigraphic expression. Conventional drilling has not been conducive to properly testing the Cretaceous gas potential on the reservation, but empirical well-log analysis suggests that gas can be identified by various crossover techniques. The Judith River Formation did produce gas for field use at East Poplar.« less

  11. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  12. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  13. Cognitive Effects of Bilingualism: Digging Deeper for the Contributions of Language Dominance, Linguistic Knowledge, Socio-Economic Status and Cognitive Abilities

    ERIC Educational Resources Information Center

    Mueller Gathercole, Virginia C.; Thomas, Enlli Mon; Jones, Leah; Guasch, Nestor Vinas; Young, Nia; Hughes, Emma K.

    2010-01-01

    This study explores the extent to which a bilingual advantage can be observed for executive function tasks in children of varying levels of language dominance, and examines the contributions of general cognitive knowledge, linguistic abilities, language use and socio-economic level to performance. Welsh-English bilingual and English monolingual…

  14. Assessing the Cultural in Culturally Sensitive Printed Patient Education Materials for Chinese Americans with Type 2 Diabetes

    PubMed Central

    Ho, Evelyn Y.; Tran, Henrietta; Chesla, Catherine A.

    2014-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provide useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally-available, Chinese and English language diabetes print documents from a surface and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine if and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increase health literacy and improved health outcomes. PMID:24446839

  15. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    USGS Publications Warehouse

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  16. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  17. Identifying Preserved Storm Events on Beaches from Trenches and Cores

    NASA Astrophysics Data System (ADS)

    Wadman, H. M.; Gallagher, E. L.; McNinch, J.; Reniers, A.; Koktas, M.

    2014-12-01

    Recent research suggests that even small scale variations in grain size in the shallow stratigraphy of sandy beaches can significantly influence large-scale morphology change. However, few quantitative studies of variations in shallow stratigraphic layers, as differentiated by variations in mean grain size, have been conducted, in no small part due to the difficulty of collecting undisturbed sediment cores in the energetic lower beach and swash zone. Due to this lack of quantitative stratigraphic grain size data, most coastal morphology models assume that uniform grain sizes dominate sandy beaches, allowing for little to no temporal or spatial variations in grain size heterogeneity. In a first-order attempt to quantify small-scale, temporal and spatial variations in beach stratigraphy, thirty-five vibracores were collected at the USACE Field Research Facility (FRF), Duck, NC, in March-April of 2014 using the FRF's Coastal Research and Amphibious Buggy (CRAB). Vibracores were collected at set locations along a cross-shore profile from the toe of the dune to a water depth of ~1m in the surf zone. Vibracores were repeatedly collected from the same locations throughout a tidal cycle, as well as pre- and post a nor'easter event. In addition, two ~1.5m deep trenches were dug in the cross-shore and along-shore directions (each ~14m in length) after coring was completed to allow better interpretation of the stratigraphic sequences observed in the vibracores. The elevations of coherent stratigraphic layers, as revealed in vibracore-based fence diagrams and trench data, are used to relate specific observed stratigraphic sequences to individual storm events observed at the FRF. These data provide a first-order, quantitative examination of the small-scale temporal and spatial variability of shallow grain size along an open, sandy coastline. The data will be used to refine morphological model predictions to include variations in grain size and associated shallow stratigraphy.

  18. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a significant shift in geochemistry across a stratigraphic boundary at both localities.

  19. Sequence stratigraphy in the middle Ordovician shale successions, mid-east Korea: Stratigraphic variations and preservation potential of organic matter within a sequence stratigraphic framework

    NASA Astrophysics Data System (ADS)

    Byun, Uk Hwan; Lee, Hyun Suk; Kwon, Yi Kyun

    2018-02-01

    The Jigunsan Formation is the middle Ordovician shale-dominated transgressive succession in the Taebaeksan Basin, located in the eastern margin of the North China platform. The total organic carbon (TOC) content and some geochemical properties of the succession exhibit a stratigraphically distinct distribution pattern. The pattern was closely associated with the redox conditions related to decomposition, bulk sedimentation rate (dilution), and productivity. To explain the distinct distribution pattern, this study attempted to construct a high-resolution sequence stratigraphic framework for the Jigunsan Formation. The shale-dominated Jigunsan Formation comprises a lower layer of dark gray shale, deposited during transgression, and an upper layer of greenish gray siltstone, deposited during highstand and falling stage systems tracts. The concept of a back-stepped carbonate platform is adopted to distinguish early and late transgressive systems tracts (early and late TST) in this study, whereas the highstand systems tracts and falling stage systems tracts can be divided by changes in stacking patterns from aggradation to progradation. The late TST would be initiated on a rapidly back-stepping surface of sediments and, just above the surface, exhibits a high peak in TOC content, followed by a gradually upward decrease. This trend of TOC distribution in the late TST continues to the maximum flooding surface (MFS). The perplexing TOC distribution pattern within the late TST most likely resulted from both a gradual reduction in productivity during the late TST and a gradual increase in dilution effect near the MFS interval. The reduced production of organic matter primarily incurred decreasing TOC content toward the MFS when the productivity was mainly governed by benthic biota because planktonic organisms were not widespread in the Ordovician. Results of this study will help improve the understanding of the source rock distribution in mixed carbonate-siliciclastic successions within a stratigraphic framework, particularly for unconventional shale reservoirs.

  20. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian

    2018-03-01

    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate units and jarosite-bearing units, which have distinct stratigraphic relationships, are indicative of a complex sedimentary and aqueous history in south Melas Chasma.

  1. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  2. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  3. The Quequén Salado river basin: Geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina

    NASA Astrophysics Data System (ADS)

    Beilinson, E.; Gasparini, G. M.; Tomassini, R. L.; Zárate, M. A.; Deschamps, C. M.; Barendregt, R. W.; Rabassa, J.

    2017-07-01

    The Quequén Salado river basin has been the focus of several contributions since the first decades of the XX century, namely dealing with the general geological features of the deposits and with the vertebrate remains. In this paper, the Neogene geological history documented by the Quequén Salado river exposures is reconstructed by means of stratigraphic, sedimentological and paleomagnetic studies along with the paleontological analysis of vertebrate remains. The study area is a crucial setting not only to better understand the evolution of the southern Pampas basin during the late Miocene-early Pliocene interval, but also to test the validity of the biochronologic and biostratigraphic schemes, especially the "Irenense". A geological model for the Quequén Salado river valley is proposed: a case of downcutting and headward erosion that contributes with a coherent interpretation to explain the spatial distribution of facies and fossil taxa: the younger in the distal sector of the Quequén Salado middle basin and the older in the lower basin. The sedimentary record is believed to represent the distal reaches of a distributary fluvial system that drained from the Ventania ranges. The stratigraphic section of Paso del Indio Rico results a key stratigraphic site to fully understand the stratigraphic nature of the boundary between the Miocene and the Pliocene (the Huayquerian and Montehermosan stages/ages). In this sense, two stratigraphically superposed range zones have been recognized in the area: Xenodontomys ellipticus Range Zone (latest Miocene-early Pliocene; late Huayquerian), and Eumysops laeviplicatus Range Zone (early Pliocene; Montehermosan). Taking into account the available geological and paleontological evidences, the "Irenense" would not represent a valid biostratigraphic unit, since, according to the geological model here proposed, it would be represented by elements of the Xenodontomys ellipticus Range Zone in the lower QS basin and by elements of the Eumysops laeviplicatus Range Zone in the middle QS basin.

  4. Detrital cave sediments record Late Quaternary hydrologic and climatic variability in northwestern Florida, USA

    NASA Astrophysics Data System (ADS)

    Winkler, Tyler S.; van Hengstum, Peter J.; Horgan, Meghan C.; Donnelly, Jeffrey P.; Reibenspies, Joseph H.

    2016-04-01

    Detrital sediment in Florida's (USA) submerged cave systems may preserve records of regional climate and hydrologic variability. However, the basic sedimentology, mineralogy, stratigraphic variability, and emplacement history of the successions in Florida's submerged caves remains poorly understood. Here we present stratigraphic, mineralogical, and elemental data on sediment cores from two phreatic cave systems in northwestern Florida (USA), on the Dougherty Karst Plain: Hole in the Wall Cave (HITW) and Twin Cave. Water flowing through these caves is subsurface flow in the Apalachicola River drainage basin, and the caves are located just downstream from Jackson Blue (1st magnitude spring, > 2.8 m3 s- 1 discharge). Sedimentation in these caves is dominated by three primary sedimentary styles: (i) ferromanganese deposits dominate the basal recovered stratigraphy, which pass upsection into (ii) poorly sorted carbonate sediment, and finally into (iii) fine-grained organic matter (gyttja) deposits. Resolving the emplacement history of the lower stratigraphic units was hampered by a lack of suitable material for radiocarbon dating, but the upper organic-rich deposits have a punctuated depositional history beginning in the earliest Holocene. For example, gyttja primarily accumulated in HITW and Twin Caves from ~ 5500 to 3500 cal yr. BP, which coincides with regional evidence for water-table rise of the Upper Floridian Aquifer associated with relative sea-level rise in the Gulf of Mexico, and evidence for invigorated drainage through the Apalachicola River drainage basin. Gyttja sediments were also deposited in one of the caves during the Bølling/Allerød climate oscillation. Biologically, these results indicate that some Floridian aquatic cave (stygobitic) ecosystems presently receive minimal organic matter supply in comparison to prehistoric intervals. The pre-Holocene poorly sorted carbonate sediment contains abundant invertebrate fossils, and likely documents a period of enhanced limestone dissolution and cave formation (speleogenesis) during lower paleo water levels. Further work is still required to (a) determine whether precipitation of the ferromanganese deposits is inorganically or biologically mediated, (b) temporally constrain the emplacement history of the primary sedimentary styles, and (c) determine the full geographic extent of these sedimentary signals. However, these preliminary observations suggest that sedimentation in the inland underwater caves of northwestern Florida is related to Quaternary-scale hydrographic variability in the Apalachicola River drainage basin in response to broader ocean and atmospheric forcing.

  5. Sequence stratigraphic controls on synsedimentary cementation and preservation of dinosaur tracks: Example from the lower Cretaceous, (Upper Albian) Dakota Formation, Southeastern Nebraska, U.S.A.

    USGS Publications Warehouse

    Phillips, P.L.; Ludvigson, Greg A.; Matthew, Joeckel R.; Gonzalez, Luis A.; Brenner, Richard L.; Witzke, B.J.

    2007-01-01

    A thin cemented sandstone bed in the Upper Albian Dakota Formation of southeastern Nebraska contains the first dinosaur tracks to be described from the state. Of equal importance to the tracks are stable-isotope (C, O) analyses of cements in the track bed, especially in the context of data derived from generally correlative strata (sandstones and sphaerosiderite-bearing paleosols) in the region. These data provide the framework for interpretations of paleoenvironmental conditions, as well as a novel approach to understanding mechanisms of terrestrial vertebrate track preservation. High minus-cement-porosity (> 47%) and low grain-to-grain contacts (???2.5) in the track bed indicate early (pre-compaction) lithification. Although phreatic cements dominate, the history of cementation within this stratigraphic interval is complex. Cathodoluminescence petrography reveals two distinct calcite zones in the track-bearing horizon and four cement zones in stratigraphically equivalent strata from a nearby section. The earliest calcite cements from both localities are likely coeval because they exhibit identical positive covariant trends (??18O values of - 9.89 to - 6.32??? and ??13C values of - 28.01 to - 19.33??? VPDB) and record mixing of brackish and meteoric groundwaters. All other calcite cements define meteoric calcite lines with ??18O values clustering around - 9.42??? and - 8.21??? VPDB from the track-bearing horizon, and - 7.74???, - 5.81???, and - 3.95??? VPDB from the neighboring section. Distinct meteoric sphaerosiderite lines from roughly correlative paleosols serve as a proxy for locally recharged groundwaters. Back-calculated paleogroundwater ??18O estimates from paleosol sphaerosiderites range from - 7.4 to - 4.2??? SMOW; whereas, meteoric calcite lines from the track horizon are generally more depleted. Differences in cement ??18O values record changes in paleogroundwater recharge areas over time. Early calcite cements indicate mixing of fresh and brackish groundwaters during the syndepositional lithification of the track horizon. Later calcite cements, however, indicate recharge from a larger catchment basin that extended far inland. Therefore, the cements likely record a rise and subsequent fall in relative sea level. We conclude that scrutiny of the cement isotope geochemistry of genetically significant surfaces, especially track beds, can provide new data for interpreting sea level change. ?? 2006 Elsevier B.V. All rights reserved.

  6. The Shape of Deeper Learning: Strategies, Structures, and Cultures in Deeper Learning Network High Schools. Findings from the Study of Deeper Learning Opportunities and Outcomes: Report 1

    ERIC Educational Resources Information Center

    Huberman, Mette; Bitter, Catherine; Anthony, Jennifer; O'Day, Jennifer

    2014-01-01

    The "Study of Deeper Learning: Opportunities and Outcomes"--funded by the William and Flora Hewlett Foundation--is a proof-of-concept study, the purpose of which was to determine whether students attending high schools with a mature and at least moderately well implemented approach to promoting deeper learning actually experienced…

  7. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Geologic units in the Deschutes Basin were divided into several distinct hydrogeologic units. In some instances the units correspond to existing stratigraphic divisions. In other instances, hydrogeologic units correspond to different facies within a single stratigraphic unit or formation. The hydrogeologic units include Quaternary sediment, deposits of the Cascade Range and Newberry Volcano, four zones within the Deschutes Formation and age-equivalent rocks that roughly correspond with depositional environments, and pre-Deschutes-age strata.

  8. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  9. Early and middle(?) Cambrian metazoan and protistan fossils from West Africa

    USGS Publications Warehouse

    Culver, S.J.; Repetski, J.E.; Pojeta, J.; Hunt, D.

    1996-01-01

    Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.

  10. The effect of tectonic evolution on lacustrine syn-rift sediment patters in Qikou Sag, Bohaiwan Basin, eastern China

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Wang, H.; Xu, W.

    2013-12-01

    Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of sediments in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on sediment routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as sediment transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift sediment patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift sediments and Miocene to Quaternary post-rift sediments. The Eocene-Oligocene rifting stage can be divided into early rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the early syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to investigate the degree of tectonic control on subaqueous sediment transportation and dispersal. Specific attention is paid to deposits close to boundary faults-Gangxi fault, Gangdong fault and Binhai fault and associated relay ramp. Our studies show that significant amount of sediments were deposited on the basin floor close to boundary faults hanging-wall, which were derived from Cangxian uplift and might have originated from channel overspill or flow shedding across the faults. However, minor deposits occurred adjacent to and at the foot of relay ramp, suggesting an influence of these topography features on sediment routing, with the intrabasinal structural high-Beidagang buried hill acting as an additional sediment source. Therefore, the substantial differences between subaerial and subaqueous systems may influence the role of relay ramps in controlling the sediment routes and deposition in Qikou Sag. The attempt to depict subaqueous syn-rift sediment dispersal and relate them with relay ramps is needed to consider the interplay of various factors such as sediment provenience, tectonic activity, ramp geometry, and base level fluctuations in the future investigation.

  11. Evidence for intense hydrothermal alteration associated with flood basalt volcanism during the birth of the Azores Plateau

    NASA Astrophysics Data System (ADS)

    Bach, W.; Busch, A.; Genske, F. S.; Beier, C.; Krumm, S.

    2017-12-01

    A stratigraphic section comprising >1000 m of upper crust in the Princess Alice Bank (PAB) of the western Azores Plateau was sampled during RV Meteor cruise M128 in July of 2016, using the ROV MARUM Quest 4000m. Twenty-two samples were recovered between 2484 and 1439 m water depth from the southfacing footwall of the Master fault bounding a prominent NW-SE striking rift zone within the PAB. Our geochemical and petrographic results show that virtually all samples are pervasively altered. The deeper part of the section (up to 1750 m water depth) was altered under greenschist-facies conditions to assemblages that include epidote, chlorite, albite, titanite, and actinolite. These rocks show 87Sr/86Sr values between 0.7036 and 0.7050. The topmost section was altered under lower metamorphic grades to chlorite/smectite-quartz-anatase. These rocks show severe losses of Ca and Sr, and gains in Mg, Li, and B, with 87Sr/86Sr ratios as high as 0.708. These geochemical signatures indicate an intensity of hydrothermal exchange between seawater and crust that is unmatched by any in situ section of upper ocean crust sampled by ocean drilling to date. Oxygen isotope data for epidote-calcite veins indicate temperatures of 250-300°C. Later quartz gives about 200°C. The implications of the intense hydrothermal alteration for crust-seawater exchange budgets can be evaluated in the light of the geological evolution of the PAB. Based on immobile element ratios of whole rocks and REE characteristics of relict clinopyroxene in the only incompletely altered sample, an E-type MORB primary composition of the basalts can be reconstructed. Our data suggest that the degrees of mantle melting were much higher than during extrusion of the <4 Ma old alkali-basalts recovered from the top of PAB (Beier et al., 2015, doi:10.1130/2015.2511(02)), and even higher than modern MORB at the adjacent mid-Atlantic Ridge. These results lead us to suggest that the deeper sections of the PAB formed during the initial stages of flood basalt activity. The extreme hydrothermal alteration may hence be directly linked to the prolonged magmatic period during which excess melting produced a 13-km thick igneous crust. Our results indicate that marine plateau-forming events may cause transient highs in hydrothermal flux rates.

  12. Determining the Cause of the Late Triassic Adamanian-Revueltian Vertebrate Faunal Turnover in Western North America: Climate Change, Bolide Impact, or no Extinction at All?

    NASA Astrophysics Data System (ADS)

    Martz, J. W.

    2016-12-01

    The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental changes when the former requires both stratigraphic and radioisotopic precision.

  13. Fissumella motolae new genus new species from the late Aptian-early Albian of Southern Italy

    NASA Astrophysics Data System (ADS)

    Cruz, Erzika; Consorti, Lorenzo; Di Lucia, Matteo; Parente, Mariano; Ciria, Alex; Caus, Esmeralda

    2016-04-01

    Benthic foraminifera, together with calcareous algae and rudist bivalves, play a key role in the biostratigraphy of Cretaceous carbonate platforms of the peri-Adriatic area. In the biozonation currently adopted for the carbonate platforms of central and southern Apennines (Italy) there is a stratigraphic interval, roughly corresponding to most of the Albian stage, which is poorly defined and assigned to a single biozone, called "Ostracoda and Miliolidae" biozone (Chiocchini et al., 2008). We describe here a new peneropliform benthic foraminifer, Fissumella motolae n. gen., n. sp. which could be used for a finer biostratigraphic subdivision of this interval. Its porcelaneous test shows a peneropliform shape with rounded margins. In the early stage of growth the chambers are streptospirally arranged, becoming later planispiral involute. The aperture is single, migrating during ontogeny from an interiomarginal position to the center of septa. The chamber lumina are traversed by few and short radial septula. Fissumella motolae is a common constituent of benthic foraminiferal assemblages of the Apennine Carbonate Platform. We have found it in the same stratigraphic interval in several stratigraphic sections distributed along a NW-SE transect from Monte Croce (in the Aurunci Mts.) to Monte Tobenna (in the Picentini Mts.) to Monte Motola (in the Cilento Promontory). It first appears in the levels with Archaeoalveolina reicheli, close to Aptian-Albian boundary, and then continues for some tens of meters, associated with Praechrysalidina infracretacea, Cuneolina parva, Sabaudia minuta, conical imperforate foraminifers, miliolids, textularids, nezzazzatids, dasycladalean green algae and ostracods. Carbon isotope stratigraphy has been used to better constrain the correlation between the studied sections and their chronostratigraphic calibration. Chiocchini, M., Chiocchini, R. A., Didaskalou, P., and Potetti, M., 2008. Microbiostratigrafia del Triassico superiore, Giurassico e Cretacico in facies di piattaforma carbonatica del Lazio centro- meridionale e Abruzzo: revisione finale, Mem. Descr. Carta Geol. d' It., 5-170.

  14. Geologic map of the Scotts Mills, Silverton, and Stayton Northeast 7.5 minute quadrangles, Northwest Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry; Beeson, Marvin; Wheeler, Karen L.

    1999-01-01

    The Scotts Mills, Silverton, and Stayton NE 7.5 minute quadrangles are situated along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range (Fig. 1). The terrain within this area is of low to moderate relief, ranging from 100 to more than 1000 ft above sea level. This area is largely rural, with most of the valley floor and low-relief foothills under cultivation. In the last decade, the rural areas outside the boundaries of established towns have experienced significant growth in new homes built and the expansion of housing subdivisions. This growth has placed an increased demand on existing geologic resources (e.g., groundwater, sand and gravel, crushed stone) and the need to better understand potential geologic hazards within this region. Previous geologic mapping by Piper (1942), Peck and others (1964), Newton (1969), Hampton (1972), Miller and Orr (1984), Orr and Miller (1984), and Miller and Orr (1986, 1988) established and refined the general stratigraphic framework of this region. This mapping identified few faults or folds; earlier investigators were hindered by the lack of reliably identifiable marker horizons within the stratigraphic section. Werner (1991), using available seismic profile lines and well data in the Willamette Valley to locate the top of the Columbia River Basalt Group, was able to identify and map faults within the subsurface. Reconnaissance mapping of the Columbia River Basalt Group (CRBG) units in this region in the early 1980’s indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985, 1989; Beeson and Tolan, 1990). The major emphasis of this investigation was to identify and map CRBG units within the Scotts Mills, Silverton, and Stayton NE quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features.

  15. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  16. Hierarchal Genetic Stratigraphy: A Framework for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Busch, R. M.; West, R. R.

    1987-04-01

    A detailed, genetic stratigraphic framework for paleoceanographic studies can be derived by describing, correlating, interpreting, and predicting stratigraphic sequences relative to a hierarchy of their constituent time-stratigraphic transgressive-regressive units ("T-R units"). T-R unit hierarchies are defined and correlated using lithostratigraphic and paleoecologic data, but correlations can be enhanced or "checked" (tested to confirm or deny) with objective biostratigraphic, magnetostratigraphic, or chemostratigraphic data. Such chronostratigraphies can then be bracketed by radiometric ages, so that average periodicities for T-R units can be calculated and a hierarchal geochronology derived. T-R units are inferred to be the net depositional result of eustatic cycles of sea level change and can be differentiated from autocyclic deepening-shallowing units because the latter are noncorrelative intrabasinally. Boundaries between T-R units are conformable or unconformable "genetic surfaces" of two types: transgressive surfaces and "climate change surfaces". The latter are useful for correlating minor transgressive phases through nonmarine intervals, thereby deriving information linking paleoclimatic and paleoceanographic processes. Permo-Carboniferous sequences can be analyzed relative to a hierarchy of six scales of genetic T-R units having periodicities of 225-300 m.y. (first order), 20-90 m.y. (second order), 7-13 m.y. (third-order), 0.6-3.6 m.y. (fourth order), 300-500 × 10³ years (fifth order), and 50-130 × 10³ years or less (sixth-order). Paleogeographic maps for the time of maximum transgression ("transgressive apex") of successive fifth-order T-R units (5-25 m thick) in the Glenshaw Formation (Upper Pennsylvanian, Northern Appalachian Basin) delineate delta lobes, embayments, islands, and linear seaways. Relative extent of marine inundation on the fifth-order maps was used to delineate fourth-order T-R units, and the fourth-order T-R units constitute the transgressive half of a third-order T-R unit. This third-, fourth-, and fifth-order hierarchy is correlated more than 1200 km (750 miles) to the Western Interior "Basin," and is confirmed with limited objective biostratigraphy.

  17. Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial

    NASA Astrophysics Data System (ADS)

    Long, A. J.; Barlow, N. L. M.; Busschers, F. S.; Cohen, K. M.; Gehrels, W. R.; Wake, L. M.

    2015-10-01

    Global sea level during the Last Interglacial (LIG, Marine Isotope Sub-stage 5e) peaked between c. 5.5 and 9 m above present, implying significant melt from Greenland and Antarctica. Relative sea level (RSL) observations from several far- and intermediate-field sites suggest abrupt fluctuations or jumps in RSL during the LIG highstand that require one or more episodes of ice-sheet collapse and regrowth. Such events should be manifest as unique sea-level fingerprints, recorded in far-, intermediate- and near-field sites depending on the source(s) of ice-mass change involved. To date, though, no coherent evidence of such fluctuations has been reported from near-field RSL studies in northwest Europe. This is an important problem because RSL fluctuations during the LIG are portrayed as warning signs for how polar ice sheets may behave in a future, warmer than present, world. Here we review the evidence for RSL change during the LIG using stratigraphic data from the best resolved highstand records that exist in the near-field of northwest Europe, from a range of settings that include lagoonal, shallow marine, tidal flat, salt marsh and brackish-water fluviatile environments. Consideration of previously published stratigraphic records from two sites in the Eemian coastal-marine embayment that existed in the central Netherlands, yields no clear indications for abrupt RSL change during the attainment of the near-field highstand. Nor do we find any such indications common to other records from countries bordering the North Sea, the Baltic Sea and the White Sea. Two modelling experiments that explore the global signal of hypothetical sea-level oscillations caused by partial collapse and regrowth of either the Greenland or Antarctic LIG ice-sheet, show that the North Sea region is relatively insensitive to mass changes sourced from Greenland but should clearly register events with an Antarctic origin, especially those that occur late in the LIG. The lack of evidence for abrupt sea-level fluctuations at this time in northwest Europe concurs with a lack of clear near-field evidence for ice sheet collapse.

  18. Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül

    2016-04-01

    The Gulf of Gemlik is an E-W elongated trans-tensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the south eastern part of the Sea of Marmara (SoM). While during the Holocene the sea level in the Gulf of Gemlik changed in tandem with the water level changes in the SoM, it may have been different in the late glacial when the Sea of Marmara was lacustrine. Beside the tectonic activity related to the NAFZ, eustatic sea level changes would have controlled the basin evolution and consequent sedimentary history during the different paleocanographic phases of the SoM. Considering the limited studies on the late glacial-Holocene stratigraph of the Gulf of Gemlik, this study aims to investigate the depositional units and their environments with respect to different allogenic and autogenic controls. For these purposes, we analyzed over 300 2 - 7 kHz bandwidth high-resolution gridded seismic sub-bottom CHIRP profiles together with 70 kHz high resolution multibeam bathymetry with backscatter data. Four seismic stratigraphic units were defined and correlated with chronstratigraphic units in five piston cores covering the last 15.8 ka BP according to radiocarbon ages (14C). The depth-scale accuracy of chronostratigraphic units in cores is of key importance for the precise calculation of sedimentation rates. Correlation between the seismic profiles and cores were made by matching Multi-Sensor Core-Logger (MSCL) data and seismic reflection coefficients and amplitudes for different stratigraphic units. The impedance data derived from the logger were used to generate a synthetic seismogram. We used an approach to display, estimate, and correct the depth-scale discrepancies due to oversampling affecting the upper part of sedimentary series during piston coring. The method is based on the resynchronization of synthetic seismograms computed from high-quality physical property logs to the corresponding CHIRP profiles. Each sequence boundary represented by different reflection coefficient and various amplitude values were mapped for the whole gulf area from the pseudo-3D seismic data. Isopach and isochron maps were generated using 2-D cubic B-spline interpolation method to reconstruct basin evolution models through late glacial to Holocene. Each map shows various depositional period with respect to water level changes that has been controlled by sea level fluctuations in the SoM. The seismic units labeled as Unit S1-S4 from top to bottom display different seismic facies and geometries. Unit S1 is a transgressive marine mud drape younger than 10.6 ka BP, which lacustrine sediments, Unit S2 is a parallel bedded mud drape in the basin and progradational clinoforms on the shelf edge. It is dated between 13.9-10.6 ka BP, Unit S3 is characterized by erosional gullies and a clinoform architecture indicating a deltaic system dated between 15.8-13.9 ka BP. Unit S4 represents mounded sediments that are truncated by erosional gullies and dated >15.8 ka BP. Key words: Gulf of Gemlik, Seismic Stratigraphy, Numerical Modelling, Late Pleistocene to Holocene

  19. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  20. Cross-bedding set thickness and stratigraphic architecture of aeolian systems: An example from the Upper Permian Pirambóia Formation (Paraná Basin), southern Brazil

    NASA Astrophysics Data System (ADS)

    Dias, Kayo Delorenzo Nardi; Scherer, Claiton M. S.

    2008-05-01

    The Pirambóia Formation comprises an unconformity-bounded aeolian succession essentially composed of three facies associations: aeolian sand sheet, aeolian dune and interdune facies associations. The lower portion of the Pirambóia Formation is characterised by aeolian sand sheet deposits, which are overlain by aeolian dune and interdune strata, hence pointing to an overall increase in sand availability within the paleoerg. The dune and interdune successions can be further subdivided into two distinct stratigraphic intervals in terms of their mean set thickness. Intervals 1 and 2 display mean set thicknesses of 2.9 and 6.19 m, respectively. This increase in the mean set thickness reflects an increase of the angle of climb and/or dune size. In addition to improve the stratigraphic subdivision, the recognition and correlation of intervals with distinct mean set thicknesses provides a tool for reconstructing aeolian erg architecture from drill cores.

  1. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  2. First high-resolution stratigraphic column of the Martian north polar layered deposits

    USGS Publications Warehouse

    Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.

    2010-01-01

    This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.

  3. First high-resolution stratigraphic column of the Martian north polar layered deposits

    NASA Astrophysics Data System (ADS)

    Fishbaugh, Kathryn E.; Hvidberg, Christine S.; Byrne, Shane; Russell, Patrick S.; Herkenhoff, Kenneth E.; Winstrup, Mai; Kirk, Randolph

    2010-04-01

    This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/- 1.4 m, and 6 of 13 marker beds are separated by ˜25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex.

  4. Revised Subsurface Stratigraphic Framework of the Fort Union and Wasatch Formations, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.

  5. A field trip guidebook to the type localities of Marland Billings' 1935 Paleozoic bedrock stratigraphy near Littleton, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.; Rankin, Mary B.

    2014-01-01

    Marland Billings' classic paper published in 1937 in the Geological Society of America Bulletin established a succession of six stratigraphic units in rocks of low metamorphic grade near Littleton, New Hampshire. The two youngest units are fossiliferous in the area, with ages established at the time as “middle” Silurian and Early Devonian. Billings and students mapped the same stratigraphic section in adjacent areas of progressively higher regional metamorphic grade. This work laid the foundation upon which a major part of subsequent work in New England has been directly or indirectly built. This guidebook was written for a field trip held in March 2013 to visit roadcuts that are as close as possible in March to the type localities or areas of Billings’ six-fold stratigraphic succession. Ten stops are in rocks of chlorite grade of Acadian(?) metamorphism; the final stop visits amphibolite of the Ammonoosuc Volcanics. Fieldwork by the authors over the past 20 years confirms Billings’ broad conclusions.

  6. Subsurface stratigraphic cross sections of cretaceous and lower tertiary rocks in the Wind River Basin, central Wyoming: Chapter 9 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.

  7. Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Robinson, Edward

    2017-07-18

    Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

  8. Continuous seismic-reflection survey defining shallow sedimentary layers in the Charlotte Harbor and Venice areas, southwest Florida

    USGS Publications Warehouse

    Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.

    1983-01-01

    A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)

  9. Tyler sandstones (Pennsylvanian), Dickinson area, North Dakota: a 24-million barrel soil-zone stratigraphic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, C.B.

    Approximately 24 million bbl of recoverable oil has been found in stratigraphic traps in the lower Pennsylvanian Tyler formation at the Dickinson, South Heart, and E. Green River Fields, Stark County, North Dakota. Production is from a multiple sequence of quartzose sandstones 5 to 18 ft (1.5 to 5 m) thick deposited as barrier islands along regressive shorelines. A typical vertical sequence is given. Throughout much of the subject area, porosity and permeability in the sandstones have been greatly reduced or completely destroyed by development of caliche paleosols. In the western part, the caliche consists of gray to brown limestonemore » nodules or nodular layers of limestone in the sandstones and contains abundant pyrite. It is estimated that the caliche destroys as much as 50% of the potential reservoir rock in the area and is an essential factor in the stratigraphic entrapment of the petroleum accumulations by providing an eastern (updip) barrier to migration.« less

  10. Experimental evidence of trap level modulation in silicon nitride thin films by hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Seki, Harumi; Kamimuta, Yuuichi; Mitani, Yuichiro

    2018-06-01

    The energy level of electron traps in silicon nitride (SiN x ) thin films was investigated by discharging current transient spectroscopy (DCTS). Results indicate that the trap level of the SiN x thin films becomes deeper with decreasing composition (N/Si) and shallower after hydrogen annealing. The dependence of the trap level on the SiN x composition and the modulation of the trap level by hydrogen annealing are possibly related to the change in the number of Si–H bonds in the SiN x thin films.

  11. Cultural Understanding: French, Level One. Selected Cultural Concepts Which May Be Developed in French Level I.

    ERIC Educational Resources Information Center

    Walpole, Earl L.

    This manual was prepared to instruct the language teacher on concepts of French culture to be taught in a beginning French class to students of any age. The cultural concepts are cross-referenced and intended to be used with five of the most widely used French texts. Certain deeper cultural concepts are meant to be used for longer unit…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haq, B.U.; Hardenbol, J.; Vail, P.R.

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic andmore » accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.« less

  13. Regional Stratigraphy and Petroleum Systems of the Michigan Basin, North America

    USGS Publications Warehouse

    Swezey, Christopher S.

    2008-01-01

    Although more than 100 years of research have gone into deciphering the stratigraphy of the Michigan basin of North America, it remains a challenge to visualize the basin stratigraphy on a regional scale and to describe stratigraphic relations within the basin. Similar difficulties exist for visualizing and describing the regional distribution of petroleum source rocks and reservoir rocks. This publication addresses these difficulties by combining data on Paleozoic and Mesozoic stratigraphy and petroleum geology of the Michigan basin. The areal extent of this structural basin is presented along with data in eight schematic chronostratigraphic sections arranged from north to south, with time denoted in equal increments along the sections. The stratigraphic data are modified from American Association of Petroleum Geologists (AAPG) (1984), Johnson and others (1992), Sanford (1993), and Cross (1998), and the time scale is taken from Harland and others (1990). Informal North American chronostratigraphic terms from AAPG (1984) are shown in parentheses. Stratigraphic sequences as defined by Sloss (1963, 1988) and Wheeler (1963) also are included, as well as the locations of major petroleum source rocks and major petroleum plays. The stratigraphic units are colored according to predominant lithology, in order to emphasize general lithologic patterns and to provide a broad overview of the Michigan basin. For purposes of comparison, schematic depictions of stratigraphy and interpreted events in the Michigan basin and adjacent Appalachian basin are shown. The paper version of this map is available for purchase from the USGS Store.

  14. Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties

    USGS Publications Warehouse

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M.T.; Collett, T.; Zhang, K.

    2011-01-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (?? = 0.4), high intrinsic permeabilities (k = 10-12 m2) and high hydrate saturations (SH = 0.65). It has a low temperature (T = 2.3-2.6 ??C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 ??C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy. ?? 2010.

  15. The 1997 core drilling through Ordovician and Silurian strata at Röstånga, S. Sweden: preliminary stratigraphic assessment and regional comparison

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Koren', T.; Larsson, K.; Ahlberg, P.; Kolata, Dennis R.

    1999-01-01

    A core drilling at Ro??sta??nga, the first such drilling ever undertaken in this classical Lower Paleozoic outcrop area in W-central Scania, penetrated an approximately 96 m thick succession of Lower Silurian-upper Middle Ordovician marine rocks. The drilling was stopped at a depth of 132.59 m in an interval of crushed rocks, probably a prominent fault zone, that proved impossible to drill through. The core contains a stratigraphical sequence from the basal Upper Llandoverian (Telychian Stage) to the upper Middle Ordovician (Harjuan Stage). The following units are recognized in descending stratigraphic order (approximate thickness in parenthesis): Kallholn Formation (35 m), Lindega??rd Mudstone (27 m), Fja??cka Shale (13 m), Mossen Formation (0.75 m), Skagen Formation (2.5 m), and Sularp Shale (19 m+). Except for the Skagen Formation, the drilled sequence consists of shales and mudstones with occasional thin limestone interbeds and is similar to coeval successions elsewhere in Scania. There are 11 K-bentonite beds in the Kallholn Formation, 2(3?) in the Lindega??rd Mudstone, 1 in the Mossen Formation, 7 in the Skagen Formation, and 33 in the Sularp Shale. The core serves as an excellent Lower Silurian-upper Middle Ordovician reference standard not only for the Ro??sta??nga area but also for southernmost Sweden in general because the cored sequence is the stratigraphically most complete one known anywhere in this region.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nibbelink, K.A.; Sorgenfrei, M.C.; Rice, D.E.

    Yombo field in the Congo is sourced from the lacustrine shales of the presalt rift stage and produces from the Albian and Cenomanian, postsalt, Sendji carbonate and Tchala Sandstone. The Yombo prospect exploration model included an upper Sendji stratigraphic trap with two components and a structural nose. The buried hill component of the trap is formed by topographic relief on the reservoir below the top Sendji unconformity. The lower Sendji slump blocks provide a high on which the upper Sendji grainstone shoal facies develop. Both depositional relief and erosion during the top Sendji unconformity contribute to the topography. An isochronmore » thick in the overlying Tchala valley-fill sediments defined a drainage pattern on the unconformity around the buried hill of the underlying upper Sendji. The facies change component is formed by the pinch-out of the grainstone shoal reservoir facies into porous, but impermeable lagoonal dolomite interbedded with anhydrite and shale. Capillary pressure measurements on the 16% porosity, 0.1 md permeability lagoonal dolomite, along with pore throat radius and buoyancy calculations, demonstrated this facies could trap a significant column of low-gravity oil at shallow depth. The Tchala Sandstone contains several separate hydrocarbon accumulations. A stratigraphic trap in the lower Tchala is formed by marine and tidal channel sandstones pinching out into lagoonal shales. The nearshore marine sandstones of the upper Tchala contain additional hydrocarbons in structural and stratigraphic traps. The stratigraphic pinch-out that cross the Yombo nose trap a significant hydrocarbon accumulation, even though the four-way structural closure is relatively small.« less

  17. Early Permian transgressive-regressive cycles: Sequence stratigraphic reappraisal of the coal-bearing Barakar Formation, Raniganj Basin, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biplab; Bhattacharjee, Joyeeta; Bandyopadhyay, Sandip; Banerjee, Sudipto; Adhikari, Kalyan

    2018-03-01

    The present research is an attempt to assess the Barakar Formation of the Raniganj Gondwana Basin, India, in the frame of fluvio-marine (estuarine) depositional systems using sequence stratigraphic elements. Analysis of predominant facies associations signify deposition in three sub-environments: (i) a river-dominated bay-head delta zone in the inner estuary, with transition from braided fluvial channels (FA-B1) to tide-affected meandering fluvial channels and flood plains (FA-B2) in the basal part of the succession; (ii) a mixed energy central basin zone, which consists of transitional fluvio-tidal channels (FA-B2), tidal flats, associated with tidal channels and bars (FA-B3) in the middle-upper part of the succession; and (iii) a wave-dominated outer estuary (coastal) zone (FA-B4 with FA-B3) in the upper part of the succession. Stacked progradational (P1, P2)-retrogradational (R1, R2) successions attest to one major base level fluctuation, leading to distinct transgressive-regressive (T-R) cycles with development of initial falling stage systems tract (FSST), followed by lowstand systems tract (LST) and successive transgressive systems tracts (TST-1 and TST-2). Shift in the depositional regime from regressive to transgressive estuarine system in the early Permian Barakar Formation is attributed to change in accommodation space caused by mutual interactions of (i) base level fluctuations in response to climatic amelioration and (ii) basinal tectonisms (exhumation/sagging) related to post-glacial isostatic adjustments in the riftogenic Gondwana basins.

  18. An examination of the impact of Olson’s extinction on tetrapods from Texas

    PubMed Central

    2018-01-01

    It has been suggested that a transition between a pelycosaurian-grade synapsid dominated fauna of the Cisuralian (early Permian) and the therapsid dominated fauna of the Guadalupian (middle Permian) was accompanied by, and possibly driven by, a mass extinction dubbed Olson’s Extinction. However, this interpretation of the record has recently been criticised as being a result of inappropriate time-binning strategies: calculating species richness within international stages or substages combines extinctions occurring throughout the late Kungurian stage into a single event. To address this criticism, I examine the best record available for the time of the extinction, the tetrapod-bearing formations of Texas, at a finer stratigraphic scale than those previously employed. Species richness is calculated using four different time-binning schemes: the traditional Land Vertebrate Faunachrons (LVFs); a re-definition of the LVFs using constrained cluster analysis; individual formations treated as time bins; and a stochastic approach assigning specimens to half-million-year bins. Diversity is calculated at the genus and species level, both with and without subsampling, and extinction rates are also inferred. Under all time-binning schemes, both at the genus and species level, a substantial drop in diversity occurs during the Redtankian LVF. Extinction rates are raised above background rates throughout this time, but the biggest peak occurs in the Choza Formation (uppermost Redtankian), coinciding with the disappearance from the fossil record of several of amphibian clades. This study, carried out at a finer stratigraphic scale than previous examinations, indicates that Olson’s Extinction is not an artefact of the method used to bin data by time in previous analyses.

  19. Neogene palaeochannel deposits in Sudan - Remnants of a trans-Saharan river system?

    NASA Astrophysics Data System (ADS)

    Bussert, Robert; Eisawi, Ali A. M.; Hamed, Basher; Babikir, Ibrahim A. A.

    2018-05-01

    The start of Nile-type trans-Saharan drainage systems in NE Africa during the Cenozoic is disputed. Stratigraphical and sedimentological data in Egypt are partly in conflict with the uplift history of potential source areas of water and sediment in East Africa. Here, we investigate outcrops of the Wadi Awatib Conglomerate in Sudan that provide the first evidence of northerly flowing Neogene rivers in the region. Dimension and relief of basal erosion surfaces, overall geometry of deposits and palaeocurrent indicators demonstrate that the deposits represent the fill of northward-oriented incised valleys. The conglomerates were deposited in deep gravel-bed rivers, by hyperconcentrated flows, tractions carpets and gravel bars, primarily during heavily sediment-laden floods of probably monsoonal origin. Stratigraphical and geomorphological relationships show that the deposits are between Eocene and Pliocene in age. Considering the structural history of the region and periods in the Cenozoic with palaeoclimatic conditions suitable for the production and transport of gravels, we hypothesize that the dramatic base-level fall during the Late Miocene Messinian salinity crisis in combination with a favorable palaeoclimate caused the incision of valleys and their subsequent filling with conglomerates. Sea-level change in the Mediterranean Sea and headward erosion of streams that were connected to the Egyptian Nile might have been the primary cause of valley incision and deposition of conglomerates, despite a location far inland from the coastline. We suggest that the deposits document a relatively young Neogene (Messinian to early Pliocene) trans-Saharan river system unrelated to uplift of the Ethiopian Plateau.

  20. Lower Cretaceous Avile Sandstone, Neuquen basin, Argentina - Exploration model for a lowstand clastic wedge in a back-arc basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryer, T.A.

    1991-03-01

    The Neuquen basin of western Argentina is a back-arc basin that was occupied by epeiric seas during much of Jurassic and Cretaceous time. The Avile Sandstone Member of the Agrio Formation records a pronounced but short-lived regression of the Agrio sea during middle Hauterivian (Early Cretaceous) time. Abrupt lowering of relative sea level resulted in emergence and erosion of the Agrio sea floor; shoreline and fluvial facies characteristic of the Centenario Formation shifted basinward. The Avile rests erosionally upon lower Agrio shale over a large area; well-sorted, porous sandstones within the member pinch out laterally against the base-Avile erosional surface.more » Avile deposition closed with an abrupt transgression of the shoreline to the approximate position it had occupied prior to the Avile regression. The transgressive deposits are carbonate rich, reflecting starvation of the basin as a consequence of sea-level rise. The Avile lowstand clastic wedge consists predominantly of sandstones deposited in fluvial to shallow-marine paleoenvironments; eolian sandstones probably constitute an important component in the eastern part of the area. The sandstones locally have excellent reservoir characteristics; they constitute the reservoirs in the Puesto Hernandez, Chihuido de la Sierra Negra, and Filo Morado fields. The pinch-out of the Avile lowstand clastic wedge has the potential to form stratigraphic traps in favorable structural positions. The depositional model indicates that there may be a viable stratigraphic play to be made along the Avile pinch-out in the deep, relatively undrilled, northwestern part of the Neuquen basin.« less

  1. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional relationships between hydrocarbon source and reservoir rocks, we compiled a database consisting of more than 13,000 well picks and of one-mile resolution seismic grids. Both the well picks and the seismic grids characterize the depths to the top of key stratigraphic units. This database formed the basis of subsequent numerical modeling efforts, including the construction of a three- dimensional geologic model (Hosford Scheirer, this volume, chapter 7) and simulation of the petroleum systems in space and time (Peters, Magoon, Lampe, and others, this volume, chapter 12). To accomplish this modeling, we synthesized the age, geographic distribution, lithology, and petroleum characteristics of hydrocarbon source and reservoir rocks in the basin. The results of that synthesis are presented in this paper in the form of new stratigraphic correlation columns for the northern, central, and southern San Joaquin Valley (fig. 5.1; note that all figures are at the back of this report, following the References Cited). The stratigraphic relationships and ages published here draw heavily on published and unpublished studies of the San Joaquin Basin. The stratigraphy presented in each of the columns necessarily idealizes the subsurface geology over a relatively large area, instead of representing the specific geology at an individual well, oil and gas field, or outcrop. In this paper we present the background rationale for defining the geographic divisions of the basin (inset map, fig. 5.1), the paleontological time scales used for assigning absolute ages to rock units (figs. 5.2 and 5.3), and the supporting maps illustrating the geographic distribution of each rock type included in the stratigraphic column (figs. 5.4 through 5.64).

  2. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    USGS Publications Warehouse

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan, characterized as clayey till, loamy till, or sandy loamy till that are based in part on correlation of silty tills and clay mineralogy. The stratified morainic systems (local Valparaiso and Kalamazoo morainic systems) are composed of multiple ice-marginal glacial-lake deltas and glaciolacustrine fans that form a contiguous array of deposits, welded together at their onlapping contacts, further related by the accordant altitudes of their delta topset plains. Their bounding ice-contact slopes repeatedly are aligned parallel to the regional trend of the receding ice margin. Ice-marginal (ice-contact) deltas were deposited in glacial lakes that expanded northward as the ice sheet retreated. Glaciofluvial topset beds, which overlie deltaic foreset and bottomset facies, fine away from the ice margin. Stratified deposits associated with the Valparaiso moraine were deposited in glacial Lakes Madron and Dowagiac. Subsequent deposits of glacial Lake Baroda preceded basin-wide deposits associated with various levels of Lake Michigan.Sheet 2 includes a series of 10 map figures that show cut-away three-dimensional time slices of the stratigraphic succession, from basal tills on bedrock, to ice-marginal deltas in the three large proglacial lakes, to stacked till/lake-bottom deposits related to the Lake Border ice margin readvances, to young deposits of glacial Lake Chicago and younger phases of other glacial lakes and the Chippewa lake lowstand.The pamphlet contains a discussion of the stratigraphic framework, descriptions of each depositional unit, and graphic logs of U.S. Geological Survey stratigraphic drill holes. The pamphlet also relates the geologic history of Berrien County, beginning with bedrock Paleozoic marine deposits, continuing through erosional effects of multiple glaciations and the detailed steps of late Wisconsinan ice-margin recession as recorded in the moraines, and the rise and fall of postglacial lake levels in the Lake Michigan basin.

  3. Using Journals to Enhance Learning in Business Classes

    ERIC Educational Resources Information Center

    Hocking, Deborah E.

    2010-01-01

    This study investigates the process of using journals that incorporated holistic approaches (cognitive, affective, spiritual, multiple intelligences, and inclusive education) to infuse passion, engage students in deeper reflection, and foster higher level personal skills reflected in the American Institute of Certified Public Accountants' (AICPA)…

  4. Solubility from the Femtoscale to the Macroscale

    ERIC Educational Resources Information Center

    Pollock, David W.; Truong, Giovanna T.; Bonjour, Jessica L.; Frost, John A.

    2018-01-01

    Solubility is frequently introduced at the high school and introductory college levels through the symbolic domain using net ionic equations and solubility product constants. Students may become proficient with spectator ion cancellation and skilled with algorithmic mathematical applications of solubility without obtaining a deeper understanding…

  5. A Model of Students' Combinatorial Thinking

    ERIC Educational Resources Information Center

    Lockwood, Elise

    2013-01-01

    Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students' ways of thinking at a level that facilitates deeper understanding of how students…

  6. Unexpected hydrologic perturbation in an abandoned underground coal mine: Response to surface reclamation?

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.; Hartke, E.J.

    1990-01-01

    A reclamation project at the abandoned Blackhawk Mine site near Terre Haute, Indiana, lasted about four months and involved the burial of coarse mine refuse in shallow (less than 9 m) pits excavated into loess and till in an area of about 16 ha. An abandoned flooded underground coal mine underlies the reclamation site at a depth of about 38 m; the total area underlain by the mine is about 10 km2. The potentiometric levels associated with the mine indicate a significant (2.7 m) and prolonged perturbation of the deeper confined groundwater system; 14 months after completing reclamation, the levels began to rise linearly (at an average rate of 0.85 cm/d) for 11 months, then fell exponentially for 25 months, and are now nearly stable. Prominent subsidence features exist near the reclamation site. Subsidence-related fractures were observed in cores from the site, and such fractures may have provided a connection between the shallower and deeper groundwater systems. ?? 1990 Springer-Verlag New York Inc.

  7. Providing Opportunities for Deeper Learning: Findings from the Study of Deeper Learning

    ERIC Educational Resources Information Center

    Bitter, Catherine; O'Day, Jennifer

    2014-01-01

    The "Study of Deeper Learning: Opportunities and Outcomes," funded by the William and Flora Hewlett Foundation, is a "proof-of-concept" study to determine whether students attending high schools with a mature and at least moderately well-implemented approach to promoting "deeper learning" experience greater deeper…

  8. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    USGS Publications Warehouse

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  9. High-resolution sequence stratigraphy and continental environmental evolution: An example from east-central Argentina

    NASA Astrophysics Data System (ADS)

    Beilinson, Elisa; Veiga, Gonzalo D.; Spalletti, Luis A.

    2013-10-01

    The aims of this contribution is to establish a high-resolution sequence stratigraphic scheme for the continental deposits that constitute the Punta San Andrés Alloformation (Plio-Pleistocene) in east-central Argentina, to analyze the basin fill evolution and to identify and assess the role that extrinsic factors such as climate and sea-level oscillations played during evolution of the unit. For the high-resolution sequence stratigraphical study of the Punta San Andrés Alloformation, high- and low-accommodation system tracts were defined mainly on the basis of the architectural elements present in the succession, also taking into account the relative degree of channel and floodplain deposits. Discontinuities and the nature of depositional systems generated during variations in accommodation helped identify two fourth-order high-accommodation system tracts and two fourth-order low-accommodation system tracts. At a third-order scale, the Punta San Andrés Alloformation may be interpreted as the progradation of continental depositional systems, characterized by a braided system in the proximal areas, and a low-sinuosity, single-channel system in the distal areas, defined by a high rate of sediment supply and discharge peaks which periodically flooded the plains and generated high aggradation rates during the late Pliocene and lower Pleistocene.

  10. Seismic features of Winnipegosis mounds in Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gendzwill, D.J.

    1988-07-01

    The Winnipegosis Formation of southern Saskatchewan is characterized by reefs or reeflike mounds in its upper member. Several characteristic features of the mounds permit their identification from seismic-reflection data. These features include reflections from the flanks of the mound, a change in the reflection continuity in the middle and base of the mound, a velocity pullup under the mound, and subsidence of strata over the mound. Dissolution of the salt which surrounds the mounds sometimes occurs, resulting in a drape structure. Some or all of these features may be present at the correct seismic stratigraphic level for Winnipegosis mounds, dependingmore » on the local conditions. Subsidence of strata over the mounds indicates compaction and porosity loss from the original mound or possibly the degree of dolomitization or pressure dissolution. Salt-removal features over or adjacent to the mounds indicate fluid movements. Approximate ages can be estimated from stratigraphic thinning and thickening relationships above such features. Complications in identifying Winnipegosis mounds may arise from thin-bed effects if the mounds are not very thick compared to a seismic wavelength. Confusion may also arise from anhydrite, which may encase the mounds or which may form a thick horizontal layer at the tops of the mounds, causing an interfering signal.« less

  11. Breccia pipes in the Karoo Basin, South Africa, as conduits for metamorphic gases to the Early Jurassic atmosphere

    NASA Astrophysics Data System (ADS)

    Silkoset, Petter; Svensen, Henrik; Planke, Sverre

    2014-05-01

    The Toarcian (Early Jurassic) event was manifested by globally elevated temperatures and anoxic ocean conditions that particularly affected shallow marine taxa. The event coincided with the emplacement of the vast Karoo-Ferrar Large Igneous Province. Among the suggestions for trigger mechanisms for the climatic perturbation is metamorphic methane generation from black shale around the sills in the Karoo Basin, South Africa. The sill emplacement provides a mechanism for voluminous in-situ production and emission of greenhouse gases, and establishes a distinct link between basin-trapped and atmospheric carbon. In the lower stratigraphic levels of the Karoo Basin, black shales are metamorphosed around sills and the sediments are cut by a large number of pipe structures with metamorphic haloes. The pipes are vertical, cylindrical structures that contain brecciated and baked sediments with variable input of magmatic material. Here, we present borehole, petrographic, geochemical and field data from breccia pipes and contact aureoles based on field campaigns over a number of years (2004-2014). The metamorphism around the pipes show equivalent metamorphic grade as the sediments around nearby sills, suggesting a more prominent phreatomagmatic component than previously thought. The stratigraphic position of pipes and the breccia characteristics strengthens the hypothesis of a key role in the Toarcian carbon isotope excursion.

  12. A Hydraulic Tomography Experiment in Fractured Sedimentary Rocks, Newark Basin, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Johnson, C. D.

    2015-12-01

    Hydraulic tomography was performed in July 2015 in contaminated fractured mudstone beds at the former Naval Air Warfare Center (NAWC) in the Newark Basin near Trenton, NJ using seven existing wells. The spatial arrangement of wells (in a circle of 9 m radius with one central well), the use of packers to divide the wells into multiple monitoring intervals, and the deployment of fiber optic pressure transducers enabled collection of a hydraulic tomography dataset comprising high-resolution drawdown observations at an unprecedented level of spatial detail for fractured rocks. The experiment involved 45-minute cross-hole aquifer tests, conducted by pumping from a given packer-isolated well interval and continuously monitoring drawdowns in all other well intervals. The collective set of drawdown data from all tests and intervals displays a wide range of behavior suggestive of highly heterogeneous hydraulic conductivity (K) within the tested volume, such as: drawdown curves for different well intervals crossing one another on drawdown-time plots; variable drawdown curve shapes, including linear segments on log-log plots; variable order and magnitude of time-lag and/or drawdown for intervals of a given well in response to pumping from similar fractures or stratigraphic units in different wells; and variable groupings of wells and intervals showing similar responses for different pumping tests. The observed behavior is consistent with previous testing at the NAWC indicating that K within and across individual mudstone beds can vary by orders of magnitude over scales of meters. Preliminary assessment of the drawdown data together with a rich set of geophysical logs suggests an initial conceptual model that includes densely distributed fractures of moderate K at the shallowest depths of the tested volume, connected high-K bedding-plane-parting fractures at intermediate depths, and sparse low-K fractures in the deeper rocks. Future work will involve tomographic inversion of the data to estimate the K distribution at a scale of ~1 m3 in the upper two-thirds of the investigated volume where observation density is greatest.

  13. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  14. In situ strontium and sulfur isotope investigation of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Lahaye, Yann; O'Brien, Hugh; Santaguida, Frank

    2018-01-01

    The 2.06-Ga Kevitsa mafic-ultramafic intrusion in northern Finland hosts a large disseminated Ni-Cu-PGE deposit. The deposit occurs in the ultramafic olivine-pyroxene cumulates and shows a range in Ni tenors varying from 4-7 wt% (regular ore) to > 10 wt% (Ni-PGE ore). There are also a metal-poor sulfide mineralization (false ore) and contact mineralization that are uneconomic (Ni tenor < 4 wt%). The obtained 87Sr/86Sr(i) values of the Kevitsa ultramafic cumulates are highly radiogenic (> 0.7045) in comparison to the estimated depleted mantle Sr isotope ratio of 0.702 at 2.06 Ga. The sulfur δ 34S values are generally higher than + 2‰, which together with the Sr isotope data imply involvement of crustal material in the genesis of the Kevitsa intrusion and its ores. The 87Sr/86Sr(i) values obtained from the ore-bearing domain of the intrusion show stratigraphic variation and exceed 0.7050, with the maximum value reaching up to 0.7109. In contrast, in rocks around the ore domain, the initial Sr isotope compositions remain more or less constant (0.7047-0.7060) throughout the intrusive stratigraphy. The isotope data suggest that the ore-bearing domain of the intrusion represents a dynamic site with multiple injections of variably contaminated magma, whereas the surrounding part of the intrusion experienced a less vigorous emplacement history. No correlation is observed between the strontium and sulfur isotope compositions. This is explained by bulk assimilation of the silicate magma in a deeper staging magma chamber and variable assimilation of sulfur during magma transport into the Kevitsa magma chamber. The low level of metals in false ore and the Ni-depleted nature of its olivine suggest that some sulfides may have precipitated and deposited in the feeder conduit during the initial stage of magma emplacement. Cannibalization of early-formed sulfides by later magma injections may have been important in the formation of the economic ore deposit.

  15. Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier.

    PubMed

    Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-01-15

    We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.

  16. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  17. Comparative Earth history and Late Permian mass extinction

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J. P.

    1996-01-01

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  18. Psychometrics: An Introduction

    ERIC Educational Resources Information Center

    Furr, Mike; Bacharach, Verne R.

    2007-01-01

    The authors center their presentation of material around a conceptual understanding of psychometric issues, such as validity and reliability, and on purpose rather than procedure, the "why" rather than the "how to." Their goal is to introduce psychometric principles at a level that is deeper and more focused than found in introductory…

  19. Authentic Education: Visualising Education in a Deeper Perspective

    ERIC Educational Resources Information Center

    Watagodakumbura, Chandana

    2013-01-01

    Authentic education is presented in this paper from a multidisciplinary perspective; it is viewed and discussed mainly from the perspectives of psychology, pedagogy, neuroscience and machine learning. It addresses the individual psychological and neurological differences and guide individuals to reach higher levels of human developments.…

  20. Teacher Self-Knowledge: The Deeper Learning

    ERIC Educational Resources Information Center

    McIntosh, Peggy

    2015-01-01

    The National Seeking Educational Equity and Diversity (SEED) Project on Inclusive Curriculum is the nation's largest peer-led leadership development project. It engages public and private school teachers, college faculty, parents, and community leaders from all subject areas, grade levels, and geographic locations to create gender fair,…

  1. The Full Spectrum of Community Support

    ERIC Educational Resources Information Center

    Pawlowski, Brett; Meeder, Hans K.

    2012-01-01

    Career and technical education (CTE) programs generally attract a deeper level of involvement with the business community, given their shared interest in workforce preparedness. There are significant opportunities to increase the depth and scope of business and community engagement, which can lead to more resources, better operations and improved…

  2. Understanding Summary Statistics and Graphical Techniques to Compare Michael Jordan versus LeBron James

    ERIC Educational Resources Information Center

    Williams, Immanuel James; Williams, Kelley Kim

    2016-01-01

    Understanding summary statistics and graphical techniques are building blocks to comprehending concepts beyond basic statistics. It's known that motivated students perform better in school. Using examples that students find engaging allows them to understand the concepts at a deeper level.

  3. 3D stratigraphic modeling of the Congo turbidite system since 210 ka: an investigation of factors controlling sedimentation

    NASA Astrophysics Data System (ADS)

    Laurent, Dimitri; Picot, Marie; Marsset, Tania; Droz, Laurence; Rabineau, Marina; Granjeon, Didier; Molliex, Stéphane

    2017-04-01

    The geometry and internal functioning of turbidite systems are relatively well-constrained today. However, the respective role of autogenic (topographic compensation, dynamics of turbidity currents…) and allogenic factors (tectonics, sea-level, climate) governing their architectural evolution is still under debate. The geometry of the Quaternary Congo Fan is characterized by successive sedimentary prograding/retrograding cycles bounded by upfan avulsions, reflecting a periodic control of sedimentation (Picot et al., 2016). Multi-proxy studies revealed a strong interplay between autogenic control and climate forcing as evidenced by changes in fluvial sediment supplies consistent with arid and humid periods in the Congo River Basin. In the light of these results, the aim of this study is to investigate the relative impact of internal and external forcing factors controlling, both in time and space, the formation and evolution of depocenters of the Congo Deep-Sea Fan since 210 ka. This work represents the first attempt to model in 3D the stratigraphic architecture of the Congo turbidite system using DionisosFlow (IFP-EN), a diffusion process-based software. It allows the simulation of sediment transport and the 3D geometry reproduction of sedimentary units based on physical processes such as sea level changes, tectonics, sediment supply and transport. According to the modeling results, the role of topographic compensation in the deep-sea fan geometry is secondary compared to climate changes in the drainage basin. It appears that a periodic variation of sediment discharge and water flow is necessary to simulate the timing and volume of prograding/retrograding sedimentary cycles and more particularly the upfan avulsion events. The best-fit simulations show that the overriding factor for such changes corresponds to the expansion of the vegetation cover in the catchment basin associated to the Milankovitch cycle of precession which controlled the West African Monsoon intensity. These external forcing factors are responsible for the evolution of the capacity of turbidity currents by directly acting on the river runoff magnitude and the sediment budget according to the balance between mechanical and chemical erosion. If the sediment supply is the key parameter for the large scale sedimentary cycles, a steep increase of the sand/mud ratio leads to the development of sub-cycles characterized by middle fan avulsions. We identified these events as related to abrupt destabilizations of river mouth bars linked to periodic Congo River floods. Finally, the local slope gradient only plays a role in the maximal length of the turbidity currents and deposition in the most distal part of the basin. To conclude, the stratigraphic modeling allows us to propose an evolutionary "source to sink" model of the Quaternary Congo Fan, emphasizing the interconnection through time between drainage basin responses to climate change and sedimentary transfers in the deep-water environment. Picot, M. et al., 2016. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423-446. Keywords: Congo, sedimentary basin, Quaternary, turbidite system, sedimentary cycles, geophysical data, stratigraphic modeling, DionisosFlow

  4. Bloom's taxonomy of cognitive learning objectives.

    PubMed

    Adams, Nancy E

    2015-07-01

    Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.

  5. Lithofacies and palynostratigraphy of some Cretaceous and Paleocene rocks, Surghar and Salt Range coal fields, northern Pakistan

    USGS Publications Warehouse

    Warwick, Peter D.; Javed, Shahid; Mashhadi, S. Tahir A.; Shakoor, Tariq; Khan, Asrar M.; Khan, A. Latif

    1995-01-01

    The stratigraphic relation between the Cretaceous generally non-coal-bearing Lumshiwal Formation (64 to 150 m thick) and the Paleocene coal-bearing Hangu Formation (5 to 50 m thick) in the Surghar Range of north-central Pakistan is complex. Both formations contain remarkably similar lithofacies: one or two types of sandstone lithofacies; a combined lithofacies of mudstone, claystone, carbonaceous shale, and coal beds; and a rare carbonate lithofacies. An analysis of pollen data from rock samples collected from various stratigraphic positions indicates that the formations are separated by a disconformity and that the age of the Lumshiwal Formation is Early Cretaceous and the age of the Hangu is Paleocene. Previous workers had suggested that the age of the Lumshiwal is Late Cretaceous. An analysis of sedimentologic, stratigraphic, and paleontologic data indicates that both the Lumshiwal and Hangu Formations probably were deposited in shallow-marine and deltaic environments. The rocks of the Lumshiwal become more terrestrial in origin upward, whereas the rocks of the Hangu become more marine in origin upward. The contact between the two formations is associated with a laterally discontinuous lateritic paleosol (assigned to the Hangu Formation) that is commonly overlain by the economically important Makarwal coal bed. This coal bed averages 1.2 m in thickness. No other coal beds in the Surghar Range are as thick or as laterally continuous as the Makarwal coal bed. Analytical data from the Makarwal and one other Hangu coal bed indicate that Surghar Range coal beds range from high-volatile B to high-volatile C bituminous in apparent rank. Averaged, as-received results of proximate and ultimate analyses of coal samples are (1) moisture content, 5.4 percent; (2) ash yield, 12.5 percent; (3) total sulfur content, 5 percent; and (4) calorific value, 11034 Btu/lb (British thermal units per pound). Minor- and trace-element analyses indicate that these coals contain relatively high concentrations of the environmentally sensitive element selenium (average 13.4 ppm (parts per million)), compared to concentrations from United States coals of similar rank. The Makarwal coal bed represents a paleopeat that formed during changing relative ground-water base levels. Relatively low base levels were associated with periods of slow clastic deposition and lateritic paleosol development, followed by relatively high base levels that coincided with increased runoff, marine flooding, and clastic sedimentation that buried the paleopeat of the Makarwal. These environments formed along the northwestern margin of the Indian subcontinent as it drifted northward through equatorial latitudes in the Tethys Sea. The Makarwal coal bed is thin or absent in the northern part of the range where the Lumshiwal and Hangu Formations are the thinnest. Such rapid lateral changes (over about 25 km) in formation thickness and the apparent change in relative ground-water base level indicate that tectonically induced subsidence rates varied across the Surghar Range and influenced the deposition of the rocks that compose the two formations.

  6. Influence of Pre-Existing Structure on Sill Geometry in the San Rafael Volcanic Field, Central Utah

    NASA Astrophysics Data System (ADS)

    Ferwerda, B.; Wetmore, P. H.; Connor, C.; Kruse, S. E.; Kiyosugi, K.; Kiflu, H. G.

    2011-12-01

    Sills have been hypothesized to be formed at rigidity contrasts between layers or at the level of neutral buoyancy of the intruding magma body. Recent field observations of sills in the San Rafael Volcanic Field (SRVF) in central Utah conflict with both of these hypotheses, suggesting that something else may control the distribution of sills in the crust. This study examines the role pre-existing structure plays in determining the distribution and geometry of sills in the SRVF. Primarily, sills will be thickest in the hinge zone of synclines and thinnest towards the limbs. The SRVF consists of a series of dikes, conduits and sills intruded into the J-Kr strata of the western Colorado Plateau. The structure of the SRVF consists of a series of broad wavelength folds truncated by a major thrust fault as determined by a gravity profile across structure. There are several sill complexes in the area whose geometry and relationships with the host rock are unaccounted for by these hypotheses. At large scale, sills follow structural trends in the host rock. Sills are either oriented with regional dips, or follow the trends of folds in the area. One sill, in particular, intruded into a syncline and thins towards the limb of the fold. However, sills behave differently at smaller spatial scales. The smaller scale behavior is incongruent with sills forming at rigidity contrasts or at the level of neutral buoyancy. First, sills form tiered structures intruding at multiple stratigraphic levels within the field area, and in limited geographic extent. Geophysical surveys confirm tiered sill structures in the subsurface. Individual sills also change stratigraphic levels, sometimes, very abruptly, moving vertically up to 30 meters in short horizontal distances. Sills also form networks in anastomosing structures that cut across stratigraphy at varying angles. These observations suggest that neither the level of neutral buoyancy nor the rigidity contrasts between layers play a role in determining the distribution of sills in the crust. Broadly, sills follow pre-existing structure, but at smaller scales, sills behave drastically different, with little regard to bedding planes.

  7. An empirical assessment of taxic paleobiology.

    PubMed

    Adrain, J M; Westrop, S R

    2000-07-07

    The analysis of major changes in faunal diversity through time is a central theme of analytical paleobiology. The most important sources of data are literature-based compilations of stratigraphic ranges of fossil taxa. The levels of error in these compilations and the possible effects of such error have often been discussed but never directly assessed. We compared our comprehensive database of trilobites to the equivalent portion of J. J. Sepkoski Jr.'s widely used global genus database. More than 70% of entries in the global database are inaccurate; however, as predicted, the error is randomly distributed and does not introduce bias.

  8. Paleoearthquakes on the southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A new method for evaluating paleoseismic evidence and earthquake horizons

    USGS Publications Warehouse

    Scharer, K.M.; Weldon, R.J.; Fumal, T.E.; Biasi, G.P.

    2007-01-01

    We present evidence of 11-14 earthquakes that occurred between 3000 and 1500 B.C. on the San Andreas fault at the Wrightwood paleoseismic site. Earthquake evidence is presented in a novel form in which we rank (high, moderate, poor, or low) the quality of all evidence of ground deformation, which are called "event indicators." Event indicator quality reflects our confidence that the morphologic and sedimentologic evidence can be attributable to a ground-deforming earthquake and that the earthquake horizon is accurately identified by the morphology of the feature. In four vertical meters of section exposed in ten trenches, we document 316 event indicators attributable to 32 separate stratigraphic horizons. Each stratigraphic horizon is evaluated based on the sum of rank (Rs), maximum rank (Rm), average rank (Ra), number of observations (Obs), and sum of higher-quality event indicators (Rs>1). Of the 32 stratigraphic horizons, 14 contain 83% of the event indicators and are qualified based on the number and quality of event indicators; the remaining 18 do not have satisfactory evidence for further consideration. Eleven of the 14 stratigraphic horizons have sufficient number and quality of event indicators to be qualified as "probable" to "very likely" earthquakes; the remaining three stratigraphic horizons are associated with somewhat ambiguous features and are qualified as "possible" earthquakes. Although no single measurement defines an obvious threshold for designation as an earthquake horizon, Rs, Rm, and Rs>1 correlate best with the interpreted earthquake quality. Earthquake age distributions are determined from radio-carbon ages of peat samples using a Bayesian approach to layer dating. The average recurrence interval for the 10 consecutive and highest-quality earthquakes is 111 (93-131) years and individual intervals are ??50% of the average. With comparison with the previously published 14-15 earthquake record between A.D. 500 and present, we find no evidence to suggest significant variations in the average recurrence rate at Wrightwood during the past 5000 years.

  9. Insights into the development of drumlin formation using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Woodard, J.; Zoet, L.; Iverson, N. R.; Benediktsson, Í. Ö.; Schomacker, A.; Finlayson, A.

    2016-12-01

    Drumlins form as the result of subglacial slip, but the exact mechanisms responsible for their formation remain enigmatic. Resolution of drumlin internal stratigraphy provides a means for constraining the formation processes of drumlins, and thus the basal mechanics that result in their formation. Traditional litho-stratigraphic techniques have provided great insight into the internal stratigraphy of drumlins but are inherently limited to areas of natural exposure. We report on the application of geophysical methods used to image the internal stratigraphy of drumlins over a much larger area than is possible through litho-stratigraphic logging. Using ground penetrating radar we investigated the internal stratigraphy of seven drumlins from a recently exposed active drumlin field in the forefield of Múlajökull, Iceland. Data were collected using 100 and 200 MHz antennas that had maximum penetration depths of 15 m and 7 m with 0.4 m and 0.2 m resolution, respectively. Echograms demonstrated distinct layering of the diamictites. From the surface to ca. 2 m depth, till layers generally conformed to the longitudinal surface topography of the drumlins. Upper till layers exhibit unconformities on the flanks of the drumlins, except on their distal lee sides where layers were conformable. Till layers at approximately 2 m depth paralleled the drumlin surface and truncated lower layers. Below ca. 2 m depth distinct till layers dipped obliquely to the surface in the down-ice direction. These stratigraphic patterns were apparent in all drumlins measured at Múlajökull. The stratigraphic pattern observed in the drumlins of the Múlajökull forefield indicate a combination of deposition and erosion. Deposition occurred predominantly on the lee side and near the central axis of the drumlin, whereas erosion occurred along the flanks and stoss side. These observations support results from traditional litho-stratigraphic logs recorded on the same drumlins. Our observations suggest that drumlins migrated down ice and were initiated by a heterogeneous relief pattern in the drumlin forefield prior to the initial ice advance. This conceptual model supports observations that drumlins gained relief and became more elongated with time under the ice.

  10. Geologic Cross Section E-E' through the Appalachian Basin from the Findlay Arch, Wood County, Ohio, to the Valley and Ridge Province, Pendleton County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.

    2008-01-01

    Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).

  11. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    NASA Astrophysics Data System (ADS)

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín

    2015-12-01

    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a diachronous post-rift event. This arrangement implies that the lower part of Cuyo Cycle, traditionally related to regional thermal subsidence, may be deposited during either mechanical subsidence or thermal subsidence according to its position within the basin.

  12. The Mohawkian Chronostratigraphic Problem: building a reliable timescale by combining biostratigraphy, chemostratigraphy, and tephrochronology

    NASA Astrophysics Data System (ADS)

    Sell, B. K.; Sadler, P.; Leslie, S.; Mitchell, C.; Samson, S. D.

    2011-12-01

    The abundant exposures of Mohawkian (late Sandbian to early Katian) sedimentary rocks in eastern North America have been well-studied for insights into the Taconic orogeny and potential petroleum sources. Considerable information has been published toward establishing the sequence stratigraphic architecture, biozones for conodonts, graptolites and chitinozoans, chemostratigraphic correlations and a tephrochronologic framework. And yet, correlation remains difficult. Problems arise from complex sedimentary facies changes across the Laurentian margin and associated provincalism of the faunas. The difficulties are exacerbated by some imprecise usage of bentonite names, the short time spans of key stratigraphic sections, and a paucity of sections with muliple kinds of information. Also, linking so many taxon range end, ash-fall, and stable isotope excursion events into a coherent stratigraphic sequence is a daunting numerical problem. It falls into the notorious "NP-Complete" category because the number of possible solutions grows so fast as the number of events increases. "Simulated annealing" is one of the algorithms developed for such problems. We adopt it to solve the stratigraphic sequencing problem as a constrained optimization (CONOP). Nevertheless, to realize the full potential, more bentonite charactization and dating is needed in sections with detailed range charts for fossil species. CONOP works best with the individual taxon ranges, not the derived biozone boundaries. We examine the potential resolving power of CONOP in the context of a re-evaluation of bentonite correlations and newly acquired CA-TIMS U-Pb zircon dates from sections with rich biostratigraphic data. In particular we use 206Pb/238U zircon dates from two bentonites in the Womble Shale at the Katian Global Stratotype Section and Point (452.8 ± 0.2 and 453.5 ± 0.3 Ma, weighted mean with 2σ internal error) to compare various correlations with other dated bentonites in eastern North America. Preliminary dates for five long-range (>1000 km) bentonite correlations made on the basis of single-crystal apatite trace-element analyses (Mg, Cl, Mn, Fe, Ce, Y) help resolve previous conflicts among various biostratgraphic data, but raise new questions about the interpretation of stratigraphic sequences and chemostratigraphic data.

  13. The Origin of The Piz Terri-Lunschania zone (Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    The Piz Terri-Lunschania zone (PTLZ) represents a band of metasedimentary rocks embedded in a crucial knot at the NE border of the Lepontine dome, at the intersection of the Gotthard, Lucomagno, Simano, Adula and Grava nappes. Its origin and its position in the tectonostratigraphy of the Central Alps are still not completely understood. A better understanding of this sedimentary zone and its tectonic position could shed lights on the Helvetic-Penninic connection and facilitate the disentanglement of the Lepontine dome tectonics. In this study we combine structural and stratigraphic observations with detrital zircon (DZ) and detrital rutile (DR) U-Pb geochronology as well as mineral trace element data from Permian, Triassic and Jurassic sandstones. We compare these data with those from adjacent tectonic units and coeval strata in other portions of the Alpine chain. Maximal depositional ages, abrupt changes in provenances and stratigraphic correlations based on new DZ and DR U-Pb and trace element data allow for a better understanding of the sedimentary evolution of the Terri basin and its palaeogeographic position along the northern margin of the Alpine Tethys. In particular the DZ U-Pb signatures, with its abundant 260-280 Ma zircons and the scarcity of 290-350 Ma zircons, corroborates an Ultra-Adula origin of the PTLZ as proposed by Galster et al (2010; 2012) based on stratigraphic arguments and reinforces the notion of a Briançonnais influence on the stratigraphic record of this complex zone, a fact that has important tectonic and Palaeogeographic implications. Galster F, Cavargna-Sani M, Epard J-L, Masson H (2012) New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics 579:37-55. doi: 10.1016/j.tecto.2012.05.029 Galster F, Epard J-L, Masson H (2010) The Soja and Luzzone-Terri nappes: Discovery of a Briançonnais element below the front of the Adula nappe (NE Ticino, Central Alps). Bulletin de la Société Vaudoise des Sciences naturelles 92:61-75.

  14. The linkage between fluvial meander-belt morphodynamics and the depositional record improves paleoenvironmental interpretations, Western Interior Basin, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Durkin, P.; Hubbard, S. M.

    2016-12-01

    Enhanced stratigraphic interpretations are possible when linkages between morphodynamic processes and the depositional record are resolved. Recent studies of modern and ancient meander-belt deposits have emphasized morphodynamic processes that are commonly understated in the analysis of stratigraphic products, such as intra-point bar erosion and rotation, counter-point-bar (concave bank-bench) development and meander-bend abandonment. On a larger scale, longitudinal changes in meander-belt morphology and processes such as changes in meander-bend migration rate, channel-belt width/depth ratio and sinuosity have been observed as rivers flow through the tidal backwater zone. However, few studies have attempted to recognize the impact of the backwater zone in the stratigraphic record. We consider ancient meander-belt deposits of the Cretaceous McMurray Formation and document linkages between morphodynamic processes and their stratigraphic product to resolve more detailed paleoenvironmental interpretations. The ancient meander belt was characterized by paleochannels that were 600 m wide and up to 50 m deep, resolved in a particularly high quality subsurface dataset consisting of 600 km2 of high-quality 3-D seismic data and over 1000 wellbores. A 3-D geocellular model and reconstructed paleochannel migration patterns reveal the evolutionary history of seventeen individual meander belt elements, including point bars, counter point bars and their associated abandoned channel fills. At the meander-bend scale, intra-point-bar erosion surfaces bound accretion packages characterized by unique accretion directions, internal stratigraphic architecture and lithologic properties. Erosion surfaces and punctuated bar rotation are linked to upstream changes in channel planform geometry (meander cut-offs). We provide evidence for downstream translation and development of counter-point bars that formed in response to valley-edge and intra-meander-belt confinement. At the meander-belt scale, analysis of changes in morphology over time reveal a decrease in channel-belt width/thickness ratio and sinuosity, which we attribute to the landward migration of the paleo-backwater limit due to the oncoming and overlying transgression of the Cretaceous Boreal Sea into the Western Interior Basin.

  15. Levels of Processing and the Cue-Dependent Nature of Recollection

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Picklesimer, Milton

    2012-01-01

    Dual-process models differentiate between two bases of memory, recollection and familiarity. It is routinely claimed that deeper, semantic encoding enhances recollection relative to shallow, non-semantic encoding, and that recollection is largely a product of semantic, elaborative rehearsal. The present experiments show that this is not always the…

  16. An Emergentist Model for Writing in Mathematics.

    ERIC Educational Resources Information Center

    Hoh, Pau-San; Kirtland, Joe

    In spite of the widespread implementation of Writing Across the Curriculum (WAC), there remains little concrete evidence of the writing-thinking connection. This paper proposes a new research method that tracks students' performance and production at a deeper level of specificity than that in previous investigations of this relationship, e.g., in…

  17. Distance-Mentored Undergraduate Research

    ERIC Educational Resources Information Center

    Albuja, Analia; Greenlaw, Steven A.

    2014-01-01

    One strength of liberal arts and sciences colleges is their emphasis on so-called "high-impact practices" (HIPs), which are known to be associated with student success. These practices include first-year seminars, learning communities, and study abroad, among others. What all of these HIPs share is a deeper level of engagement and active…

  18. Collaborative Science Activities and the Social Construction of Understanding of Physical Science Concepts by Pre-service Teachers in Fiji.

    ERIC Educational Resources Information Center

    Taylor, Neil; Lucas, Keith B.; Watters, James J.

    1999-01-01

    Finds that collaborative group work among pre-service elementary teachers stimulated increased levels of discussion and fostered deeper conceptual understanding than did traditional instructional methods. Discusses implications for science education in Fiji and similar places. (Contains 37 references.) (Author/WRM)

  19. Blackstone Valley Prep Mayoral Academy: BVP High School

    ERIC Educational Resources Information Center

    EDUCAUSE, 2015

    2015-01-01

    This Rhode Island charter high school serves an intentionally diverse population of students from two urban and two suburban communities. The blended learning model is tailored by grade level and emphasizes differentiation, deeper learning in a community, and assessment. The two-page grantee profiles from Next Generation Learning Challenges (NGLC)…

  20. Teaching Using New Technologies and Students Resilience

    ERIC Educational Resources Information Center

    Onofrei, Smaranda Gabriela

    2015-01-01

    Under the conditions of a digital age, new technologies undergo various interpretations, approaches and usages. Education reaches new dimensions at all its levels, by adopting new technologies in order to deeper support modern possibilities of learning that define the new generations: a high degree of digital capabilities, the capacity to…

Top