Wu, Guo-sheng; Lin, Hui-hua; Zhu, He-jian; Sha, Jin-ming; Dai, Wen-yuan
2011-07-01
Based on the 1988, 2000, and 2007 remote sensing images of a typical red soil eroded region (Changting County, Fujian Province) and the digital elevation model (DEM), the eroded landscape types were worked out, and the changes of the eroded landscape pattern in the region from 1988 to 2007 were analyzed with the spatial mathematics model. In 1988-2007, different eroded landscape types in the region had the characteristics of inter-transfer, mainly manifested in the transfer from seriously eroded to lightly eroded types but still existed small amount of the transference from lightly eroded to seriously eroded types. Little change was observed in the controid of the eroded landscape. In the County, Hetian Town was all along the eroded center. During the study period, the landscape pattern index showed a tendency of low heterogeneity, low fragmentation, and high regularization at landscape level, but an overall improvement and expansion of lightly eroded and easy-to-tackle patches as well as the partial improvement and fragmentation of seriously eroded and difficult-to-tackle patches at patch level.
NASA Astrophysics Data System (ADS)
Peulvast, Jean-Pierre; Claudino Sales, Vanda; Bétard, François; Gunnell, Yanni
2008-05-01
The Brazilian Northeast affords good opportunities for obtaining reliable timings and rates of landscape evolution based on stratigraphic correlations across a vast region. The landscape formed in the context of an episodically fluctuating but continuously falling base level since the Cenomanian. After formation of the transform passive margin in Aptian times, landscape development was further driven by a swell-like uplift with its crest situated ˜ 300 km from the coastline. The seaward flank of this swell or broad monocline between the interior Araripe and coastal Potiguar basins was eroded, and currently forms a deeply embayed plain bordered by a semi-circular, north-facing erosional escarpment. The post-Cenomanian uplift caused an inversion of the Cretaceous basins and generated a landscape in which the most elevated landforms correspond either to resistant Mesozoic sedimentary caprock, or to eroded stumps of syn-rift Cretaceous footwall uplands. Denudation in the last 90 My never exceeded mean rates of 10 m·My - 1 and exhumed a number of Cretaceous stratigraphic unconformities. As a result, some topographic surfaces at low elevations are effectively Mesozoic land surfaces that became re-exposed in Cenozoic times. The Neogene Barreiras Formation forms a continuous and mostly clastic apron near the coast. It testifies to the last peak of erosion in the hinterland and coincided with the onset of more arid climates at ˜ 13 Ma or earlier. The semi-circular escarpment is not directly related to the initial breakup rift flanks, which had been mostly eroded before the end of the Mesozoic, but the cause and exact timing of post-Cenomanian crustal upwarping are poorly constrained. It could perhaps have been a flexural response of the low-rigidity lithosphere to sediment loads on the margin, and thus a slowly ongoing process since the late Cretaceous. Uplift could instead be the consequence of a more discrete dynamic event related either to Oligocene magmatism in the region, or to continental-scale far-field stresses determined by Andean convergence.
The Influence of Stratigraphic History on Landscape Evolution
NASA Astrophysics Data System (ADS)
Forte, A. M.; Yanites, B.; Whipple, K. X.
2016-12-01
Variation in rock erodibility can play a significant role in landscape evolution. Using a version of the CHILD landscape evolution model that allows for variations in rock erodibility, we found surprisingly complex landscape evolution in simulations with simple, two unit stratigraphies with contrasting erodibility. This work indicated that the stratigraphic order of units in terms of erodibility, the orientation of the contact with respect to the main drainage direction, and the contact dip angle all have pronounced effects on landscape evolution. Here we expand that work to explore the implications of more complicated stratigraphies on landscape evolution. Introducing multiple units adds additional controls on landscape evolution, namely the thicknesses and relative erodibility of rock layers. In models with a sequence of five alternating hard and soft units embedded within arbitrarily thick over- and underlying units, the number of individual layers that noticeably influence landscape morphology decreases as the thickness of individual layers reduces. Contacts with soft rocks over hard produce the most noticeable effect in model output such as erosion rate and channel steepness. For large contrasts in erodibility of 25 m thick layers, only one soft over hard contact is clearly manifest in the landscape. Between 50 and 75 m, two such contacts are manifest, and by 100 m thickness, all three of these contacts are manifest. However, for a given thickness of layers, more units are manifest in the landscape as the erodibility contrast between units decreases. This is true even though the magnitude of landscape effects away from steady-state erosion rates or channel steepness also decrease with decreasing erodibility contrast. Finally, we explore suites of models with alternating layers reflecting either `hardening-' or `softening-upwards' stratigraphies and find that the two scenarios result in decidedly different landscape forms. Hardening-upwards sections produce a gradational change where as individual layers have more influence in the landscape form in softening-upwards sections. Generally, our modeling highlights that past depositional history can exert a fundamental control on landscape evolution during later erosion through the resulting layered stratigraphy.
Soil quality changes after topsoil addition to eroded land
USDA-ARS?s Scientific Manuscript database
Soil-landscape rehabilitation within eroded fields can be accomplished by moving topsoil from depositional to eroded landscape positions. The purpose is to improve soil quality and productivity of the upper root zone in eroded areas of the field. Changes in soil quality may be estimated through chan...
NASA Technical Reports Server (NTRS)
2005-01-01
5 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust-mantled, wind-eroded landscape in the Medusae Sulci region of Mars. Wind eroded the bedrock in this region, and then, later, windblown dust covered much of the terrain. Location near: 5.7oS, 160.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SpringNASA Astrophysics Data System (ADS)
Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.
2017-11-01
Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.
Scale-dependent erosional patterns in steady-state and transient-state landscapes.
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L; Foufoula-Georgiou, Efi
2017-09-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.
Basement Fracturing and Weathering On- and Offshore Norway - Genesis, Age, and Landscape Development
NASA Astrophysics Data System (ADS)
Knies, J.; van der Lelij, R.; Faust, J.; Scheiber, T.; Broenner, M.; Fredin, O.; Mueller, A.; Viola, G.
2014-12-01
Saprolite remnants onshore Scandinavia have been investigated only sporadically. The nature and age of the deeply weathered material thus remains only loosely constrained. The type and degree of weathering of in situ weathered soils are indicative of the environmental conditions during their formation. When external forcing changes, properties related to previous weathering conditions are usually preserved, for example in clay mineral assemblages. By constraining the age and rate of weathering onshore and by isotopically dating selected faults determined to be intimately linked to weathered basement blocks, the influence of climate development, brittle deformation and landscape processes on weathering can be quantified. The "BASE" project aims to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution affecting the basement onshore and offshore Norway. We will study the formation of saprolite in pre-Quaternary times, the influence of deep weathering on landscape development and establish a conceptual structural template of the evolution of the brittle deformational features that are exposed on onshore (weathered) basement blocks. Moreover, saprolitic material may have been eroded and preserved along the Norwegian continental margin during Cenozoic times. By studying both the onshore remnants and offshore erosional products deposited during periods of extreme changes of climate and tectonic boundary conditions (e..g Miocene-Pliocene), new inferences on the timing and controlling mechanisms of denudation, and on the relevance of deep weathering on Late Cenozoic global cooling can be drawn.
Scale-dependent erosional patterns in steady-state and transient-state landscapes
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L.; Foufoula-Georgiou, Efi
2017-01-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes—landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes. PMID:28959728
NASA Astrophysics Data System (ADS)
Chilton, K.; Spotila, J. A.
2017-12-01
Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.
GEOMORPHOLOGY. Experimental evidence for hillslope control of landscape scale.
Sweeney, K E; Roering, J J; Ellis, C
2015-07-03
Landscape evolution theory suggests that climate sets the scale of landscape dissection by modulating the competition between diffusive processes that sculpt convex hillslopes and advective processes that carve concave valleys. However, the link between the relative dominance of hillslope and valley transport processes and landscape scale is difficult to demonstrate in natural landscapes due to the episodic nature of erosion. Here, we report results from laboratory experiments combining diffusive and advective processes in an eroding landscape. We demonstrate that rainsplash-driven disturbances in our experiments are a robust proxy for hillslope transport, such that increasing hillslope transport efficiency decreases drainage density. Our experimental results demonstrate how the coupling of climate-driven hillslope- and valley-forming processes, such as bioturbation and runoff, dictates the scale of eroding landscapes. Copyright © 2015, American Association for the Advancement of Science.
Cerebrospinal otorrhoea--a temporal bone report.
Walby, A P
1988-05-01
Spontaneous cerebrospinal otorrhoea is a rare complication of a cholesteatoma. The histological findings in a temporal bone from such a case are reported. The cholesteatoma had eroded deeply through the vestibule into the internal auditory meatus.
Outbursts and Gradualism: Megaflood erosion consistent with long-term landscape evolution
NASA Astrophysics Data System (ADS)
Garcia-Castellanos, Daniel; O'Connor, Jim
2017-04-01
Existing models for the development of topography and relief over geological timescales are fundamentally based on semi-empirical laws of the erosion and sediment transport performed by rivers. The prediction power of these laws is hindered by limitations in measuring river incision and by the scant knowledge of the past hydrological conditions, specifically average water flow and its variability. Consequently, models adopt 'gradualistic' (time-averaged) assumptions and the erodability values derived from modelling long-term erosion rates in rivers remain ambiguously tied not only to the lithology and nature of the bedrock but also to uncertainties in the quantification of past climate. This prevents the use of those erodabilities to predict the landscape evolution in different scenarios. Here, we apply the fundamentals of river erosion models to outburst floods triggered by overtopping lakes, for which the hydrograph is intrinsically known from the geomorphological record or from direct measures. We obtain the outlet erodability from the peak water discharge and lake area observed in 86 floods that span over 16 orders of magnitude in water volume. The obtained erodability-lithology correlation is consistent with that seen in 22 previous long-term river incision quantifications, showing that outburst floods can be used to estimate erodability values that remain valid for a wide range of hydrological regimes and for erosion timescales spanning from hours-long outburst floods to million-year-scale landscape evolution. The results constrain the conditions leading to the runaway erosion responsible for outburst floods triggered by overtopping lakes. They also call for the explicit incorporation of climate episodicity to the landscape evolution models. [Funded by CGL2014-59516].
Kamenetsk—A new impact structure in the Ukrainian Shield
NASA Astrophysics Data System (ADS)
Gurov, Eugene; Nikolaenko, Nikolay; Shevchuk, Helena; Yamnichenko, Anatoly
2017-12-01
The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0-1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.
Backcountry impact management: Lessons from research
David N. Cole
1994-01-01
Recreational use of backcountry inevitably impacts environments intended for preservation. Where use is light or where management programs provide adequate protection, impacts need not be unacceptably severe. However, where use is heavy and protective actions are inadequate, impacts may be severe and widespread. Trails may become deeply eroded trenches or mudholes and...
Soil water retention within an eroded and restored landscape
USDA-ARS?s Scientific Manuscript database
Significant changes in soil properties and productivity have occurred as a result of intensive row crop production. Many of these changes are related to soil loss from water, wind, and tillage erosion. Soil is lost from convex and steeper landscape positions and deposited in concave lower landscape ...
Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico
Summer, Rebecca M.
1981-01-01
Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)
A World of Difference: Teaching Tolerance through Photographs in Elementary School
ERIC Educational Resources Information Center
Lintner, Timothy
2005-01-01
American society is deeply rooted in the belief that differences of all types--religious, cultural, physical, political--should be promoted in ways that serve not to divide or erode but to unify and strengthen. The premise for that American ideal is the promise and potential of difference. Although difference is often embraced, it can also be…
USDA-ARS?s Scientific Manuscript database
An estimated 100 Mt of dust is eroded by wind from the Australian land surface each year. Wind erosion may be widespread across the arid and semi-arid rangelands, with impacts on soil nutrients, carbon and ecosystem services, human health, and climate. The susceptibility of landscapes to wind erosio...
Disaggregating soil erosion processes within an evolving experimental landscape
USDA-ARS?s Scientific Manuscript database
Soil-mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This st...
DETAILED SOIL SURVEYS AND DISTRIBUTED BMPS FOR STORMWATER QUANTITY CONTROL. MAKING THE CONNECTION
Best management practices (BMPs) that operate on the basis of infiltration can be used at the parcel-level to reduce the volume of stormwater runoff that would otherwise erode landscapes and disrupt stream ecosystems. Contemporary urban and ex-urban landscapes have a substantiall...
Ordering Interfluves: a Simple Proposal for Understanding Critical Zone Evolution and Function
NASA Astrophysics Data System (ADS)
Brecheisen, Z. S.; Richter, D., Jr.; Moon, S.; Halpin, P. N.
2015-12-01
A geomorphic interfluve ordering system, a reciprocal to the Hortonian-Strahler stream network order, is envisioned at the Calhoun Critical Zone Observatory (CCZO) in the South Carolina Piedmont. In this system the narrowest and most highly dissected interfluves (gentle ridges and hilltops) are 1st order and increase in rank dendritically through interfluve branching and broadening. Interfluve order attends to the structure, function, and management of residual porous-solid systems in the transport of water, solutes, and eroded solids in our deeply weathered (>30m soil/saprolite) critical zone. Recently generated geospatial data regarding the interactions of geomorphology, human land use, and forest ecology further strengthen the utility of this system. These upland networks and corresponding "land-sheds" have potential in linking recent work in the fields of geophysics and geomorphology regarding bedrock weathering front dynamics. Patterns of bedrock weathering depth, landcover & land-use change, and soil erosion are considered as they correspond to interfluve order. With LiDAR mapping and the burgeoning development and utilization of geophysical techniques and models enabling new quantitative research of critical zone landscape structure and function, many physiographic regions could benefit from a system that delineates and orders interfluve networks.
Crustal strength anisotropy influences landscape form and longevity
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.
2013-12-01
Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel tortuosity together provide critical information on the orientation and spatial distribution of fault damage and the relevant tectonic regime. Our landscape evolution models express similar mechanisms and produce drainage network patterns analogous to those seen in the Southern Alps of New Zealand and the Himalayan Eastern Syntaxis, both centers of active lithospheric deformation.
2003-02-07
In this NASA Mars Odyssey image of eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today. http://photojournal.jpl.nasa.gov/catalog/PIA04400
NASA Technical Reports Server (NTRS)
1985-01-01
These unique weathered volcanic intrusions near Wadi Habawnah, Saudi Arabia (18.0N, 44.0E) are located near Najran, north of the Yemen border. This harsh and rugged desert landscape has been heavily wind eroded and, to a lesser extent, water eroded, as evidenced by the dendritic patterns in this region where rainfall is a seldom occurance. Only a dwindling number of nomadic tribes inhabit this harsh region of few resources.
NASA Astrophysics Data System (ADS)
Moore, Leah; Nicholson, Allan; Cook, Wayne; Sweeney, Margaret
2014-05-01
In the Greater Launceston Area (GLA) in northern Tasmania, Australia, there is a widespread urban salinity problem with severe impacts on urban/peri-urban infrastructure in localised areas. Salinity patterns in the landscape (elevated flux to waterways; salt efflorescence at the land surface) could be related to: the underlying rock type, the thickness of regolith materials and hence the volume of the salt store, the landforms present and the amount of water passing over and through the landscape. In northern Tasmania secondary mineralogy on dolerite typically includes formation of Fe/Ca smectite phases (e.g. nontronite, saponite) and Fe-Ti oxides/sesquioxides (e.g. hematite, goethite) with some primary phases (e.g. Ca-plagioclase feldspar, augite) weathering through to a suite dominated by kaolinite clay and Fe-Ti oxides/sesquioxides. Deeply weathered profiles in the GLA have weathered to the kaolintite-clay dominant mineralogy and in places there are gibbsite/beidellite/hematite/goethite bauxites developed. Most existing salinity mapping emphasises salt manifestation over paleo-estuarine sediments of the Paleogene Tamar-Esk River system, so incorporation of deeply weathered Jurassic dolerite materials into the salt budget considerably augments the estimated potential hazard. Rapid stream surveys provide a snapshot of stream electrical conductivity (EC) over the study area at regular intervals allowing a broad evaluation of salt flux patterns in surfaces waters. Higher EC readings were obtained from selected streams draining: deeply weathered dolerite profiles (0.37 1.86 dS/m) and deeply weathered Paleogene paleo-estuarine sediments (0.49 to 1.16 dS/m). Lower values were measured on up-faulted dolerite blocks (<0.10 dS/m); moderately weathered, high relief dolerite (<0.03 dS/m), and in incised streams flowing over a rocky dolerite substrate (<0.03 dS/m). The patterns of stream EC reflect the nature of the regolith materials the streams drain, and match mapped patterns for distribution of deeply weathered Jurassic dolerite and moderately to deeply weathered bedded paleo-estuarine sediments of the Paleogene Tamar-Esk river system, some Quaternary terrace deposits along the Tamar and Esk Rivers; and some Holocene estuarine sediments. Recent geomorphic mapping has enabled development of a more comprehensive and consistent landscape evolution model that builds on existing knowledge. This model describes the influence of a progressively incising Tamar-Esk river system in response to episodic lowering of the local base level, with multiple episodes of valley widening as the river system stabilised after incision. Successive lowering events dissected earlier landforms, but locally remnant surfaces are preserved that represent former fluvial plain and terrace features. These processes were partially controlled by the structural configuration and contrasting resistance of the underlying lithologies, influencing the planform geometries of the rivers, and consequently the potential to preserve paleo-fluvial features. Because the Tamar River is an estuarine system, some of the lowermost preserved surfaces are likely to reflect marine processes (e.g. 5-7m; 10-12m ASL). The geomorphic mapping was conducted independently of the hydrogeological landscape (HGL) characterisation in the GLA, but there is strong correlation between the areas identified as having elevated salinity hazard (HGL) and newly mapped remnant surfaces in this landscape. This work complements HGL research and supports development of an increasingly rigorous evidence-based framework for GLA salinity hazard management.
Sediment transport dynamics in steep, tropical volcanic catchments
NASA Astrophysics Data System (ADS)
Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie
2017-04-01
How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (< years) over which they transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre-event rainfall intensity thresholds takes only about two to three months. We conclude that the study catchment geomorphologically represents a low-resistance, but highly resilient catchment that quickly recovers after the impact of extreme rainfall-runoff events. The latter was indicated by a different pre and post-event hysteretic pattern of sediment-runoff dynamics and associated different material properties. The combined use of high-temporal resolution monitoring with spatially distributed surveys provided new insights into the fluvial geomorphology of steep, volcanic headwater catchments with potential to establish more complete sediment budgets and time-scales of land-forming processes of such highly dynamic environments in the humid tropics.
Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition
NASA Astrophysics Data System (ADS)
Liu, Shuguang; Bliss, Norman; Sundquist, Eric; Huntington, Thomas G.
2003-06-01
Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystems and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1), intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.
Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition
Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.
2003-01-01
Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.
River self-organisation inhibits discharge control on waterfall migration.
Baynes, Edwin R C; Lague, Dimitri; Attal, Mikaël; Gangloff, Aurélien; Kirstein, Linda A; Dugmore, Andrew J
2018-02-05
The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.
E. N. Anderson: Caring for place: ecology, ideology, and emotion in traditional landscape management
Susan Stevens Hummel
2016-01-01
Anderson is deeply concerned with inadequate responses to ongoing global environmental degradation. Accordingly, he offers cases of traditional societies that survived over long time periods without destroying their environments. His focus is on ways humans think about plants, animals, and landscapes because of his conviction that stories about them are what make us...
Retrospective assessment of dryland soil stability in relation to grazing and climate change.
Washington-Allen, Robert A; West, Neil E; Ramsey, R Douglas; Phillips, Debra H; Shugart, Herman H
2010-01-01
Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the "The Great North American Drought of 1988". Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.
Northern Arabia Etched Terrain
2002-06-17
Many places on Mars, such as in this image from NASA Mars Odyssey spacecraft of a crater superposed on the floor of a larger crater, display scabby, eroded landscapes that commonly are referred to as etched terrain.
The near steady state landscape of western Namibia
NASA Astrophysics Data System (ADS)
Matmon, A.; Enzel, Y.; Vainer, S.; Grodek, T.; Mushkin, A.; Aster Team
2018-07-01
Quantitative geomorphic field studies and modeling efforts have focused on the margins of southwestern Africa as an example for landscape evolution in prolonged aridity conditions and tectonic quiescence of passive margins. These efforts concluded that this region is a prime example of a steady state landscape, in which relief changes extremely slowly. Using cosmogenic isotopes, these studies suggested overall landscape exhumation rates of 5-10 m Ma-1 over the past 105-106 yrs. Slightly slower rates on flat-lying exposed bedrock surfaces and faster exhumation rates along the Namibian Great Escarpment as well as on steep slopes of granitic inselbergs, such as the Gross Spitzkoppe are also documented. Here we explore the state of "steady state" in central Namibia. Concentrations of 10Be were measured in bedrock and sediment samples collected throughout the watershed of the Ugab River ( 29,000 km2), which drains the highlands of central Namibia and flows to the Atlantic Ocean. Samples were collected from the main stem of the ephemeral Ugab River, from the slopes and streams draining the Brandberg, which is the largest inselberg in the Namib, and from smaller inselbergs around it. We also sampled several other formerly large, but currently subdued, inselbergs such as the Messum Crater. 10Be concentrations in sediment transported along the axial Ugab River indicate that its drainage basin erodes uniformly at 5-6 m Ma-1 and sediment transport from its headwaters source to the ocean is rapid. 10Be concentrations measured in sediment transported in ephemeral streams draining the Brandberg indicate its erosion at 4 m Ma-1. However, slower rates of 1-3 m Ma-1 were measured for bedrock samples collected from (a) flat lying bedrock surfaces within the Brandberg, (b) top of small tors that rise only a few meters above their surroundings, and (c) exhumed and denuded large magmatic complexes such as the Messum Crater. Furthermore, we found that bedrock buried under grus in the hyperarid zone of Namib (<100 mm yr-1) erodes at similar rates as the exposed bedrock. This difference between the rate of bedrock erosion and the overall average erosion rate of drainage basins has been previously attributed to the contribution of sediment weathered from underneath transported sediment and soil on the pediments. Our results do not fully support this explanation. Results from this and earlier studies point to two possible sources of relatively low dosed (i.e. more rapidly eroding) sediment: (a) the steep slopes and cliffs of the large inselbergs and the Great Escarpment, and (b) rock buried under soil in the upper, semi-arid, parts of the drainage systems, where soil and vegetation can promote weathering of plagioclase and biotite and the disintegration of granitic bedrock. We therefore suggest that the "steady state" landscape along the Namibian passive margin be viewed as follows: The entire landscape erodes slowly, generally at 5 m Ma-1 and this maintains the view of steady state. Small differences in erosion rates between the landscape elements result in very slow and only small changes in relief over time scales ≥106 yrs. We find that the large inselbergs and the Great Escarpment erode primarily by retreat of steep slopes and cliffs within the drainage basins while preserving relief over considerable timescales. In the wetter upper reaches of the Namibian drainage systems, erosion of buried rock is most likely increased by the vegetation-covered soil.
Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm
NASA Astrophysics Data System (ADS)
Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.
2016-04-01
Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in emissions compared to bulk soil. Overall, this confirms that terrestrial SOC redistribution and the mineralization play an important role in erosion induced C cycling, with major uncertainties to be addressed.
Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; Schenk, P. M.
2015-01-01
Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.
Alluvial Fans in Mojave Crater
2015-05-20
This image from NASA Mars Reconnaissance Orbiter shows a landscape that is pervasively eroded, right up to the tops of the ridges, with channels extending down into depositional fans much like alluvial fans in the Mojave Desert.
2003-03-22
In this image from NASA Mars Odyssey, eroded mesas and secondary craters dot the landscape in an area of Cydonia Mensae. The single oval-shaped crater displays a butterfly ejecta pattern, indicating that the crater formed from a low-angle impact.
Fractality of eroded coastlines of correlated landscapes.
Morais, P A; Oliveira, E A; Araújo, N A M; Herrmann, H J; Andrade, J S
2011-07-01
Using numerical simulations of a simple sea-coast mechanical erosion model, we investigate the effect of spatial long-range correlations in the lithology of coastal landscapes on the fractal behavior of the corresponding coastlines. In the model, the resistance of a coast section to erosion depends on the local lithology configuration as well as on the number of neighboring sea sides. For weak sea forces, the sea is trapped by the coastline and the eroding process stops after some time. For strong sea forces erosion is perpetual. The transition between these two regimes takes place at a critical sea force, characterized by a fractal coastline front. For uncorrelated landscapes, we obtain, at the critical value, a fractal dimension D=1.33, which is consistent with the dimension of the accessible external perimeter of the spanning cluster in two-dimensional percolation. For sea forces above the critical value, our results indicate that the coastline is self-affine and belongs to the Kardar-Parisi-Zhang universality class. In the case of landscapes generated with power-law spatial long-range correlations, the coastline fractal dimension changes continuously with the Hurst exponent H, decreasing from D=1.34 to 1.04, for H=0 and 1, respectively. This nonuniversal behavior is compatible with the multitude of fractal dimensions found for real coastlines.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.
2017-12-01
Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.
Soils as sediment: does aggregation skew slope scale SOC balances?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Fister, Wolfgang; Kuhn, Nikolaus
2014-05-01
The net effect of soil erosion as a source or sink of CO2 in global carbon cycling has been the subject of a heated debate. On one hand, erosion exposes the previously encapsulated soil organic carbon (SOC), which may accelerate the mineralization of eroded SOC. On the other hand, deposition limits the decomposition of SOC upon burial, while incorporation of biomass at eroding sites replaces the lost SOC. So far, effects of erosion on CO2 emissions have largely been assessed by comparing SOC stocks at eroding and depositional sites. The underlying assumption for this approach is a non-selective transport of eroded SOC across a landscape. However, several recent publications showed both an at least temporary on-site enrichment of SOC in sediment as well as a preferential deposition of sediment particles with SOC concentrations that differed from the soil SOC. As a consequence, balances between eroding and depositional sites may over- or underestimate mineralization of eroded SOC during transport. Two Luvisols, from the villages of Möhlin and Movelier in northwest Switzerland, were used in this study. They have different mineral grain size distribution, organic carbon concentration and aggregate stability. Based on the concept of Equivalent Quartz Size (EQS), the eroded sediments were fractionated by a settling tube apparatus into six different size classes, according to their settling velocities and likely transport distances. According to the model developed by Starr et al., 2000, the likely transport distances of six EQS classes were grouped into three likely fates: deposited across landscapes, possibly transferred into rivers, and likely transferred into rivers. Respiration rates of the fractionated sediments were measured by gas chromatograph for 50 days. Our results show that 1) due to aggregation, 60% of the Möhlin eroded fractions and 82% of the Movelier fractions would be re-deposited in the terrestrial system, which strongly contrasts with their grain size distribution; 2) 63% of eroded SOC for the Möhlin soil and 83% for the Movelier soil would be re-deposited in the terrestrial system rather than transferred into the aquatic system. This is much greater than the high concentration of SOC in grain size fraction <32 µm would suggest; 3) the SOC re-deposited in the terrestrial system is more likely to be mineralized than the SOC in fine particles which would be transferred into the aquatic system. Our observations indicate that 1) aggregation reduces the likely transport distances of eroded SOC, and thus decreases the likelihood of eroded SOC to be transferred from eroding hill-slopes to the aquatic system; 2) the re-deposited SOC in the terrestrial system is more likely to be mineralized than the SOC in fine particles that could be transferred into the aquatic system. These findings highlight a potentially higher contribution of erosion to atmospheric CO2 than anticipated by estimating source for sink transfer without considering the effects of aggregation.
Landscape evolution on Mars - A model of aeolian denudation in Gale Crater
NASA Astrophysics Data System (ADS)
Day, M. D.; Kocurek, G.; Grotzinger, J. P.
2015-12-01
Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.
Taylor, Emily M.; Sweetkind, Donald S.; Havens, Jeremy C.
2017-05-19
IntroductionArroyo Seco is a river that flows eastward out of the Santa Lucia Range in Monterey County, California. The Santa Lucia Range is considered part of the central California Coast Range. Arroyo Seco flows out of the Santa Lucia Range into the Salinas River valley, near the town of Greenfield, where it joins the Salinas River. The Salinas River flows north into Monterey Bay about 40 miles from where it merges with Arroyo Seco. In the mountain range, Arroyo Seco has cut or eroded a broad and deep valley. This valley preserves a geologic story in the landscape that is influenced by both fault-controlled mountain building (tectonics) and sea level fluctuations (regional climate).Broad flat surfaces called river terraces, once eroded by Arroyo Seco, can be observed along the modern drainage. In the valley, terraces are also preserved like climbing stairs up to 1,800 feet above Arroyo Seco today. These terraces mark where Arroyo Seco once flowed.The terraces were formed by the river because no matter how high they are, the terraces are covered by gravel deposits exactly like those that can be observed in the river today. The Santa Lucia Range, Arroyo Seco, and the Salinas River valley must have looked very different when the highest and oldest terraces were forming. The Santa Lucia Range may have been lower, the Arroyo Seco may have been steeper and wider, and the Salinas River valley may have been much smaller.Arroyo Seco, like all rivers, is always changing. Some-times rivers flow very straight, and sometimes they are curvy. Sometimes rivers are cutting down or eroding the landscape, and sometimes they are not eroding but depositing material. Sometimes rivers are neither eroding nor transporting material. The influences that change the behavior of Arroyo Seco are mountain uplift caused by fault moment and sea level changes driven by regional climate change. When a stream is affected by one or both of these influences, the stream accommodates the change by eroding, depositing, and (or) changing its shape.In the vicinity of Arroyo Seco, the geologically young faulting history is relatively well understood. Geologists have some sense of the most recent faulting event and of the faulting in the recent geologic past. The timing of regional climate changes is also well accepted. In this area, warm climate cycles tend to cause the sea level to rise, and cool climate cycles tend to cause the sea level to fall. If we understand the way the terraces form and their ages in Arroyo Seco, we can draw conclusions about whether faulting and (or) climate contributed to their formation.This publication serves as a descriptive companion to the formal geologic map of Arroyo Seco (Taylor and Sweetkind, 2014) and is intended for use by nonscientists and students. Included is a discussion of the processes that controlled the evolution of the drainage and the formation of the terraces in Arroyo Seco. The reader is guided to well-exposed landscape features in an easily accessible environment that will help nonscientists gain an understanding of how features on a geologic map are interpreted in terms of earth processes.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 18 June 2002) Among the many varied landscapes on Mars the term chaos is applied to those places that have a jumbled, blocky appearance. Most of the better known chaotic terrain occurs in the northern hemisphere but there are other occurrences in the southern hemisphere, three of which are centered on 180 degrees west longitude. Ariadnes Colles, Atlantis, and Gorgonum Chaos all share similar features: relatively bright, irregularly shaped knobs and mesas that rise above a dark, sand-covered, hummocky floor. Close inspection of this THEMIS image shows that the darker material tends to lap up to the base of the knobs and stops where the slopes are steep. On some of the lowest knobs, the dark material appears to overtop them. The knobs themselves are highly eroded, many having a pitted appearance. Images from the camera on Mars Global Surveyor clearly show that the dark material is sand, based on its mantling appearance and the presence of dunes. It looks as though the material that composes the knobs was probably a continuous layer that was subsequently heavily eroded. While it is likely that the dark sand is responsible for some of the erosion it is also possible that the this landscape was eroded by some other process and the sand was emplaced at a later time.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey
2012-01-01
Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.
Estimate Soil Erodibility Factors Distribution for Maioli Block
NASA Astrophysics Data System (ADS)
Lee, Wen-Ying
2014-05-01
The natural conditions in Taiwan are poor. Because of the steep slopes, rushing river and fragile geology, soil erosion turn into a serious problem. Not only undermine the sloping landscape, but also created sediment disaster like that reservoir sedimentation, river obstruction…etc. Therefore, predict and control the amount of soil erosion has become an important research topic. Soil erodibility factor (K) is a quantitative index of distinguish the ability of soil to resist the erosion separation and handling. Taiwan soil erodibility factors have been calculated 280 soil samples' erodibility factors by Wann and Huang (1989) use the Wischmeier and Smith nomorgraph. 221 samples were collected at the Maioli block in Miaoli. The coordinates of every sample point and the land use situations were recorded. The physical properties were analyzed for each sample. Three estimation methods, consist of Kriging, Inverse Distance Weighted (IDW) and Spline, were applied to estimate soil erodibility factors distribution for Maioli block by using 181 points data, and the remaining 40 points for the validation. Then, the SPSS regression analysis was used to comparison of the accuracy of the training data and validation data by three different methods. Then, the best method can be determined. In the future, we can used this method to predict the soil erodibility factors in other areas.
Watershed-scale effects of isolated wetlands on downstream hydrology: modeling approaches
Geographically isolated wetlands (GIWs) are depressional features on an eroding landscape that are entirely surrounded by uplands. These wetlands are purported to provide an array of ecological and watershed values and functions, including increasing biodiversity, modifying water...
Bioindicator beetles and plants in desertified and eroded lands in Turkey
USDA-ARS?s Scientific Manuscript database
Xerophilous vegetation with characteristic insect assemblages is described in main agricultural regions and native landscapes of Turkey. Long term, intensive investigations documented vast biotic degradation of soil and vegetation (commonly referred to as desertification) by an overgrazing, construc...
NASA Astrophysics Data System (ADS)
Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael
2017-04-01
The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.
NASA Astrophysics Data System (ADS)
Kwang, Jeffrey S.; Parker, Gary
2017-12-01
Landscape evolution models often utilize the stream power incision model to simulate river incision: E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents satisfies m / n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only on small scales) is neglected, the choice m / n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.
This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri
Bacon, Charles R.; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Slack, John F.
2014-01-01
The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ∼50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from <1 km2 to ∼100 km2. Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2.7 Ma lowering of base level of the Yukon River associated with advance of the Cordilleran ice sheet.
Enhancing wind erosion monitoring and assessment for US rangelands
USDA-ARS?s Scientific Manuscript database
Wind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production and air quality. Despite its significance, little is known about which landscapes are eroding, by how much, and when. T...
Topsoil thickness influences nitrogen management of switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is an attractive bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil thickness above the claypan or depth to claypan (DTC) can vary widely within fields and little information exists on its im...
NASA Astrophysics Data System (ADS)
Hren, M. T.; Ouimet, W. B.
2017-12-01
Paleoelevation data is critical to understanding the links and feedbacks between rock-uplift and erosion yet few approaches have proved successful in quantifying changes in paleoelevation rapidly eroding, tropical landscapes. In addition, quantitative methods of reconstructing paleoelevation from marine sedimentary archives are lacking. Here we present a new approach to quantifying changes in paleoelevation that is based on the geochemical signature of organic matter exported via the main river networks of an orogen. This new approach builds on fundamentals of stable isotope paleoaltimetry and is akin to the theory behind cosmogenic isotope records of catchment-integrated erosion. Specifically, we utilize predictable patterns of precipitation and organic molecular biomarker stable isotopes to relate the hypsometry of organic matter in a catchment to the geochemical signal in exported organic carbon. We present data from two sites (the cold temperate White Mountains of New Hampshire, USA and the tropical, rapidly eroding landscape of Taiwan) to demonstrate this relationship between exported carbon geochemistry and catchment hypsometry and the validity of this approach.
Chemical transfers along slowly eroding catenas developed on granitic cratons in southern Africa
Khomo, Lesego; Bern, Carleton R.; Hartshorn, Anthony S.; Rogers, Kevin H.; Chadwick, Oliver A.
2013-01-01
A catena is a series of distinct but co-evolving soils arrayed along a slope. On low-slope, slowly eroding catenas the redistribution of mass occurs predominantly as plasma, the dissolved and suspended constituents in soil water. We applied mass balance methods to track how redistribution via plasma contributed to physical and geochemical differentiation of nine slowly eroding (~ 5 mm ky− 1) granitic catenas. The catenas were arrayed in a 3 × 3 climate by relief matrix and located in Kruger National Park, South Africa. Most of the catenas contained at least one illuviated soil profile that had undergone more volumetric expansion and less mass loss, and these soils were located in the lower halves of the slopes. By comparison, the majority of slope positions were eluviated. Soils from the wetter climates (550 and 730 mm precipitation yr− 1) generally had undergone greater collapse and lost more mass, while soils in the drier climate (470 mm yr− 1) had undergone expansion and lost less mass. Effects of differences in catena relief were less clear. Within each climate zone, soil horizon mass loss and strain were correlated, as were losses of most major elements, illustrating the predominant influence of primary mineral weathering. Nevertheless, mass loss and volumetric collapse did not become extreme because of the skeleton of resistant primary mineral grains inherited from the granite. Colloidal clay redistribution, as traced by the ratio of Ti to Zr in soil, suggested clay losses via suspension from catena eluvial zones. Thus illuviation of colloidal clays into downslope soils may be crucial to catena development by restricting subsurface flow there. Our analysis provides quantitative support for the conceptual understanding of catenas in cratonic landscapes and provides an endmember reference point in understanding the development of slowly eroding soil landscapes.
Pore water effects on soil erodibility and its implication in ephemeral gully erosion modeling
USDA-ARS?s Scientific Manuscript database
Ephemeral gully erosion is the main source of sediment from the agricultural landscape, unfortunately, it has been overlooked in traditional soil erosion assessment. Field observations, and subsequent support from controlled lab experiments, have shown the linkage between transient soil hydraulic co...
Topsoil depth influences switchgrass nitrogen management on claypan soils
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is an attractive forage or bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil depth to the claypan can vary widely within fields and little information exists on the impacts of the topsoil de...
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Tucker, Gregory E.
2018-01-01
Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.
Ecologically-based management improves soil health in an organic orchard production system
USDA-ARS?s Scientific Manuscript database
Prairie Birthday Farm (PBF), a diversified, organic enterprise on the loess hill landscape in northwestern Missouri, was previously managed as a conventional corn-soybean production system. The soil (Sharpsburg silt loam; fine, montmorillonitic, mesic Typic Argiudolls) is mapped as an ‘eroded soil p...
Generation and Scaling of the African Landscape.
NASA Astrophysics Data System (ADS)
O'Malley, C.; White, N.; Roberts, G. G.
2017-12-01
An inventory of > 1500 longitudinal river profiles across Africa contains correlatable signals that can be inverted to determine a Neogene regional uplift history. This history can be tested using a range of geologic and geophysical observations. However, this approach makes simplifying assumptions about landscape erodibility through time and space (i.e. lithologic contrasts, precipitation rates, drainage stability). Here, we investigate the validity of these assumptions by carrying out a series of naturalistic landscape simulations using the Badlands and Landlab models. First, forward simulations were run with constant erodibility, using an uplift rate history determined by inverse modeling. The resultant drainage network and pattern of offshore sedimentary deposition reproduce the large-scale characteristics of the African landscape surprisingly well. This result implies that regional tectonic forcing plays a significant role in configuring drainage patterns. Secondly, the effects of varying precipitation through time and space are investigated. Since solutions to the stream power law are integrative, precipitation changes on timescales of less than 5—10 Ma have negligible influence on the resultant landscape. Finally, power spectral analyses of major African rivers that traverse significantly different climatic zones, lithologic boundaries, and biotic distributions reveal consistent scaling laws. At wavelengths of ≳ 102 km, spectra have slopes of -2, indicative of red (i.e. Brownian) noise. At wavelengths of ≲ 102 km, there is a cross-over transition to slopes of -1, consistent with pink noise. Onset of this transition suggests that spatially correlated noise generated by instabilities in water flow and by lithologic changes becomes prevalent at shorter wavelengths. Our analysis suggests that advective models of fluvial erosion are driven by a combination of external forcing and stochastic noise.
Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen
NASA Astrophysics Data System (ADS)
Ganade de Araujo, Carlos E.; Rubatto, Daniela; Hermann, Joerg; Cordani, Umberto G.; Caby, Renaud; Basei, Miguel A. S.
2014-10-01
The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.
NASA Astrophysics Data System (ADS)
Majorowicz, Jacek; Osadetz, Kirk
2008-04-01
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ˜30 mK/m and ˜90 mW/m2 compared to ˜32 mK/m and 70 -80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ˜20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ˜7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north-south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ˜40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ˜10-20 mW/m2 since ˜40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ˜36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.
Native American Women: Living with Landscape.
ERIC Educational Resources Information Center
Bales, Rebecca
1997-01-01
Discusses the role of Native American women in the spiritual and cultural life of American Indians. Native American spirituality is deeply connected to the land through daily use, ritual, and respect for sacred space. Often Native American women act as conduits and keepers of this knowledge. (MJP)
Erosion and Channel Incision Analysis with High-Resolution Lidar
NASA Astrophysics Data System (ADS)
Potapenko, J.; Bookhagen, B.
2013-12-01
High-resolution LiDAR (LIght Detection And Ranging) provides a new generation of sub-meter topographic data that is still to be fully exploited by the Earth science communities. We make use of multi-temporal airborne and terrestrial lidar scans in the south-central California and Santa Barbara area. Specifically, we have investigated the Mission Canyon and Channel Islands regions from 2009-2011 to study changes in erosion and channel incision on the landscape. In addition to gridding the lidar data into digital elevation models (DEMs), we also make use of raw lidar point clouds and triangulated irregular networks (TINs) for detailed analysis of heterogeneously spaced topographic data. Using recent advancements in lidar point cloud processing from information technology disciplines, we have employed novel lidar point cloud processing and feature detection algorithms to automate the detection of deeply incised channels and gullies, vegetation, and other derived metrics (e.g. estimates of eroded volume). Our analysis compares topographically-derived erosion volumes to field-derived cosmogenic radionuclide age and in-situ sediment-flux measurements. First results indicate that gully erosion accounts for up to 60% of the sediment volume removed from the Mission Canyon region. Furthermore, we observe that gully erosion and upstream arroyo propagation accelerated after fires, especially in regions where vegetation was heavily burned. The use of high-resolution lidar point cloud data for topographic analysis is still a novel method that needs more precedent and we hope to provide a cogent example of this approach with our research.
Fine Sediment Erosion and Transport to the Near Coastal Zone from Watersheds of St. Thomas, USVI
NASA Astrophysics Data System (ADS)
Benoit, G.; Xuan, Z.
2014-12-01
The US Virgin Islands' landscape is characterized by steep slopes and short distances from ridge peaks to fringing reefs. Fine-grained sediments eroded from predominantly thin soils may be transported rapidly by streams (locally called guts) to the sea and cause stress to corals. We have studied erosion and transport processes on St Thomas by three methods: (1) continuous monitoring of suspended matter in one of the island's few perennial streams, Dorothea Gut, (2) measurement of 137Cs inventories in soil cores taken across the landscape, and (3) evaluation of sediment captured in most of the island's coastal ponds, through which a significant portion of runoff must pass. We find that, for areas that have not been recently disturbed, watersheds retain fine sediments surprisingly well. On the other hand, small patches of land, like building lots that have been recently disturbed and poorly managed, can produce disproportionate amounts of fine sediment. These results differ somewhat from nearby St John, USVI, where unpaved roads are the major source of eroded sediments.
NASA Astrophysics Data System (ADS)
Stallard, R. F.
2013-12-01
Humid tropical regions are particularly good settings to examine the terrestrial carbon and nutrient cycles because the high average temperatures combined with abundant water and frequent intense storms promote rapid biological activity, weathering, and physical erosion. In studying the human-modified carbon or nutrient cycles on particular landscapes, assessments of the impact of human activities must be compared to prior states of those landscapes with regard to (1) biogeochemical reservoir sizes on the landscape, (2) rates of transport through and out of the landscape, and (3) ultimate fate of the material exported. Ongoing studies in small catchments and larger adjacent watersheds in Puerto Rico (PR) and Panama (PTY) assess which biological, hydrologic, and geomorphic mechanisms have been affected by human activities. The catchments are on older volcanic rocks (6, 2 in PR), granitic rocks (3, all in PR), and one in PTY on limey sediments. Three of the volcanic catchments and one granitic catchment are agricultural. In all these landscapes, landslides, rather than surficial erosion, appear to be the largest regional sediment source, and the biggest landslide-producing storms occur once every few decades. Both landslide-related and surficial erosion are greater in agricultural catchments compared to forested catchments on the same lithology, and granitic landscapes are eroding far more rapidly than volcanic landscapes. Physical erosion on the granitic landscapes appears to be greatly in excess of reasonable equilibrium rates based on mass balances and estimates based on Be-10. The particulate-organic-carbon (POC) yields exceed combined dissolved organic (DOC) and inorganic (DIC) carbon yields in the granitic watersheds, but they are considerably less than the DOC+DIC yields in the volcanic watersheds. Annual yields of DIC and DOC relate linearly to annual runoff, whereas POC has a steep exponential-style increase with increasing runoff, indicating a strong sensitivity to climate change, compared to a linear response. POC yields are tied to sediment yields that are, in turn, far in excess of equilibrium yields. This excess implies that much of the present carbon transport in eastern PR is the result of erosion in excess of equilibrium. In essence, soils that have developed for thousands of years are eroding more rapidly than they are now forming. Carbon accumulation in soil is rapid, and in a landslide scar, which can endure thousands of years, half of the carbon is regenerated in 80 years and all of it in about 200 years. Thus, eroding carbon is being replaced with carbon from the atmosphere. In PR, sediments are delivered to reservoirs or the ocean; in PTY deposition is in reservoirs. These reservoirs are strongly coupled sinks for carbon and nutrients. After landslides, huge quantities of sediment are deposited along with considerable wood and other organic debris. Sediment that deposits in the crenulated arms of the reservoirs is quite rich in organic matter derived from lake productivity that has been greatly augmented by nutrients derived from agricultural lands and domestic wastes. Carbon storage in reservoirs exceeds forest storage, and unlike forests, increases with time.
NASA Astrophysics Data System (ADS)
Anton, L.; Munoz Martin, A.; De Vicente, G.; Finnegan, N. J.
2017-12-01
The process of river incision into bedrock dictates the landscape response to changes in climate and bedrock uplift in most unglaciated settings. Hence, understanding processes of river incision into bedrock and their topographic signatures are a basic goal of geomorphology. Formerly closed drainage basins provide an exceptional setting for the quantification of long term fluvial dissection and landscape change, making them valuable natural laboratories. Internally drained basins are peculiar because they trap all the sediment eroded within the watershed; as closed systems they do not respond to the base level of the global ocean and deposition is the dominant process. In that context, the opening of an outward drainage involves a sudden lowering of the base level, which is transmitted upstream along fluvial channels in the form of erosional waves, leading to high incision and denudation rates within the intrabasinal areas. Through digital topographic analysis and paleolandscape reconstruction based on relict deposits and landscapes on the Iberian Peninsula, we quantify the volume of sediments eroded from formerly internally drained basins since capture. Mapping of fluvial dissection patterns reveals how, and how far, regional waves of incision have propagated upstream. In our analysis, erosional patterns are consistent with the progressive establishment of an outward drainage system, providing a relative capture chronology for the different studied basins. Divide migration inferred from chi maps supports the interpretations based on fluvial dissection patterns and volumes, providing clues on how landscaped changed and how drainage integration occurred within the studied watersheds. [Funded by S2013/MAE-2739 and CGL2014-59516].
Differential effects of biochar on soils within an eroded field
NASA Astrophysics Data System (ADS)
Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim
2015-04-01
Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each soil type to alter physical and chemical properties. However the pattern of interaction depended on soil and biochar type.
Education, Knowledge, and Symbolic Form
ERIC Educational Resources Information Center
Belas, Oli
2018-01-01
This article aims to introduce Ernst Cassirer, and his philosophy of symbolic form, to education studies, and, in doing so, to challenge the widespread but deeply flawed views of knowledge and so-called knowledge-based education that have shaped recent education policy in England. After sketching the current educational landscape, and then some of…
Emotion and Disaffection with School Mathematics
ERIC Educational Resources Information Center
Lewis, Gareth
2013-01-01
This paper reports some initial findings from research designed to understand more deeply the motivational and emotional landscape of disaffection with school mathematics. A context is described in which there has been significant concern expressed about a number of aspects of mathematics education, but where affect is seen as salient to these…
Dirks, Paul H G M; Placzek, Christa J; Fink, David; Dosseto, Anthony; Roberts, Eric
2016-07-01
Concentrations of cosmogenic (10)Be, measured in quartz from chert and river sediment around the Cradle of Humankind (CoH), are used to determine basin-averaged erosion rates and estimate incision rates for local river valleys. This study focusses on the catchment area that hosts Malapa cave with Australopithecus sediba, in order to compare regional versus localized erosion rates, and better constrain the timing of cave formation and fossil entrapment. Basin-averaged erosion rates for six sub-catchments draining the CoH show a narrow range (3.00 ± 0.28 to 4.15 ± 0.37 m/Mega-annum [Ma]; ±1σ) regardless of catchment size or underlying geology; e.g. the sub-catchment with Malapa Cave (3 km(2)) underlain by dolomite erodes at the same rate (3.30 ± 0.30 m/Ma) as the upper Skeerpoort River catchment (87 km(2)) underlain by shale, chert and conglomerate (3.23 ± 0.30 m/Ma). Likewise, the Skeerpoort River catchment (147 km(2)) draining the northern CoH erodes at a rate (3.00 ± 0.28 m/Ma) similar to the Bloubank-Crocodile River catchment (627 km(2)) that drains the southern CoH (at 3.62 ± 0.33 to 4.15 ± 0.37 m/Ma). Dolomite- and siliciclastic-dominated catchments erode at similar rates, consistent with physical weathering as the rate controlling process, and a relatively dry climate in more recent times. Erosion resistant chert dykes along the Grootvleispruit River below Malapa yield an incision rate of ∼8 m/Ma at steady-state erosion rates for chert of 0.86 ± 0.54 m/Ma. Results provide better palaeo-depth estimates for Malapa Cave of 7-16 m at the time of deposition of A. sediba. Low basin-averaged erosion rates and concave river profiles indicate that the landscape across the CoH is old, and eroding slowly; i.e. the physical character of the landscape changed little in the last 3-4 Ma, and dolomite was exposed on surface probably well into the Miocene. The apparent absence of early Pliocene- or Miocene-aged cave deposits and fossils in the CoH suggests that caves only started forming from 4 Ma onwards. Therefore, whilst the landscape in the CoH is old, cavities are a relatively young phenomenon, thus controlling the maximum age of fossils that can potentially be preserved in caves in the CoH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bemis, William E; Giuliano, Anne; McGuire, Betty
2005-01-01
Tooth replacement poses many questions about development, pattern formation, tooth attachment mechanisms, functional morphology and the evolution of vertebrate dentitions. Although most vertebrate species have polyphyodont dentitions, detailed knowledge of tooth structure and replacement is poor for most groups, particularly actinopterygians. We examined the oral dentition of the bluefish, Pomatomus saltatrix, a pelagic and coastal marine predator, using a sample of 50 individuals. The oral teeth are located on the dentary and premaxillary bones, and we scored each tooth locus in the dentary and premaxillary bones using a four-part functional classification: absent (A), incoming (I), functional (F=fully ankylosed) or eroding (E). The homodont oral teeth of Pomatomus are sharp, deeply socketed and firmly ankylosed to the bone of attachment. Replacement is intraosseus and occurs in alternate tooth loci with long waves of replacement passing from rear to front. The much higher percentage of functional as opposed to eroding teeth suggests that replacement rates are low but that individual teeth are quickly lost once erosion begins. Tooth number increases ontogenetically, ranging from 15-31 dentary teeth and 15-39 premaxillary teeth in the sample studied. Teeth increase in size with every replacement cycle. Remodeling of the attachment bone occurs continuously to accommodate growth. New tooth germs originate from a discontinuous dental lamina and migrate from the lingual (dentary) or labial (premaxillary) epithelium through pores in the bone of attachment into the resorption spaces beneath the existing teeth. Pomatomus shares unique aspects of tooth replacement with barracudas and other scombroids and this supports the interpretation that Pomatomus is more closely related to scombroids than to carangoids.
Pluto: Pits and mantles on uplands north and east of Sputnik Planitia
NASA Astrophysics Data System (ADS)
Howard, Alan D.; Moore, Jeffrey M.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Grundy, William M.; Schmitt, Bernard; Philippe, Sylvain; McKinnon, William B.; Spencer, John R.; Beyer, Ross A.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; New Horizons Science Team
2017-09-01
The highlands region north and east of Sputnik Planitia can be subdivided into seven terrain types based on their physiographic expression. The northern rough uplands are characterized by jagged uplands and broad troughs, and it may contain a deeply-eroded ancient mantle. Dissected terrain has been interpreted to have been eroded by paleo-glaciation. The smooth uplands and pits terrain contains broad, rolling uplands surrounding complexes of pits, some of which contain smooth floors. The uplands are mantled by smooth-surfaced deposits possibly derived from adjacent pits through low-power explosive cryovolcanism or through slow vapor condensation. The eroded smooth uplands appear to have originally been smooth uplands and pits terrain modified by small-scale sublimation pitting. The bright pitted uplands features intricate texturing by reticulate ridges that may have originated by sublimation erosion, volatile condensation, or both. The bladed terrain is characterized by parallel ridges oriented north-south and is discussed in a separate paper. The dark uplands are mantled with reddish deposits that may be atmospherically deposited tholins. Their presence has affected long-term landform evolution. Widespread pit complexes occur on most of the terrain units. Most appear to be associated with tectonic lineations. Some pits are floored by broad expanses of ices, whereas most feature deep, conical depressions. A few pit complexes are enclosed by elevated rims of uncertain origin.
Fates of eroded soil organic carbon: Mississippi Basin case study
Smith, S.V.; Sleezer, R.O.; Renwick, W.H.; Buddemeier, R.W.
2005-01-01
We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 ?? 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ???480 t??km -2??yr-1 (???1500 ?? 106 t/yr, across the MS Basin), and a soil organic carbon (SOC) erosion rate of ???7 t??km-2??yr-1 (???22 ?? 106 t/yr). Erosion translocates upland SOC to alluvial deposits, water impoundments, and the ocean. Soil erosion is generally considered to be a net source of CO2 release to the atmosphere in global budgets. However, our results indicate that SOC erosion and relocation of soil apparently can reduce the net SOC oxidation rate of the original upland SOC while promoting net replacement of eroded SOC in upland soils that were eroded. Soil erosion at the MS Basin scale is, therefore, a net CO2 sink rather than a source. ?? 2005 by the Ecological Society of America.
Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.
2010-01-01
This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment preserved in the Colorado Headwaters Basin, suggesting this basin may have remained closed throughout the Paleocene and early Eocene. The field trip also addresses middle Eocene(?) folding of the late Laramide basin-fill strata, related to steep reverse faults that offset the Proterozoic crystalline basement. Late Oligocene magmatic activity is indicated by dikes, plugs, and eruptive volcanic rocks in the Rabbit Ears Range and the Never Summer Mountains that span and flank the Colorado Headwaters Basin. These intrusions and eruptions were accompanied by extensional faulting along predominantly northwesterly trends. Erosion accompanied the late Oligocene igneous activity and faulting, leading to deposition of boulder conglomerates and sandstones of the North Park Formation and high-level conglomerates across the landscape that preserve evidence of a paleo-drainage network that drained the volcanic landscape.
Standpoints: Researching and Teaching English in the Digital Dimension
ERIC Educational Resources Information Center
Kirkland, David E.
2009-01-01
David E. Kirkland argues that our understanding of literate practice in relation to space needs to be radically reworked to account for new digital dimensions that are dispersed, discontinuous, and yet deeply woven into everyday and institutional worlds. His account highlights the way these digital spaces pepper the official landscape of…
Patterns in species composition and diversity along intermittent creeks in the Missouri Ozarks
Cindy E. Becker; Stephen G. Pallardy
2003-01-01
The southeast Missouri Ozarks is a rugged, deeply dissected landscape. Intermittent creeks are commonly found throughout the region, yet our understanding of this ecosystem component is poor. Landform features, flooding frequency, and flooding duration are variables known to affect vegetation distribution patterns along perennial systems. We investigated if these...
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, P.; Kirby, E.; Pitlick, J.; Anderson, R. S.
2015-12-01
Analyses of hillslope gradient, landscape relief, and channel steepness in the Daxiahe drainage basin along the northeastern margin of the Tibetan Plateau provides evidence of a transient geomorphic response to base level fall along the main stem Yellow River. The upper portions of the watershed are characterized by low-gradient channels and gentle hillslopes and are separated from a steeper, high relief landscape by a series of convex knickzones along channel profiles. Downstream projection of the upper channel profiles implies ~500-600 m of incision, consistent with terrace records of post ~1.7 Ma incision in the Linxia basin. We characterize erosion rates across this transient landscape using both optically-stimulated dating of fluvial terraces and catchment-averaged 10Be concentrations in modern sediment. Both data sets are consistent and suggest erosion/incision rates of ~300 m/Myr below knickpoints and ~50-100 m/Myr above. Field measurements of channel width (n=48) and bankfull discharge (n=9) allow us to determine local scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate basal shear stress, unit stream power and bedload transport along the main stem of the Daxiahe River. We find a clear downstream increase of incision potential across this transient landscape, consistent with topographic observations and erosion rates. In contrast to recent studies, we find no evidence for adjustment of channel width across the transition from slowly eroding to rapidly eroding portions of the watershed. We hypothesize that this behavior is consistent with detachment-limited models of fluvial incision, despite the presence of significant sediment in channel bed and banks. Our results imply that the controls on hydraulic geometry along actively incising rivers remain incompletely understood.
NASA Astrophysics Data System (ADS)
Hall, T.; Wilson, T. J.; Henrys, S.; Speece, M. A.
2016-12-01
The interplay of tectonics and climate is recorded in the sedimentary strata within Victoria Land Basin, McMurdo Sound, Antarctica. Patterns of Cenozoic sedimentation are documented from interpretation of seismic reflection profiles calibrated by drillhole data in McMurdo Sound, and these patterns provide enhanced constraints on the evolution of the coupled Transantarctic Mountains-West Antarctic Rift System and on ice sheet advance/retreat through multiple climate cycles. The research focuses on shifts from warm based to cold based ice sheets through the variable climate and ice sheet conditions that characterized the early to middle Miocene. The study seeks to test the view that cold based ice sheets in arid, polar deserts minimally erode the landscape by calculating sediment volumes for critical climatic intervals. Revised seismic mapping through McMurdo Sound has been completed, utilizing the seismic stratigraphic framework first established by Fielding et al. (2006) and new reflectors marking unconformities identified from the AND-2A core (Levy et al., 2016). Reflector age constraints are derived by tying surfaces to the Cape Roberts Project, CIROS-1, and AND-2A drillholes. Seismic facies coupled with AND-2A core provenance information provides insight into depositional mechanisms and ice sheet behavior. Seismic facies transitions occur across the major unconformity surfaces in the AND-2A core. Sediment volume calculations for subareas within McMurdo Sound where reflectors are most continuous indicate substantial decreases in preserved sediment volume between the Oligocene and Early Miocene sequences, and between the early and mid-Miocene sequences. Sediment volumes, used in combination with an ice sheet model in a backstacking procedure, provide constraints on landscape modification and further understanding of how landscapes erode under warm and cold based ice sheet regimes.
Steady evolution of hillslopes in layered landscapes: self-organization of a numerical hogback
NASA Astrophysics Data System (ADS)
Glade, R.; Anderson, R. S.
2017-12-01
Landscapes developed in layered sedimentary or igneous rocks are common across Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments and mesas exhibit resistant rock layers in tilted, vertical, or horizontal orientations adjoining more erodible rock. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Our previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock are fundamental to their formation; our numerical model incorporating these feedbacks explain the development of commonly observed concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach to describe the steady behavior of our model, in which hillslope form and erosion rates remain constant in the reference frame of the retreating feature. We first revisit a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations. Autogenic adjustment of soil depth, slope and erosion rates enables efficient transport of resistant blocks; this allows erosion of the resistant layer to keep up with base level fall rate, leading to steady evolution of the feature. Analytic solutions relate easily measurable field quantities such as ramp length, slope, block size and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes, and pinpoint the processes for which we require a more thorough understanding to predict the evolution of such signature landscapes over time.
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features
NASA Astrophysics Data System (ADS)
Harbert, S.; Duvall, A. R.; Tucker, G. E.
2016-12-01
Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our model and field results, we conclude that vertical relief is important for generating and preserving offset features that are viewed as characteristic of a strike-slip fault. Therefore, the geomorphic expression of a fault may be dependent on characteristics of the surrounding landscape rather than primarily a function of the nature of slip on the fault.
Valleys and Hillslopes: A Geomorphic Foundation for Landscape Ecology
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.
2004-12-01
Moisture-nutrient gradients have been found to be the most important environmental gradients determining the distribution and composition of plant communities. Landscapes on which plant communities exist are composed of valleys and ridgelines, with hillslopes in between them. Since water flow paths are directed down slopes, processes determining hillslope morphology and arrangement play an essential role in plant community organization and dynamics. Hillslope morphology, substrate characteristics and climate determine flow routing and water budgets along slopes. Wetness is a function of transmissivity, contributing area and slope gradient. Movement of nutrients along hillslopes generally follows wetness values, and is affected by soil type. Plant species have different tolerances to wetness and nutrients; hillslope length and slope angle determine the moisture-nutrient gradient, and in turn the shape of plant tolerance curves. Temporal scales required for significant topographic change along hillslopes may often be long compared to those for plant community dynamics. When considered in landscape ecology, hillslope shape and arrangement are thus often considered constants. Although landscape morphology may change over time and among different regions (with tectonic, geomorphic and climatic processes leaving their imprints on landscapes), an attempt has been made in the literature to put forth robust topographic scaling relations. This paper, using a series of examples, explores connections between landscape structure and plant communities. For example, Hack's law states that drainage basins become more elongate as area increases. This implies that basins should have approximately the same proportion of landscape in each hillslope position, suggesting some constancy in contributing area patterns for hillslopes in different-sized basins. Distributions of wetness values and plant population tolerance curves seem to confirm this for smaller basins. Hillslope length and steepness are related to drainage density and relative relief. Various studies have sought relations between drainage density and slope gradient; the latter is a determinant of wetness values. Studies have found both negative and positive correlations between drainage density and slope gradient. The nature of hillslope processes (e.g., overland flow vs. mass wasting dominated, or quickly eroding vs. slowly eroding landscapes) has been used to explain the correlation. It has also been suggested that the degree of channelization may be important in determining slope steepness. Plant species respond to steeper slopes by having narrower tolerance curves and less overlap with other species. This has important implications for biodiversity and plant community organization.
Lin, Mei Xia; Lin, Tao; Qiu, Quan Yi; Sun, Cai Ge; Deng, Fu Liang; Zhang, Guo Qin
2017-04-18
The expansion of built-up area will cause stress effect on the regional natural ecological security pattern during urbanization process. Taking rapid expanding regions of four inland and coastal cities as study areas, including Tongzhou in Beijing, Zhengding in Hebei, Tanggu in Tianjin and Xiamen in Fujian, we constructed regional landscape stress indexes according to the principle of landscape ecology and comparatively analyzed the landscape pattern characteristics of rapid expanding regions and the differences of stress effect of artificial landscapes on four natural landscapes ecological security pattern in the process of rapid urbanization. Results showed that landscape erosion indexes of Tongzhou, Zhengding, Tanggu and Xiamen in 2015 were 1.039, 0.996, 1.239 and 0.945, respectively, which indicated that the natural landscapes were eroded significantly. Natural landscape types of those four regions presented different threatened levels. Among all natural landscape types, unused land and waters were worst threatened in Tongzhou, Zhengding and Tanggu, while in Xiamen cultivated land and waters showed the highest threat levels. The waters threat indexes of those four areas were all more than 0.743. Landscape isolation indexes of waters and unused land of the inland cities were greater than those of coastal cities, which meant water distribution of inland cities in the space was less gathered than that of coastal cities. Besides, compared with the other natural landscape, unused land and waters suffered the largest stress from artificial landscapes.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011
Goodwell, Allison E.; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A.; Kumar, Praveen; Garcia, Marcelo H.; Rhoads, Bruce L.; Holmes, Robert R.; Parker, Gary; Berretta, David P.; Jacobson, Robert B.
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.
Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
Quasi-Steady Evolution of Hillslopes in Layered Landscapes: An Analytic Approach
NASA Astrophysics Data System (ADS)
Glade, R. C.; Anderson, R. S.
2018-01-01
Landscapes developed in layered sedimentary or igneous rocks are common on Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments, and mesas exhibit resistant rock layers adjoining more erodible rock in tilted, vertical, or horizontal orientations. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock can create relief over time and lead to the development of concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach, informed by numerical modeling and field data, to describe the quasi-steady state behavior of such rocky hillslopes for the full spectrum of resistant layer dip angles. We begin with a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations, including adjustment of soil depth, erosion rates, and block velocities along the ramp. Analytical solutions relate easily measurable field quantities such as ramp length, slope, block size, and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes and pinpoint the processes for which we require a more thorough understanding to predict their evolution over time.
NASA Astrophysics Data System (ADS)
Fine, A.; Wilson, C. G.; Papanicolaou, T.; Schaeffer, S. M.
2017-12-01
The balance between loss of C to the atmosphere, and the accumulation of soil organic matter is directly controlled by soil microorganisms. A key driver of microbial activity is soil moisture, but it is unclear how microbial C cycling responds to spatiotemporal shifts in hydrological conditions across a heterogeneous, dynamic landscape. We explored the relationship between soil wetness and biogeochemical cycling along landscape positions in two sloping fields of the Intensively Managed Landscape Critical Zone Observatory (IML-CZO) in Iowa, USA. Soils were collected (0-5 cm, 5-10 cm) from four positions (crest, shoulder, backslope, toeslope) along three transects identified as primary flow paths for runoff and sediment. Samples were incubated for 7 days and analyzed pre- and post-incubation for extractable dissolved organic C (DOC), microbial biomass C (MBC), microbial respiration (C-resp), and inorganic N. At both sites, field moisture, MBC, and CUE 0-5 cm increased from summit to toeslope, whereas CUE 5-10 cm decreased. The steeper and drier of the two fields (field 1) showed corresponding increases in C-resp and NO3, but decreases in DOC, moving downslope; the opposite trends were observed in the less erodible, wetter field 2. Comparing the two toeslopes (0-5 cm), field 2 had a larger labile C (DOC + MBC) pool (3.1 mg C g-1 dry soil) than field 1 (2.7 mg g-1 dry soil), but C-resp of field 1 was lower (53 and 42 ug g-1 dry soil for fields 1 and 2, respectively). No differences in MBC between depths were observed in field 1, but in field 2, MBC 5-10 cm (0.6 and 0.7 mg g-1 dry soil at crest and toeslope, respectively) was always less than MBC 0-5 cm (0.9 mg g-1 dry soil). Our findings indicate that wet, poorly drained soil conditions (such as those in lower landscape positions and at depth) decrease microbial activity and allow DOC to accumulate. Despite the relatively enhanced depositional environment of field 1, the low levels of DOC and high C-resp and MBC indicate more suitable conditions for aerobic respiration.
Scale Invariance in Landscape Evolution Models Using Stream Power Laws
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2014-12-01
Landscape evolution models (LEM) commonly utilize stream power laws to simulate river incision with formulations such as E = KAmSn, where E is a vertical incision rate [L/T], K is an erodibility constant [L1-2m/T], A is an upstream drainage area [L2], S is a local channel gradient [-], and m and n are positive exponents that describe the basin hydrology. In our reduced complexity model, the landscape approached equilibrium by balancing an incision rate with a constant, uniform, vertical rock uplift rate at every location in the landscape. From our simulations, for a combination of m and n, the landscape exhibited scale invariance. That is, regardless of the size and scale of the basin, the relief and vertical structure of the landscape remained constant. Therefore, the relief and elevation profile of the landscape at equilibrium were only dependent on the coefficients for erodibility and uplift and an equation that described how upstream area, A, increased as the length of a stream increased. In our analytical 1D models, we utilized two equations that described upslope area, (a) A = Bl, where B is the profile width [L], and l is the stream length from the ridge [L] and (b) A = Clh, Hack's Law, where C is a constant [L2-h] and h is a positive exponent. With these equations, (a) m = n and (b) hm = n resulted in scale invariance. In our numerical 2D models, the relationship between A and l was inherent in the actual structure of the drainage network. From our numerical 2D results, scale invariance occurred when 2m = n. Additionally, using reasonable values from the literature for exponents, n, m and h, resulted in singularities at the ridges in the landscape, which caused truncation error. In consequence, the elevation of the ridge increased as the number of grid cells in the domain increased in the numerical model, and the model was unable to converge. These singularities at the ridges appeared when (a) m ≥ n and (b) hm ≥ n in the analytical model and 2m ≥ n in the numerical model. Here we present (1) 1D analytical solutions and (2) 2D numerical solutions that demonstrate scale invariance in LEMs and (3) the consequences of the singularity in 2D LEM numerical simulations. These results will help provide insight about the structure and dynamics of landscapes and drainage networks and shed light on geomorphological empirical relationships.
Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy)
NASA Astrophysics Data System (ADS)
Stanchi, S.; Falsone, G.; Bonifacio, E.
2015-04-01
Erosion is a relevant soil degradation factor in mountain agrosilvopastoral ecosystems that can be enhanced by the abandonment of agricultural land and pastures left to natural evolution. The on-site and off-site consequences of soil erosion at the catchment and landscape scale are particularly relevant and may affect settlements at the interface with mountain ecosystems. RUSLE (Revised Universal Soil Loss Equation) estimates of soil erosion consider, among others, the soil erodibility factor (K), which depends on properties involved in structure and aggregation. A relationship between soil erodibility and aggregation should therefore be expected. However, erosion may limit the development of soil structure; hence aggregates should not only be related to erodibility but also partially mirror soil erosion rates. The aim of the research was to evaluate the agreement between aggregate stability and erosion-related variables and to discuss the possible reasons for discrepancies in the two kinds of land use considered (forest and pasture). Topsoil horizons were sampled in a mountain catchment under two vegetation covers (pasture vs. forest) and analyzed for total organic carbon, total extractable carbon, pH, and texture. Soil erodibility was computed, RUSLE erosion rate was estimated, and aggregate stability was determined by wet sieving. Aggregation and RUSLE-related parameters for the two vegetation covers were investigated through statistical tests such as ANOVA, correlation, and regression. Soil erodibility was in agreement with the aggregate stability parameters; i.e., the most erodible soils in terms of K values also displayed weaker aggregation. Despite this general observation, when estimating K from aggregate losses the ANOVA conducted on the regression residuals showed land-use-dependent trends (negative average residuals for forest soils, positive for pastures). Therefore, soil aggregation seemed to mirror the actual topsoil conditions better than soil erodibility. Several hypotheses for this behavior were discussed. A relevant effect of the physical protection of the organic matter by the aggregates that cannot be considered in K computation was finally hypothesized in the case of pastures, while in forests soil erodibility seemed to keep trace of past erosion and depletion of finer particles. A good relationship between RUSLE soil erosion rates and aggregate stability occurred in pastures, while no relationship was visible in forests. Therefore, soil aggregation seemed to capture aspects of actual vulnerability that are not visible through the erodibility estimate. Considering the relevance and extension of agrosilvopastoral ecosystems partly left to natural colonization, further studies on litter and humus protective action might improve the understanding of the relationship among erosion, erodibility, and structure.
Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape
Morris, Geoffrey P.; Grabowski, Paul; Borevitz, Justin O.
2011-01-01
Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, across a continental and landscape scale. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species’ range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4 to 127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistoscene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper-Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (~150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. PMID:22060816
Persistence of soil organic matter in eroding versus depositional landform positions
Berhe, Asmeret Asefaw; Harden, Jennifer W.; Torn, Margaret S.; Kleber, Markus; Burton, Sarah D.; Harte, John
2012-01-01
Soil organic matter (SOM) processes in dynamic landscapes are strongly influenced by soil erosion and sedimentation. We determined the contribution of physical isolation of organic matter (OM) inside aggregates, chemical interaction of OM with soil minerals, and molecular structure of SOM in controlling storage and persistence of SOM in different types of eroding and depositional landform positions. By combining density fractionation with elemental and spectroscopic analyses, we showed that SOM in depositional settings is less transformed and better preserved than SOM in eroding landform positions. However, which environmental factors exert primary control on storage and persistence of SOM depended on the nature of the landform position considered. In an annual grassland watershed, protection of SOM by physical isolation inside aggregates and chemical association of organic matter (complexation) with soil minerals, as assessed by correlation with radiocarbon concentration, were more effective in the poorly drained, lowest-lying depositional landform positions, compared to well-drained landform positions in the upper parts of the watershed. Results of this study demonstrated that processes of soil erosion and deposition are important mechanisms of long-term OM stabilization.
Jamie Voyles; A. Marm Kilpatrick; James P. Collins; Matthew C. Fisher; Winifred F. Frick; Hamish McCallum; Craig K. R. Willis; David S. Blehert; Kris A. Murray; Robert Puschendorf; Erica Bree Rosenblum; Benjamin M. Bolker; Tina L. Cheng; Kate E. Langwig; Daniel L. Lindner; Mary Toothman; Mark Q. Wilber; Cheryl J. Briggs
2015-01-01
Emerging infectious diseases (EIDs) are on the rise due to multiple factors, including human facilitated movement of pathogens, broad-scale landscape changes, and perturbations to ecological systems (Jones et al. 2008; Fisher et al. 2012). Epidemics in wildlife are problematic because they can lead to pathogen spillover to new host organisms, erode biodiversity and...
NASA Astrophysics Data System (ADS)
Pederson, J. L.; Bursztyn, N.
2014-12-01
Bedrock strength is a key parameter in slope stability, landscape erosion, and fluvial incision, though it is typically ignored or at best indirectly constrained in models, as with the k erodability parameter in stream-power formulations. Indeed, empirical datasets of rock strength suited to address geomorphic questions are rare, in part because of the difficulty in measuring those rocks that are heterolithic, weak, or poorly exposed. We have completed a large dataset of measured bedrock strength organized by rock units exposed along the length of the trunk Colorado-Green river through the Colorado Plateau of the western U.S. Measurements include Selby RMS, fracturing, and field compressive tests at 168 localities, as well as 672 individual-sample tensile-strength tests in the laboratory. These rock strength results are compared to geomorphic metrics of unit stream power, river gradient, valley-bottom width, and local relief through the arid Colorado Plateau. Our measurements trend coherently and logically with bedrock type and age/induration, especially in the case of tensile strength and when the influence of fracturing is also considered, signs that the dataset is robust. Focusing on bedrock (rather than alluvial) reaches of the fluvial transect and tensile strength, there is a positive rank-correlation and a strong power-law correlation between reach-averaged rock strength and unit stream power, as well as an elegant linear relation between tensile strength and river gradient. To address the problem of immeasureable rock types, we utilize the inverse power-law scaling between tensile strength and valley-bottom width to estimate the "effective" tensile strength of heterolithic, shale-rich bedrock in alluvial reaches. These results suggest that tensile strength varies to at least an order-of-magnitude smaller values than evident with directly testable rocks in this landscape, with implications for scaling erodibility parameters. Overall, results lead to the conclusion that bedrock strength is, in fact, the first-order control on large-scale fluvial geomorphology in the Colorado Plateau. On one hand this is intuitive, yet it highlights the erroneous but common assumption that bedrock erodibility is uniform or of secondary importance in fluvial morphology and landscape evolution.
Corridors restore animal-mediated pollination in fragmented tropical forest landscapes
Kormann, Urs; Scherber, Christoph; Tscharntke, Teja; Klein, Nadja; Larbig, Manuel; Valente, Jonathon J.; Hadley, Adam S.; Betts, Matthew G.
2016-01-01
Tropical biodiversity and associated ecosystem functions have become heavily eroded through habitat loss. Animal-mediated pollination is required in more than 94% of higher tropical plant species and 75% of the world's leading food crops, but it remains unclear if corridors avert deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we used manipulative resource experiments and field observations to show that corridors functionally connect neotropical forest fragments for forest-associated hummingbirds and increase pollen transfer. Further, corridors boosted forest-associated pollinator availability in fragments by 14.3 times compared with unconnected equivalents, increasing overall pollination success. Plants in patches without corridors showed pollination rates equal to bagged control flowers, indicating pollination failure in isolated fragments. This indicates, for the first time, that corridors benefit tropical forest ecosystems beyond boosting local species richness, by functionally connecting mutualistic network partners. We conclude that small-scale adjustments to landscape configuration safeguard native pollinators and associated pollination services in tropical forest landscapes. PMID:26817765
NASA Astrophysics Data System (ADS)
Bonetti, S.; Porporato, A. M.
2017-12-01
The time evolution of a landscape topography through erosional and depositional mechanisms is modified by both human and natural disturbances. This is particularly evident in the Calhoun Critical Zone Observatory, where decades of land-use resulted in a distinct topography with gullies, interfluves, hillslopes and significantly eroded areas. Understanding the role of different geomorphological processes that led to these conditions is crucial to reconstruct sediment and soil carbon fluxes, predict critical conditions of landscape degradation, and implement strategies of land recovery. To model these dynamics, an analytical theory of the drainage area (which represents a surrogate for water surface runoff responsible for fluvial incision) is used to evolve ridge and valley lines. Furthermore, the coupled dynamics of surface water runoff and landscape evolution is analyzed theoretically and numerically to detect thresholds leading to either stable landscape configurations or critical conditions of land erosion. Observed erosional cycles due to vegetation disturbances are explored and used to predict future evolutions under various levels of anthropogenic disturbance.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
Successful Management of Aggressive Fibromatosis of the Neck: A Case Report
Avinçsal, Özgür Mehmet; Shinomiya, Hirotaka; Otsuki, Naoki; Sasaki, Ryohei; Nibu, Ken-ichi
2018-05-29
Aggressive fibromatoses are histologically benign fibrous neoplasms originating from musculoaponeurotic structures throughout the body. They are locally invasive and erode adjacent vital structures. The head and neck region constitutes 7-25% of all extra-abdominal cases. Here, we report the case of a patient with aggressive fibromatosis in the left side of the neck. While the tumor deeply invaded the scalene muscles, the lesion was successfully treated by surgery followed by radiotherapy. The patient has been disease free for the last 7 years following treatment. Due to its unusual location in the head and neck region, aggressive fibromatosis should be considered in the differential diagnosis of invading lesions of the neck.
NASA Astrophysics Data System (ADS)
Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.
2005-12-01
The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.
A comparison of the history and management of oak woodlands in Britain and California
Douglas McCreary; Gary Kerr
2002-01-01
Hardwood forests are principal features of the landscape of both California and Britain and indigenous oak species are important components. In both locales these "oak woodlands" have historically provided a wide variety of commercial and non-commercial products and benefits and are deeply valued and appreciated by those who live in and around them. However,...
Erosion of mountain plateaus along Sognefjord, Norway, constrained by cosmogenic nuclides
NASA Astrophysics Data System (ADS)
Andersen, Jane Lund; Egholm, David L.; Knudsen, Mads F.; Linge, Henriette; Jansen, John D.
2016-04-01
Norway is famous for its deeply incised, steep-sided fjords, carved out by glacial erosion. The high relief of the fjords stands in contrast to the extensive areas of relatively low relief found between the fjords. The origin and development of these low-relief areas remain debated. The classical interpretation relates them to a Mesozoic peneplanation surface, uplifted to the current high elevation in the early Cenozoic (e.g. Nesje, 1994). The validity of this interpretation has, however, been repeatedly questioned in recent times (e.g. Nielsen et al. 2009, Steer et al. 2012). Recent studies point instead to a significant impact of glacial and periglacial erosion processes on the long-term development of the low-relief surfaces (Egholm et al. 2015). Here, we present a large new dataset of in-situ produced cosmogenic 10Be and 26Al in bedrock and boulders from the high, flat summit surfaces along a transect from the coast to the inner parts of Sognefjorden in Norway. Our results indicate substantial glacial modification of the sampled low-relief surfaces within the last 50 ka. Close to the coast, at an elevation of around 700 meters, the cosmogenic nuclide signal was reset around the Younger Dryas due to extensive glacial erosion. Regarding the higher surfaces further inland, our results indicate a maximum cosmogenic nuclide inheritance of 20-30 ka prior to the last deglaciation. We do not find any signs of exceptional longevity of the low-relief landscape. In contrast, our results indicate that the low-relief areas were continuously eroded by glacial and periglacial processes in the Quaternary. Nesje & Whillans. Erosion of Sognefjord, Norway. Geomorphology 9(1), 33-45, 1994. Nielsen et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. Journal of Geodynamics 47(2), 72-95, 2009. Steer et al. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nature Geoscience 5(9), 635-639, 2012. Egholm et al. The periglacial engine of mountain erosion - Part 2: Modelling large-scale landscape evolution. Earth Surface Dynamics 3(4), 463-482, 2015.
Parker, John T.C.
2000-01-01
Deeply incised channels, commonly called arroyos, are a typical feature of the dry alluvium-filled valleys of the southwestern United States. Unlike many geological processes that operate over millions of years, the formation of many miles of arroyos is one that took place in a little more than a century. Most arroyos in the region began to form in the late 19th century. Because dry landscapes change so quickly, they present society with special problems. Rapid expansion of channels by headcut migration, deepening, and widening causes loss of productive agricultural and commercial lands and threatens infrastructure such as roads, bridges, and buildings. High rates of sedimentation shorten the life of reservoirs, clog culverts, and fill stream channels to the extent that they can no longer contain streamflow within their banks. This report presents an explanation of erosional and depositional processes in desert landscapes, especially those characterized by incised channels, for the use of those who use, manage, and live on such lands. The basic principles of erosion, sediment transport, and deposition are presented including the formation of sediment, the forces that erode and transport it, the forces that resist its erosion and transport, and the conditions that cause it to be deposited. The peculiarities of sedimentation processes in the Southwest include the infrequent and variable precipitation, the geological setting, and the sparseness of vegetation. A classification system for incised channels that is intended for users who do not necessarily have a background in fluvial hydrology has been developed and is presented in this report. The classification system is intended to enable a user to classify a reach of channel quickly on the basis of field observations. The system is based on the shape and condition of channels and on the sedimentation processes that are predominantly responsible for those conditions. Because those processes are controlled by environmental factors operating on the entire drainage basin, classification of channels can provide land managers and users with an understanding of what areas are likely to be most susceptible to erosion or the effects of high sedimentation rates and under what conditions they are most likely to occur.
Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie
2017-01-01
Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335
Fluvial processes on Mars: Erosion and sedimentation
NASA Technical Reports Server (NTRS)
Squyres, Steven W.
1988-01-01
One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.
Tweed Extinct Volcano, Australia, Stereo Pair of SRTM Shaded Relief and Colored Height
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Australia is the only continent without any current volcanic activity, but it hosts one of the world's largest extinct volcanoes, the Tweed Volcano. Rock dating methods indicate that eruptions here lasted about three million years, ending about 20 million years ago. Twenty million years of erosion has left this landform deeply eroded yet very recognizable, appearing as a caldera with a central peak. The central peak is not an old remnant landform but is instead the erosional stub of the volcanic neck (the central pipe that carried the magma upward). It is surrounded by ring dikes, which are circular sheets of magma that solidified and now form erosion-resistant ridges. The central peak is named Mount Warning.
Topography plays a central role in envisioning the volcano at its climax and in deciphering the landscape evolution that has occurred since then. Low-relief uplands interspersed between deeply eroded canyons form a radial pattern that clearly defines the shape and extent of the original volcanic dome. Erosion is most extensive on the eastern side because the eroding streams drained directly to the ocean and therefore had the steepest gradients. This asymmetry of erosion has been extreme enough that the volcano has been hollowed out by the east-flowing drainage, forming an 'erosional caldera'. Calderas usually form as the result of collapse where magmas retreat within an active volcano. If collapse occurred here, erosion may have removed the evidence, but it produced a similar landform itself. Three visualization methods were combined to produce this image: shading, color coding, and synthetic stereoscopy. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The stereoscopic effect was then created by generating two differing perspectives, one for each eye (see Figure 1). The image can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing) or by downloading, printing, and splitting the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Elevations range from sea level (shown in blue) to about 1340 meters (4400 feet) along the northwest caldera rim. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C. Size: 102 kilometers (63 miles) by 74 kilometers (46 miles) Location: 28.4 degrees South latitude, 153.3 degrees East longitude Orientation: North toward the top, cylindrical projection Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000The History of American Settlement at Camp Atterbury
2010-01-01
revivals, strawberry festivals , home talent plays at the Opera House, literary socie- ties in the homes, lodge hall dancing, victrola music ...area. Tourism and art were the future of Brown County. Transportation During the late 19th and early 20th centuries, roads improved significantly...had devastated the Brown County landscape and the county had largely turned to tourism , there was a major conserva- tion effort to reclaim the eroded
Patterned Ground in Wetlands of the Maya Lowlands: Anthropogenic and Natural Causes
NASA Astrophysics Data System (ADS)
Beach, T.; Beach, S. L.
2004-12-01
We use geological and archaeological evidence to understand the formation of patterned ground in perennial and seasonal wetlands in the karst depressions of Belize and Guatemala. Some scholars have argued that these features are the remnants of ancient Maya wetland fields, chinampas, on which intensive cultivation produced food that could begin to nourish the extremely high population of the Late Classic (A.D. 550-850). Others have argued that these were natural features or that they represent landscape manipulation for rising sea level in the Preclassic (1000 B.C. -A.D. 250). We present the evidence for ancient intensive agriculture and natural landscape formation with multiple proxies: excavated field and canal features, artifacts, pollen, soil stratigraphy, and water chemistry. Evidence thus far suggests that many regional depressions have Preclassic (1200 BC to AD 200) or earlier paleosols, buried from 1-2 m by eroded soils induced by Maya land use practices. These paleosols were buried by eroded sediments from uplands and by precipitation of gypsum from rising groundwater. The sedimentation occurred largely between the Preclassic and Late Classic, when ancient Maya farmers built canals in pre-existing low spots to reclaim these wetlands. Thus, stable natural processes, environmental change, and human manipulation have acted together to form patterned wetland ground over the later Holocene.
Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David
2016-07-01
The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.
>2500-km-Long Contemporaneous Deep Continental Subduction in the West Gondwana Orogen
NASA Astrophysics Data System (ADS)
Rubatto, D.; Ganade de Araujo, C. E.; Hermann, J.; Cordani, U. G.; Caby, R.; Basei, M. A. S.
2014-12-01
The 5000-km-long, deeply eroded West Gondwana Orogen (WGO) is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks (i.e. eclogites) along its strike. The position of these eclogites marks the suture zone between colliding cratons and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. We investigated the metamorphic conditions and age of high-pressure (HP) and ultrahigh-pressure (UHP) eclogites from Mali, Togo and NE-Brazil . P-T estimates confirm UHP to HP conditions for all these localities. The U-Pb age and trace element composition of metamorphic zircon domains demonstrate that continental subduction in the WGO occurred within 20 m.y. over at least 2500 km during the Ediacaran period (620-610 Ma). We consider this to be the first record of modern, large-scale deep-continental subduction and the consequent appearance of Himalayan-scale mountains in the geological record. The rise of such mountains in the Late Ediacaran is perfectly timed to deliver by erosion the sediments (nutrients) that have been deemed necessary for life sustainability in the following Earth evolution.
Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review
NASA Astrophysics Data System (ADS)
Lexa, Jaroslav; Seghedi, Ioan; Németh, Karoly; Szakács, Alexandru; Koneĉny, Vlastimil; Pécskay, Zoltan; Fülöp, Alexandrina; Kovacs, Marinel
2010-09-01
Neogene to Quaternary volcanic/magmatic activity in the Carpathian-Pannonian Region (CPR) occurred between 21 and 0.1 Ma with a distinct migration in time from west to east. It shows a diverse compositional variation in response to a complex interplay of subduction with rollback, back-arc extension, collision, slab break-off, delamination, strike-slip tectonics and microplate rotations, as well as in response to further evolution of magmas in the crustal environment by processes of differentiation, crustal contamination, anatexis and magma mixing. Since most of the primary volcanic forms have been affected by erosion, especially in areas of post-volcanic uplift, based on the level of erosion we distinguish: (1) areas eroded to the basement level, where paleovolcanic reconstruction is not possible; (2) deeply eroded volcanic forms with secondary morphology and possible paleovolcanic reconstruction; (3) eroded volcanic forms with remnants of original morphology preserved; and (4) the least eroded volcanic forms with original morphology quite well preserved. The large variety of volcanic forms present in the area can be grouped in a) monogenetic volcanoes and b) polygenetic volcanoes and their subsurface/intrusive counterparts that belong to various rock series found in the CPR such as calc-alkaline magmatic rock-types (felsic, intermediate and mafic varieties) and alkalic types including K-alkalic, shoshonitic, ultrapotassic and Na-alkalic. The following volcanic/subvolcanic forms have been identified: (i) domes, shield volcanoes, effusive cones, pyroclastic cones, stratovolcanoes and calderas with associated intrusive bodies for intermediate and basic calclkaline volcanism; (ii) domes, calderas and ignimbrite/ash-flow fields for felsic calc-alkaline volcanism and (iii) dome flows, shield volcanoes, maars, tuffcone/tuff-rings, scoria-cones with or without related lava flow/field and their erosional or subsurface forms (necks/ plugs, dykes, shallow intrusions, diatreme, lava lake) for various types of K- and Na-alkalic and ultra-potassic magmatism. Finally, we provide a summary of the eruptive history and distribution of volcanic forms in the CPR using several sub-region schemes.
Evaluating Metrics of Drainage Divide Mobility
NASA Astrophysics Data System (ADS)
Forte, A. M.; Whipple, K. X.; DiBiase, R.; Gasparini, N. M.; Ouimet, W. B.
2016-12-01
Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to baselevel, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, can potentially induce changes to fluvial topography comparable to spatio-temporal variation in rock uplift, climate, or rock properties. Ultimately, reliable metrics are needed to diagnose the mobility of divides. One such recently proposed metric is cross-divide contrasts in `chi', a measure of the current topology of the drainage network, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution modeling scenarios in which we induce divide mobility under different conditions to test the utility of a suite of plausible topographic metrics of divide mobility and compare these to natural examples. Specifically, we test cross-divide contrasts in mean slope, mean local relief, channel bed elevation at a reference drainage area, and chi. Our results highlight that cross-divide contrasts in chi can only be accurately interpreted in terms of divide mobility when uplift, rock erodibility, climate, and base-level are uniform across both river networks on either side of the divide. This is problematic for application of this metric to natural landscapes as (1) uniformity of all of these parameters is exceedingly unlikely and (2) quantifying the spatial patterns of these parameters is difficult. Consequently, as shown here for both simulated and natural landscapes, simple measures of cross-divide contrasts in mean slope, mean local relief, and channel bed elevation at a reference drainage area are more robust metrics of divide mobility, correctly identifying stable or mobile divides independent of cross-divide differences in rock uplift, climate, erodibility or baselevel.
Landscape Vulnerability Analysis from Historic Lower Mississippi River Flood in 2011
NASA Astrophysics Data System (ADS)
Goodwell, A. E.; Zhu, Z.; Dutta, D.; Greenberg, J.; Kumar, P.; Garcia, M. H.; Rhoads, B. L.; Parker, G.; Berretta, D.; Holmes, R. R.
2012-12-01
This study presents the results of a landscape vulnerability analysis of the Birds Point New Madrid Floodway in southeastern Missouri. The U.S. Army Corps of Engineers intentionally inundated 500 square kilometers of agricultural floodplain in May of 2011 as an emergency flood control measure. We use pre-flood (2005) and post-flood (2011) high resolution Lidar data to establish the landscape impact of the levee breach on the floodplain. The Lidar DEMs were corrected for flight line errors using a Fourier filtering technique, and then subtracted to obtain a differential DEM of erosion and deposition patterns. We use soil erosion characteristics, AVIRIS remote sensing data, and 2D floodplain modeling to analyze the three components of vulnerability: sensitivity, exposure, and adaptive capacity. HydroSed2D (Liu, Landry and García 2008), a 2D flow model, is implemented to simulate flow depths and speeds, or flood exposure, over the entire floodway, as well as smaller sections at increased resolution using a nested grid. We classify woody vegetation based on AVIRIS remote sensing data, and represent vegetated regions in the model as varied values of the Manning's n coefficient. Soil erodibility, vegetation, topography, and flow characteristics are compared to observed landscape changes within the floodplain. Overall, the floodway showed a remarkable resilience to an extreme flood event. When compared to levee breaches on similar rivers in other floods, the lack of newly deposited sediment is noticeable and likely attributable to the presence of a substantial riparian corridor between the main channel of the Mississippi River and the floodway. Although many meander scars indicating former channels of the Mississippi River are apparent in the topography, only one, known as O'Bryan Ridge, experienced high volumes of erosion and deposition due to the flooding. The vulnerability analysis supports the hypothesis this high impact is due to a combination of vulnerability factors such as high flow speed, few localized patches of vegetation, and high soil erodibility at this ridge compared to other similar meander scars. The methodology of this analysis can be used to locate regions of high vulnerability in future floodplain management and flood control, and mitigate potentially catastrophic landscape change.
Baedke, Jan
2013-12-01
It seems that the reception of Conrad Hal Waddington's work never really gathered speed in mainstream biology. This paper, offering a transdisciplinary survey of approaches using his epigenetic landscape images, argues that (i) Waddington's legacy is much broader than is usually recognized--it is widespread across the life sciences (e.g. stem cell biology, developmental psychology and cultural anthropology). In addition, I will show that (ii) there exist as yet unrecognized heuristic roles, especially in model building and theory formation, which Waddington's images play within his work. These different methodological facets envisioned by Waddington are used as a natural framework to analyze and classify the manners of usage of epigenetic landscape images in post-Waddingtonian 'landscape approaches'. This evaluation of Waddington's pictorial legacy reveals that there are highly diverse lines of traditions in the life sciences, which are deeply rooted in Waddington's methodological work. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Huiping; Kirby, Eric; Pitlick, John; Anderson, Robert S.; Zhang, Peizhen
2017-02-01
Analysis of hillslope gradient, landscape relief, and channel steepness in the Daxia River basin provides evidence of a transient geomorphic response to base-level fall on the northeastern Tibetan Plateau. Low-gradient channels and gentle hillslopes of the upper watershed are separated from a steeper, high-relief landscape by a series of convex knickzones along channel longitudinal profiles. Downstream projection of the "relict" portions of the profiles implies 800-850 m of incision, consistent with geologic and geomorphic records of post 1.7 Ma incision in the lower watershed. We combine optically stimulated luminescence dating of fluvial terrace deposits to constrain incision rates downstream of knickpoints with catchment-averaged 10Be concentrations in modern sediment to estimate erosion rates in tributary basins both above and below knickpoints. Both sources of data imply landscape lowering rates of 300 m Ma-1 below the knickpoint and 50-100 m Ma-1 above. Field measurements of channel width (n = 48) and calculations of bankfull discharge (n = 9) allow determination of scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate the patterns of basal shear stress, unit stream power, and bed load transport rate throughout the channel network. Our results imply a clear downstream increase of incision potential; this result would appear to be consistent with a detachment-limited response to imposed base-level fall, in which steepening of channels drives an increase in erosion rates. In contrast, however, we do not observe apparent narrowing of channels across the transition from slowly eroding to rapidly eroding portions of the watershed. Rather, the present-day channel morphology as well as its scaling of hydraulic geometry imply that the river is primarily adjusted to transport its sediment load and suggest that channel morphology may not always reflect the presence of knickpoints and differences in landscape relief.
Rates of surface lowering and landscape development in southern South Africa: a cosmogenic view
NASA Astrophysics Data System (ADS)
Richardson, Janet; Vanacker, Veerle; Lang, Andreas; Hodgson, David
2016-04-01
The landscape of southern South Africa is characterised by large-scale erosion surfaces, including extensive pediments and multiple strath terraces, which document discordant river evolution through resistant quarzitic lithologies of the Cape Fold Belt (CFB). The timing and rate of erosion is poorly constrained. New cosmogenic ages from surfaces in South Africa are presented using in situ produced 10Be. Strath terraces in deeply incised rivers at two sites within the CFB indicate slow rates of erosion (1.54 - 11.79 m/Ma), which are some of the lowest rates recorded globally. Four pediment surfaces and a depth profile of the thickest pediment were also dated, and the results indicate that there are low rates of surface lowering on the pediments (0.44 - 1.24 m/Ma). The pediments are long-lived features (minimum exposure ages of 0.47 - 1.09 Ma), and are now deeply dissected. Given the minimum exposure ages, calculated river incision rates (42- 203 m/Ma) suggest that after a long period of geomorphic stability during pediment formation there was a discrete phase of increased geomorphic activity. The calculated minimum exposure ages are considered dubious because: 1) known rates of surrounding river incision (published and ours); 2) the climate conditions and time necessary for ferricrete formation on the pediment surfaces and; 3) the deeply incised catchments in the CFB on which the pediments sit, which all point to the pediments being much older. The pediments are fossilised remnants of a much larger geomorphic surface that formed after the main phase of exhumation in southern Africa. They form a store of sediment that currently sit above the surrounding rivers that have some of the lowest erosion rates in the world. These results indicate that steep topography can prevail even in areas of low erosion and tectonic quiescence, and that whilst cosmogenic dating of landscapes is an exciting development in earth sciences, care is needed especially in ancient settings. We strongly suggest benchmarking chronometric information with geomorphic and stratigraphic information.
NASA Astrophysics Data System (ADS)
Bierman, P. R.; Reusser, L.; Portenga, E.
2011-12-01
The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion rates are similar implying long-term steady erosion consistent with dynamic steady state as advocated by Hack. However, in the Susquehanna drainage, basin scale erosion rates are significantly higher than those measured from outcrops suggesting that over time, relief is increasing. The Susquehanna River basin appears to be responding to a transient perturbation, ala Davis.
NASA Astrophysics Data System (ADS)
Wiegand, C.; Geitner, C.; Heinrich, K.; Rutzinger, M.
2012-04-01
Small and shallow eroded areas characterize the landscape of many pastures and meadows in the Alps. The extent of such erosion phenomena varies between 2 m2 and 200 m2. These patches tend to be only a few decimetres thick, with a maximum depth of 2 m. The processes involved are shallow landslides, superficial erosion by snow and livestock trampling. Key parameters that influence the emergence of shallow erosion are the geological, topographical and climatic circumstances in an area as well as its soils, vegetation and land use. The negative impact of this phenomenon includes not only the loss of soil but also the reduced attractiveness of the landscape, especially in tourist regions. One approach identifying and mapping geomorphological elements is remote sensing. The analysis of aerial images is a suitable method for identifying the multi-temporal dynamics of shallow eroded areas because of the good spatial and temporal resolution. For this purpose, we used a pixel-based approach to detect these areas semi-automatically in an orthophoto. In a first step, each aerial image was classified using dynamic thresholds derived from the histogram of the orthophoto. In a second step, the identified areas of erosion were filtered and visually in-terpreted. Based on this procedure, eroded areas with a minimum size of 5 m2 were detected in a test site located in the Inner Schmirn Valley (Tyrol, Austria). The altitude of the test site ranges between 1,980 m and 2,370 m, with a mean inclination of 36°, facing E to SE. Geologically, the slope is part of the "Hohe Tauern Window", characterized by "Bündner schists" deficient in lime and regolith. Until the 1960s, the slope was used as a hay meadow. Orthophotos from 2000, 2003, 2007 and 2010 were used for this investigation. Older aerial images were not suitable because of their lower resolution and poor ortho-rectification. However, they are useful for relating the results of the ten-year time-span to a larger temporal context. No significant increase of erosion could be observed for the investigated ten-year period. The majority of the eroded areas show no distinct trend but rather an irregular pattern of increase and decrease. The results fit well in a larger temporal context: in aerial images of the 1950s, the slope already shows several eroded patches, which did not change until the year 2000. The owners also confirm that erosion was even a problem before abandonment. In this case, the inclination of the terrain seems to exceed the influence of land-use activities. With the semi-automated detection of such eroded areas, a more objective and time-saving method was found. The results contribute to an improved understanding of the process and can initiate a long-term observation. In subsequent studies we will apply the approach to further test sites and adapt it for the detection of smaller eroded areas.
Minimal erosion of Arctic alpine topography during late Quaternary glaciation
NASA Astrophysics Data System (ADS)
Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne
2015-10-01
The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.
2011-07-01
drainageway for the flightline have been lined with concrete for a fuel-spill retention system . One unnamed tributary, which flows into Lake Totten on... potential , and erodibility all determine the ability of the ground to support man-made structures and facilities, to provide a landscaped environment...following effects : • Potential for increased likelihood of a release of hazardous materials (e.g., asbestos or lead from building demolition activities
Conflicting drainage patterns in the Matera Horst Area, southern Italy
NASA Astrophysics Data System (ADS)
Beneduce, P.; Festa, V.; Francioso, R.; Schiattarella, M.; Tropeano, M.
The Matera Horst (“ Murgia materana”) is included in the Apulian plateau, basically formed by Mesozoic shallow-water carbonates. The zone is located in a present-day temperate belt and form a flat-topped morphostructural large element inside the foreland area of the southern Apennines. This horst is bordered by high-angle faults and surrounded by downthrown blocks covered by Plio-Quaternary marine and alluvial sediments. The structural high experienced several morphological cycles from Miocene to Quaternary. In particular, three evolutionary stages can be recognized at least. The first stage is currently represented by relics of a flat erosional landscape at the top of the relieves. The second one is testified by gentle slopes with wide glacis at the foothills, locally covered by coarse waste deposits. During the third stage a series of marine terraces formed and a drainage system developed creating both bland valleys and well-defined channels and gorges. The latter streams deeply carve the Cretaceous limestone of the Matera Horst for they represent the morphological response to the tectonic uplift of the area and clearly post-date the former features. Since the fluvial net took place on Pleistocene covers, later widely eroded, it is possible to conclude that the major part of the Matera Horst drainage system represents a good example of superimposition. However, low order streams and segments of major rivers appear to be structurally controlled, as suggested by comparison with the fracture system. Further, also open synclines and gently steeped flexures may locally exert a driving control on minor streams. These apparently conflicting genetic hypotheses can be explained by the role of exhumation of inherited structures of the bedrock in add to a constant interplay between tectonics, erosion and drainage evolution during Quaternary times.
The propagation of varied timescale perturbations in landscapes
NASA Astrophysics Data System (ADS)
Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.
2016-12-01
The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone. The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone.
NASA Astrophysics Data System (ADS)
Margirier, A.; Robert, X.; Braun, J.; Laurence, A.
2017-12-01
The uplift and exhumation of the highest Peruvian peaks seems closely linked to the Cordillera Blanca normal fault that delimits and shape the western flank of the Cordillera Blanca. Two models have been previously proposed to explain the occurrence of extension and the presence of this active normal fault in a compression setting but the Cordillera Blanca normal fault and the uplift and exhumation of the Cordillera Blanca remain enigmatic. Recent studies suggested an increase of exhumation rates during the Quaternary in the Cordillera Blanca and related this increase to a change in climate and erosion process (glacial erosion vs. fluvial erosion). The Cordillera Blanca granite has been significantly eroded since its emplacement (12-5 Ma) indicating a significant mass of rocks removal. Whereas it has been demonstrated recently that the effect of eroding denser rocks can contribute to an increase of uplift rate, the impact of erosion and isostasy on the increase of the Cordillera Blanca uplift rates has never been explored. Based on numerical modeling of landscape evolution we address the role of erosion and isostasy in the uplift and exhumation of the Cordillera Blanca. We performed inversions of the present-day topography, total exhumation and thermochronological data using a landscape evolution model (FastScape). Our results evidence the contribution of erosion and associated flexural rebound to the uplift of the Cordillera Blanca. Our models suggest that the erosion of the Cordillera Blanca dense intrusion since 3 Ma could also explain the Quaternary exhumation rate increase in this area. Finally, our results allow to question the previous models proposed for the formation of the Cordillera Blanca normal fault.
Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion
NASA Astrophysics Data System (ADS)
Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.
2017-07-01
Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.
Impacts of peatland restoration on dissolved carbon loss from eroded upland peatlands in the UK
NASA Astrophysics Data System (ADS)
Evans, M.; Stimson, A.; Allott, T. E. H. A.; Holland, N.
2012-04-01
Upland blanket peatlands in the UK are severely degraded by extensive gully erosion. Large areas have experienced complete vegetation loss. In the last decade landscape scale approaches to the restoration of eroded and bare peat have been developed in the Peak District National Park in northern England. Bare peat is re-vegetated with a nurse crop of grasses established by the aerial application of lime, seed, and fertiliser. The approach has successfully re-vegetated large areas of eroded bog a nd has been shown to dramatically reduce particulate carbon losses in runoff. The impacts of the treatment on water quality and dissolved carbon loss have not previously been fully assessed. This paper reports results from a small catchment study assessing the impacts of restoration practice in the Peak District. Data from five small catchments are presented one re-vegetated, one intact and three eroded/bare catchments. Bi-weekly water samples have been taken from the catchments between January 2011 and February 2012 and during July 2012 two of the bare sites were treated with lime, seed, and fertiliser. The data show that there are significant spikes in nutrient flux post treatment and marked effects on dissolved carbon which include initial spikes in in DOC concentration but longer term reductions in DOC concentration. Monitoring is ongoing at these sites but the evidence to date points to at least a short term benefit in DOC flux reduction from this form of peatland restoration.
Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils
NASA Astrophysics Data System (ADS)
Hemingway, Jordon D.; Hilton, Robert G.; Hovius, Niels; Eglinton, Timothy I.; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V.
2018-04-01
Lithospheric organic carbon (“petrogenic”; OCpetro) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO2) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emission fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.
NASA Astrophysics Data System (ADS)
Chadwick, O.
2012-12-01
The Hawaiian Islands provide an excellent natural lab for understanding geochemical and ecosystem processes. The most important features are: a) increasing volcano age with distance from the hotspot, b) asymmetric rainfall distribution imposed by the northeasterly trade winds and orographic processes, creating wet windward and dry leeward landscapes, c) an impoverished vegetation assemblage allowing the same species to grow in strongly varying climate and soil conditions, d) the ability to hold topography relatively constant over long time scales by sampling on volcanic shield remnants that are preserved even on the oldest high island, Kauai, and e) a long-term topographic evolution that carves the gently sloping shield surfaces into steep-sided, amphitheater headed, relatively flat floored valleys. Although deeply incised valleys are well represented in Kauai, the later stages of volcanic island evolution are not well expressed in the exposed Hawaiian Islands. Therefore, I also consider examples from the Society and Gambier Islands in French Polynesia to demonstrate the biogeochemical and human ecodynamic impacts of valley expansion and subsidence leading to drowning of all but the highest elevation interfluves. In Hawaii, I and many colleagues have characterized the details of biogeochemical processes such as: a) variations in oxygen isotopes in soil water and soil minerals, b) changing nutrient sources using Sr, Ca, and Mg isotopes, c) mineral - carbon sorption and its implications for carbon storage in soils and for mineral ripening, and d) the development of leaching and redox driven pedogenic thresholds. Here, I address how these biogeochemical features influence human land-use decisions in prehistoric Hawaii and elsewhere in the Pacific. Polynesian radiation into the eastern Pacific occurred rapidly after 1300 y bp. Although they carried with them a kitchen garden each new island presented a different environmental challenge. They were sensitive to topographic and weathering conditions and adjusted their agricultural efforts accordingly. On young minimally eroded islands they favored dryland agriculture in the uplands - there being nowhere to establish extensive irrigation systems - whereas on older islands they favored irrigated lands in the extensive eroded valleys - the soil nutrient status being too depleted in the uplands. Thus Hawaii has most dryland agriculture and Kauai has most irrigated agriculture. Islands such as Easter Island created a problem because the upland soils were nutrient depleted and there were no valleys. On Moorea, valleys provided substantial areas for irrigation. However much of the uplands had infertile lateritic soils, which in places are covered by landslide deposits that contained very rocky and nutrient-rich soils. Archeological surveys demonstrate that religious and house features were sited on the lateritic soils whereas agriculture was practiced on the landslide deposits. The Gambier Islands are composed of steep highly eroded slopes and small valleys. The valleys were the only place where agriculture could be developed and it is clear that they were the locus of considerable alluvial/colluvial deposition during prehistory and even more so during historic times.
Process based modelling of soil organic carbon redistribution on landscape scale
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt
2014-05-01
Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the grain size distribution (clay, silt and sand) of the transported sediment. A test slope is modeled covering certain land use and soil management scenarios referring to different rainfall events. Results allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on landscape scale. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International vol. 29: 437-450.
Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.
2014-01-01
Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC dynamics within eroding and previously eroded fields.
Experimental evidence of reorganizing landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2015-12-01
Quantification of the dynamics of landscape reorganization under changing climatic forcing is important to understand geomorphic transport laws under transient conditions, assess response of landscapes to external perturbations for future predictive modeling, and for interpreting past climate from stratigraphic record. For such an analysis, however, real landscape observations are limited. To this end, a series of controlled laboratory experiments on evolving landscape were conducted at the St. Anthony Falls laboratory at the University of Minnesota. High resolution elevation data at a temporal resolution of 5 mins and spatial resolution of 0.5 mm were collected as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5 times precipitation rate). Our results reveal rapid topographic re-organization under a five-fold increase in precipitation with the fluvial regime encroaching into the previously debris dominated regime, widening and aggradation of channels and valleys, and accelerated erosion happening at hillslope scales. To better understand the initiation of the observed reorganization, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes on the landscape at the intermediate scales i.e., from supply-limited to transport-limited.
Buried paleoindian-age landscapes in stream valleys of the central plains, USA
Mandel, R.D.
2008-01-01
A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal Pleistocene and early Holocene. The thick, dark, cumulic A horizons of soils, representing buried Paleoindian-age landscapes, are targets for future archaeological surveys. ?? 2008 Elsevier B.V. All rights reserved.
Greaves, Mel; Maley, Carlo C.
2012-01-01
Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609
The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment
NASA Astrophysics Data System (ADS)
Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana
2017-04-01
Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil deposition rate in cultivated soils (n=22) was significantly higher (42.6±35.1 Mg ha-1 y-1) than in uncultivated soils (3.4±3.2 Mg ha-1 y-1). The mean SOC content for all soil samples was 2.5±2.0%. In uncultivated soils, significantly higher (P<0.01) amounts of SOC (3.0±2.6%), ACF (2.1±0.7%) and SCF (0.9±0.4%) were found compared to cultivated soils where the means were 1.1±0.7%, 0.7±0.5% and 0.4±0.3%, respectively. Significant (P<0.05) correlations between SOC, SOC pools and soil redistribution rates indicate that the distribution of SOC pools were significantly affected by soil redistribution in the study area. SOC and SOC pools were significantly higher at depositional (n=90, 2.8±1.8%) than at eroded sampling points (2.2±2.1%). ACF shows greater differences at eroding sites and at depositional sites than SCF reflecting that ACF is more sensitive to soil redistribution processes. Our findings emphasize the role of soil redistribution and land use in influencing the dynamics of SOC, information that can be also relevant in soil management. Improving the knowledge on the relationships between land use, soil redistribution processes and SOC fractions is of interest, especially in these Mediterranean rapidly changing landscapes.
Moore, Laura; List, Jeffrey H.; Williams, S. Jeffress; Patsch, Kiki; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Sensitivity experiments in the North Carolina Outer Banks (OBX) have previously revealed that substrate sand proportion, followed by substrate slope, sea-level rise rate and sediment-loss rate are the most important factors in determining how barrier islands respond to sea-level rise. High sediment-loss rates and low substrate sand proportions cause barriers to be smaller and more deeply incised. Thus, as sea level rise rates increase, more deeply incised barriers do not need to migrate as far landward as larger, less-incised barriers to liberate sand from the shoreface. However, if the combination of sand losses and substrate sand proportions requires a barrier to migrate landward faster than the shoreface can erode to replenish losses, a barrier will change state and begin to disintegrate. Because the substrate of the OBXis sand-rich, these barriers are likely to persist in the near-term. In contrast, model simulations for the Chandeleur Islands, Louisiana suggest sediment loss rates are too high and/or substrate sand proportions are too low to be matched by liberation of shoreface sand. These simulations further suggest that a state change, from a landward-migrating barrier system to a subaqueous shoal complex, is either already underway or imminent.
NASA Astrophysics Data System (ADS)
Howard, Alan D.; Tierney, Heather E.
2012-01-01
A landform evolution model is used to investigate the historical evolution of a fluvial landscape along the Potomac River in Virginia, USA. The landscape has developed on three terraces whose ages span 3.5 Ma. The simulation model specifies the temporal evolution of base level control by the river as having a high-frequency component of the response of the Potomac River to sea level fluctuations superimposed on a long-term epeirogenic uplift. The wave-cut benches are assumed to form instantaneously during sea level highstands. The region is underlain by relatively soft coastal plain sediments with high intrinsic erodibility. The survival of portions of these terrace surfaces, up to 3.5 Ma, is attributable to a protective cover of vegetation. The vegetation influence is parameterized as a critical shear stress to fluvial erosion whose magnitude decreases with increasing contributing area. The simulation model replicates the general pattern of dissection of the natural landscape, with decreasing degrees of dissection of the younger terrace surfaces. Channel incision and relief increase in headwater areas are most pronounced during the relatively brief periods of river lowstands. Imposition of the wave-cut terraces onto the simulated landscape triggers a strong incisional response. By qualitative and quantitative measures the model replicates, in a general way, the landform evolution and present morphology of the target region.
NASA Technical Reports Server (NTRS)
Shoemaker, E. M.; Herkenhoff, K. E.
1984-01-01
Reexamination of Upheaval Dome in the Canyonlands National Park, Utah, shows that the structure of this remarkable feature conforms with that expected for a deeply eroded astrobleme. The structure is definitely not compatible with an origin due simply to plastic flowage of salt and other rocks in the underlying Paradox Formation. The most strongly deformed rocks are bounded by a series of circumferential listric faults. The convergent displacement of the rocks corresponds to the deformation that results from collapse of a transient cavity produced by high speed impact. From considerations of the probable depth of exposure of the impact structure and upward extrapolation of the listric faults, the final collapsed crater is estimated to be about 8 to 10 km in diameter; the impacting body was on the order of 0.5 km in diameter.
Style of extensional tectonism during rifting, Red Sea and Gulf of Aden
Bohannon, R.G.
1989-01-01
Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author
TTLEM: Open access tool for building numerically accurate landscape evolution models in MATLAB
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard
2017-04-01
Despite a growing interest in LEMs, accuracy assessment of the numerical methods they are based on has received little attention. Here, we present TTLEM which is an open access landscape evolution package designed to develop and test your own scenarios and hypothesises. TTLEM uses a higher order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows the simulation of lateral tectonic displacement on a fixed grid. Through the use of a simple GUI the software produces visible output of evolving landscapes through model run time. In this contribution, we illustrate numerical landscape evolution through a set of movies spanning different spatial and temporal scales. We focus on the erosional domain and use both spatially constant and variable input values for uplift, lateral tectonic shortening, erodibility and precipitation. Moreover, we illustrate the relevance of a stochastic approach for realistic hillslope response modelling. TTLEM is a fully open source software package, written in MATLAB and based on the TopoToolbox platform (topotoolbox.wordpress.com). Installation instructions can be found on this website and the therefore designed GitHub repository.
Northern Arabia Etched Terrain
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 23 May 2002) The Science Many places on Mars display scabby, eroded landscapes that commonly are referred to as etched terrain. These places have a ragged, tortured look that reveals a geologic history of intense deposition and erosion. This THEMIS image shows such a place. Here a 10 km diameter crater is superposed on the floor of a 40 km diameter crater, most of which is outside of the image but apparent in the MOLA context image. The rugged crater rim material intermingles with low, flat-topped mesas and layers with irregular outlines along with dune-like ridges on many of the flat surfaces. The horizontal layers that occur throughout the scene at different elevations are evidence of repeated episodes of deposition. The apparent ease with which these deposits have been eroded, most likely by wind, suggests that they are composed of poorly consolidated material. Air-fall sediments are the likely candidate for this material rather than lava flows. The dune-like ridges are probably inactive granule ripples produced from the interaction of wind and erosional debris. The large interior crater displays features that are the result of deposition and subsequent erosion. Its raised rim is barely discernable due to burial while piles and blocks of slumped material along the interior circumference attest to the action of erosion. Some of the blocks retain the same texture as the surrounding undisrupted surface. It appears as if the crater had been buried long enough for the overlying material to be eroded into the texture seen today. Then at some point this overburden foundered and collapsed into the crater. Continuing erosion has caused the upper layer to retreat back from what was probably the original rim of the crater, producing the noncircular appearance seen today. The length of time represented by this sequence of events as well as the conditions necessary to produce them are unknown. The Story Have you ever seen an ink etching, where the artistic cross-hatching of lines creates the image of a town or a landscape? Click on the large THEMIS image above, and you'll see why this scabby, eroded landscape is known as etched terrain. Etched terrain is found in lots of areas of Mars. These places have a ragged, tortured look that reveals a geologic history where material has been deposited and eroded away with great intensity over time. Much of the terrain looks like peeling, layered-on paint. In a sense, that's what it's all about. Deposits of dust and dirt settled down from the air in layer after uneven layer, while the wind kept eroding it away. Dune-like ridges also mark the surface in tiny ripples. Unlike the loose sand dunes we're familiar with on Earth, these ridges are probably harder and more stationary, They are produced by long-term interactions between the sculpting, knife-like action of the Martian wind and the deposited materials of dust and 'dirt' on the surface. What we can also see in this image is a six-mile-wide crater. If you look at the context image to the right, you can see that it is actually a crater within a crater. The larger crater is about 24 miles wide in diameter. (Students! How many times bigger is the larger crater than the one that lies inside of it? If you look at the context image, you can get a really good sense of what 'four times bigger' really means.) What's interesting about this crater is that it doesn't have typical features known to many craters: it isn't nice-and-neatly round and its raised rim is barely noticeable. That's because there's been a whole lot of depositing and eroding going on here too. After the impact crater formed, it was probably entirely buried by deposits over time. In fact, it was probably buried long enough for the overlying material to be eroded into the texture seen today. At some point, the load on top foundered and collapsed into the crater. Around the inside circumference of the crater, you can see piles of slumped material (material that has slid downslope). Some of these blocks of material have the same texture as surrounding terrain that hasn't been disrupted. That's because of continuing erosion acting on all of these features. In the upper layers, continuing erosion has also caused a retreat from the original rim of the crater, producing the noncircular shape seen today.
History of the incipient Icelandic plume: Observations from ancient buried landscapes
NASA Astrophysics Data System (ADS)
Stucky de Quay, Gaia; Roberts, Gareth G.; Watson, Jonathan S.; Jackson, Christopher A.-L.
2017-04-01
Ancient buried terrestrial landscapes contain records of vertical motions which can be used to probe histories of geodynamical processes. In the North Atlantic Ocean, sedimentary basins contain excellent evidence that the continental shelf experienced staged subaerial exposure. For example, now buried landscapes were uplifted, rapidly eroded, and drowned close to the Paleocene-Eocene boundary. We use commercial wells and three-dimensional seismic data to reconstruct a 57-55 Ma landscape now buried 1.5 km beneath the seabed in the Bressay area of the northern North Sea. Geochemical analyses of organic matter from core samples intersecting the erosional landscape indicate the presence of angiosperm (flowering plant) debris. Combined with the presence of coarse clastic material, mapped beach ridges, and dendritic drainage patterns, these observations indicate that this landscape was of terrestrial origin. Longitudinal profiles of ancient rivers were extracted and inverted for an uplift rate history. The best-fitting uplift rate history has three phases and total cumulative uplift of 350 m. Biostratigraphic data from surrounding marine stratigraphy indicate that this landscape formed within 1-1.5 Ma. This uplift history is similar to that of a slightly older buried landscape in the Faeroe-Shetland basin 400 km to the west. These records of vertical motion can explained by pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations we estimate that the maximum thermal anomaly beneath Bressay was 50˚. Our observations suggest that a thermal anomaly departed the Icelandic plume as early as 58.5 Ma and had highest average temperatures at 55.6 Ma.
Anaglyph of Shaded Relief New York State, Lake Ontario to Long Island
NASA Technical Reports Server (NTRS)
2000-01-01
From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire region as recently as 18,000 years ago.The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.This anaglyph was generated by first creating a shaded relief image from the elevation data, masking the large water bodies, and draping the result back over the elevation model. Two differing perspectives were then calculated, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000Stereo Pair of Height as Color & Shaded Relief, New York State, Lake Ontario to Long Island
NASA Technical Reports Server (NTRS)
2000-01-01
From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire image as recently as 18,000 years ago.The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.This stereoscopic image was generated by first creating and combining a shaded relief image and a height as color image, both of which were derived from the elevation model. Large water bodies were then masked, and the result was then draped back over the elevation model. Two differing perspectives were then calculated, one for each eye. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000NASA Astrophysics Data System (ADS)
Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita
2017-04-01
Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation along with its properties. Plant species recovery seems to be controlled by the local lithology as it was found weaker in plots overlying limestones and marbles, comparing to that observed over schists, even for the same species. In conclusion, post-fire vegetation recovery seems to be a complex process controlled not only from species biology, but also from the geological features.
Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Gu, X.
2017-12-01
Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas moves along opening bedding planes as well as through faults and other larger scale geologic structures within basins. Understanding how shale acts as a material at all depths from that of fracking to that of the forest will enhance our ability to power our societal needs, dispose of our wastes, and sustain our water and soil resources.
Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.
Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V
2018-04-13
Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Pierre, Jon Paul; Abolt, Charles J; Young, Michael H
2015-06-01
We assess the spatial and geomorphic fragmentation from the recent Eagle Ford Shale play in La Salle County, Texas, USA. Wells and pipelines were overlaid onto base maps of land cover, soil properties, vegetation assemblages, and hydrologic units. Changes to continuity of different ecoregions and supporting landscapes were assessed using the Landscape Fragmentation Tool (a third-party ArcGIS extension) as quantified by land area and continuity of core landscape areas (i.e., those degraded by "edge effects"). Results show decreases in core areas (8.7%; ~33,290 ha) and increases in landscape patches (0.2%; ~640 ha), edges (1.8%; ~6940 ha), and perforated areas (4.2%; ~16230 ha). Pipeline construction dominates landscape disturbance, followed by drilling and injection pads (85, 15, and 0.03% of disturbed area, respectively). An increased potential for soil loss is indicated, with 51% (~5790 ha) of all disturbance regimes occurring on soils with low water-transmission rates (depth to impermeable layer less than 50 cm) and a high surface runoff potential (hydrologic soil group D). Additionally, 88% (~10,020 ha) of all disturbances occurred on soils with a wind erodibility index of approximately 19 kt/km(2)/year (0.19 kt/ha/year) or higher, resulting in an estimated potential of 2 million tons of soil loss per year. Results demonstrate that infrastructure placement is occurring on soils susceptible to erosion while reducing and splitting core areas potentially vital to ecosystem services.
NASA Astrophysics Data System (ADS)
Papanicolaou, A. N. (Thanos); Wacha, Kenneth M.; Abban, Benjamin K.; Wilson, Christopher G.; Hatfield, Jerry L.; Stanier, Charles O.; Filley, Timothy R.
2015-11-01
Most available biogeochemical models focus within a soil profile and cannot adequately resolve contributions of the lighter size fractions of organic rich soils for enrichment ratio (ER) estimates, thereby causing unintended errors in soil organic carbon (SOC) storage predictions. These models set ER as constant, usually equal to unity. The goal of this study is to provide spatiotemporal predictions of SOC stocks at the hillslope scale that account for the selective entrainment and deposition of lighter size fractions. It is hypothesized herein that ER values may vary depending on hillslope location, Land Use/Land Cover (LULC) conditions, and magnitude of the hydrologic event. An ER module interlinked with two established models, CENTURY and Watershed Erosion Prediction Project, is developed that considers the effects of changing runoff coefficients, bare soil coverage, tillage depth, fertilization, and soil roughness on SOC redistribution and storage. In this study, a representative hillslope is partitioned into two control volumes (CVs): a net erosional upslope zone and a net depositional downslope zone. We first estimate ER values for both CVs I and II for different hydrologic and LULC conditions. Second, using the improved ER estimates for the two CVs, we evaluate the effects that management practices have on SOC redistribution during different crop rotations. Overall, LULC promoting less runoff generally yielded higher ER values, which ranged between 0.97 and 3.25. Eroded soils in the upland CV were up to 4% more enriched in SOC than eroded soils in the downslope CV due to larger interrill contributions, which were found to be of equal importance to rill contributions. The chronosequence in SOC storage for the erosional zone revealed that conservation tillage and enhanced crop yields begun in the 1980s reversed the downward trend in SOC losses, causing nearly 26% of the lost SOC to be regained.
Influence of soil erosion on CO2 exchange within the CarboZALF manipulation experiment
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Augustin, Jürgen; Sommer, Michael
2014-05-01
Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of the time limited land cover and the vigorous crop growth. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore we established the interdisciplinary project 'CarboZALF' in 2009. In our field experiment CarboZALF-D we are monitoring CO2 fluxes for soil-plant systems, which cover all landscape relevant soil states in respect to erosion and deposition, like Albic Cutanic Luvisol, Calcic Cutanic Luvisol, Calcaric Regosol and Endogleyic Colluvic Regosol. Furthermore, we induced erosion / deposition in a manipulation experiment. Automated chamber systems (2.5 m, basal area 1 m2, transparent) are placed at the manipulated sites as well as at one site neither influenced by erosion, nor by deposition. CO2 flux modelling of high temporal resolution includes ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Modelling includes gap filling which is needed in case of chamber malfunctions and abrupt disturbances by farming practice. In our presentation we would like to show results of the CO2 exchange measurements for one year. Differences are most pronounced between the non-eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco and NEE compared to the Albic Cutanic Luvisol. The eroded soil (Calcic Cutanic Luvisol) demonstrated CO2fluxes intermediate between the non-affected and depositional site. Site-specific consequences for the soil C stocks will be also discussed in the presentation.
Fleck, W.B.; Vroblesky, D.A.
1996-01-01
Geomorphic processes and the aquatic habitat of the Redwood Creek basin were studied extensively between 1973 and 1983. This volume contains 22 separate articles by 32 investigators who studied geology, major storms, timber harvesting and its role on accelerating erosion, mass movement, fluvial erosion, sediment transport and storage, stream channel response to storms and landuse, stream habitat, and stream chemistry. This research describes a rapidly eroding landscape that is sensitive to effects of both landuse and major storms.
Yardangs: Nature's Weathervanes
2017-11-28
The prominent tear-shaped features in this image from NASA's Mars Reconnaissance Orbiter (MRO) are erosional features called yardangs. Yardangs are composed of sand grains that have clumped together and have become more resistant to erosion than their surrounding materials. As the winds of Mars blow and erode away at the landscape, the more cohesive rock is left behind as a standing feature. (This Context Camera image shows several examples of yardangs that overlie the darker iron-rich material that makes up the lava plains in the southern portion of Elysium Planitia.) Resistant as they may be, the yardangs are not permanent, and will eventually be eroded away by the persistence of the Martian winds. For scientists observing the Red Planet, yardangs serve as a useful indicator of regional prevailing wind direction. The sandy structures are slowly eroded down and carved into elongated shapes that point in the downwind direction, like giant weathervanes. In this instance, the yardangs are all aligned, pointing towards north-northwest. This shows that the winds in this area generally gust in that direction. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 55.8 centimeters (21 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22119
Carbon dynamics within agricultural and native sites in the loess region of Western lowa
Manies, K.L.; Harden, J.W.; Kramer, L.; Parton, W.J.
2001-01-01
In order to quantify the historical changes in carbon storage that result from agricultural conversion, this study compared the carbon dynamics of two sites in the loess region of Iowa: a native prairie and a cropland. Field data were obtained to determine present-day carbon storage and its variability within a landscape (a stable ridgetop vs. eroding upper-midslope vs. depositional lower slope). Models were used to recreate the historical carbon budget of these sites and determine the cropland's potential to be a net CO2 source or sink, relative to the atmosphere. Regardless of slope position, the cropland site contains approximately half the amount of carbon as prairie. Variability in soil carbon storage within a site as a consequence of slope position is as large or larger (variations of 200-300%) than temporal variation (???200% at all slope positions). The most extreme difference in soil carbon storage between the cropland and prairie sites is found in the soil at the upper-midslope, which is the area of greatest erosion. The models estimate that 93-172% of the carbon in the original topsoil has been lost from the cropland's eroding midslope. Much of this carbon is derived from deeper soil horizons. Either a small sink or strong source of carbon to the atmosphere is created, depending on the fate of the eroded sediment and its associated carbon.
Geologic Conditions Required for the Fluvial Erosion of Titan’s Craters
NASA Astrophysics Data System (ADS)
Kinser, Rebeca; Neish, Catherine; Howard, Alan; Schenk, Paul; Bray, Veronica
2015-11-01
In comparison to other icy satellites, Titan has a small number of impact craters on its surface. This suggests that it has a young surface and/or erosional processes that remove craters from its surface. The set of geological conditions on Titan that would allow craters to become unrecognizable by orbiting spacecraft such as Cassini is unclear. Initial results suggest that not all geologic conditions would allow for complete degradation of impact craters on Titan. Using a landscape evolution model, we explored a larger parameter space to determine the conditions under which a representative 40 km crater on Titan would be eroded. We focused on varying the values of parameters such as bedrock and regolith erodibility, sediment grain size, the weathering rate of the regolith, and whether or not the regolith was saturated with liquid hydrocarbons. We found that only after changing the saturation state of the regolith mid-way through the simulation was it possible to completely erode the crater. Since there are few craters on Titan, this suggests that during Titan’s geological history there may have been varying quantities of liquid on its surface. Titan is known to have a dense atmosphere, not unlike that of the Earth, that could allow for surface liquids to vary under a changing climate. The erosion rate could then also vary as a direct result of changing climatic conditions.
Petroleum exploration contribution to the structural history of Golfe du Lin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curnelle, R.
1988-08-01
Petroleum exploration has strongly contributed to the knowledge of the post-Hercynian structural history of the Golfe du Lion. It shows three stages: (1) Pyrenean orogenesis which started in the Late Cretaceous and culminated during the Eocene (40-75 Ma), (2) Oligocene rifting associated with the oceanic accretion of the Provencal basin, and (3) post-Messinian deformations due to salt tectonics. Pyrenean deformation of the area seems to have been controlled by its Hercynian inheritance: the major transcurrent faults of the Cevenole belt, Nimes, and the Durance. They favored displacement of the deformation in a northeasterly direction along the fault corridors, inside whichmore » the overthrust units were put into place. These east-west-oriented structures show northward vergence. The Pyrenean axial zone in this downthrown part of the belt consist of progressively more northerly units offset by transverse faults. The Oligocene rifting is represented by a series of horsts and deeply subsiding grabens linked to preexisting major faults. The horst are deeply eroded and the Mesozoic carbonates are karstified. The extension of the Messinian evaporitic deposits known throughout the Mediterranean basin is located north of the shallower deep-water well. The gravitational deformation of the salt is expressed by a large number of listric faults which originate in the salt bodies. The sedimentary sequence ends with a thick discordant, erosional, undeformed Pliocene-Quaternary series.« less
NASA Astrophysics Data System (ADS)
Harvey, K.; Moore, C. L.
2009-04-01
The geology in the transect from Canberra to the east coast of New South Wales (NSW), Australia, consists of three major groups. These include the rocks of the Palaeozoic Lachlan Fold Belt, Mesozoic Sydney Basin sediments and Cainozoic sediments. The Lachlan Fold Belt lithologies, in the study area, are characterised by an intensely deformed Ordovician turbidite basement overlain by Silurian and Devonian rift successions, with siliciclastic and volcanogenic sediment fill, bimodal volcanics and associated granitic intrusions. These rocks are unconformably overlain by thick, relatively flat-lying, Permo-Triassic glacial-periglacial, fluvial and shallow marine siliciclastic sediments of the Sydney Basin. Localised areas of Cainozoic gravels cover the palaeo-landscapes developed on the older rocks, and modern fluvial and coastal processes continue to modify the landscape. Salt is concentrated in this landscape through aeolian accession, deposition from oceanic aerosols, or rarely as fossil (connate) salts. The redistribution of salts by the process of aeolian accession typically takes place when the salts are coupled with windblown dust known as parna. For south-eastern NSW, this dust originates from areas which are more arid, such as the western regions of the NSW and Victorian states. Aerosols from the ocean can be responsible for the deposition of salts up to a few hundred kilometres from their source. This process is responsible for a significant contribution of salt in the south-east of NSW, especially on the coastal plains and the eastern Southern Highlands. The presence of connate fluids is commonly associated with marine derived sediments. While many of the geological units of the Lachlan Fold Belt were marine deposits, these units have undergone up to four major folding and faulting events and many minor deformations. It is commonly believed that these units have been too intensely deformed, upthrust, eroded and flushed to allow the retention of any original salts deposited at the time of formation. In addition, many of the sedimentary units were formed in a fluvial environment and did not have associated marine salts at the time of formation. In lowland areas, where landscapes are dominated by unconsolidated sediments, salts can be deposited and redeposited as solid grains, they can crystallise in pore spaces in the sediments and they can be adsorbed onto iron oxides and clay minerals. These salts can also be dissolved and mobilised into surface and groundwater systems and move through the landscape in this manner. In upland areas, the processes of distribution, storage and mobilisation of salts are similar, however there is typically more rock outcrop and the structure of the landscape is influenced by distribution of weathering products and unconsolidated materials. To improve the understanding of the way in which salt is mobilised in different landscapes, it is important to understand the way in which water moves through the landscape, as it is the principle agent involved in the weathering of rocks to form regolith, and water mobilises salts contained in the regolith and fractured rock. Biophysical characterisation of the landscapes developed on each of these geological units allows the constraint of salt storage and distribution across these landscapes. This can be used to inform the development of conceptual models for saline fluid flow. Development of Hydro-Geologic Landscape polygons, a scaled and modified Groundwater Flow Systems approach, describes areas with like biophysical characteristics within a landscape, and hence like salt storage capacity and fluid flow parameters. Initially this work was used to characterise landscape areas for regional natural resource management (NRM) decision making, but at more detailed scale it has proven to be a useful applied tool for on-ground agricultural management and NRM at catchment and sub-catchment scale. Further, this work helps define a range of other NRM issues in addition to the storage and release of salts across the landscape. The Hydro-Geologic Landscape model can also be used to better define and manage the following: eroded, commonly sodic, landscapes; acid sulphate affected ground; intensely silicified and ferruginised landscapes; and also has applications with respect to carbon sequestration and water quality studies.
NASA Astrophysics Data System (ADS)
Gu, X.; Rempe, D.; Brantley, S. L.
2016-12-01
The spatial distribution of weathered rock across actively eroding landscapes strongly influences how water and solutes are routed throughout the landscape. To understand the controls on the evolution of weathering profiles that underlie hilly and mountainous regions, we investigated the porosity formation and chemical weathering of shale (Coastal Belt of the Franciscan Formation) samples from four boreholes at Eel River Critical Zone Observatory (ERCZO) in Northern California. We further compared the characteristics of the shale at ERCZO to the well studied Rose Hill shale at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania. These two sites have similar mineralogical composition, but are located in vastly different climate and tectonic settings. In particular, the erosion rate at ERCZO (0.2-0.4 mm/yr) is much faster than at SSHCZO (0.015 mm/yr), and the average annual precipitation at ERCZO is higher (1.7 m/yr vs. 1 m/yr at SSHCZO). However, neutron scattering experiments show nearly identical bedrock porosities (3.1-4.6%) of parent rock. Analysis of the chemical and mineralogical compositions of samples throughout the weathering profile reveal that, at both sites, chemical weathering reactions occur at similar depths despite large differences in erosion rate: 1) carbonate and pyrite deplete sharply near the water table. 2) Chlorite oxidation also initiates near water table but shows a wider reaction front. 3) Illite dissolution occurs near the land surface. In both settings, the interface between weathered and unweathered rock roughly coincides with the water table and the porosity and water-accessibility increase toward the land surface. However, at ERCZO, the porosity and the density of micro-fractures are higher in the weathered zone than observed at SSHCZO. It is possible that both sites are moving toward a balance between rates of erosion and weathering advance, and that higher density of microfractures at the rapidly eroding ERCZO promotes faster water infiltration and faster weathering advance relative to the more slowly eroding SSHCZO. Further investigation of the origin and role of these microfractures is needed to understand the interplay between climate, erosion, and weathering that controls hillslope weathering profiles.
A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan
2018-05-01
Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.
Geomorphic control of landscape carbon accumulation
Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.
2006-01-01
We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.
Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan.
Black, Benjamin A; Perron, J Taylor; Hemingway, Douglas; Bailey, Elizabeth; Nimmo, Francis; Zebker, Howard
2017-05-19
Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth. Copyright © 2017, American Association for the Advancement of Science.
Yardang evolution from maturity to demise
NASA Astrophysics Data System (ADS)
Barchyn, Thomas E.; Hugenholtz, Chris H.
2015-07-01
Yardangs are enigmatic wind-parallel ridges sculpted by aeolian processes that are found extensively in arid environments on Earth and Mars. No general theory exists to explain the long-term evolution of yardangs, curtailing modeling of landscape evolution and dynamics of suspended sediment release. We present a hypothesis of yardang evolution using relative rates of sediment flux, interyardang corridor downcutting, yardang denudation, substrate erodibility, and substrate clast content. To develop and sustain yardangs, corridor downcutting must exceed yardang vertical denudation and deflation. However, erosion of substrate yields considerable quantities of sediment that shelters corridors, slowing downcutting. We model the evolution of yardangs through various combinations of rates and substrate compositions, demonstrating the life span, suspended sediment release, and resulting landscape evolution. We find that yardangs have a distinct and predictable evolution, with inevitable demise and unexpectedly dynamic and autogenic erosion rates driven by subtle differences in substrate clast composition.
Modifications to particles as they move through landscapes: connecting soils and sediments
NASA Astrophysics Data System (ADS)
Owens, Philip N.
2016-04-01
In many areas of the world, soils are eroded leading to the movement of particles towards the global ocean. Along this journey, there are modifications to these particles and we tend to refer to this altered material as sediment in recognition that such material may no longer be fully reflective of its source. These modifications are brought about by physical, chemical and biological processes, and by the inclusion of additional sources of material, such as channel banks. The degree of modification is partly a function of the inherent properties of the original soil material but also reflects landscape type, and the temporal and spatial scales of investigation. This presentation will consider the changes in particles between soil profiles and sediment transported in river systems, drawing on examples from studies in Canada and beyond. It is hoped that by understanding the transformation of such material we can predict better its movement and impacts.
Castillo, Juan P.; De Giorgis, Daniela; Basilio, Daniel; Gadsby, David C.; Rosenthal, Joshua J. C.; Latorre, Ramon; Holmgren, Miguel; Bezanilla, Francisco
2011-01-01
The Na+/K+ pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na+ from the cell and import 2K+ per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na+/K+ pump that represent the kinetics of extracellular Na+ binding/release and Na+ occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na+ from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site. PMID:22143771
Castillo, Juan P; De Giorgis, Daniela; Basilio, Daniel; Gadsby, David C; Rosenthal, Joshua J C; Latorre, Ramon; Holmgren, Miguel; Bezanilla, Francisco
2011-12-20
The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.
Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines
NASA Astrophysics Data System (ADS)
Limber, Patrick W.; Barnard, Patrick L.
2018-04-01
Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5 × 105-6 × 106 m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features.
Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines
Limber, Patrick; Barnard, Patrick
2018-01-01
Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5 × 105–6 × 106 m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features.
NASA Astrophysics Data System (ADS)
Seufert, V.; Wood, S.; Reid, A.; Gonzalez, A.; Rhemtulla, J.; Ramankutty, N.
2014-12-01
The most important current driver of biodiversity loss is the conversion of natural habitats for human land uses, mostly for the purpose of food production. However, by causing this biodiversity loss, food production is eroding the very same ecosystem services (e.g. pollination and soil fertility) that it depends on. We therefore need to adopt more wildlife-friendly agricultural practices that can contribute to preserving biodiversity. Organic farming has been shown to typically host higher biodiversity than conventional farming. But how is the biodiversity benefit of organic management dependent on the landscape context farms are situated in? To implement organic farming as an effective means for protecting biodiversity and enhancing ecosystem services we need to understand better under what conditions organic management is most beneficial for species. We conducted a meta-analysis of the literature to answer this question, compiling the most comprehensive database to date of studies that monitored biodiversity in organic vs. conventional fields. We also collected information about the landscape surrounding these fields from remote sensing products. Our database consists of 348 study sites across North America and Europe. Our analysis shows that organic management can improve biodiversity in agricultural fields substantially. It is especially effective at preserving biodiversity in homogeneous landscapes that are structurally simplified and dominated by either cropland or pasture. In heterogeneous landscapes conventional agriculture might instead already hold high biodiversity, and organic management does not appear to provide as much of a benefit for species richness as in simplified landscapes. Our results suggest that strategies to maintain biodiversity-dependent ecosystem services should include a combination of pristine natural habitats, wildlife-friendly farming systems like organic farming, and high-yielding conventional systems, interspersed in structurally diverse, heterogeneous landscapes.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 28 May 2002) The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.
East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan
2017-08-29
The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.
NASA Astrophysics Data System (ADS)
Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.
2008-12-01
Stream channels generally are the focus of conceptual models of valley bottom geomorphology. The channel-centered model prevalent in the tectonically inactive eastern U. S. invokes meandering stream channels migrating laterally across valley floors, eroding one bank while depositing relatively coarse sediment in point bars on the other. According to this model, overbank deposition during flooding deposits a veneer of fine sediment over the gravel substrate. Erosion is considered normal, and the net volume of sediment is relatively constant with time. A dramatic change in conditions-land-clearing during European settlement--led to widespread aggradation on valley bottoms. This historic sedimentation was incorporated in the channel-centered view by assuming that meandering streams were overwhelmed by the increased sediment load and rapidly aggraded vertically. Later, elevated stream channels cut through these deposits because of decreased sediment supply and increased stormwater runoff accompanying urbanization. This view can be traced to early ideas of stream equilibrium in which incoming sediment supply and runoff determine stream-channel form. We propose a different conceptual model. Our trenching and field work along hundreds of km of stream length in the mid-Atlantic Piedmont reveal no point bars prior to European settlement. Instead, a polygenetic valley-bottom landscape underlies the drape of historic sediment. The planar surface of this veneer gives the appearance of a broad floodplain generated by long-term meandering and overbank deposition, but the "floodplain" is a recent aggradational surface from regional base-level rise due to thousands of early American dams that spanned valley bottoms. As modern streams incise into the historic fine-grained slackwater sediment, they expose organic-rich hydric soils along original valley bottom centers; talus, colluvium, bedrock, and saprolite with forest soils along valley margins; and weathered Pleistocene (and older) alluvial fans and fan pediments at tributary confluences. Two-dimensional views along incised stream banks give the appearance of overbank sediment atop stream bed gravel, but the fine- grained bank (1-5 m) is mostly the result of slackwater sedimentation from damming, whereas the underlying gravel polygenetic in origin. The gravel is Pleistocene or older in age, and not the result of active stream channel migration and point-bar formation during the Holocene. The Holocene warm period was dominated by valley-bottom stability and widespread wetland formation, fostered by beaver activity. Modern stream channel forms are largely the result of incision and bank erosion in response to dam breaching and base- level fall, not hydraulic adjustment to prevailing (or changed) supplies of sediment and water. Rather, channel dimensions are controlled by thickness of historic sediment (i.e., dam height and distance upstream of dam) and depth of incision. Changes in slope (i.e., rapid base-level fall), rather than changes in sediment supply and runoff, are powerful determinants of modern channel forms, and there are no pre-settlement forms for comparison. At present, there is an "impedance mismatch" between those with channel-centered views and those who view the deeply weathered mid-Atlantic landscape as the result of hundreds of thousands to millions of years of slow landscape evolution.
NASA Astrophysics Data System (ADS)
Bestland, Erick A.; Liccioli, Caterina; Soloninka, Lesja; Chittleborough, David J.; Fink, David
2016-10-01
Global biogeochemical cycles have, as a central component, estimates of physical and chemical erosion rates. These erosion rates are becoming better quantified by the development of a global database of cosmogenic radionuclide 10Be (CRN) analyses of soil, sediment, and outcrops. Here we report the denudation rates for two small catchments (~ 0.9 km2) in the Mt. Lofty Ranges of South Australia as determined from 10Be concentrations from quartz sand from the following landscape elements: 1) dissected plateaux, or summit surfaces (14.10 ± 1.61 t km- 2 y- 1), 2) sandstone outcrops (15.37 ± 1.32 t km- 2 y- 1), 3) zero-order drainages (27.70 ± 1.42 t km- 2 y- 1), and 4) stream sediment which reflect a mix of landscape elements (19.80 ± 1.01 t km- 2 y- 1). Thus, the more slowly eroding plateaux and ridges, when juxtaposed with the more rapidly eroding side-slopes, are leading to increased relief in this landscape. Chemical erosion rates for this landscape are determined by combining cosmogenic denudation rates with the geochemical mass balance of parent rock, soil and saprolite utilizing zirconium immobility and existing mass balance methods. Two different methods were used to correct for chemical weathering and erosion in the saprolite zone that is shielded at depth from CRN production. The corrected values are higher than uncorrected values: total denudation of 33.24 or 29.11 t km- 2 y- 1, and total chemical erosion of 15.64 or 13.68 t km- 2 y- 1. Thus, according to these methods, 32-40% of the denudation is taking place by chemical weathering and erosion in the saprolite below CRN production depth. Compared with other similar areas, the overall denudation and chemical erosion rates are low. In most areas with sub-humid climates and tectonic uplift, physical erosion is much greater than chemical erosion. The low physical erosion rates in these Mt. Lofty Range catchments, in what is a relatively active tectonic setting, are thought to be due to low rainfall intensity during the winter wet season, which inhibits physical erosion such as land-sliding and debris flows.
NASA Astrophysics Data System (ADS)
Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.
2017-04-01
Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.
Global forest loss disproportionately erodes biodiversity in intact landscapes.
Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal
2017-07-27
Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.
NASA Astrophysics Data System (ADS)
Manzano, Saúl; Carrión, José S.; López-Merino, Lourdes; Ochando, Juan; Munuera, Manuel; Fernández, Santiago; González-Sampériz, Penélope
2018-02-01
The southern European Doñana wetlands host a highly biodiverse landscape mosaic of complex transitional ecosystems. It is one of the largest protected natural sites in Europe, nowadays endangered by intensive agricultural practices, and more recently tourism and human-induced fires. Its present-day spatial heterogeneity has been deeply investigated for the last three decades. However, a long-term perspective has not been applied systematically to this unique landscape. In this new study, a palaeoecological approach was selected in order to unravel patterns of landscape dynamism comparing dry upland and aquatic ecosystems. A 709 cm-long sediment core was retrieved and a multi-proxy approach applied (palynological, microcharcoal, grain size, magnetic susceptibility, loss-on-ignition and multivariate statistical analyses). Pollen signatures show how sensitive aquatic wetland vegetation was to environmental changes while terrestrial vegetation was stable at millennial scale. The impact of several high energy events punctuates the Early and Middle Holocene sequence, two of which relate to the local tsunami record ( 6.6 and 9.1 cal. kyr BP). Contrasting impacts of these two events in the aquatic and upland ecosystems show the importance of landscape configuration and the contingent history as key elements for coastal protection.
Identifying the core seed bank of a complex boreal bacterial metacommunity.
Ruiz-González, Clara; Niño-García, Juan Pablo; Kembel, Steven W; Del Giorgio, Paul A
2017-09-01
Seed banks are believed to contribute to compositional changes within and across microbial assemblages, but the application of this concept to natural communities remains challenging. Here we describe the core seed bank of a bacterial metacommunity from a boreal watershed, using the spatial distribution of bacterial operational taxonomic units (OTUs) across 223 heterogeneous terrestrial, aquatic and phyllosphere bacterial assemblages. Taxa were considered potential seeds if they transitioned from rare to abundant somewhere within the metacommunity and if they were ubiquitous and able to persist under unfavorable conditions, the latter assessed by checking their presence in three deeply sequenced samples (one soil, one river and one lake, 2.2-3 million reads per sample). We show that only a small fraction (13%) of all detected OTUs constitute a metacommunity seed bank that is shared between all terrestrial and aquatic communities, but not by phyllosphere assemblages, which seem to recruit from a different taxa pool. Our results suggest directional recruitment driven by the flow of water in the landscape, since most aquatic sequences were associated to OTUs found in a single deeply-sequenced soil sample, but only 45% of terrestrial sequences belonged to OTUs found in the two deeply-sequenced aquatic communities. Finally, we hypothesize that extreme rarity, and its interplay with water residence time and growth rates, may further constrain the size of the potential seed bank.
Relating management practices and nutrient export in agricultural watersheds of the United States
Sprague, Lori A.; Gronberg, Jo Ann M.
2012-01-01
Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.
NASA Astrophysics Data System (ADS)
Repstock, Alexander; Breitkreuz, Christoph; Lapp, Manuel; Schulz, Bernhard
2018-06-01
The North Saxon Volcanic Complex (NSVC) is a nested caldera edifice dominated by the c. 295 Ma Rochlitz Volcanic System and the c. 289 Ma Wurzen Volcanic System (WVS). The climactic activity of the WVS resembled a VEI ≥ 7 fissure `supereruption' resulting in voluminous and crystal-rich caldera-fill ignimbrites (minimum volume c. 199 km3); caldera outflow facies is not known sofar. Precursory to the WVS `monotonous intermediates', rhyolitic and rhyodacitic volcanic activity led to deposition of the low-volume Wermsdorf and Cannewitz ignimbrites. Modal analysis of the WVS pyroclastic units reveals an inhomogeneous crystal population (≤ 58 vol%) comprising k-feldspar, plagioclase, quartz, ortho- and clinopyroxene and minor amounts of biotite. The Wurzen caldera fill ignimbrites feature three types of fiamme: (1) felsic fiamme; (2) mafic fiamme; and (3) granite-porphyry fiamme. This, the modal variation, and the common presence of clinopyroxene and biotite indicate a strong magma mingling component in the WVS—characteristics which have not been observed in the precursory, Wermsdorf and Cannewitz ignimbrites. The caldera fill ignimbrites feature a large compositional variation from (basaltic) trachyandesite to rhyolite caused by basaltic injection and magma mingling. It is proposed that magmatic underplating led to reheating crystal mush and finally to convection processes within the WVS magma chamber. The predominance of either pyroxene or biotite as mafic mineral in the (trachy-) dacitic to rhyolitic ignimbrites indicates eruption of crystal mush from different magma batches. Prominent negative Nb and Ta anomalies of the Wurzen caldera fill ignimbrites, porphyries, and mafic dykes indicate enhanced melt-crust interaction or contamination of mantle melt. In the aftermath of the WVS caldera eruption, basaltic, trachyandesitic, andesitic and rhyolitic melts ascended puncturing the Wurzen-α and β ignimbrites leading to an array of NW-SE-trending dykes, subvolcanic bodies, and lava domes. Among these, voluminuous granite-to-syenite porphyries emplaced. The deeply eroded WVS caldera allows insight into one of the major magmatic processes that governed the post-collisional phase of the Variscan orogeny in Europe. The study of the deeply eroded supervolcano caldera will lead to the understanding of the connection between a monotonous intermediate ignimbrite and related post-eruptive intrusions.
Moore, Laura J.; List, Jeffrey H.; Williams, S. Jeffress; Stolper, David
2010-01-01
Using a morphological-behavior model to conduct sensitivity experiments, we investigate the sea level rise response of a complex coastal environment to changes in a variety of factors. Experiments reveal that substrate composition, followed in rank order by substrate slope, sea level rise rate, and sediment supply rate, are the most important factors in determining barrier island response to sea level rise. We find that geomorphic threshold crossing, defined as a change in state (e.g., from landward migrating to drowning) that is irreversible over decadal to millennial time scales, is most likely to occur in muddy coastal systems where the combination of substrate composition, depth-dependent limitations on shoreface response rates, and substrate erodibility may prevent sand from being liberated rapidly enough, or in sufficient quantity, to maintain a subaerial barrier. Analyses indicate that factors affecting sediment availability such as low substrate sand proportions and high sediment loss rates cause a barrier to migrate landward along a trajectory having a lower slope than average barrier island slope, thereby defining an “effective” barrier island slope. Other factors being equal, such barriers will tend to be smaller and associated with a more deeply incised shoreface, thereby requiring less migration per sea level rise increment to liberate sufficient sand to maintain subaerial exposure than larger, less incised barriers. As a result, the evolution of larger/less incised barriers is more likely to be limited by shoreface erosion rates or substrate erodibility making them more prone to disintegration related to increasing sea level rise rates than smaller/more incised barriers. Thus, the small/deeply incised North Carolina barriers are likely to persist in the near term (although their long-term fate is less certain because of the low substrate slopes that will soon be encountered). In aggregate, results point to the importance of system history (e.g., previous slopes, sediment budgets, etc.) in determining migration trajectories and therefore how a barrier island will respond to sea level rise. Although simple analytical calculations may predict barrier response in simplified coastal environments (e.g., constant slope, constant sea level rise rate, etc.), our model experiments demonstrate that morphological-behavior modeling is necessary to provide critical insights regarding changes that may occur in environments having complex geometries, especially when multiple parameters change simultaneously.
NASA Astrophysics Data System (ADS)
Rose, Timothy P.; Criss, Robert E.; Mughannam, Andrew J.; Clynne, Michael A.
1994-11-01
Brokeoff volcano, a Quaternary stratocone located in the Lassen volcanic center in northern California, has been deeply eroded, exposing a 10-sq km meteoric hydrothermal alteration zone at the core of the volcano. Portions of the former volcanic edifice are sufficiently well preserved that an unusual opportunity exists wherein the alteration pattern can be correlated with the position of the volcanic cone. The delta(O-18) analyses of more than 100 whole rock samples, consisting primarily of andesitic lavas, vary from +9.8 to +0.6 per mil. The highest delta(O-18) values occur in bleached, solfatarically altered rocks that have interacted with low-pH, fumarolic hot springs associated with the present-day hydrothermal system. Low delta(O-18) values are found in propylitically altered rocks that underwent isotopic exchange with meteoric hydrothermal fluids at elevated temperatures, mostly during the stratovolcanic stage (650-400 ka) of the hydrothermal system, but probably continuing today at depth. Electron microprobe analyses of secondary layer silicate minerals in strongly propylitized samples (delta(O-18) is less than +5.0) revealed the presence of discrete chlorite, suggesting that temperatures up to 200 to 250 C were attained in the shallow levels of the system. Two zones of pervasive meteoric hydrothermal alteration, defined by concentric O-18 contours that are probably interconnected at depth, are located within the original topographic edifice of the volcano. The most intensely altered rocks within these equant zones of alteration define NNW trends that coincide with stream valleys and with regional structural patterns. A comparison of the characteristics of the O-18-depleted zone at Brokeoff with those of more deeply eroded volcanic centers, such as the Comstock Lode mining district (Criss and Champion, 1991), permits the construction of composite O-18 cross sections through a hypothetical intact stratovolcano. At both Brokeoff and Comstock, hydrothermal fluids were strongly focused into plumelike zones of intense O-18 depletion. At Comstock, these low-O-18 plumes are associated with faults. Although major fault displacements are not observed at Brokeoff, the topographic and alteration patterns are consistent with the presence of a linear array of faults that acted as conduits for fluid flow up into the shallow levels of the volcano.
NASA Astrophysics Data System (ADS)
Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad
2016-07-01
We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.
NASA Astrophysics Data System (ADS)
Wakiyama, Yoshifumi; Onda, Yuichi; Yoshimura, Kazuya; Kato, Hiroaki; Konoplev, Alexei; Zheleznyak, Mark
2014-05-01
Soil erosion is the initial process which drives radiocesium into the aquatic systems and therefore the quantification of radiocesium wash-off associated with soil erosion is indispensable for mitigating the risks. This study presents two year's observation of soil erosion and radiocesium wash-off to quantify differences in radiocesium behavior in various land uses. Seven runoff plots were established in four landscapes; uncultivated farmland (Farmland A1, Farmland B1), cultivated farmland (Farmland A2, Farmland B2), grassland (Grassland A, Grassland B) and Japanese cedar forest (Forest) in Kawamata town, an area affected by the Fukushima Dai-ichi Nuclear Power Plant accident. The discharged sediments were collected approximately every two weeks. In laboratories, collected sediments were dried and weighed for calculating soil erosion rates (kg m-2) and served for measurements of radiocesium concentration (Bq kg-1) with HPGe detectors. The erosivity factor of the Universal Soil Loss Equation (R-factor: MJ mm ha-1 hr-1 yr-1) was calculated based on the data of precipitation. Standardized soil erosion rates (kg m-2 MJ-1 mm-1 ha hr yr), observed soil erosion rates divided by R-factor, was 1.8 × 10-4 in Farmland A1, 6.0 × 10-4 in Farmland A2, 1.5 × 10-3 in Farmland B1, 8.3 × 10-4 in Farmland B2, 9.6 × 10-6 in Grassland A, 5.9 × 10-6 in Grassland B and 2.3 × 10-6 in Forest. These erosion rates were basically proportional to their vegetation cover of soil surfaces except for cultivated farmlands. Concentrations of Cs-137 in eroded sediments basically depended on the local deposition of Cs-137 and varied enormously with ranging several orders of magnitude in all the landscapes. For the observation period of time decreasing trends in concentrations of Cs-137 in eroded sediments were not obvious. To compare these results with those of Chernobyl, we calculated normalized 'solid' wash-off coefficient (m2 g-1) with dividing the mean total concentration of Cs-137 in sediments by local deposition of Cs-137 (Konoplev et al., 1992). The coefficient was 4.4 × 10-5 in Farmland A1, 1.3 × 10-5 in Farmland A2, 6.4 × 10-5 in Farmland B1, 1.0 × 10-5 in Farmland B2, 2.2 × 10-5 in Grassland A, 1.0 × 10-5 in Grassland B and 8.2 × 10-5 in Forest. High erodibilities and relatively low values of normalized wash-off coefficients in cultivated farmlands can be attributed to the mixing of surface soil by ploughing. These values almost corresponded to those of Chernobyl. It was found that the total 'solid' wash-off coefficient of radiocesium from farmlands is high and for 2 years period of time after the accident reaches 10%. Generally high precipitation in the region and steep slopes promote higher wash-off of radiocesium as compared to the Chernobyl case. Also, normalized wash-off coefficients exhibited relatively less volatility than erodibilities in the landscapes. These results suggest that soil erosion management is crucial for mitigating risks of radiocesium.
NASA Astrophysics Data System (ADS)
Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.
2017-11-01
Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds
Vincent, Warwick F.; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic. PMID:29182670
Weathering-limited hillslope evolution in carbonate landscapes
NASA Astrophysics Data System (ADS)
Godard, Vincent; Ollivier, Vincent; Bellier, Olivier; Miramont, Cécile; Shabanian, Esmaeil; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team
2016-07-01
Understanding topographic evolution requires integrating elementary processes acting at the hillslope scale into the long-wavelength framework of landscape dynamics. Recent progress has been made in the quantification of denudation of eroding landscapes and its links with topography. Despite these advances, data is still sparse in carbonate terrain, which covers a significant part of the Earth's surface. In this study, we measured both long-term denudation rates using in situ-produced 36Cl concentrations in bedrock and regolith clasts and surface convexity at 12 sites along ridges of the Luberon carbonate range in Provence, Southeastern France. Starting from ∼30 mm/ka for the lowering of the summit plateau surface, denudation linearly increases with increasing hilltop convexity up to ∼70 mm/ka, as predicted by diffusive mass transport theory. Beyond this point denudation rates appear to be insensitive to the increase in hilltop convexity. We interpret this constant denudation as indicating a transition from a regime where hillslope evolution is primarily controlled by diffusive downslope regolith transport, toward a situation in which denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition into a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief in many Mediterranean carbonate landscapes.
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds.
Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.
NASA Astrophysics Data System (ADS)
Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda
2018-04-01
In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.
NASA Astrophysics Data System (ADS)
Kluiving, Sjoerd; Kok, Marielle; van Suijlekom, Jan-Jaap; Kasse, Kees
2015-04-01
In the province of North-Brabant in the southern Netherlands a diverse geological substrate is present variable in chronology, sediment properties, and soil profiles. The human influence on soil quality and topography has a history of millennia while new developments related to the horsification of the landscape in this region allow an insight in the soil patterns with associated landscape evolution. The objective in this project is to show that records of soils and landscape in this area are able to demonstrate the evolutional history and disseminate the pedological and geological knowledge to a wider audience in demonstrating that soil records and associated landscape evolution reveal a regional identity that can be very useful to apply in landscape architectural projects, such as in the horsification of the landscape. Soil records show landscape evolution has progressed in three distinct phases: 1) The oldest deposits in the region are formed by river sediments that reflect a fluvial environment that was present 800.000 years ago in the Lower-Pleistocene. Old courses of the rivers Rhine and Meuse deposited gravelly white sands and clay layers that have a distinct effect on hydrological properties. 2) Eolian sands dating from the Late Glacial, deposited 12.000-14.000 years before present were deposited by western wind directions, obvious from large scale linear and parabolic dune ridges. These sandy deposits have endured soil acidification and podzolisation resulting in classic Umbric Podzol profiles testifying of a prolonged period of landscape evolution. 3) Tree removal in the Holocene by man created unprotected open sand plains that were eroded and deposited by wind processes in small scale ridges with steep slopes up till approximately 500 years ago. These drift sands have a widespread occurrence and can be recognized in thin micro-podzol profiles in association with a distinct morphology of steep sloped dunes. Multiple soil horizons reflect different time periods elapsed and specific 'open landscape' environments, as these thin podzolic horizons testify. Future research will involve cartographic mapping by soil coring, as well as OSL dating, next to an ecological field reconnaissance. In this poster we will show how the soil in this region beholds an entire landscape history, and how that information can be combined with nature development in landscape architectural plans.
Rapid Gorge Formation in an Artificially Created Waterfall
NASA Astrophysics Data System (ADS)
Anton, L.; Mather, A. E.; Stokes, M.; Munoz Martin, A.
2014-12-01
A number of studies have examined rates of gorge formation, nick point retreat, and the controls on those rates via bedrock erodibility, the effectiveness of bedrock erosion mechanisms and the role of hillslope processes. Most findings are based on conceptual / empirical models or long term landscape analysis; but studies of recent quantifiable events are scarce yet highly valuable. Here we present expert eye witness account and quantitative survey of large and rapid fluvial erosion events that occurred over an artificially created waterfall at a spillway mouth. In 6 years a ~270 m long, ~100 m deep and ~100 to 160 m wide canyon was carved, and ~1.58 x106 m3 of granite bedrock was removed from the spillway site. Available flow data indicates that the erosion took place under unremarkable flood discharge conditions. The analysis of historic topographic maps enables the reconstruction of the former topography and successive erosion events, enabling the quantification of bedrock erosion amounts, and rates. Analysis of bedrock erodibility and discontinuity patterns demonstrates that the bedrock is mechanically strong, and that similar rock strength and fracture patterns are found throughout the region. It is apparent that structural pre-conditioning through fracture density and orientation in relation to flow and slope direction is of paramount importance in the gorge development. The presented example provides an exceptional opportunity for studying the evolution process of a bedrock canyon and to precisely measure the rate of bedrock channel erosion over a six year period. Results illustrate the highly episodic nature of the erosion and highlight several key observations for the adjustability of bedrock rivers. The observations have implications for the efficiency of bedrock erosion and raise important questions about incision rates, driving mechanisms and timescale assumptions' in models of landscape change.
The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment
NASA Astrophysics Data System (ADS)
Duvall, A. R.; Tucker, G. E.
2014-12-01
Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and hillslope diffusivity (D) to the rate of horizontal advection of topography (v). These results also reveal a potential set of recognizable geomorphic signatures within strike-slip systems that should be looked to as indicators of fault activity and/or material properties.
NASA Astrophysics Data System (ADS)
Pohl, Madlen; Hoffmann, Mathias; Hagemann, Ulrike; Jurisch, Nicole; Remus, Rainer; Sommer, Michael; Augustin, Jürgen
2016-04-01
The hummocky ground moraine landscape of north-east Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange, and thus driving the dynamics of soil organic carbon stocks in terrestrial, agricultural ecosystems. However, it is not yet clear to which extent fertilization and soil erosional status influence soil C dynamics and whether one of these factors is more relevant than the other. We present seasonal and dynamic soil C balances of biogas maize for the growing season 2011, recorded at different sites located within the CarboZALF experimental area. The sites differ regarding soils (non-eroded Albic Luvisols (Cutanic), extremely eroded Calcaric Regosol and depositional Endogleyic Colluvic Regosol,) and applied fertilizer (100% mineral N fertilizer, 50% mineral and 50% N organic fertilizer, 100% organic N fertilizer). Fertilization treatments were established on the Albic Luvisol (Cutanic). Net-CO2-exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system. Gap filling was performed based on empirical temperature and PAR dependency functions to derive daily NEE values. At the same time, daily above-ground biomass production (NPP) was estimated based on biomass samples and final harvest, using a sigmoidal growth function. In a next step, dynamic soil C balances were generated as the balance of daily NEE and NPP considering the initial C input due to N fertilizers. The resulted seasonal soil C balances varied from strong C losses at the Endogleyic Colluvic Regosol (602 g C m-2) to C gains at the Calcaric Regosol (-132 g C m-2). In general, soils exerted a stronger impact on seasonal and dynamic C balances compared to differences in applied N fertilizer. There are indications that inter-annual variations in climate conditions and interactions between soil and fertilization types also seem to affect C-dynamics. Hence, long-term measurements of different fertilization treatments at characteristic soil landscape elements are needed.
Predicted avian responses to bioenergy development scenarios in an intensive agricultural landscape
Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; McCoy, Tim D.; Guan, Qingfeng
2015-01-01
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Degradation of soil fertility can cancel pollination benefits in sunflower.
Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo
2016-02-01
Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.
Milodowski, David T; Mudd, Simon M; Mitchard, Edward T A
2015-01-01
The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored. We investigate spatial variations in aboveground biomass (AGB) across a structurally diverse mixed coniferous/deciduous forest with an order of magnitude erosion-rate gradient in the Northern Californian Sierra Nevada, USA, using high resolution LiDAR data and field plots. Mean basin slope, a proxy for erosion rate, accounts for 32% of variance in AGB within our field area (P < 0.001), considerably outweighing the effects of mean annual precipitation, temperature, and bedrock lithology. This highlights erosion rate as a potentially important, but hitherto unappreciated, control on AGB and forest structure.
NASA Astrophysics Data System (ADS)
Dortch, J.; Schoenbohm, L. M.
2011-12-01
Wind erosion of bedrock has been suggested to be responsible for the removal of more than 800 m of strata in the Qaidam Basin while wind deposition creates large-scale landforms such as the loess plateau. Wind eroded landforms, such as desert pavements in the Namibian Desert, Africa, form relic landscapes that are stable for more than 5 Ma. Desert pavements are of particular importance because of their widespread occurrence on terraces and fans, in mountains and coastal areas, and in hot and cold deserts including: Southwestern Africa, Antartic Dry valleys, Southwest USA, Denmark, Ireland, Israel, Sweden, and Central Tibet. Moreover, greater than 95 % of ventifacts on desert pavements are suspected to be late Quaternary to Holocene in age and are located on surfaces suitable for cosmogenic radionuclide dating. In spite of this, glacial, fluvial, and mass wasting systems have received far more attention than wind as an important geomorphic agent of erosion, deposition, and rock mass redistribution. Our goal is to: 1) quantify bedrock wind erosion rates; 2) quantify the ages of old, stable desert pavements; 3) and to identify which lithology-isotope pair provides the most accurate exposure ages for desert pavements in arid landscapes. The Puna Plateau, Argentina, is an ideal area to undertake this study because numerous wind eroded/deposited landforms are present, rates of fluvial erosion are low, and glaciation is limited. Mapping using remote sensed images shows that a significant portion of the Puna Plateau surface is covered by wind eroded or wind deposited landforms. These landforms align with the dominant wind direction (southeast) determined from ~450 ventifact measurements from 9 locations on the plateau. Twelve amalgamated samples sets that span six lithologies (granite, gneiss, quartzite, rhyolite, diabase, and basalt) using four cosmogenic isotopes (10Be, 26Al, 36Cl, 3He) on ventifacted clasts were collected from two surfaces to identify the most appropriate lithologies and cosmogenic isotopes for obtaining an accurate chronology of desert pavements. Moreover, 3He dating of six in situ samples from basalt flows with independent 39Ar/40Ar ages will begin to address long-term time-averaged wind erosion rates of bedrock while enabling wind-erosion rate corrections for pavement ventifacts. Our results and methodology can be applied worldwide and will aid future research in the many environments where ventifacts and/or high wind erosion rates are found.
The spatial extent of agriculturally-induced topsoil removal in the Midwestern United States
NASA Astrophysics Data System (ADS)
Thaler, E.; Larsen, I. J.; Yu, Q.; Keiluweit, M.
2017-12-01
Human-induced erosion of soil organic carbon (SOC) degrades soils, leading to decreased crop yields. Here we develop a novel approach for mapping the spatial distribution of complete topsoil loss in agricultural landscapes, focusing on the Midwestern U.S. We used the ferric iron index (FeI) derived from high-resolution satellite imagery to map Fe-rich subsoil exposed by the loss of carbon-rich topsoil. Integrating topographic curvature derived from high resolution topographic data with FeI values demonstrates that FeI values are lowest in concave hollows where eroded soil accumulates, and increase linearly with topographic curvature on convex hilltops. The relationship between FeI and curvature indicates diffusion-like erosion by tillage is a dominant mechanism of soil loss, a mechanism generally not included in soil loss prediction in the U.S. Moreover, the FeI and curvature data indicate SOC-rich topsoil has been completely removed from hilltops, exposing Fe-rich subsoil. This interpretation supported by measurements of FeI using laboratory spectra, extractable-Fe, and organic C from two soil profiles from native prairies, which preserve the pre-agricultural soil profile. FeI increased sharply from the topsoil through the subsoil and total C and extractable Fe content are negatively correlated in both profiles. We calculated topographic curvature for 3.8 x105 km2 of the formerly-glaciated Midwestern U.S. using LiDAR data and found that convex topography, where FeI values suggest topsoil has been completely stripped, covers half of the landscape. Assuming complete removal of original SOC on all hilltops, we estimate that 784 Tg of C has been removed since cultivation began in the mid-1800s and that the SOC decline results in billions of dollars in annual economic losses from decreased crop yields. Restoration of eroded SOC has been proposed as a method to sequester atmospheric CO2 while simultaneously increasing crop yields, and our estimates suggest that replenishing eroded SOC within the Midwestern U.S. to pre-settlement levels could sequester 2900 Tg of CO2, equivalent to more than half of 2016 U.S. CO2 emissions. Our study highlights both the necessity to incorporate tillage into soil erosion models and the potential for SOC restoration to increase crop yields and offset carbon emissions.
Current Topics In STEM Education Policy
NASA Astrophysics Data System (ADS)
Glembo, Tyler
2015-04-01
The role of the federal government in education is a hotly debated topic in Congress, causing education to become deeply embedded in politics. Federal funding of education, although covering only about ten percent of total cost, has large impact in the classroom, from testing standards to low interest student loans. This talk will examine the current landscape in physics education including issues facing the community at a national/federal level and also legislation such as the Elementary and Secondary Education Act. We will also examine how stakeholders can develop effective messages and participate in discussions with policy makers.
NASA Astrophysics Data System (ADS)
Cao, Wenzhuo; Lei, Qinghua
2018-01-01
Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.
Kasei Vallis Streamlined Island
2002-12-13
Except for the loss of its ring of ejecta, the crater at the leading edge of this streamlined island in Kasei Vallis, imaged here by NASA Mars Odyssey, shows no hint of the catastrophic floods that passed by it. Kasei Vallis is one of several major outflow channel systems that were active over 3 billion years ago. The intense floods scoured the landscape, eroding craters and producing streamlined islands. But in a close-up view, the evidence for these floods is not apparent. This true of the most similar terrestrial example, the channeled scablands of eastern Washington which also were formed by a catastrophic flood. http://photojournal.jpl.nasa.gov/catalog/PIA04022
NASA Astrophysics Data System (ADS)
Whittaker, Alex; Boulton, Sarah; Kent, Emiko; Zondervan, Jesse; Hann, Madeleine; Watkins, Stephen; Bell, Rebecca; Brooke, Sam
2017-04-01
Lithology and sediment supply influence the erosional dynamics of rivers crossing active faults and together these effects govern the style, timescale and means by which landscapes respond to their tectono-climatic boundary conditions. Here, for transient bedrock catchments in the Gediz Graben, Turkey, and the Gulf of Corinth, Greece, for which the timing and rate of active faulting is known, we quantify the relative importance of rock strength and sediment supply on models of fluvial incision. We determine rock type, strength and erodibility using a Schmidt hammer and structural measurements of joint density and size. We evaluate the downstream distribution of channel width and stream power and calculate the extent to which the latter scales with tectonic rates and rock strength. Sediment supply is constrained using estimates of bedrock exposure, transport capacities and erosional fluxes. For the Turkish examples, stream powers in the metamorphic rocks are four times greater than in the Neogene sediment units, indicating a four-fold difference in bedrock erodibility, K, for a two-fold variation in in Schmidt hammer hardness. In the Gulf of Corinth examples, we interpret differences in stream powers near the active faults to represent order of magnitude differences in bedrock erodibility between carbonate and sandstone/conglomerate units. We also observe that in both cases, significant along-strike variation in fault slip rate is not associated with an increase in stream power for the sedimentary rocks and we assess the extent to which this stream power deficit may also represent the effects of sediment-flux-dependent incision.
Natural vs. Human forcing: the new challenge for the Earth science community in the Anthropocene
NASA Astrophysics Data System (ADS)
Tarolli, Paolo
2014-05-01
From the analysis of Earth surface, we are able to learn a lot about its history and processes. Indeed, different landforms bear the signs of different ages, but also of climate and tectonic forcing. In addition to these processes, also the biota forcing has a role in shaping the landscape, of course at different scale and magnitude if compared with geology. In biotic landscapes the vegetation through the roots influences the soil formation and surface erosion. Biota affect also climate, and as a consequence the mechanisms and erosion rates that control the landscape evolution. However, the question is, if we can suppose that there is an evidence of biota forcing, what is the role of humans? Human activities, more than vegetation, are leaving a significant signature on the Earth, by altering its morphology and ecosystems. Also in this case, the temporal and spatial scale (and also the magnitude) are different respect to geological forcing, but the development of the society during the Holocene was significant (from hunting-gathering to farming to complex societies and metropolis): the increase of the population was related to a progressively increase of intensive agriculture and urbanization. This anthropogenic forcing deeply affected the environment, inducing or reducing erosion, and changing the equilibrium of several ecosystems. The recognition and the analysis of the human induced changes, signatures and processes represent a real challenge for the scientific community to better understand the evolution of our Planet. This analysis can help in scheduling a suitable environmental planning for a sustainable development, and to mitigate the consequences of anthropogenic alteration. Wider multidisciplinary groups based on these studies could be able to understand better the evolution of landscapes and ecosystems during the human era, providing a full dataset of multidisciplinary information that can be used by land managers and local authorities, and by the scientific community as well. The recent remotely sensed technologies (e.g. LIDAR, SAR, SfM) might help to reach part of the mentioned goals. High-resolution topography could really play a strategic and helpful role in the recognition of human-induced geomorphic and anthropogenic features, and the connected erosion. Among the most evident landscape signatures of the human fingerprint, for example, road networks and agricultural practices such as terracing deserve a great importance since significantly affect the erosional processes. A better recognition of these signatures is at the basis to improve the knowledge of the related induced processes. In addition to this, it is necessary to improve, through historical data (e.g. hydrogeological, meteorological, stratigraphy, also archeological data) and modeling, the understanding about the land use changes occurred during the last centuries, focusing on the reasoning behind these changes, and on the analysis of their effects on landscape and processes. Human society relies on the vast diversity of benefits provided by the environment. Soil biodiversity and conservation are part of the driving force behind its regulation. At the same time, human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems.
NASA Technical Reports Server (NTRS)
Sobel, Edward R.; Oskin, Michael; Burbank, Douglas; Mikolaichuk, Alexander
2005-01-01
The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest and most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New apatite fission-track (AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastwards over the last 7-11 Myr. Based on the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the time scale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and slow surface upliftrates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and develop steep river valleys, fluvial and glacial erosion become more powerful and exhumation rates once again increase. Independently determined range-noma1 shortening rates have also varied over time, suggesting a feedback between erosional efficiency and shortening rate.
Dynamic selective environments and evolutionary traps in human-dominated landscapes.
Rodewald, Amanda D; Shustack, Daniel P; Jones, Todd M
2011-09-01
Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations.
Newell, Wayne L.; Dejong, B.D.
2011-01-01
The effects of Pleistocene cold-climate geomorphology are distributed across the weathered and eroded Mid-Atlantic Coastal Plain uplands from the Wisconsinan terminal moraine south to Tidewater Virginia. Cold-climate deposits and landscape modifications are superimposed on antecedent landscapes of old, weathered Neogene upland gravels and Pleistocene marine terraces that had been built during warm periods and sea-level highstands. In New Jersey, sequences of surficial deposits define a long history of repeating climate change events. To the south across the Delmarva Peninsula and southern Maryland, most antecedent topography has been obscured by Late Pleistocene surficial deposits. These are spatially variable and are collectively described as a cold-climate alloformation. The cold-climate alloformation includes time-transgressive details of climate deterioration from at least marine isotope stage (MIS) 4 through the end of MIS 2. Some deposits and landforms within the alloformation may be as young as the Younger Dryas. Southwards along the trend of the Potomac River, these deposits and their climatic affinities become diffused. In Virginia, a continuum of erosion and surficial deposits appears to be the product of ‘normal’ temperate, climate-forced processes. The cold-climate alloformation and more temperate deposits in Virginia are being partly covered by Holocene alluvium and bay mud.
A coupled vegetation/sediment transport model for dryland environments
NASA Astrophysics Data System (ADS)
Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.
2017-04-01
Dryland regions are characterized by patchy vegetation, erodible surfaces, and erosive aeolian processes. Understanding how these constituent factors interact and shape landscape evolution is critical for managing potential environmental and anthropogenic impacts in drylands. However, modeling wind erosion on partially vegetated surfaces is a complex problem that has remained challenging for researchers. We present the new, coupled cellular automaton Vegetation and Sediment TrAnsport (ViSTA) model, which is designed to address fundamental questions about the development of arid and semiarid landscapes in a spatially explicit way. The technical aspects of the ViSTA model are described, including a new method for directly imposing oblique wind and transport directions onto a cell-based domain. Verification tests for the model are reported, including stable state solutions, the impact of drought and fire stress, wake flow dynamics, temporal scaling issues, and the impact of feedbacks between sediment movement and vegetation growth on landscape morphology. The model is then used to simulate an equilibrium nebkha dune field, and the resultant bed forms are shown to have very similar size and spacing characteristics to nebkhas observed in the Skeleton Coast, Namibia. The ViSTA model is a versatile geomorphological tool that could be used to predict threshold-related transitions in a range of dryland ecogeomorphic systems.
Process-Driven Ecological Modeling for Landscape Change Analysis
NASA Astrophysics Data System (ADS)
Altman, S.; Reif, M. K.; Swannack, T. M.
2013-12-01
Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.
Two-stage opening of the Dover Strait and the origin of island Britain
Gupta, Sanjeev; Collier, Jenny S.; Garcia-Moreno, David; Oggioni, Francesca; Trentesaux, Alain; Vanneste, Kris; De Batist, Marc; Camelbeeck, Thierry; Potter, Graeme; Van Vliet-Lanoë, Brigitte; Arthur, John C. R.
2017-01-01
Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage. PMID:28375202
Two-stage opening of the Dover Strait and the origin of island Britain
NASA Astrophysics Data System (ADS)
Gupta, Sanjeev; Collier, Jenny S.; Garcia-Moreno, David; Oggioni, Francesca; Trentesaux, Alain; Vanneste, Kris; de Batist, Marc; Camelbeeck, Thierry; Potter, Graeme; van Vliet-Lanoë, Brigitte; Arthur, John C. R.
2017-04-01
Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.
Breccia dikes from the Beaverhead Impact structure, southwest Montana
NASA Technical Reports Server (NTRS)
Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.
1992-01-01
While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.
Fascist labscapes: geneticists, wheat, and the landscapes of Fascism in Italy and Portugal.
Saraiva, Tiago
2010-01-01
This paper explores the role of scientists in the building of fascist regimes in Italy and Portugal by focusing on plant geneticists' participation in the Italian and Portuguese wheat wars for bread self-sufficiency. It looks closely at the work undertaken by Nazareno Strampelli at the National Institute of Genetics for Grain Cultivation (Italy) and by António Sousa da Câmara at the National Agronomic Experiment Station (Portugal), both of whom took wheat as their prime experimental object of genetics research. The main argument is that the production of standardized organisms—the breeder's elite seeds—in laboratory spaces is deeply entangled with their circulation through extended distribution networks that allowed for their massive presence in Italian and Portuguese landscapes such as the Po Valley and the Alentejo. The narrative pays particular attention to the historical development of fascist regimes in the two countries, advancing the argument that breeders' artifacts were key components of the institutionalization of the new political regimes.
Simulating Lanform Evolution on Mars
NASA Astrophysics Data System (ADS)
Howard, A. D.
2003-12-01
Knowledge of the planet Mars largely derives from remote sensing. Although these data are of increasing resolution and spectral coverage, including global topography at about 1 km2 resolution, interpretations vary widely about past processes and environments. Most uncertain is the environment of early Mars, during the Noachian Period (4.5 to about 3.5 b.y.). Interpretations range from a relatively warm wet climate with lakes and precipitation runoff, to a cold, dry Mars with valley networks originating solely from hydrothermally-driven seepage. Geomorphic analysis has generally been based upon image interpretation and terrestrial analogs. Increasingly, however, quantitative process and landform modeling is being brought to bear, including simulation modeling of landform evolution. A simulation model incorporates geomorphic processes relevant to Mars. Impact cratering is simulated geometrically by randomly-located impacts drawn from a size-frequency distribution. Scaling of crater dimensions is based upon fresh martian crater morphology, and heuristic rules govern inheritance from the pre-existing topography. Simulated cratered landscapes serve as initial conditions for simulated eolian erosion and deposition, inundation by lava flows,and fluvial denudation. The heuristic eolian model assumes that the long-term rate of eolian deposition and erosion is a function of an "exposure index", which is based upon the relative height of a location, such that valleys and crater floors are rapidly filled, level plains either receive no deposition or are slightly eroded, and crater rims and hill summits are eroded. Deposition on Mars is assumed to occur from saltation, deposition of dust from dust storms, and long-distance transport of crater ejecta and volcanic ash. The eolian model predicts that craters should infill at a nearly constant rate. Simulation of lava flow emplacement is also heuristic, based upon flow events of variable duration from specified source vents. The probability of a lava flow extending in a given direction is assumed greatest at the margins of recently active portions of the flow and is proportional to the local topographic gradient. Inundation of a cratered landscape is highly stochastic, with some craters surviving unscathed while neighbors are filled. Sumulation of fluvial erosion largely follows the landform evolution model of Howard [1994], with: 1) weathering rates a function of regolith thickness; 2) mass wasting involving both linear diffusional creep and accelerated motion as slopes approach a limiting angle; 3) detachment-limited fluvial erosion based upon shear stress, unit stream power, or bedload abrasion; and 4) sediment transport and deposition/erosion in alluvial channels, fans, deltas, and pediments. Fluvial erosion of cratered landscapes under assumed desert climate results in short valley systems with enclosed drainages in and between craters that resemble landscapes of the terrestrial Mojave and Basin and Range provinces. Drainage integration increases with time, but continued impact cratering disrupts fluvial networks. Model validation is limited by low resolution of images and topography, lack of stratigraphic information, absence of dating methods, and strong post-Noachian modification of landscapes by wind, mass-wasting, and "gardening" by small impacts. Nevertheless, the profiles of streams and fans are consistent with the gentle sections being sand or fine gravel, and steeper bedrock or boulder-floored sections. Simulated landscapes also compare favorably with the visual appearance of degraded Noachian cratered landscapes and with hypsometry and slope geometry statistics.
Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape
NASA Astrophysics Data System (ADS)
Schenk, P.; Moore, J.; Howard, A.
2012-04-01
We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.
NASA Astrophysics Data System (ADS)
Williams, Wendy; Apan, Armando; Alchin, Bruce
2016-04-01
Native grasslands cover over 80% of significant ecosystems in Australia, stretching across arid, semi-arid, tropical, sub-tropical and savannah landscapes. Scales of pastoral operations in Australia range from hundreds of hectares to thousands of square kilometres and are predominately found in regions with highly variable rainfall. Land use is governed by the need to cope with droughts, floods and fires. Resilience to climatic extremes can be attained through effective soil management. Connecting landscape function on the fine scale to broad land management objectives is a critical step in evaluation and requires an understanding of the relevant spectral properties in remotely sensed images. The aim of this study was to assess key landscape function indices across spatial scales in order to examine their correlation with hyperspectral reflectance measurements. The results from this study could be applied as a model for land management centred on remote sensing. The study site is located at Stonehenge (southern Queensland) on a moderately deep texture contrast soil with hard setting gravelly topsoil. Mean annual rainfall of 667 mm supports open forest and native perennial pastures with a diverse biocrust dominated by N-fixing cyanobacteria. Land use history is continuous grazing however; it had been destocked for several years prior to our study. There was some evidence of cattle, kangaroos and feral herbivores (rabbits, deer and goats) although impacts appeared to be minimal. We established four land cover types: native pasture - NP1 (~100% FPC - foliage projective cover), native pasture - NP2 (~50% FPC, 50% biocrust), natural bare soil - BC (>80% biocrust), bare and eroded soil - BE (<1% biocrust). Duplicate 0.25 m2 quadrats of each land cover type were selected contiguous with a 100 m transect across the slope. The quadrats were analysed as five micro-transects with each row consisting of five sub-cells. Stability, infiltration and nutrient cycling indices were measured in each sub-cell. Hyperspectral data were also collected at an overall and sub-cell level, under wet and dry conditions and, with FPC removed in order to record the presence of biocrusts. For each micro-transect, soil samples were taken at 0-1 cm and 1-5 cm depths for isotopic C and N, C:N ratio, and plant-available N analysis. The results were adapted at a landscape scale to represent whole paddock management. Preliminary results from the hyperspectral data indicate a clear delineation between native pastures, biocrusts and, bare and eroded soil. Landscape function fell away across all indices between NP1 and BE where; stability declined from 70 to 55%; infiltration from 36 to 25% and, nutrient cycling from 29-14%. By tapping into remote sensing, productivity improvements can be gained through targeted management. For example, our results indicate where areas of nutrient deficiencies are identified, productivity could be considerably increased through the reestablishment of biocrusts. Here we will present the results from this study with a model for its application to land management.
NASA Astrophysics Data System (ADS)
George, Richard J.
1992-01-01
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation. Aquifers with an average hydraulic conductivity of 0.55 m day -1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day -1). These aquifers are separated by an aquitard (0.065 m day -1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method. Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4-50 m 2 day -1) and is capable of producing from less than 5 to over 230 kl day -1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived. The overlying aquitard has a low transmissivity (< 1 m 2 day -1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m 2 day -1 to over 10 m 2 day -1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl -1 to greater than 250000 mgl -1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.
Does Aggregation Affect the Redistribution and Quality of Eroded SOC?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Kuhn, Nikolaus
2015-04-01
A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution of eroded SOC is determined by actual aggregate size distribution rather than mineral particle size distribution. 2) The aggregate specific distributions of SOC content from different positions along hillslopes demonstrate that preferential deposition of SOC-enrich sediment along hillslopes is much more pronounced than the mineral particle specific SOC would suggest. 3) The quality of SOC differs significantly in various settling fractions. The fast settling fractions consist of more of labile SOC, and thus is very likely to be mineralized during transport across landscapes, thereby likely contributing as a source of atmospheric CO2. Overall, effects of aggregation can potentially change the transport distance of eroded SOC and thus skew its redistribution towards the terrestrial deposition.
Dark Materials on Olympus Mons
2018-01-23
This image from NASA's Mars Reconnaissance Orbiter (MRO) shows blocks of layered terrain within the Olympus Mons aureole. The aureole is a giant apron of chaotic material around the volcano, perhaps formed by enormous landslides off the flanks of the giant volcano. These blocks of layered material have been eroded by the wind into the scenic landscape we see here. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 28.3 centimeters (11.1 inches) per pixel (with 1 x 1 binning); objects on the order of 85 centimeters (33.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22181
NASA Technical Reports Server (NTRS)
2006-01-01
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows several small, dark sand dunes and a small crater (about 1 kilometer in diameter) within a much larger crater (not visible in this image). The floor of the larger crater is rough and has been eroded with time. The floor of the smaller crater contains windblown ripples. The steep faces of the dunes point to the east (right), indicating that the dominant winds blew from the west (left). This scene is located near 38.5 S, 347.1 W, and covers an area approximately 3 km (1.9 mi) wide. Sunlight illuminates the landscape from the upper left. This southern autumn image was acquired on 1 July 2006.Enhancing wind erosion monitoring and assessment for U.S. rangelands
Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott
2017-01-01
On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.
NASA Astrophysics Data System (ADS)
Smithells, R. A.
2015-12-01
Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature sediment routing system on rift development. Our models show that migrating fault activity may be triggered by migration of sediment deposition filling the accommodation space provided by the associated half grabens. The asymmetric development of the rift can be explained by the preferred erosion and deposition of the southern flank of the Gulf of Corinth.
Witter, Robert C.; LeWinter, Adam; Bender, Adrian M.; Glennie, Craig; Finnegan, David
2017-05-22
Within Glacier Bay National Park in southeastern Alaska, the Fairweather Fault represents the onshore boundary between two of Earth’s constantly moving tectonic plates: the North American Plate and the Yakutat microplate. Satellite measurements indicate that during the past few decades the Yakutat microplate has moved northwest at a rate of nearly 5 centimeters per year relative to the North American Plate. Motion between the tectonic plates results in earthquakes on the Fairweather Fault during time intervals spanning one or more centuries. For example, in 1958, a 260-kilometer section of the Fairweather Fault ruptured during a magnitude 7.8 earthquake, causing permanent horizontal (as much as 6.5 meters) and vertical (as much as 1 meter) displacement of the ground surface across the fault. Thousands to millions of years of tectonic plate motion, including earthquakes like the one in 1958, raised and shifted the ground surface across the Fairweather Fault, while rivers, glaciers, and ocean waves eroded and sculpted the surrounding landscape along the Gulf of Alaska coast in Glacier Bay National Park.
Reconstructing a mid-Cretaceous landscape from paleosols in western Canada
Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.; Leckie, D.
2005-01-01
The Albian Stage of the mid-Cretaceous was a time of equable climate conditions with high sea levels and broad shallow epeiric seas that may have had a moderating affect on continental climates. A Late Albian landscape surface that developed during a regression and subsequent sea-level rise in the Western Canada Foreland Basin is reconstructed on the basis of correlation of paleosols penetrated by cores through the Paddy Member of the Peace River Formation. Reconstruction of this landscape refines chronostratigraphic relationships and will benefit future paleoclimatological studies milizing continental sphaerosiderite proxy records. The paleosols developed in estuarine sandstones and mudstones, and they exhibit evidence of a polygenetic history. Upon initial exposure and pedogenesis, the Paddy Member developed deeply weathered, well-drained cumulative soil profiles. Later stages of pedogenesis were characterized by hydromorphic soil conditions. The stages of soil development interpreted for the Paddy Member correlate with inferred stages of pedogenic development in time-equivalent formations located both basinward and downslope (upper Viking Formation), and landward and upslope (Boulder Creek Formation). On the basis of the genetic similarity among paleosols in these three correlative formations, the paleosols are interpreted as having formed along a single, continuous landscape surface. Results of this study indicate that the catena concept of pedogenesis along sloping landscapes is applicable to ancient successions. Sphaerosiderites in the Paddy Mem ber paleosols are used to provide proxy values for meteoric ??18O values at 52?? N paleolatitude in the Cretaceous Western Interior Basin. The meteoric ??18O values are used to refine existing interpretations about the mid-Cretaceous paleolatitudinal gradient in meteoric ?? 18O values, and the mid-Cretaceous hydrologic cycle. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Stange, Kurt Martin; Midtkandal, Ivar; Petter Nystuen, Johan; Sohbati, Reza; Murray, Andrew Sean; Spiegel, Cornelia; Kuss, Jochen
2017-04-01
Intramontane basins are typical features of every mountain chain. These topographic depressions function as sediment traps during the syn- and postorogenic evolution of a range. Hence, studying their sedimentary archives and morphogenetic development may deliver important insights into the dynamics and magnitudes of erosion-sedimentation processes in mountain catchments and their susceptibility towards changing environmental conditions. Aiming at quantifying Quaternary catchment erosion rates in the Southern Pyrenees and determining the timing and driving parameters of basin excavation stages, this research project focusses on a number of adjacent watersheds in the Valle de la Fueva in Aragon, Spain. Besides providing a comprehensive OSL and 10Be-supported catchment erosion model, potential relationships of intense late stage erosion phases with watershed capture, base level changes and climatic controls are addressed. The Valle de la Fueva comprises a number of sub-catchments of the Ainsa depression - an Eocene sedimentary basin situated in the southern Pyrenean fold and thrust belt (SPFZ) which is recognized as a prime analogue for reservoir geometries and turbidite systems. The Valle de la Fueva is a highly erodible catchment, typical for the SPFZ with its shallow and deep marine strata, conglomerates and synorogenic debris. Preliminary observations revealed systems of "cut-in-fill" alluvial terraces and residual erosion surfaces - i.e. pediments and glacis that are strongly dissected by gullies and barrancos. Basin outlet canyons are deeply entrenched into the Los Molinos thrust front and represent dramatic landscape features that are relevant to the base level and opening history of the Valle de la Fueva catchments. Combining digital terrain analysis with field surveys and exposure/burial dating, first results revealed differences in stream profile gradation and incision magnitudes among several sub-catchments. Since they share a common base level, the main river Cinca, non-uniform excavation across the five sub-catchments can be assumed. Whether river capture, lithological or structural controls caused unequal propagation of erosion across the catchments is currently under investigation. Preliminary terrace exposure ages point to extensive sediment aggradation during latest MIS 2, implying that profound landscape rejuvenation and severe erosion took place in (Early) Holocene times. Since it is established that, during Pleistocene, the Valle de la Fueva was a non-glaciated catchment, discharge of the local rivers and the (mainly seasonal) creeks should directly reflect precipitation levels across the structurally confined basin. New TCN exposure and OSL burial data will enable a detailed chronology for glacis and terrace systems, hence, allowing to calculate erosion rates and sediment budgets, and to infer discharge (and precipitation) levels for the last major climate transition. This data will be most valuable for understanding the nature and rates of glacis and terrace formation in Europe, and in temperate mountain ranges elsewhere. New, field-derived precipitation estimates (MIS 2-MIS 1), in turn, can help to significantly improve the setup of numerical landscape evolution models (e.g., stream power models) which are of great importance to modern Earth system sciences, and the quantification of surface processes in particular.
NASA Astrophysics Data System (ADS)
Sosa Gonzalez, Veronica; Bierman, Paul R.; Fernandes, Nelson F.; Rood, Dylan H.
2016-09-01
In comparison to humid temperate regions of the Northern Hemisphere, less is known about the long-term (millennial scale) background rates of erosion in Southern Hemisphere tropical watersheds. In order to better understand the rate at which watersheds in southern and southeastern Brazil erode, and the relationship of that erosion to climate and landscape characteristics, we made new measurements of in situ produced 10Be in river sediments and we compiled all extant measurements from this part of the country. New data from 14 watersheds in the states of Santa Catarina (n = 7) and Rio de Janeiro (n = 7) show that erosion rates vary there from 13 to 90 m/My (mean = 32 m/My; median = 23 m/My) and that the difference between erosion rates of basins we sampled in the two states is not significant. Sampled basin area ranges between 3 and 14,987 km2, mean basin elevation between 235 and 1606 m, and mean basin slope between 11 and 29°. Basins sampled in Rio de Janeiro, including three that drain the Serra do Mar escarpment, have an average basin slope of 19°, whereas the average slope for the Santa Catarina basins is 14°. Mean basin slope (R2 = 0.73) and annual precipitation (R2 = 0.57) are most strongly correlated with erosion in the basins we studied. At three sites where we sampled river sand and cobbles, the 10Be concentration in river sand was greater than in the cobbles, suggesting that these grain sizes are sourced from different parts of the landscape. Compiling all cosmogenic 10Be-derived erosion rates previously published for southern and southeastern Brazil watersheds to date (n = 76) with our 14 sampled basins, we find that regional erosion rates (though low) are higher than those of watersheds also located on other passive margins including Namibia and the southeastern North America. Brazilian basins erode at a pace similar to escarpments in southeastern North America. Erosion rates in southern and southeastern Brazil are directly and positively related to mean basin slope (R2 = 0.33) and weakly but significantly to mean annual precipitation (R2 = 0.05). These relationships are weaker when considering all southern and southeastern Brazil samples than they are in our smaller, localized data set. We find that smaller, steeper headwater catchments (many on escarpments) erode faster than the larger, higher-order but lower slope catchments. Erosion in southern and southeastern Brazil appears to be controlled largely by mean basin slope with lesser influence by climate and lithology.
NASA Astrophysics Data System (ADS)
Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar
2018-01-01
The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.
The Formation and Erosion History of Mt. Sharp
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Dapremont, Angela M.
2014-01-01
The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's 5 km high central mound (Fig. 1). This study addresses the formation and erosion history of Mt. Sharp. Gale lies on the topographic dichotomy between the southern highlands and the northern plains - a drop of over 2 km [1,2]. Altitude differences between the north and south rim reflect this regional slope, as do altitude differences between the deep annulus north of Mt. Sharp and the southern crater floor. Orbiter and rover images demonstrate that most exposed areas on Mt. Sharp consist of thin, sub-parallel units interpreted as sedimentary layers [3]. Gale is typical of the 50 large martian craters that have been totally or partially filled with such layers [4,5]. In many craters these sediments have been deeply eroded. Central Peak and Peak Ring: The highest point on Mt. Sharp, near the crater's center, is interpreted as a central peak [6]. The peak has a massive lower portion and a thin, smooth capping deposit (Fig. 2). Gale's size is transitional between martian craters with single central peaks and craters with peak rings approximately half the crater's diameter [2,6]. The boundaries of Mt. Sharp, as well as an arc of hills to the southeast of the mountain, closely match a circle approximately 80 km in diameter (Fig. 3). This morphology suggests that the Gale impact may have formed both a central peak and a partial peak ring, which is covered by the sediments of Mt. Sharp in the north and possibly exposed in the arc of eroded hills in the southeast quadrant (Figs. 3,4).
Draut, Amy E.; Redsteer, Margaret Hiza; Amoroso, Lee; Giosan, Liviu; Fuller, Dorian Q.; Nicoll, Kathleen; Flad, Rowan K.; Clift, Peter D.
2013-01-01
The socioeconomic impacts of climate change pose problems not only in devel- oping countries but also to residents of arid lands in the United States among marginalized societies with limited economic means. In the Navajo Nation, warming temperatures and recent drought have increased aeolian sediment mobility such that large, migrating sand dunes affect grazing lands, housing, and road access. Dust derived from this region also affects albedo and longevity of the Rocky Mountains snowpack, located downwind. We present initial results from a study that monitors sand transport and vegetation within a 0.2 km2 site in the Navajo lands, measuring the effects of drought on landscape stability since 2009. Sand mobility decreased substantially as 1 year with near-normal monsoon rainfall (2010) somewhat abated a decade-long drought, temporarily doubling vegetation cover. Vegetation that grew during 2010, with adequate rain, died off rapidly during dry conditions in 2011. Short-term increases in rainfall that promote annual, but not perennial, plant growth will not improve landscape stability in the long term. Climate projections suggest that a warmer, drier climate and potentially enhanced sediment supply from ephem- eral washes will further increase aeolian sand transport and dune activity, worsening the present challenges to people living in this region. Connections among climate, vegetation, and aeolian sediment erodibility in this region are highly relevant to other areas of the world with similar environmental problems.
Enrichment Ratio and Aggregate Stability Dynamics in Intensely Managed Landscapes
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Filley, T. R.; Hou, T.; Abban, B. K.; Wilson, C. G.; Boys, J.
2015-12-01
Challenges in understanding the soil carbon dynamics within intensely managed landscapes (IMLs), found throughout much the US Midwest, is highly complex due to the presence of heterogeneous landscape features and properties, as well as a mosaic of physical and biogeochemical processes occurring at different time scales. In addition, rainfall events exacerbate the effects of tillage by the impact of raindrops, which break down aggregates that encase carbon and dislodge and entrain soil particles and aggregates along the downslope. The redistribution of soil and carbon can have huge implications on biogeochemical cycling and overall carbon budgeting. In this study, we provide some rare field data on the mechanisms impacting aggregate stability, enrichment ratio values to estimate fluxes of carbon, as well as lignin chemistry to see influences on oxidation/mineralization rates. Rainfall simulation experiments were conducted within agricultural fields. Experiments were performed on the midslope (eroding) and toeslope (depositional) sections of representative hillslopes, under a variety of land managements, including row crop (conventional and conservation) and restored grasslands. Sensors were utilized to capture the evolution of soil moisture, temperature, microbial respiration pulses, and discharge rates to identify pseudo-steady state conditions. Samples collected at the weir outlet were tested for sediment concentrations and size fractions, as well as carbon and lignin fluxes. Preliminary findings show that conservation management practices have higher aggregate stability and decreased mass fluxes of carbon in the downslope than conventional tillage techniques.
Legacy of Topography and Land Use on Erosion and Soil Organic Carbon Burial
NASA Astrophysics Data System (ADS)
Nater, E. A.; Dalzell, B. J.; Fissore, C.; Wu, A.; Yoo, K.; Ginakes, P.
2012-12-01
There is a growing body of evidence to suggest that soil erosion in agricultural landscapes can function as a net carbon (C) sink due to burial of carbon-rich topsoil at depositional sites. It has been argued, however, that soil organic carbon (SOC) degradation during erosion may represent an important source of C to the atmosphere and weaken the overall strength of the erosion-induced C sink. In this study we compare SOC in the top 1.5 m of soil in grassland and cropland landscapes and employ 137Cs (from atmospheric testing of thermonuclear bombs) as a proxy for soil movement over the past half-century. Using soil depth and terrain attributes calculated from LiDAR-derived digital elevation models, we are able to account for 82 and 83% of the variability observed in SOC and 137Cs content from grassland sites. For cropland sites, we are able to explain 78 and 50% of SOC and 137Cs variability, respectively. For cropland sites, slope steepness and curvature play a stronger predictive role than in grassland sites. Comparing SOC and 137Cs content between grassland and agricultural sites shows that there is not preferential SOC depletion in eroded soils. This suggests that, for the soils studied here, erosion functions to redistribute SOC around the landscape but does not accelerate SOC decomposition beyond what can be replaced by primary productivity.
Distinctive fingerprints of erosional regimes in terrestrial channel networks
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.
2017-12-01
Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.
Feast to famine: Sediment supply control on Laramide basin fill
NASA Astrophysics Data System (ADS)
Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.
2006-03-01
Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.
Impact of landscape disturbance on the quality of terrestrial sediment carbon in temperate streams
NASA Astrophysics Data System (ADS)
Fox, James F.; Ford, William I.
2016-09-01
Recent studies have shown the super saturation of fluvial networks with respect to carbon dioxide, and the concept that the high carbon dioxide is at least partially the result of turnover of sediment organic carbon that ranges in age from years to millennia. Currently, there is a need for more highly resolved studies at stream and river scales that enable estimates of terrestrial carbon turnover within fluvial networks. Our objective was to develop a new isotope-based metric to estimate the quality of sediment organic carbon delivered to temperate streams and to use the new metric to estimate carbon quality across landscape disturbance gradients. Carbon quality is defined to be consistent with in-stream turnover and our metric is used to measure the labile or recalcitrant nature of the terrestrial-derived carbon within streams. Our hypothesis was that intensively-disturbed landscapes would tend to produce low quality carbon because deep, recalcitrant soil carbon would be eroded and transported to the fluvial system while moderately disturbed or undisturbed landscapes would tend to produce higher quality carbon from well-developed surface soils and litter. The hypothesis was tested by applying the new carbon quality metric to 15 temperate streams with a wide range of landscape disturbance levels. We find that our hypothesis premised on an indirect relationship between the extent of landscape disturbance and the quality of sediment carbon in streams holds true for moderate and high disturbances but not for un-disturbed forests. We explain the results based on the connectivity, or dis-connectivity, between terrestrial carbon sources and pathways for sediment transport. While pathways are typically un-limited for disturbed landscapes, the un-disturbed forests have dis-connectivity between labile carbon of the forest floor and the stream corridor. Only in the case when trees fell into the stream corridor due to severe ice storms did the quality of sediment carbon increase in the streams. We argue that as scientists continue to estimate the in-stream turnover of terrestrially-derived carbon in fluvial carbon budgets, the assumption of pathway connectivity between carbon sources to the stream should be justified.
Erosion of Terrestrial Rift Flank Topography: A Quantitative Study
NASA Technical Reports Server (NTRS)
Weissel, Jeffrey K.
1999-01-01
Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.
Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water
NASA Astrophysics Data System (ADS)
Reinhardt, Aleks; Doye, Jonathan P. K.; Noya, Eva G.; Vega, Carlos
2012-11-01
We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.
The folding landscape of the epigenome
NASA Astrophysics Data System (ADS)
Olarte-Plata, Juan D.; Haddad, Noelle; Vaillant, Cédric; Jost, Daniel
2016-04-01
The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes—and how—to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.
Bedrock Denudation on Titan: Estimates of Vertical Extent and Lateral Debris Dispersion
NASA Technical Reports Server (NTRS)
Moore, Jeffrey; Howard, A. D.; Schenk, Paul Michael
2013-01-01
Methane rainfall and runoff, along with aeolian activity, have dominated the sculpting of Titan s landscape. A knowledge of the vertical extent of bedrock erosion and the lateral extent of the resulting sediment is useful for several purposes [1]. For instance, what is the magnitude and expression of modification of constructional landforms (e.g., mountains)? Does highland denudation and the filling of basins with sediment cause adjustments (uplift and subsidence) in the crustal ice shell? Here we report preliminary findings of putative eroded craters and the results of landform evolution modeling (Fig. 1) that suggest that approx. 250 m of net bedrock erosion has at least locally taken place and approx.1 km of maximum local erosion.
Which DEM is best for analyzing fluvial landscape development in mountainous terrains?
NASA Astrophysics Data System (ADS)
Boulton, Sarah J.; Stokes, Martin
2018-06-01
Regional studies of fluvial landforms and long-term (Quaternary) landscape development in remote mountain landscapes routinely use satellite-derived DEM data sets. The SRTM and ASTER DEMs are the most commonly utilised because of their longer availability, free cost, and ease of access. However, rapid technological developments mean that newer and higher resolution DEM data sets such as ALOS World 3D (AW3D) and TanDEM-X are being released to the scientific community. Geomorphologists are thus faced with an increasingly problematic challenge of selecting an appropriate DEM for their landscape analyses. Here, we test the application of four medium resolution DEM products (30 m = SRTM, ASTER, AW3D; 12 m = TanDEM-X) for qualitative and quantitative analysis of a fluvial mountain landscape using the Dades River catchment (High Atlas Mountains, Morocco). This landscape comprises significant DEM remote sensing challenges, notably a high mountain relief, steep slopes, and a deeply incised high sinuosity drainage network with narrow canyon/gorge reaches. Our goal was to see which DEM produced the most representative best fit drainage network and meaningful quantification. To achieve this, we used ArcGIS and Stream Profiler platforms to generate catchment hillshade and slope rasters and to extract drainage network, channel long profile and channel slope, and area data. TanDEM-X produces the clearest landscape representation but with channel routing errors in localised high relief areas. Thirty-metre DEMs are smoother and less detailed, but the AW3D shows the closest fit to the real drainage network configuration. The TanDEM-X elevation values are the closest to field-derived GPS measurements. Long profiles exhibit similar shapes but with minor differences in length, elevation, and the degree of noise/smoothing, with AW3D producing the best representation. Slope-area plots display similarly positioned slope-break knickpoints with modest differences in steepness and concavity indices, but again best represented by AW3D. Collectively, our study shows that despite the higher effective resolution of TanDEM-X (12 m), the AW3D (30 m) data performs strongly across all analyses suggesting that it currently offers the greatest potential for regional mountain geomorphological analyses.
Tool Belts: Latitudinal-Belt Predictions for the Persistence of Landscapes
NASA Astrophysics Data System (ADS)
Willenbring, Jane; Brocard, Gilles
2016-04-01
The ability of rivers to cut through rock and re-establish equilibrium sets the pace of landscape response to uplift. Because of associations between tectonics, erosion, and weathering, high rates of rock uplift may initiate a cascade of processes that are linked to high rates of weathering and eventually sequestration of CO2 over geologic timescales. How long does it take to completely change the topographic form after uplift and where on Earth do relict landscapes persist despite uplift? Large expanses of subdued landscapes are common at high elevation in mountain ranges. Preservation of subdued fragments amongst steeply dissected regions can therefore be a simple matter of chance, reflecting the time it takes for dissection to remove any remaining parcel of the pre-existing topography after a tectonic perturbation. Some of these relicts may, however, possess characteristics - often a product of the climate - that make them intrinsically resistant to dissection. One common mode of conversion of a subdued landscape into a deeply dissected one is the propagation of upstream-migrating erosion waves that transmit the signal of uplift and base level lowering across entire landscapes. Following a shift in tectonic forcing, the Earth's surface progressively adjusts its topographic form over millions of years, seeking to re-establish equilibrium with the new forcing. Here, we show that a high degree of weathering leading to smaller average soil grains at the surface hinders the capacity of rivers to incise. We show that globally, rates of cosmogenic nuclide-derived denudation rates fall into latitudinal belts with (1) low rates of denudation in areas with high temperatures and high precipitation where rock fragments do not persist at the soil surface, (2) high rates of denudation at mid-latitudes where rock fragments exist and are carried efficiently by the river flow, and (3) low rates of denudation at high latitudes where large grains at the surface inhibit channelized flow. We hypothesize that climate sets the pace for landscape change through a balance between slope and grain size. This process acts as a governor on flux of weathering products to the oceans.
NASA Astrophysics Data System (ADS)
Maccherini, Simona; Vergari, Francesca; Santi, Elisa; Marignani, Michela; Della Seta, Marta; Rossi, Mauro; Torri, Dino; Del Monte, Maurizio
2014-05-01
In this work we present the results of multidisciplinary and long-lasting investigations on the complex cause-effect relationship among water erosion processes and vegetation cover on the Lucciolabella Natural Reserve, located in Upper Orcia Valley (Southern Tuscany). The area is a Site of Community Importance, where the cultural landscape of biancane badlands - water erosion landforms generated on Plio-Pleistocene marine clay outcrops - is preserved. We explored the direction and rate of change in land use and natural habitats of the biancana badland landscapes over the last 50 years, evaluating the erosion-vegetation dynamics and examining the processes involved in the biancana badland area. Historical information, such as early cadastral documents and diachronically analyzed aerial photographs, has been used to construct a database of the natural trends of modifications relative to habitat and plant species distribution, with the analysis of the consequent variations on the frequency of instability events. Old and recent land use maps were compared by using the TWINSPAN classification. Soil erodibility evaluation on the eroded biancana surfaces, regosols and well-developed vertisols, was carried out together with a decadal erosion monitoring program and the investigation of the physico-chemical properties of parent material. We also considered the effects of a few roots on saturated soil shear strength to introduce direct links between plants and soil processes. Moreover we run the LANDPLANER model in order to deepen the effect of the fragmentation of the vegetation cover on water erosion processes affecting biancana badlands. Long-lasting geomorphological survey and field erosion monitoring highlighted that biancana stations experience a very strong surface lowering rate due to water erosion, attaining an average rate of 2.4 - 2.6 cm/a. Moreover, biancanas in a more juvenile development phase, such as the ones of Lucciolabella Natural Reserve, show the maximum erosion rate, which reach more than 4 cm/a, and the most relevant dispersive clay fraction. The surface proneness to water erosion is enhanced by the wide presence of piping in the area. We showed that rills and subsurface micropipes are characterized by analogous erosion processes, meaning that they can be contrasted and eventually halted through a common mitigation strategy, and we observed a clear positive trend that will substantially suppress rilling at very low plant cover (no more than 20%). The analysis of the landscape changes showed a decrease in bare or scarcely vegetated spots of 0.9 ha/a during the last decades. Even if vegetation cover seems to stabilize upper layers of soil profile, rural abandonment and the lack of appropriate management practices have contributed to vegetation encroaching on biancana badland slopes mainly ascribed to generalist ruderal species, causing a loss of elements of high ecological and cultural values. If the encroachment continues to progress at this rate, in 35-40 years from now all the biancana domes will be completely re-vegetated. Badlands were previously kept alive by limited but nonetheless devastating grazing activities. If this picture is correct, then mimicking traditional badland grazing practices seems to be a necessary step towards saving the landscape and biodiversity that the protected areas were established to preserve.
Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii
NASA Astrophysics Data System (ADS)
Osborn, G.; Sheardown, A.; Blay, C.
2016-12-01
The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and there is no reason to expect any difference in lithology. The lower-angle slopes may be erosional footslopes, genetically similar to desert pediments, left behind as the fluted cliffs retreat. On their uphill edges the lower-angle slopes are expanding in area as the cliffs retreat but at the coast the slopes are being consumed by wave action.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
The mechanics of erosion on soil organic redistribution
NASA Astrophysics Data System (ADS)
Papanicolaou, T.
2014-12-01
Soil Organic Carbon (SOC) is an important constituent of the earth's fabric derived from the breakdown of above ground plant litter, plant rhizomes and root exudates in the form of organic by-products. Stocks of SOC can be affected by a variety of natural and human-induced drivers, including climate and land management practices which collectively could affect intrinsic and extrinsic factors related to SOC, for example, soil texture, soil microclimate, and biomass accumulation rates . In intensely managed agricultural landscapes (IMLs), i.e., regions of significant land use change where significant degradation of SOC has been reported due to soil erosion, enhancing the sequestration or storage potential of SOC is of paramount importance to the ecosystem well-being of these landscapes. A literature review reveals that aspects of the SOC research have received considerable attention in the bioegeochemical, ecological, and agricultural disciplines because available SOC stocks within a soil column affect the evolution of key soil biogeochemical constituents. However, at the landscape scale the quantitative assessment of the SOC storage potential suffers in parts from lack of understanding of the collective effects that tillage and water-driven erosion have on the transport and burial of the eroded SOC. In this study an integrative process-based modeling framework that couples an established biogeochemical soil column model with a physically-based, landscape oriented watershed model capable of replicating the collective erosion effects on the mobilization and redistribution of SOC is developed. All simulations are conducted in an agricultural watershed in the U.S. Midwest Clear Creek, IA which has experienced intense agriculture since the beginning of the century to also assess the legacy effects that land use change and SOC initialization periods have on current SOC stock estimations.
NASA Astrophysics Data System (ADS)
Yu, M.; Rhoads, B. L.; Stumpf, A.
2017-12-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.
Decoding Dynamic Topography: Geologic and Thermochronologic Constraints From Madagascar
NASA Astrophysics Data System (ADS)
Stephenson, S.; White, N.
2017-12-01
Madagascar's topography is characterized by flights of low relief peneplains separated by escarpments. Remarkably, nearly 50% of the landscape is higher than 500 m despite being surrounded by passive margins. Eocene marine limestones crop out at elevations of 400-800 m, staircases of Pleistocene marine terraces fringe the coastline and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar has experienced Neogene epeirogenic uplift. Positive oceanic residual depth anomalies surrounding the island, long wavelength free-air gravity anomalies, Neogene basaltic volcanism and slow sub-plate shear wave velocities show that Neogene uplift is generated by convective circulation within the upper mantle. However, the landscape's erosional response to long wavelength uplift is poorly known. Here, we present 18 apatite fission track and apatite He analyses of granitoid samples from sub-vertical transects in central and northern Madagascar. Apatite fission track ages are 200-250 Ma with mean track lengths of 12 μm. Apatite He ages are highly dispersed in samples from the highlands (i.e. AHe age > 150 Ma) but a narrower, younger range of 30-60 Ma is found on the coastal lowlands. Joint inverse modeling was carried out using the QTQt transdimensional reversible jump Markov Chain Monte Carlo (MCMC) algorithm to determine time-temperature histories. Results show that the coastal lowlands experienced up to 1 km of exhumation during the Neogene Period, whilst the central highlands experienced either very slow or negligible exhumation. This spatial distribution is expected when kinematic waves of incision propagate through a fluvially eroding landscape from coast to interior. Inverse modeling of suites of river profiles and forward landscape simulations support this interpretation. Our results show that the landscape response to modest (i.e. 1 km) regional uplift is diachronous and that thermochronologic observations can be used to detect spatial patterns of denudation. These combined observations help to constrain the fluid dynamical evolution of the upper mantle beneath Madagascar.
Khalifa, Ashraf M.; Yu, Bofu; Caroll, Chris; Burger, Peter; Mulligan, David
2018-01-01
Open-cut coal mining in Queensland results in the formation of extensive saline overburden spoil-piles with steep slopes at the angle of repose (approximately 75% or 37o). These spoil-piles are generally found in multiple rows, several kilometers in length and heights of up to 50 or 60 m above the original landscape. They are highly dispersive and erodible. Legislation demands that these spoil piles be rehabilitated to minimize on-site and off-site discharges of sediment and salt into the surrounding environment. To achieve this, the steep slopes must be reduced, stabilized against erosion, covered with topsoil and re-vegetated. Key design criteria (slope gradient, slope length and vegetation cover) are required for the construction of post-mining landscapes that will result in acceptable erosion rates. A novel user-friendly hillslope computer model MINErosion 3.4 was developed that can accurately predict potential erosion rates from field scale hillslopes using parameters measured with a 3m laboratory tilting flume-rainfall simulator or using routinely measured soil physical and chemical properties. This model links MINErosion 2 with a novel consolidation and above ground vegetation cover factors, to the RUSLE and MUSLE equations to predict the mean annual and storm event erosion rates. The RUSLE-based prediction of the mean annual erosion rates allow minesites to derive the key design criteria of slope length, slope gradient and vegetation cover that would lead to acceptable erosion rates. The MUSLE-based prediction of storm event erosion rates will be useful as input into risk analysis of potential damage from erosion. MINErosion 3.4 was validated against erosion measured on 20 m field erosion plots established on post-mining landscapes at the Oakey Creek and Curragh coalmines, as well as on 120 and 70 m erosion plots on postmining landscapes at Kidston Gold Mine. PMID:29590190
So, Hwat Bing; Khalifa, Ashraf M; Yu, Bofu; Caroll, Chris; Burger, Peter; Mulligan, David
2018-01-01
Open-cut coal mining in Queensland results in the formation of extensive saline overburden spoil-piles with steep slopes at the angle of repose (approximately 75% or 37o). These spoil-piles are generally found in multiple rows, several kilometers in length and heights of up to 50 or 60 m above the original landscape. They are highly dispersive and erodible. Legislation demands that these spoil piles be rehabilitated to minimize on-site and off-site discharges of sediment and salt into the surrounding environment. To achieve this, the steep slopes must be reduced, stabilized against erosion, covered with topsoil and re-vegetated. Key design criteria (slope gradient, slope length and vegetation cover) are required for the construction of post-mining landscapes that will result in acceptable erosion rates. A novel user-friendly hillslope computer model MINErosion 3.4 was developed that can accurately predict potential erosion rates from field scale hillslopes using parameters measured with a 3m laboratory tilting flume-rainfall simulator or using routinely measured soil physical and chemical properties. This model links MINErosion 2 with a novel consolidation and above ground vegetation cover factors, to the RUSLE and MUSLE equations to predict the mean annual and storm event erosion rates. The RUSLE-based prediction of the mean annual erosion rates allow minesites to derive the key design criteria of slope length, slope gradient and vegetation cover that would lead to acceptable erosion rates. The MUSLE-based prediction of storm event erosion rates will be useful as input into risk analysis of potential damage from erosion. MINErosion 3.4 was validated against erosion measured on 20 m field erosion plots established on post-mining landscapes at the Oakey Creek and Curragh coalmines, as well as on 120 and 70 m erosion plots on postmining landscapes at Kidston Gold Mine.
Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy
NASA Astrophysics Data System (ADS)
Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice
2017-04-01
Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.
Soil organic carbon dynamics as affected by topography in southern California hillslopes systems
NASA Astrophysics Data System (ADS)
Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.
2015-12-01
Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion - in the context of a changing climate. For these reasons, our findings are relevant to make better predictions on future SOC dynamics in areas with evolving and complex three-dimensional landscapes.
Geomorphology: the Shock of the Familiar
NASA Astrophysics Data System (ADS)
Dietrich, W. E.
2008-12-01
Everyone experiences landscapes and has a sense about how they work: water runs down hill, it erodes and carries sediments, and that's about it, right? Introductory earth science text books are uniformly qualitative about the field, and leave one with little sense of wonder, and certainly not "shock". But four shocks occur if one peels away the first impressions. First, landscapes are surprisingly similar: the same forms are repeated in virtually all environments, including under the ocean and on other planets. Second, we lack theory and mechanistic observations to answer many simple first-order questions, e.g. what controls the width of a river, how does rock type control hillslope form and erosion rate, or, is there a topographic signature of life. Third, there are unexpected connections between surface erosion, deep earth processes, and climate. And fourth, the field itself, despite having been a subject of study for well over 100 years, is currently experiencing a revolution of ideas and discoveries through new tools, observatories, centers, journals, books, contributions of researchers from other disciplines, and from a significant hiring of young researchers in geomorphology. Deep messages await discovery in the simple landforms surrounding us.
Exploring the impact of multiple grain sizes in numerical landscape evolution model
NASA Astrophysics Data System (ADS)
Guerit, Laure; Braun, Jean; Yuan, Xiaoping; Rouby, Delphine
2017-04-01
Numerical evolution models have been widely developed in order to understand the evolution of landscape over different time-scales, but also the response of the topography to changes in external conditions, such as tectonics or climate, or to changes in the bedrock characteristics, such as its density or its erodability. Few models have coupled the evolution of the relief in erosion to the evolution of the related area in deposition, and in addition, such models generally do not consider the role of the size of the sediments reached the depositional domain. Here, we present a preliminary work based on an enhanced version of Fastscape, a very-efficient model solving the stream power equation, which now integrates a sedimentary basin at the front of a relief, together with the integration of multiple grain sizes in the system. Several simulations were performed in order to explore the impact of several grain sizes in terms of stratigraphy in the marine basin. A simple setting is considered, with uniform uplift rate, precipitation rate, and rock properties onshore. The pros and cons of this approach are discussed with respect to similar simulations performed considering only flux.
Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V
2017-05-01
Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
A New View of Dynamic River Networks
NASA Astrophysics Data System (ADS)
Perron, J. T.; Willett, S.; McCoy, S. W.
2014-12-01
River networks are the main conduits that transport water, sediment, and nutrients from continental interiors to the oceans. They also shape topography as they erode through bedrock. These hierarchical networks are dynamic: there are numerous examples of apparent changes in the topology of river networks through geologic time. But these examples are geographically scattered, the evidence can be ambiguous, and the mechanisms that drive changes in river networks are poorly understood. This makes it difficult to assess how pervasive river network reorganization is, how it operates, and how the interlocking river basins that compose a given landscape are changing through time. Recent progress has improved the situation. We describe three developments that have dramatically advanced our understanding of dynamic river networks. First, new topographic, geophysical and geochronological measurement techniques are revealing the rate and extent of river network adjustment. Second, laboratory experiments and computational models are clarifying how river networks respond to tectonic and climatic perturbations at scales ranging from local to continental. Third, spatial analysis of genetic data is exposing links between landscape evolution, biological evolution, and the development of biodiversity. We highlight key problems that remain unsolved, and suggest ways to build on recent advances that will bring dynamic river networks into even sharper focus.
Landscape self organisation: Modelling Sediment trains
NASA Astrophysics Data System (ADS)
Schoorl, J. M.; Temme, A. J. A. M.; Veldkamp, A.
2012-04-01
Rivers tend to develop towards an equilibrium length profile, independently of exogenous factors. In general, although still under debate, this so-called self-organisation is assumed to be caused by simple feedbacks between sedimentation and erosion. Erosion correlates positively with gradient and discharge and sedimentation negatively. With the LAPSUS model, which was run for the catchment of the Sabinal, a small river in the South of Spain, this interplay of erosion and sedimentation results in sediment pulses (sequences of incision and sedimentation through time). These pulses are visualised in a short movie ( see http://www.youtube.com/watch?v=V5LDUMvYZxU). In this case the LAPSUS model run did not take climate, base level nor tectonics into account. Therefore, these pulses can be considered independent of them. Furthermore, different scenarios show that the existence of the pulses is independent of precipitation, erodibility and sedimentation rate, although they control the number and shape of the pulses. A fieldwork check showed the plausibility of the occurrence of these sediment pulses. We conclude that the pulses as modelled with LAPSUS are indeed the consequence of the feedbacks between erosion and sedimentation and are not depending on exogenous factors. Keywords: Landscape self-organisation, Erosion, Deposition, LAPSUS, Modelling
NASA Astrophysics Data System (ADS)
Herman-Mercer, N. M.; Elder, K.; Toohey, R.; Mutter, E. A.
2015-12-01
In regions of the arctic and subarctic baseline measurements of permafrost dynamics are lacking and scientific research can be especially expensive when remote sensing techniques are utilized. This research demonstrated the importance of local observations, a powerful tool for understanding landscape change, such as permafrost dynamics. Fifty-five interviews were recently conducted with community members in four villages of the lower Yukon River Basin and Yukon Delta to understand local environmental and landscape changes and the impacts these changes may be having on the lives and livelihoods of these communities. The interviews were semi-structured and focused on many climate and landscape change factors including knowledge of permafrost in their community or the surrounding landscape. All positive respondents stated that they believe the permafrost is thawing. The research revealed that residents of the arctic and subarctic interact with permafrost in a variety of ways. Some people utilize permafrost to store food resources and have found that they have to dig deeper presently than in their youth in order to find ground cold enough. Others are involved in digging graves and report encountering easier excavation in recent years. Subsistence hunters and gatherers travel long distances by snowmobile and boat, and have noticed slumping ground, eroding river banks and coast lines, as well as land that seems to be rising. Finally, all residents of the arctic and subarctic interact with permafrost in terms of the stability of their homes and other infrastructure. Many interview participants complained of their houses leaning and needing more frequent adjustment than in the past. Indigenous residents of the arctic and subarctic have intimate relationships with their landscape owing to their subsistence lifestyle and are also connected to the landscape of the past through the teachings of their elders. Further, arctic and subarctic communities will sustain the majority of the impacts of permafrost degradation as the infrastructure of their communities is affected. Local residents have much to add to the study of permafrost in the arctic and subarctic. Ultimately, arctic and subarctic research will benefit most from the careful integration of local observations and physical science techniques.
A 1-D mechanistic model for the evolution of earthflow-prone hillslopes
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.
2011-12-01
In mountainous terrain, deep-seated landslides transport large volumes of material on hillslopes, exerting a dominant control on erosion rates and landscape form. Here, we develop a mathematical landscape evolution model to explore interactions between deep-seated earthflows, soil creep, and gully processes at the drainage basin scale over geomorphically relevant (>103 year) timescales. In the model, sediment flux or incision laws for these three geomorphic processes combine to determine the morphology of actively uplifting and eroding steady state topographic profiles. We apply the model to three sites, one in the Gabilan Mesa, California, with no earthflow activity, and two along the Eel River, California, with different lithologies and varying levels of historic earthflow activity. Representative topographic profiles from these sites are consistent with model predictions in which the magnitude of a dimensionless earthflow number, based on a non-Newtonian flow rheology, reflects the magnitude of recent earthflow activity on the different hillslopes. The model accurately predicts the behavior of earthflow collection and transport zones observed in the field and estimates long-term average sediment fluxes that are due to earthflows, in agreement with historical rates at our field sites. Finally, our model predicts that steady state hillslope relief in earthflow-prone terrain increases nonlinearly with the tectonic uplift rate, suggesting that the mean hillslope angle may record uplift rate in earthflow-prone landscapes even at high uplift rates, where threshold slope processes normally limit further topographic development.
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
NASA Astrophysics Data System (ADS)
Sepuru, Terrence Koena; Dube, Timothy
2018-07-01
In this study, we determine the most suitable multispectral sensor that can accurately detect and map eroded areas from other land cover types in Sekhukhune rural district, Limpopo Province, South Africa. Specifically, the study tested the ability of multi-date (wet and dry season) Landsat 8 OLI and Sentinel-2 MSI images in detecting and mapping eroded areas. The implementation was done, using a robust non-parametric classification ensemble: Discriminant Analysis (DA). Three sets of analysis were applied (Analysis 1: Spectral bands as independent dataset; Analysis 2: Spectral vegetation indices as independent and Analysis 3: Combined spectral bands and spectral vegetation indices). Overall classification accuracies ranging between 80% to 81.90% for MSI and 75.71%-80.95% for OLI were derived for the wet and dry season, respectively. The integration of spectral bands and spectral vegetation indices showed that Sentinel-2 (OA = 83, 81%), slightly performed better than Landsat 8, with 82, 86%. The use of bands and vegetation indices as independent dataset resulted in slightly weaker results for both sensors. Sentinel-2 MSI bands located in the NIR (0.785-0.900 μm), red edge (0.698-0.785 μm) and SWIR (1.565-2.280 μm) regions were selected as the most optimal for discriminating degraded soils from other land cover types. However, for Landsat 8OLI, only the SWIR (1.560-2.300 μm), NIR (0.845-0.885 μm) region were selected as the best regions. Of the eighteen spectral vegetation indices computed, NDVI and SAVI and SAVI and Global Environmental Monitoring Index (GEMI) were ranked selected as the most suitable for detecting and mapping soil erosion. Additionally, SRTM DEM derived information illustrates that for both sensors eroded areas occur on sites that are 600 m and 900 m of altitude with similar trends observed in both dry and wet season maps. Findings of this work emphasize the importance of free and readily available new generation sensors in continuous landscape-scale soil erosion monitoring. Besides, such information can help to identify hotspots and potentially vulnerable areas, as well as aid in developing possible control and mitigation measures.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 10 April 2002) The Science This THEMIS visible image was acquired near 7o S, 172o W (188o E) and shows a remarkable martian geologic deposit known as the Medusae Fossae Formation. This Formation, seen here as the raised plateau in the upper two-thirds of the image, is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region the deposit has been heavily eroded by the wind to produce a series of linear ridges called yardangs. These parallel ridges point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to sculpt the dry landscape of Mars. The Medusae Fossae Formation has been completely stripped from the surface in the lower third of the image, revealing a harder layer below that is more resistant to wind erosion. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Several ancient craters that were once completely buried by this deposit are being exposed, or exhumed, as the overlying Medusae Formation is removed. Very few impact craters are visible on this Formation, indicating that the surface seen today is relatively young, and that the processes of erosion are likely to be actively occurring. The Story Medusa of Greek mythology fame, the name-giver to this region, had snaky locks of hair that could turn a person to stone. Wild and unruly, this monster of the underworld could certainly wreak havoc on the world of the human imagination. As scary as she was, Medusa would have no advantage over the fierce, masterful winds blowing across Mars, which once carved the streaky, terrain at the top of this image. Wild and whipping, these winds have slowly eroded away the 'topsoil,' revealing ancient craters and other surface features they once covered. The loosely cemented particles of this 'topsoil' are likely made up of dust or volcanic ash, and are thus more susceptible to windblown erosion. The Martian winds have actually been strong and relentless enough over time to strip the land in the bottom of this image of the material that once covered it, leaving it hard and bare to the eye.
Soil Erosion Study on the Chinese Loess Plateau
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Guo, Shengli; Kuhn, Nikolaus
2017-04-01
The Chinese Loess Plateau, because of its highly erodible loess soils and hilly topography, has been extensively studied by soil scientists and geomorphologists. As a research hotspot, there are five national-level field stations across the Loess Plateau, with hundreds of erosion plots set up with various sizes, lengths, slope angles and vegetation covers. In addition, huge indoor rain simulation facilities exist in in different institutes which can provide rainfall simulations under a wide range of controlled conditions. Consequently, national-level restoration projects have achieved tremendous improvements in curbing soil erosion and improving regional agro-ecosystem, mostly by afforestation and soil rehabilitation. However, when implementing the advanced techniques and models that have been widely applied in the rest of the world, there are often regional considerations, which demand new approaches to overcome. One example are the unintentional impacts of restoration efforts, such as the establishment of apple orchards. Over 20 years, they have caused an increase in soil erodibility and lowered local ground water levels. Neither before the introduction of this landscape rehabilitation technique, nor now, has the impact of intensive fruit production been systematically studied, despite lending itself to systematic experiments. The lack of research is attributed to the general idea that trees protect soils and improve environmental services. This presentation identifies several such specific regional environmental issues associated with soil erosion on the Loess Plateau and discusses strategies to avoid missing important research questions.
Perspective: Highly stable vapor-deposited glasses
NASA Astrophysics Data System (ADS)
Ediger, M. D.
2017-12-01
This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.
Proteomics and circadian rhythms: It’s all about signaling!
Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin
2014-01-01
1. Abstract Proteomic technologies using mass spectrometry (MS) offer new perspectives in circadian biology, in particular the possibility to study posttranslational modifications (PTMs). To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic heath as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. PMID:25103677
The surface of Mars: there view from the viking 1 lander.
Mutch, T A; Binder, A B; Huck, F O; Levinthal, E C; Liebes, S; Morris, E C; Patterson, W R; Pollack, J B; Sagan, C; Taylor, G R
1976-08-27
The first photographs ever returned from the surface of Mars were obtained by two facsimile cameras aboard the Viking 1 lander, including black-and-white and color, 0.12 degrees and 0.04 degrees resolution, and monoscopic and stereoscopic images. The surface, on the western slopes of Chtyse Planitia, is a boulder-strewn deeply reddish desert, with distant eminences-some of which may be the rims of impact craters-surmounted by a pink sky. Both impact and aeolian processes are evident. After dissipation of a small dust cloud stirred by the landing maneuvers, no subsequent signs of movement were detected on the landscape, and nothing has been observed that is indicative of macroscopic biology at this time and place.
The surface of Mars: The view from the Viking 1 lander
Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Liebes, S.; Morris, E.C.; Patterson, W.R.; Pollack, James B.; Sagan, C.; Taylor, G.R.
1976-01-01
The first photographs ever returned from the surface of Mars were obtained by two facsimile cameras aboard the Viking 1 lander, including black-and-white and color, 0.12?? and 0.04?? resolution, and monoscopic and stereoscopic images. The surface, on the western slopes of Chryse Planitia, is a boulder-strewn deeply reddish desert, with distant eminences - some of which may be the rims of impact craters - surmounted by a pink sky. Both impact and aeolian processes are evident. After dissipation of a small dust cloud stirred by the landing maneuvers, no subsequent signs of movement were detected on the landscape, and nothing has been observed that is indicative of macroscopic biology at this time and place.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Beerten, Koen; Vanacker, Veerle; Christl, Marcus; Rogiers, Bart; Wouters, Laurent
2017-07-01
The rate at which low-lying sandy areas in temperate regions, such as the Campine Plateau (NE Belgium), have been eroding during the Quaternary is a matter of debate. Current knowledge on the average pace of landscape evolution in the Campine area is largely based on geological inferences and modern analogies. We performed a Bayesian inversion of an in situ-produced 10Be concentration depth profile to infer the average long-term erosion rate together with two other parameters: the surface exposure age and the inherited 10Be concentration. Compared to the latest advances in probabilistic inversion of cosmogenic radionuclide (CRN) data, our approach has the following two innovative components: it (1) uses Markov chain Monte Carlo (MCMC) sampling and (2) accounts (under certain assumptions) for the contribution of model errors to posterior uncertainty. To investigate to what extent our approach differs from the state of the art in practice, a comparison against the Bayesian inversion method implemented in the CRONUScalc program is made. Both approaches identify similar maximum a posteriori (MAP) parameter values, but posterior parameter and predictive uncertainty derived using the method taken in CRONUScalc is moderately underestimated. A simple way for producing more consistent uncertainty estimates with the CRONUScalc-like method in the presence of model errors is therefore suggested. Our inferred erosion rate of 39 ± 8. 9 mm kyr-1 (1σ) is relatively large in comparison with landforms that erode under comparable (paleo-)climates elsewhere in the world. We evaluate this value in the light of the erodibility of the substrate and sudden base level lowering during the Middle Pleistocene. A denser sampling scheme of a two-nuclide concentration depth profile would allow for better inferred erosion rate resolution, and including more uncertain parameters in the MCMC inversion.
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
7 CFR 12.21 - Identification of highly erodible lands criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the basis for identifying highly erodible land. The erodibility index for a soil is determined by dividing the potential average annual rate of erosion for each soil by its predetermined soil loss tolerance (T...
Removal of Covalent Heterogeneity Reveals Simple Folding Behavior for P4-P6 RNA*
Greenfeld, Max; Solomatin, Sergey V.; Herschlag, Daniel
2011-01-01
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested rugged energy landscapes. Recently, single molecule fluorescence resonance energy transfer (smFRET) studies have exposed heterogeneity in many RNAs, consistent with deeply furrowed rugged landscapes. We turned to an RNA of intermediate complexity, the P4-P6 domain from the Tetrahymena group I intron, to address basic questions in RNA folding. P4-P6 exhibited long-lived heterogeneity in smFRET experiments, but the inability to observe exchange in the behavior of individual molecules led us to probe whether there was a non-conformational origin to this heterogeneity. We determined that routine protocols in RNA preparation and purification, including UV shadowing and heat annealing, cause covalent modifications that alter folding behavior. By taking measures to avoid these treatments and by purifying away damaged P4-P6 molecules, we obtained a population of P4-P6 that gave near-uniform behavior in single molecule studies. Thus, the folding landscape of P4-P6 lacks multiple deep furrows that would trap different P4-P6 molecules in different conformations and contrasts with the molecular heterogeneity that has been seen in many smFRET studies of structured RNAs. The simplicity of P4-P6 allowed us to reliably determine the thermodynamic and kinetic effects of metal ions on folding and to now begin to build more detailed models for RNA folding behavior. PMID:21478155
The topographic signature of anthropogenic geomorphic processes
NASA Astrophysics Data System (ADS)
Tarolli, P.; Sofia, G.
2014-12-01
Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: opportunities and challenges, Geomorphology, 216, 295-312, doi:10.1016/j.geomorph.2014.03.008.
Wet meadow ecosystems and the longevity of biologically-mediated geomorphic features
NASA Astrophysics Data System (ADS)
Nash, C.; Grant, G.; O'Connor, J. E.
2016-12-01
Upland meadows represent a ubiquitous feature of montane landscapes in the U.S. West and beyond. Characterized by flat valley floors flanked by higher-gradient hillslopes, these meadows are important features, both for the diverse ecosystems they support but also because they represent depositional features in what is primarily an erosional environment. As such, they serve as long-term chronometers of both geological and ecological processes in a portion of the landscape where such records are rare, and provide a useful microcosm for exploring many of the questions motivating critical zone science. Specifically, meadows can offer insights into questions regarding the longevity of theses biologically-mediated landscapes, and the geomorphic thresholds associated with transitions between metastable landscape states. Though categorically depositional, wet meadows have been shown to rapidly shift into erosional landscapes characterized by deep arroyos, declining water tables, and sparse, semi-arid ecosystems. Numerous hypotheses have been proposed explaining this shift: intensive ungulate usage, removal of beaver, climatic shifts, and intrinsic geomorphic evolution. Even less is known about the mechanisms controlling the construction of these meadow features. Evidence seems to suggest these channels oscillate between two metastable conditions: deeply incised, single-threaded channels and sheet-flow dominated valley-spanning wetlands. We present new evidence exploring the subsurface architecture of wet meadows and the bidirectional process cascades potentially responsible for their temporal evolution. Using a combination of near surface geophysical techniques and detailed stratigraphic descriptions of incised and un-incised meadows throughout the Silvies River Basin, OR, we examine mechanisms responsible both for the construction of these features and their apparently rapid transition from depositional to erosional. Our investigation focuses specifically on potential interactions between biogenic and geomorphic features and processes: beaver meadow complexes, downed wood, and the accumulation of senescent vegetation to form thick peat mounds. These observations have broad potential utility to help guide meadow restoration efforts across the Western U.S.
NASA Astrophysics Data System (ADS)
Fan, Fenglei; Fan, Wei
2014-01-01
A new viewpoint for understanding the urban expansion using impervious surface information, which is obtained using remote sensing imagery is presented. The purpose of this study is to understand and describe the urban expansion pattern with the view of impervious surfaces instead of the conventional view of land use/land cover. Six years' worth of impervious surface data (1990-2009) of Guangzhou are extracted via linear spectral unmixing analysis methods and spatial and temporal characteristics are discussed in detail. The area, density, and gravity centers changes of the impervious surfaces are analyzed to explain internal/external urban expansion. Meanwhile, five landscape indexes, such as patch density, edge density, mean patch size, area-weighted, and fragmentation index, are utilized to describe landscape changes of Guangzhou in past 20 years, which are influenced deeply by the impervious surface expansion. In order to detail landscape changes, two transects corresponding to the two urban expansion directions are designed and five landscape metrics in these two transects are reported. Conclusions can be drawn and shown as following: (1) temporally, the area of impervious surfaces increases from 12,998 to 59,911 ha from 1990 to 2009. The amount of impervious surface varies in different periods. The annual growth rates of impervious surface area during 1990-1995, 1995-1998, and 1998-2000 are 10.16%, 11.61%, and 10.78%, respectively; (2) annual growth rates decrease from 10.78% (1998-2000) to 5.67% (2000-2003). Nevertheless, from 2003-2009, the annual growth rate has a slight increase compared to a former period. The rate is 5.91% (3) spatially, gravity centers of medium and high percentage impervious surfaces migrate slightly; and (4) according to the gradient analysis in the two transects, it can be observed that the high percentage of impervious surface increases gradually in new city districts (from west to east and from south to north).
Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure
Whyte, J.J.; Jung, R.E.; Schmitt, C.J.; Tillitt, D.E.
2000-01-01
This review compiles and evaluates existing scientific information on the use, limitations, and procedural considerations for EROD activity (a catalytic measurement of cytochrome P4501A induction) as a biomarker in fish. A multitude of chemicals induce EROD activity in a variety of fish species, the most potent inducers being structural analogs of 2,3,7,8-tetracholordibenzo-p-dioxin. Although certain chemicals may inhibit EROD induction/activity, this interference is generally not a drawback to the use of EROD induction as a biomarker. The various methods of EROD analysis currently in use yield comparable results, particularly when data are expressed as relative rates of EROD activity. EROD induction in fish is well characterized, the most important modifying factors being fish species, reproductive status and age, all of which can be controlled through proper study design. Good candidate species for biomonitoring should have a wide range between basal and induced EROD activity (e.g., common carp, channel catfish, and mummichog). EROD activity has proven value as a biomarker in a number of field investigations of bleached kraft mill and industrial effluents, contaminated sediments, and chemical spills. Research on mechanisms of CYP1A-induced toxicity suggests that EROD activity may not only indicate chemical exposure, but also may also precede effects at various levels of biological organization. A current research need is the development of chemical exposure-response relationships for EROD activity in fish. In addition, routine reporting in the literature of EROD activity in standard positive and negative control material will enhance confidence in comparing results from different studies using this biomarker.
NASA Astrophysics Data System (ADS)
Byun, J.; Seong, Y.
2012-12-01
The development process of High Altitude Plateaus (HAPs) has been a controversial issue in geomorphology. HAPs have been interpreted as uplifted erosional surfaces mainly controlled by fluvial processes. Recent studies, however, argued that the definition of the Paleo Erosional Surfaces (PESs) is ambiguous and HAPs, considered as the uplifted PESs, could be formed under various local lithologic, tectonic and climatic conditions. But these suggestions were severely limited by the lack of quantitative data in the field. Here, we investigate this issue of the development process of HAPs through estimating both basin wide erosion rates and soil production rates of the Daegwanryeong area in the Korean Peninsula (KP), where a HAP with low-relief hilly landscape is found. Study area has been known as a typical one of PESs in the KP, which have been uplifted since the early Miocene. Particularly deeply weathered saprolites, easily found in the study area, have also been believed to be resulted from the Tertiary deep weathering under higher temperature at the paleo sea level. First, analysis of 10Be in saprolite from the base of the soil column, except one under no soil mantle, shows that soil production rates decline linearly with increasing soil depth. These data provide a soil production function with a maximum soil production rate of 70.6m/m.y. under 24cm of soil and a minimum of 22m/m.y. under 75cm of soil. Accordingly it means that the interface between soil and saprolite have gone down maximum 141.2 m since the Quaternary. Thus it suggests that the saprolites are the results under current local climatic and geomorphic conditions rather than the relict of the Tertiary deep weathering. Second, measurements of 10Be in alluvial sediments show that the average erosion rate (70.7m/m.y.) of the study area is close to the maximum soil production rate, thus basin wide erosion rates of the study area are controlled by the current soil production rates. It means that about 1,400m has been eroded off since the early Miocene, when uplift of the KP seems to begin. Consequently it is difficult to think the HAP of the study area as the PES as well as one, which has been eroded keeping the original form of the PES. Furthermore, the erosion rates are lower than the uplift rates during the late Quaternary (about 300m/m.y.), but similar to the uplift rates before the early Miocene (about 100m/m.y.). Therefore, it suggests that the HAP of the study area has been uplifted since the early Miocene, but has not approached the steady state with the neotectonics of the KP. In summary, we suggest that the HAP of the study area is the result of the geomorphic process under current climatic and geomorphic condition rather than the relict of the PES.
Soil erodibility for water erosion: A perspective and Chinese experiences
NASA Astrophysics Data System (ADS)
Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric
2013-04-01
Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.
NASA Astrophysics Data System (ADS)
Nesci, Olivia; Valentini, Laura
2016-04-01
Born from a desire to promote the Italian landscape by integrating its physical aesthetic with its cultural and artistic heritage, we develop a story about the landscape told in popular science, and supported by visual stimulations, poetry and ancient music. Our work proceeds through two different routes. The first route analyzes the landscape from the scientific point of view trying to understand how it evolves and responds in response to changes in independent variables. The second path examines the landscape from a perspective more closely related to the visual and emotional impact that a place evokes, its history, its cultural significance, and perception of its fragility. The latter is perhaps a more complex path, more intimate, which develop fully only through the intersection of different forms of language, linked to specific arts. Three different disciplines focused on the same site, the combination of which results in an emotional experience where the encounter between different languages becomes an expression of the place. Among the many amazing landscapes of Italy, we focus on three known sites from the hystorical region of Montefeltro, in central Italy: "The flatiron of Petrano Mount", "The Stones of Montefeltro", "The sea-cliff of San Bartolo". Since a few years we have created a team of five researchers-artists, called "TerreRare" (Rare Earth Elements), whose mission is the desire to promote the gorgeous Italian landscape. Olivia Nesci, geomorphologist, begins this story analyzing the processes and the "forces" that have created and modified the landscape over time. Laura Valentini, a geologist and a musician, through the musical language, try to reproduce the emotional impact of the site, by searching for a piece of ancient music, composed for harpsichord. The choice of the musical instrument and the historical period is not accidental: the harpsichord has a punchy and gritty tone that clearly expresses the "strength" of the landscape; early music aptly suited to represent natural forms whose history began millions of years ago. Lorenzo Carnevali, artist from Urbino, is the poet that has expressly dedicated verses to these places, in an effort to grab that balance which summarizes the History and Nature. The poems are performed by Maxx Brizigotti, eclectic actor and director, deeply linked to his territory. Music and verses are the soundtrack of videos made by Stefano Baiocchi that, by using beautiful images of these places, creatively interprets the science, art and history. Our purpose is to educate to a new perception of the place, starting from its beauty and arriving to a knowledge of its problems and weakness.
NASA Astrophysics Data System (ADS)
Andres, M.; Hagemann, U.; Pohl, M.; Sommer, M.; Augustin, J.
2012-04-01
Erosion effects and the influence of organic fertiliser (fermentation residues, FR) on the climate impact and greenhouse gas (GHG) emissions of N2O, CH4 and CO2 were investigated at an experimental field side in the lowlands of north-east Germany during the years 2010 and 2011. This intensively used agricultural landscape is glacially shaped and characterized by well-drained sandy and loamy soils. Erosion effects on GHG exchange were investigated for energy maize at the CarboZALF-D project site near Dedelow, Uckermark. In addition to a non-eroded haplic luvisol (reference), emissions were measured for three eroded soil types: a) eroded haplic luvisol, b) haplic regosol (calcaric) and c) endogleyic colluvic regosol (deposition side). In a second field trial, the impact of organic fertilization on GHG emissions was assessed for a range of FR fertilization (0-200% N) and compared to a non-fertilized and a minerally fertilized control. Only 70% of the N content of the FR was assumed to be available for plants. Discontinuous measurements of N2O and CH4 were carried out bi-weekly using the closed-chamber method and 20-minute interval sampling. Gas samples were analysed using a gas chromatograph. Gas fluxes were calculated using linear regression, interpolated and finally cumulated. CO2 flux measurements of ecosystem respiration (Reco) and net ecosystem exchange (NEE) were conducted every four weeks by using a non-flow-through non-steady-state closed chamber system (Livingston and Hutchinson 1995) based on Drösler (2005). Measurement gaps of NEE were filled by modeling the Reco fluxes using the Lloyd-Taylor (Lloyd and Taylor 1994) method and the gross primary production (GPP) fluxes using Michaelis-Menten (Michaelis and Menten 1913) modeling approach. Annual NEE balances were then calculated based on the modeled Reco and GPP fluxes. All investigated soil types were C sinks, storing up to 9,6 t CO2eq ha-1 yr-1. As expected for this well-drained soils, the climate impact of CH4 emissions was negligible on all plots with mineral and organic fertilization (-0,05 t CO2eq ha-1 yr-1 up to 0,01 t CO2eq ha-1 yr-1). On minerally fertilized plots, contribution of N2O emissions were very different and varied between 10% and 43% to the overall climate impact (-9,6 t CO2eq ha-1 yr-1 to -2,3 t CO2eq ha-1 yr-1). The highest amount was investigated on the deposition plot. For organic fertilization, N2O emissions increased moderate from 0,02 t CO2eq ha-1 yr-1 (non-fertilized control) with increasing amount of fertilizer to 1,5 t CO2eq ha-1 yr-1. In contrast to N fertilizer application, the contribution of N2O and CH4 to the overall climate impact of eroded agriculturally soils in the glacially shaped landscape is very heterogeneous. Drösler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Livingston, G.P. & Hutchinson, G.L. 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. p. 14-51. In P.A. Matson & Harriss, R.C. (ed.) Methods in ecology - Biogenic trace gases: Measuring emissions from soil and water. Blackwell Science, Oxford, England
NASA Astrophysics Data System (ADS)
Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.
2017-12-01
Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.
Newell, Wayne L.; Clark, Inga; Bricker, Owen
2004-01-01
Overview -- We have interpreted the geomorphology of the submerged landforms to show thick Holocene sediment that accumulated from three different sources during on-going sea level rise that began 10,000 - 12,000 years ago at the end of Pleistocene. We used a variety of subsurface data from the literature and unpublished information to document thicknesses, materials, dates and duration of processes. Although the details of the true extent and thicknesses are unknown, the deposits of different sources have affinity for particular geographic and submerged geomorphic regions of the Chesapeake Bay and its tidal tributaries. During the last Pleistocene glacial event (Wisconsian), the area now occupied by the Chesapeake Bay was exposed, sea level being about 100 m lower than present. The Susquehanna River valley extended beyond the Bay well out on the exposed Atlantic Shelf. The Susquehanna transported glacial outwash from northern Pennsylvania and New York; the glacio-fluvial deposits were graded to the edge of the continental shelf (Colman et al., 1990; Hack, 1957). Other Piedmont and Appalachian Rivers including the Potomac and James Rivers transported large volumes of sediment to confluence with the Susquehanna channel. Locally, across the encompasing coastal plain landscape, intensive headward erosion, gullies, and slope failure, generated extensive debris flows, sheet wash, and terraces of braided alluvial channel deposits. Large volumes of sediment were moved through the river system to the continental shelf. This was accomplished by a cold, wet climate that included much freezing and thawing; steep eroding slopes resulted from the lowering of sea level from the previous high stand (Stage 5e) between glacial events. Across the Delmarva peninsula extensive wind-blown deposits of sand and loess were recycled onto low terraces and uplands from the unvegetated glacio-fluvial sediments moving through the system (Denny et al., 1979). The volume and distribution of sediment eroded and transported from the watershed surrounding the area of the Bay was several orders of magnitude greater than generally observed in transport and storage on the present day landscape.
Earth Observations taken by Expedition 30 crewmember
2012-01-14
ISS030-E-035487 (14 Jan. 2012) --- The East African Rift Valley in Kenya is featured in this image photographed by an Expedition 30 crew member on the International Space Station. This photograph highlights classical geological structures associated with a tectonic rift valley, in this case the Eastern Branch of the East African Rift near Kenya’s southern border with Tanzania and just south of the Equator. The East African Rift is one of the great tectonic features of Africa, caused by fracturing of Earth’s crust. The Nubian (or African) plate includes the older continental crust of Africa to the west, while the Somalian plate that is moving away includes the Horn of Africa to the northeast; the tectonic boundary stretches from the southern Red Sea to central Mozambique. Landscapes in the rift valley can appear confusing. The most striking features in this view are the numerous, nearly parallel, linear fault lines that occupy the floor of the valley (most of the image). Shadows cast by the late afternoon sun make the fault scarps (steps in the landscape caused by slip motion along individual faults) more prominent. The faults are aligned with the north-south axis of the valley (lower left to top right). A secondary trend of less linear faults cuts the main fault trend at an acute angle, the fault steps throwing large shadows. The Eastern Branch of the East African Rift is arid (compared with the Western Branch which lies on the border of the Congolese rainforest). Evidence of this can be seen in the red, salt-loving algae of the shallow and salty Lake Magadi (center). A neighboring small lake to the north has deeper water and appears dark in the image. The white salt deposits of the dry part of the Lake Magadi floor (center) host a few small commercial salt pans. The lakes appear to be located where the main and secondary fault trends intersect. The East African rift system is marked by substantial volcanic activity, including lavas erupted from fissures along the rift in the region. Much of the faulting observed in this image cuts through such lavas. Elsewhere along the rift system individual volcanoes form. Some of those volcanoes are very large, including Mt. Kilimanjaro and Mt. Kenya. In this image, rising 400 meters above the valley floor, a volcano appears to be superimposed on the faults—indicating that the volcano is younger than the faults it covers. Deeply eroded slopes also suggest that the volcano has not been active for a long time. The largest vegetated area (lower left)—in an desert zone with no vegetation visible to the naked eye from space—is the green floor of a valley which drains an area large enough for water to exist near the surface so that plants can thrive. For a sense of scale, the vegetated valley floor is 17 kilometers long (10.5 miles).
NASA Astrophysics Data System (ADS)
Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.
2015-04-01
Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in canyon-edge basins evidence that topographic slope affects weathering rates? We argue that it is more likely that these high erosion rates reflect faster weathering in areas with thinner soil cover. A recent major storm unleashed landslides and debris flows from ~10% of these canyon-edge basins. On average, the volume of material evacuated in these basins was equivalent to ~300 years of soil production by weathering at these rates, approximately the recurrence interval of the storm. The conceptual model that emerges is that agents that cut into rock (bedrock rivers, glaciers) set the pace for exhumation. Adjoining hillslopes erode at a pace set by weathering in the prevailing climate/vegetation regime, conditioned by the ability of sediment transport processes to limit soil thickness on the slopes.
Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.
2016-04-01
Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.
NASA Astrophysics Data System (ADS)
Sofia, Giulia; Marinello, Francesco; Tarolli, Paolo
2014-05-01
Terraces represent an outstanding example that displays centuries of a ubiquitous human-Earth interaction, in a very specific and productive way, and they are a significant part of numerous local economies. They, in fact, optimise the local resources for agricultural purposes, but also exploit marginal landscapes, expanding local populations. The ubiquity, variety, and importance of terraces have motivated studies designed to understand them better both as cultural and ecological features, but also as elements that can deeply influence runoff generation and propagation, contributing to local instabilities, and triggering or aggravating land degradation processes. Their vulnerability in the face of fast-growing urban settlements and the changes in agricultural practices is also well known, prompting protection measures strongly supported by local communities, but also by national and international projects. This work explores the spatial heterogeneity of terraced landscapes, identifying a proper indicator able to discriminate a terraced landscape respect to a more natural one. Recognizing and characterizing terraced areas can offer important multi-temporal insights into issues such as agricultural sustainability, indigenous knowledge systems, human-induced impact on soil degradation or erosive and landslide processes, geomorphological and pedologic processes that influence soil development, and climatic and biodiversity changes. More in detail, the present work introduces a new morphological indicator from LiDAR, effectively implementable for the automatic characterization of terraced landscapes. For the study, we tested the algorithm for environments that differ in term of natural morphology and terracing system. Starting from a LiDAR Digital Terrain Models (DTM), we considered the local auto-correlation (~local self-similarity) of the slope, calculating the correlation between a slope patch and its surrounding areas. We define the resulting map as the "Slope Local Length of Auto-Correlation", or SLLAC map. The SLLAC map texture is characterized by the presence of peculiar elongated fibers that change depending on the landscape morphology, and on the type of terracing system. The differences in texture can be measured, and they can be used to discriminate terraced areas from more natural ones. Given the raising importance of these landscapes, the proposed procedure can offer an important and promising tool to explore the spatial heterogeneity of terraced sites.
Using TLS to Improve Models of Volcano Conduit Processes (Invited)
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.
2010-12-01
In volcanology, diverse numerical models of conduit flow have been developed to relate the properties of these flows to processes that occur at the surface during eruptions. Conduit models incorporate varying degrees of complexity and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. We made progress toward accounting for this interaction by using TLS to map basaltic conduits in a deeply eroded volcanic field, the San Rafael volcanic field, Utah. TLS data were collected with UNAVCO support during a field campaign in summer 2010. A region of approximately 1 x 1 km was imaged from 9 TLS stations. TLS data reveal the exact geometries of several exposed conduits, their relationship to sills and dikes, and dramatic change in reflectivity of the Entrada sandstone country rock with alteration. The TLS data are particularly good for (a) quantifying rapid change in conduit shape and area as a function of height, (b) differentiating breccias zones (complex mixing zones along conduit margins) from areas of late stage intrusion, (c) imaging complexity of sill geometry near conduits, illustrating the mechanical and perhaps geochemical interaction between sills and conduits in volcanic fields. Overall, application of TLS in this volcanic field has resulted in substantial improvement in our models of volcanic conduit formation, growth, and interaction with shallow magma storage systems.
McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine
2010-04-27
The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them follows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use.
Topographic signatures of deep-seated landslides and a general landscape evolution model
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Rempel, A. W.
2012-12-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here, we propose a transport law for deep-seated landslides and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of uplift to landslide flow time scales, that predicts three distinct landscape types. The first is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates far exceeding the long term uplift rate. The second is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is largest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, quasi-planar, low angle hillslopes despite high uplift rates. The stochastic landsliding regime best captures the frequent observation that deep-seated landslides produce a large sediment flux from a small aerial extent while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and may be useful for interpreting climate-driven changes in landslide behavior.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.
2013-06-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.
NASA Astrophysics Data System (ADS)
Mayer, D. P.; Kite, E. S.
2016-12-01
Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.
McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine
2010-01-01
The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them fallows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use. PMID:20385814
Perspective: Highly stable vapor-deposited glasses
Ediger, M. D.
2017-12-07
This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less
Perspective: Highly stable vapor-deposited glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ediger, M. D.
This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less
Preliminary bathymetry of McCarty Fiord and Neoglacial changes of McCarty Glacier, Alaska
Post, Austin
1980-01-01
Preliminary bathymetry (at 1:20,000 scale) and other scientific studies of McCarty Fiord, Alaska, Conducted by the Research Vessel Growler in 1978, showed this 15 mile-long waterway to be a narrow, deeply scoured basin enclosed by a terminal-moraine shoal. This valley was formerly filled by McCarty Glacier, which began a drastic retreat shortly after 1909; the glacier reached shallow water at the head of the fiord around 1960. The relative rate of retreat in deep water and on land is disclosed by the slower melting of stagnent ice left in a side valley. Soundings and profiles show the main channel to extend to a depth as great as 957 feet and to have the typical ' U ' shape of a glacier-eroded valley; since the glacier 's retreat, sediments have formed a nearly level deposit in the deepest part of the fiord. Old forest debris dated by carbon-14 indicates that a neoglacial advance of the glacier began before 3,395 years B.P. (before present); by 1,500 B.P. the glacier filled most of the fiord, and before the glacier culminated its advance around 1860 , two glacier-dammed lakes were formed in side valleys. (USGS)
Depositional processes of alluvial fans along the Hilina Pali fault scarp, Island of Hawaii
NASA Astrophysics Data System (ADS)
Morgan, Alexander M.; Craddock, Robert A.
2017-11-01
A series of previously unstudied alluvial fans are actively forming along the Hilina Pali escarpment on the south flank of Kīlauea volcano on the Island of Hawaii. These fans are characterized by their steep slopes, coarse grain sizes, and lobate surface morphology. Fans are fed by bedrock channels that drain from the Ka'ū Desert, but sediment is mostly sourced from deeply eroded alcoves carved into the Hilina Pali. Examination of recent deposits indicates that the fans are dominantly constructed from gravel and larger sized sediment. Flow discharges calculated using field measurements of channel geometries and the Manning equation indicate that events inducing sediment transport are of high magnitude and occur during high intensity precipitation events, including Kona storms. The fans along the Hilina Pali appear to be a rare example of fans formed predominately from sieve lobe deposition owing to the area's high slopes, high discharge, coarse bedload, and limited supply of fine-grained sediment. Given such conditions, sieve lobe deposition can form large lobes consisting of boulder-sized material, which may have implications for the identification of depositional processes when interpreting the stratigraphic record.
Chenier plain genesis explained by feedbacks between waves, mud, and sand
NASA Astrophysics Data System (ADS)
Nardin, William; Fagherazzi, Sergio
2017-04-01
Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss ontogeny of chenier plains through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and inner-shelf slope play an important role in the formation of chenier plains. In our numerical experiments, waves affect chenier plain development in three ways: by winnowing coarse sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex chenier plains. Low inner-shelf slopes are the most favorable for strand plain and chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.
Chenier plain development: feedbacks between waves, mud and sand
NASA Astrophysics Data System (ADS)
Nardin, W.; Fagherazzi, S.
2015-12-01
Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.
2002-03-01
Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of changing field boundaries. When field boundaries are changed to include areas of land that were... Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria. (a...
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.
2013-06-01
Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.
River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)
NASA Astrophysics Data System (ADS)
Dufresne, A.; Ostermann, M.; Preusser, F.
2018-06-01
The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; Hooke, Janet; Gonzalez-Rodrigo, Beatriz; Sandercock, Peter
2017-04-01
Soil erosion and land degradation are severe problems in headwaters of ephemeral streams in semiarid Mediterranean regions, particularly in marginal upland areas over erodible parent material. Field-based information is required about the main pathways of sediment movement, the identification of sources and sinks and the influence of relevant factors. The EU-funded project RECONDES approached this reality by monitoring connectivity pathways of water and sediment movement in the landscape with the aim of identifying hotspots that could then be strategically targeted to reduce soil erosion and off-site effects. A protocol including field work and GIS analysis was developed and applied to a set of microcatchments in Carcavo Basin (Spain). The philosophy of the protocol was based on the repeated mapping after rainfall events so that frequency of activity of pathways could be evaluated. Connectivity was evaluated for each site and event using specific metrics: maximum mapped connectivity (corresponding to the largest recorded event), density of connected pathway links (m/ha) and frequency of activity (times active/total). Repeated connectivity mapping allowed identifying hotspots of erosion. The effect of structural and functional factors on connectivity was investigated. Field data is also valuable for validating future connectivity models in semiarid landscapes under highly variable and unpredictable conditions.
Dethier, David P.
2003-01-01
The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.
Maintaining the Link to The Floodplain: Scour Dynamics in Crevasses
NASA Astrophysics Data System (ADS)
Esposito, C. R.; Liang, M.; Yuill, B. T.; Meselhe, E. A.
2017-12-01
In river deltas, crevasses are the primary geomorphic feature that traverse the levee, connecting the river to its floodplain and facilitating the transfer of water, sediment, and chemical constituents from the trunk channel. Despite their fundamental position linking river and floodplain, the factors that are important to crevasse evolution are not well understood, and their enumeration is the subject of active research across multiple earth surface process subfields. Crevasses are often associated with a zone of intense scour proximal to the trunk channel. Surprisingly little is known about the morphological dynamics in this zone, but there is evidence from studies of river avulsion that scour zone evolution plays an important role in determining crevasse sustainability. Here we use Delft3D to simulate the development of managed crevasse splays - river diversions - for the purpose of landscape management in the Mississippi River Delta. Our model runs vary the erodibility of the substrate in the receiving basin and the extent and location of erosion protection along the conveyance channel. We find that substrate erodibility in the basin plays a critical role in determining the long-term performance of sediment diversions. Crevasses that create large scours tend to maintain their performance over several decades, but those that only create small scours are subject to rapidly declining performance as the scour pit fills in with coarse sediments. Finally, we compare the evolution of our modeled scour zone to the West Bay Sediment Diversion, where regular bathymetric surveys have documented the evolution of the scour zone since 2004.
NASA Astrophysics Data System (ADS)
Weintraub, S. R.
2016-12-01
A dominant paradigm in ecosystem ecology holds that nitrogen (N) cycles as an excess nutrient in old tropical landscapes but is a scarce, limiting resource in young, temperate ecosystems. However, recent work suggests that both biotic and abiotic state factors can promote unexpected patterns of N cycling across complex landscapes. Here, I present two case studies demonstrating how topography and vegetation shape patterns of N cycling and loss in heterogeneous terrain. In a geomorphically dynamic, high-diversity tropical rainforest, flat ridge tops display open N cycling, yet eroding hillslopes are surprisingly N-poor with multiple indicators implying conservative N cycling. Soil mineralogy indicates slope soils are less developed than adjacent flat ridge counterparts, and the accumulation of cosmogenic 10Be in surface soil suggests residence times are only half as long. Together, these observations suggest erosion resets soil development, with constant N-removal promoting tight N-cycling. Further, soil δ15N is negatively correlated with slope angle across the landscape, and mass balance modeling supports an increasing role for erosive N loss in steep regions. In a temperate montane landscape with lower physical erosion rates, vegetation interacts with hydro-topographic position to mediate local N dynamics. Upslope, forests display conservative N-cycling, yet in adjacent herbaceous areas, multiple indicators point toward an open N cycle. Downslope, both vegetation types show an increase in N-richness. In downslope forests, this is confined to the near-surface, stemming from higher foliar N content due to lateral N transport and uptake. In herbaceous sites, deeper vadose-zone N transport occurs but with no change in foliar N, implying differences in the degree of N limitation between vegetation types. In this landscape, soil nitrate leaching rates track N availability, though δ15N-NO3- does not suggest a similar pattern for gaseous losses, instead reflecting nitrification and/or transport dynamics. Pervasive human alteration of the N cycle underscores the need to unravel these state-factor controls on N availability and loss in order to predict and model ecosystem biogeochemical dynamics in the face of global change.
Criteria and tools for determining drainage divide stability
NASA Astrophysics Data System (ADS)
Forte, Adam M.; Whipple, Kelin X.
2018-07-01
Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to base level, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, could potentially confound interpretations of river profiles. Ultimately, reliable metrics are needed to diagnose the mobility of divides as part of routine landscape analyses. One such recently proposed metric is cross-divide contrasts in χ, a proxy for steady-state channel elevation, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution simulations in which we induce divide mobility under different conditions to test the utility of a suite of topographic metrics of divide mobility and for comparison with natural examples in the eastern Greater Caucasus Mountains, the Kars Volcanic Plateau, and the western San Bernadino Mountains. Specifically, we test cross-divide contrasts in mean gradient, mean local relief, channel bed elevation, and χ all measured at, or averaged upstream of, a reference drainage area. Our results highlight that cross-divide contrasts in χ only faithfully reflect current divide mobility when uplift, rock erodibility, climate, and catchment outlet elevation are uniform across both river networks on either side of the divide, otherwise a χ-anomaly only indicates a possible future divide instability. The other metrics appear to be more reliable representations of current divide motion, but in natural landscapes, only cross-divide contrasts in mean gradient and local relief appear to consistently provide useful information. Multiple divide metrics should be considered simultaneously and across-divide values of all metrics examined quantitatively as visual assessment is not sufficiently reliable in many cases. We provide a series of Matlab tools built using TopoToolbox to facilitate routine analysis.
Testing the Validity of Local Flux Laws in an Experimental Eroding Landscape
NASA Astrophysics Data System (ADS)
Sweeney, K. E.; Roering, J. J.; Ellis, C.
2015-12-01
Linking sediment transport to landscape evolution is fundamental to interpreting climate and tectonic signals from topography and sedimentary deposits. Most geomorphic process laws consist of simple continuum relationships between sediment flux and local topography. However, recent work has shown that nonlocal formulations, whereby sediment flux depends on upslope conditions, are more accurate descriptions of sediment motion, particularly in steep topography. Discriminating between local and nonlocal processes in natural landscapes is complicated by the scarcity of high-resolution topographic data and by the difficulty of measuring sediment flux. To test the validity of local formulations of sediment transport, we use an experimental erosive landscape that combines disturbance-driven, diffusive sediment transport and surface runoff. We conducted our experiments in the eXperimental Landscape Model at St. Anthony Falls Laboratory a 0.5 x 0.5 m test flume filled with crystalline silica (D50 = 30μ) mixed with water to increase cohesion and preclude surface infiltration. Topography is measured with a sheet laser scanner; total sediment flux is tracked with a series of load cells. We simulate uplift (relative baselevel fall) by dropping two parallel weirs at the edges of the experiment. Diffusive sediment transport in our experiments is driven by rainsplash from a constant head drip tank fitted with 625 blunt needles of fixed diameter; sediment is mobilized both through drop impact and the subsequent runoff of the drops. To drive advective transport, we produce surface runoff via a ring of misters that produce droplets that are too small to disturb the sediment surface on impact. Using the results from five experiments that systematically vary the time of drip box rainfall relative to misting rainfall, we calculate local erosion in our experiments by differencing successive time-slices of topography and test whether these patterns are related to local topographic metrics. By examining these patterns over different timescales, we are able to assess whether there is a signature of nonlocal transport in long-term topographic evolution or if, instead, local formulations are appropriate over timescales much greater than individual transport events.
Manure effects on soil N in eroded and non-eroded, sprinkler-irrigated soil
USDA-ARS?s Scientific Manuscript database
Manure effects on nitrate-N transport through irrigated, low-organic matter calcareous soil are not well known. This field study quantified the effects of a one-time fall application of stockpiled dairy manure and urea on in-season and over-winter nitrate-N transport through non-eroded and eroded (...
NASA Astrophysics Data System (ADS)
Yu, Mingjing; Rhoads, Bruce L.
2018-05-01
The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.
The dynamics of sediment size and transient erosional signals in heterogeneous lithologies
NASA Astrophysics Data System (ADS)
Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.
2017-12-01
Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon preservation of a base level change signal in low order streams. This result implies that transient erosion signals inferred using topography can be transformed or destroyed in certain lithologies, complicating efforts to infer climatic and tectonic history from topography.
Topographic evolution of orogens: The long term perspective
NASA Astrophysics Data System (ADS)
Robl, Jörg; Hergarten, Stefan; Prasicek, Günther
2017-04-01
The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S. Hergarten, and G. Prasicek (in review), The topographic state of mountain ranges, Earth Science Reviews.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.
2013-01-01
Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface and final landscape form as constrained by DEMs. We have also simulated fluvial and lacustrine modification of icy satellites landscapes to evaluate the degree to which fluvial erosion of representative initial landscapes can replicate the present Titan landscape.
Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity
Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott
2008-01-01
The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Herbert, E. R.; Walters, D.; Windham-Myers, L.; Kirwan, M. L.
2016-12-01
Evaluating the strength and long-term stability of the coastal carbon sink requires a consideration of the spatial evolution of coastal landscapes in both the horizontal and vertical dimensions. We present a model of the transformation and burial of carbon along a bay-marsh-upland forest complex to explore the response of the coastal carbon sink to sea level rise (SLR) and anthropogenic activity. We establish a carbon mass-balance by coupling dynamic biogeochemically-based models of soil carbon burial in aquatic, intertidal, and upland environments with a physically-based model of marsh edge erosion, vertical growth and migration into adjacent uplands. The modeled increase in marsh vertical growth and carbon burial at moderate rates of sea level rise (3-10 mm/yr) is consistent with a synthesis of 219 field measurements of marsh carbon accumulation that show a significant (p<0.0001) positive correlation with local SLR rates. The model suggests that at moderate SLR rates in low topographic relief landscapes, net marsh expansion into upland forest concomitant with increased carbon burial rates are sufficient to mitigate the associated loss of forest carbon stocks. Coastlines with high relief or barriers to wetland migration can become sources of carbon through the erosion of buried carbon stocks, but we show that the recapture of eroded carbon through vertical growth can be an important mechanism for reducing carbon loss. Overall, we show that the coastal carbon balance must be evaluated in a landscape context to account for changes in the size and magnitude of both the stocks and sinks of marsh carbon and for the transfers of carbon between coastal habitats. These results may help inform current efforts to appraise coastal carbon sinks that are beset by issues of landscape heterogeneity and the provenance of buried carbon.
Costenoble, Aline; Vennat, Elsa; Attal, Jean-Pierre; Dursun, Elisabeth
2016-11-01
To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces. Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate-sodium phosphate salts (CSP); eroded+infiltrated by ICON ® ; eroded+infiltrated by ICON ® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM). Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings. Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.
NASA Astrophysics Data System (ADS)
Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed
2017-04-01
Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility
Orographic precipitation, wind-blown snow, and landscape evolution in glaciated mountain ranges
NASA Astrophysics Data System (ADS)
Brocklehurst, S. H.; Rowan, A. V.; Plummer, M. A.; Foster, D.; Schultz, D. M.; MacGregor, K. R.
2011-12-01
Orographic precipitation and wind-blown snow appear to significantly influence the evolution of glaciated mountain ranges, and in narrow ranges the effect is opposite from orographic precipitation in non-glaciated ranges. While fluvially-eroded ranges tend to be exhumed more on the windward side, glacially-eroded ranges can experience greater erosion on the leeward side. On the timescale of an individual glaciation, the distribution of precipitation and settling is a key component of glacier mass balance and ice extent, while on longer timescales, the interaction of precipitation and topography can play a major role in landscape evolution and range morphology. Numerical modelling of last glacial maximum (LGM) ice extents for catchments on the eastern side of the Southern Alps, New Zealand, highlights the importance of the distribution of precipitation. The accumulation areas of the glaciers would have experienced much greater precipitation than lower elevations, because of the pronounced orographic precipitation gradient, so glacier length is very sensitive to the precipitation distribution employed for any given temperature change. This is particularly challenging given the lack of modern snow monitoring at high altitudes within the Southern Alps, the likelihood of steep accumulation gradients amongst high topography, below the resolution of current datasets, and the difficulty of extrapolating modern values to the LGM. The Sangre de Cristo Range, southern Colorado, and the Bitterroot Range on the Idaho-Montana border both run close to north-south, cross-cutting the prevailing westerly winds. Drainage basins on both sides of the ranges cover similar areas, but moraines are much more substantial on the eastern sides, indicating greater glacial incision, which we suggest at least partly reflects snow blown over the range crest. The Uinta Mountains, Utah, run west-east, parallel to prevailing winds, and show topographic asymmetry across individual catchments, rather than at the range scale. Rapid rock uplift and significant glacial erosion of the north-south Teton Range, Wyoming, has created some of the highest relief in the conterminous US. While an initial topographic asymmetry would have arisen from the tectonic gradient imposed by the extensional Teton Fault on the east side of the range, the topographic asymmetry would have been exaggerated by feedbacks associated with glacial erosion. Slowly-falling snow would have been advected further into the range by prevailing westerlies, which would also have redistributed fallen snow from the subdued topography typical of the headwaters of west-draining basins. Greater topographic shading and cover by rock debris would have mitigated ablation of eastern glaciers bounded by high valley walls. Glacier size, ice flux and erosion would therefore have been enhanced in eastern-draining basins, though only the largest glaciers were capable of eroding at rates that kept pace with rock uplift. Preliminary numerical modelling results are consistent with these inferences of the importance of orographic precipitation and wind-blown snow based on topographic analysis.
NASA Astrophysics Data System (ADS)
Jungers, M.; Heimsath, A. M.
2013-12-01
Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of late stage sedimentary basin fill that preserve the slope of the pre-incision piedmonts of the Galiuro Mountains and Santa Teresa Mountains; and (4) the paleo-drainage divide between Aravaipa Creek and Sulphur Springs Valley, approximately 6 km northwest of the modern divide. The pre-incision basin surface sloped from the Sulphur Springs divide (1370 m) to its intersection with the point of integration (1100 m) between Aravaipa Creek and the San Pedro River, 50 km to the northwest. Maximum incision of 450 m occurred in the vicinity of Aravaipa Canyon, and more than 50 cubic kilometers of material have been eroded from Aravaipa Creek basin. Finally, cosmogenic nuclide burial dates for latest stage sedimentary basin fill enable us to constrain the timing of drainage integration and place first-order constraints on paleo-erosion rates.
Modeling changes in rill erodibility and critical shear stress on native surface roads
Randy B. Foltz; Hakjun Rhee; William J. Elliot
2008-01-01
This study investigated the effect of cumulative overland flow on rill erodibility and critical shear stress on native surface roads in central Idaho. Rill erodibility decreased exponentially with increasing cumulative overland flow depth; however, critical shear stress did not change. The study demonstrated that road erodibility on the studied road changes over the...
Olivetti, Valerio; Cyr, Andrew J.; Molin, Paola; Faccenna, Claudio; Granger, Darryl E.
2012-01-01
The Sila Massif in the Calabrian Arc (southern Italy) is a key site to study the response of a landscape to rock uplift. Here an uplift rate of ∼1 mm/yr has imparted a deep imprint on the Sila landscape recorded by a high-standing low-relief surface on top of the massif, deeply incised fluvial valleys along its flanks, and flights of marine terraces in the coastal belt. In this framework, we combined river longitudinal profile analysis with hillslope erosion rates calculated by 10Be content in modern fluvial sediments to reconstruct the long-term uplift history of the massif. Cosmogenic data show a large variation in erosion rates, marking two main domains. The samples collected in the high-standing low-relief surface atop Sila provide low erosion rates (from 0.09 ± 0.01 to 0.13 ± 0.01 mm/yr). Conversely, high values of erosion rate (up to 0.92 ± 0.08 mm/yr) characterize the incised fluvial valleys on the massif flanks. The analyzed river profiles exhibit a wide range of shapes diverging from the commonly accepted equilibrium concave-up form. Generally, the studied river profiles show two or, more frequently, three concave-up segments bounded by knickpoints and characterized by different values of concavity and steepness indices. The wide variation in cosmogenic erosion rates and the non-equilibrated river profiles indicate that the Sila landscape is in a transient state of disequilibrium in response to a strong and unsteady uplift not yet counterbalanced by erosion.
Species-Specific Responses of Carnivores to Human-Induced Landscape Changes in Central Argentina
Caruso, Nicolás; Lucherini, Mauro; Fortin, Daniel; Casanave, Emma B.
2016-01-01
The role that mammalian carnivores play in ecosystems can be deeply altered by human-driven habitat disturbance. While most carnivore species are negatively affected, the impact of habitat changes is expected to depend on their ecological flexibility. We aimed to identify key factors affecting the habitat use by four sympatric carnivore species in landscapes of central Argentina. Camera trapping surveys were carried out at 49 sites from 2011 to 2013. Each site was characterized by 12 habitat attributes, including human disturbance and fragmentation. Four landscape gradients were created from Principal Component Analysis and their influence on species-specific habitat use was studied using Generalized Linear Models. We recorded 74 events of Conepatus chinga, 546 of Pseudalopex gymnocercus, 193 of Leopardus geoffroyi and 45 of Puma concolor. We found that the gradient describing sites away from urban settlements and with low levels of disturbance had the strongest influence. L. geoffroyi was the only species responding significantly to the four gradients and showing a positive response to modified habitats, which could be favored by the low level of persecution by humans. P. concolor made stronger use of most preserved sites with low proportion of cropland, even though the species also used sites with an intermediate level of fragmentation. A more flexible use of space was found for C. chinga and P. gymnocercus. Our results demonstrate that the impact of human activities spans across this guild of carnivores and that species-specific responses appear to be mediated by ecological and behavioral attributes. PMID:26950300
Computing the Viscosity of Supercooled Liquids: Markov Network Model
Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C.; Diep, Phong; Yip, Sidney
2011-01-01
The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or “terrain” is needed for low-temperature viscosity (of order 107 Pa·s) from that associated with high-temperature viscosity (10−5 Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent “terrain” characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 16 April 2002) The Science This THEMIS visible image was acquired near 11o N, 159o W (201o E) and shows examples of the remarkable variations that can be seen in the erosion of the Medusae Fossae Formation. This Formation is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region, like many others throughout the Medusae Fossae Formation, the surface has been eroded by the wind into a series of linear ridges called yardangs. These ridges generally point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to erode the landscape of Mars. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Within this single image it is possible to see differing amounts of erosion and stripping of layers in the Medusae Fossae Formation. Near the bottom (southern) edge of the image a rock layer with a relatively smooth upper surface covers much of the image. Moving upwards (north) in the image this layer becomes more and more eroded. At first there are isolated regions where the smooth unit has been eroded to produce sets of parallel ridges and knobs. Further north these linear knobs increase in number, and only small, isolated patches of the smooth upper surface remain. Finally, at the top of the image, even the ridges have been removed, exposing the remarkably smooth top of hard, resistant layer below. This sequence of layers with differing hardness and resistance to erosion is common on Earth and on Mars, and suggests significant variations in the physical properties, composition, particle size, and/or cementation of these martian layers. As is common throughout the Medusae Fossae Formation, very few impact craters are visible, indicating that the surface exposed is relatively young, and that the process of erosion may be active today. The Story 'Yardang!' Now, that may seem like a peculiar-sounding curse word, but nobody would get in trouble for using it. A yardang is one of the very cool-sounding words geologists use to describe long, irregular features like the ones seen in this image. Yardangs are grooved, furrowed ridges that form as the wind erodes away weakly cemented material in the region. Rippling across the surface, yardangs tell the story of how the powerful Martian wind carved the surface into such a gorgeous pattern over time. (Don't miss clicking on the above image to see a detailed view, in which the beauty and almost dance-like symmetry of the waving terrain pops out in highly compelling, three-dimensional texture.) It may be easy to see which way the wind blows in this area, since these streamlined features point in the direction of prevailing winds. But how can geologists understand the various kinds of terrain seen here? First, they have to study the different patterns of erosion, looking closely at how the wind has stripped off certain layers and not others. Want to be a geologist yourself? Start at the bottom of the image and scroll upward, and see how the relatively smooth, higher terrain toward the south gradually becomes more and more eroded. Moving up the image, at first you?ll see only a few, isolated regions of parallel ridges and knolls. Go a little farther north with your eyes (toward the center of the image), and you?ll see how these linear knobs really get going! Once you get to the top of the image, only patches of these grooved ridges remain, leaving an incredibly smooth, wind-scrubbed surface behind. You know this layer has to be made of pretty hard material, because it seems impervious to further erosion. Geologists studying Mars can compare these Martian yardangs to examples found on Earth, such as those in the Lut desert of Iran. Humans have even been known to use the wind as their inspiration, sculpting the shape of yardangs themselves. The famous sphynx at Giza in Egypt is thought to be a yardang that's been whittled down a little more by ancient human chiselers.
Using soil residence time to delineate spatial and temporal patterns of transient landscape response
NASA Astrophysics Data System (ADS)
Almond, Peter; Roering, Josh; Hales, T. C.
2007-09-01
On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time-invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil-forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep-seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River-Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw-Long Tom divide, coinciding with low-gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep-seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.
The Science of Middle Nature (Invited)
NASA Astrophysics Data System (ADS)
Pataki, D. E.; Pincetl, S.; Hinners, S.
2013-12-01
In the field of biogeochemistry, urbanization is often considered as an 'alteration' or 'disturbance' to the earth's surface and its natural processes. This view is an outcome of the view of nature inherent in earth system science and ecology, in which nature is defined as separate from humans and society. However, other disciplines are based in alternative views of nature in which humans are more integral components of the landscape. Urban planning, landscape architecture, agriculture, and horticulture, for example, more fully integrate the role of landscape design and management in the functioning of human-dominated ecosystems. We suggest that the field of urban biogeochemistry has been somewhat limited by the predominant, disturbance-based view of the role of nature in cities, and that more deeply evaluating and broadening the concept of nature inherent in studies of urban processes can enhance our understanding of the role of urbanization in the earth system. A particularly useful concept is the 'middle nature' proposed by Cosgrove (1993), which serves a purpose of 'actively transforming nature into culture.' It is this view of urban landscapes as middle nature, or transformation of urban space into human-dominated nature with a purpose, that is lacking from the current scientific discourse about the role of biogeochemistry in urban ecosystem services. A scientific evaluation of middle nature implies studying the performance of urban designs to meet intended cultural and environmental goals, including beauty, social equity, governance, and social capital as well as environmental quality. We describe our work in evaluating the transformed urban landscapes of Los Angeles and Salt Lake City from multiple perspectives that focus on urban livability, equity, and beauty as well as the physical impacts of plants and soils on the environment. The outcomes of this process do not necessary meet the traditional demands of biophysical ecology such as utilizing native species, maximizing carbon sequestration, or minimizing human disturbance. Rather, in our project the discourse is shifting away from the ecosystem services framework, and towards a shared vision for middle nature as the intersection between nature as we have traditionally valued it outside of the city, and its integral role in urban culture, design, function, and quality of life.
NASA Astrophysics Data System (ADS)
Pataki, D. E.; Pincetl, S.
2012-12-01
In the field of biogeochemistry, urbanization is often considered as an "alteration" or "disturbance" to the earth's surface and its natural processes. This view is an outcome of the view of nature inherent in earth system science and ecology, in which nature is defined as separate from humans and society. However, other disciplines are based in alternative views of nature in which humans are more integral components of the landscape. Urban planning, landscape architecture, agriculture, and horticulture, for example, more fully integrate the role of landscape design and management in the functioning of human-dominated ecosystems. We suggest that the field of urban biogeochemistry has been somewhat limited by the predominant, disturbance-based view of the role of nature in cities, and that more deeply evaluating and broadening the concept of nature inherent in studies of urban processes can enhance our understanding of the role of urbanization in the earth system. A particularly useful concept is the "middle nature" proposed by Cosgrove (1993), which serves a purpose of "actively transforming nature into culture." It is this view of urban landscapes as middle nature, or transformation of urban space into human-dominated nature with a purpose, that is lacking from the current scientific discourse about the role of biogeochemistry in urban ecosystem services. A scientific evaluation of middle nature implies studying the performance of urban designs to meet intended cultural and environmental goals, including beauty, social equity, governance, and social capital as well as environmental quality. We describe our work in evaluating the transformed urban landscapes of Los Angeles from multiple perspectives that focus on urban livability, equity, and beauty as well as the physical impacts of plants and soils on the environment. The outcomes of this process do not necessary meet the traditional demands of biophysical ecology such as utilizing native species, maximizing carbon sequestration, or minimizing human disturbance. Rather, in our project the discourse is shifting away from the ecosystem services framework, and towards a shared vision for middle nature as the intersection between nature as we have traditionally valued it outside of the city, and its integral role in urban culture, design, function, and quality of life.
NASA Astrophysics Data System (ADS)
Gallen, S. F.
2016-12-01
Long-term landscape evolution in post-orogenic settings remains an outstanding question in the geosciences. Despite conventional wisdom that topography in dead orogens will slowly and steadily decay through time, observations from around the globe show that dynamic, unsteady (e.g. transient) landscape evolution is the norm. Unraveling the mechanisms that drive unsteadiness in dead orogens is paramount to understanding the stratigraphic record of offshore basins and the geologic factors that contribute to the high biodiversity common in these settings. Here we address the enigma of unsteady post-orogenic landscape evolution with a study of the geomorphology of southern Appalachians, U.S.A. We focus on the 58,000 km2 Upper Tennessee River Basin that covers portions of the fold-and-thrust belt (Valley and Ridge), foreland basin (Appalachian Plateau), and a deeply exhumed thrust sheet (Blue Ridge) of this dead orogen. Using published millennial-scale erosion rates and quantitative analysis of fluvial topography, we show that this region is in a transient state of adjustment to 400 m of base level fall. Ongoing adjustment to base level drop is observed as a zone of high erosion rates, steep river channels and numerous knickpoints located upstream of and surrounding the contact between the Valley and Ridge and adjacent lithotectonic units. We argue that the association of adjusting landscapes and the Valley and Ridge contact is due to the rapid response time of rivers incising soft Valley and Ridge rocks, relative to the harder metamorphic rocks in the Blue Ridge and resistant capstone in the Appalachian Plateau. We propose that base level fall was triggered by incision through the Appalachian Plateau capstone into underlying weaker rocks that set off a wave of transient adjustment, drainage reorganization and ultimately capture of the paleo-Upper Tennessee Basin. Our results indicate that transient landscape evolution is characteristic of post-orogenic settings, as rivers continually incise through rock-types of varying erosional resistance in ancient foreland basins and fold-and-thrust belts. Thus, unsteadiness in dead orogens reflects the legacy of past tectonic events and may have little to do with epeirogenic uplift or climate induced changes in erosional efficiency, as is often the interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.
Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less
Gellis, Allen C.; Myers, Michael; Noe, Gregory; Hupp, Cliff R.; Shenk, Edward; Myers, Luke
2017-01-01
Determining erosion and deposition rates in urban-suburban settings and how these processes are affected by large storms is important to understanding geomorphic processes in these landscapes. Sediment yields in the suburban and urban Upper Difficult Run are among the highest ever recorded in the Chesapeake Bay watershed, ranging from 161 to 376 Mg/km2/y. Erosion and deposition of streambanks, channel bed, and bars and deposition of floodplains were monitored between 1 March 2010 and 18 January 2013 in Upper Difficult Run, Virginia, USA. We documented the effects of two large storms, Tropical Storm Lee (September 2011), a 100-year event, and Super Storm Sandy (October 2012) a 5-year event, on channel erosion and deposition. Variability in erosion and deposition rates for all geomorphic features, temporally and spatially, are important conclusions of this study. Tropical Storm Lee was an erosive event, where erosion occurred on 82% of all streambanks and where 88% of streambanks that were aggrading before Tropical Storm Lee became erosional. Statistical analysis indicated that drainage area explains linear changes (cm/y) in eroding streambanks and that channel top width explains cross-sectional area changes (cm2/y) in eroding streambanks and floodplain deposition (mm/y). A quasi-sediment budget constructed for the study period using the streambanks, channel bed, channel bars, and floodplain measurements underestimated the measured suspended-sediment load by 61% (2130 Mg/y). Underestimation of the sediment load may be caused by measurement errors and to contributions from upland sediment sources, which were not measured but estimated at 36% of the gross input of sediment. Eroding streambanks contributed 42% of the gross input of sediment and accounted for 70% of the measured suspended-sediment load. Similar to other urban watersheds, the large percentage of impervious area in Difficult Run and direct runoff of precipitation leads to increased streamflow and streambank erosion. This study emphasizes the importance of streambanks in urban-suburban sediment budgets but also suggests that other sediment sources, such as upland sources, which were not measured in this study, can be an important source of sediment.
Hall, M A; Wicks, E K; Lawlor, J S
2001-01-01
This paper considers how pending proposals to authorize new forms of group purchasing arrangements for health insurance would fit and function within the existing, highly complex market and regulatory landscape and whether these proposals are likely to meet their stated objectives and avoid unintended consequences. Cost savings are more likely to result from increased risk segmentation than through true market efficiencies. Thus, these proposals could erode previous market reforms whose goal is increased risk pooling. On the other hand, these proposals contain important enhancements, clarifications, and simplification of state and federal regulatory oversight of group purchasing vehicles. Also, they address some of the problems that have hampered the performance of purchasing cooperatives. On balance, although these proposals should receive cautious and careful consideration, they are not likely to produce a significant overall reduction in premiums or increase in coverage.
Earth observation views of New York City taken from OV-105 during STS-99
2000-02-15
STS099-727-045 (11-22 February 2000) ---One of the astronauts aboard the Space Shuttle Endeavour for the STS-99 mission recorded this 70mm image of Long Island, New York. The entire length of Long Island is visible in partial sunglint from Lower Bay to Block Island Sound. According to geologists, the origin and shape of Long Island are due to continental collision and glaciers that once dominated the landscape. A collision between North America and Africa about 300 million years ago caused the Appalachian Mountains to rise, they say. Streams carried sediment from the eroding Appalachians and also carved a valley that would one day become Long Island Sound. The scientists went on to say that retreating ice sheets 22,000 years ago allowed the land to rebound with the highest points becoming Long Island.
Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains
Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Caffee, M.
2003-01-01
We measured 10Be in fluvial sediment samples (n = 27) from eight Great Smoky Mountain drainages (1-330 km2). Results suggest spatially homogeneous sediment generation (on the 104-105 yr time scale and > 100 km2 spatial scale) at 73 ?? 11 t km-2 yr-1, equivalent to 27 ?? 4 m/m.y. of bedrock erosion. This rate is consistent with rates derived from fission-track, long-term sediment budget, and sediment yield data, all of which indicate that the Great Smoky Mountains and the southern Appalachians eroded during the Mesozoic and Cenozoic at ???30 m/m.y. In contrast, unroofing rates during the Paleozoic orogenic events that formed the Appalachian Mountains were higher (???102 m/m.y.). Erosion rates decreased after termination of tectonically driven uplift, enabling the survival of this ancient mountain belt with its deep crustal root as an isostatically maintained feature in the contemporary landscape.
Synchronisation and stability in river metapopulation networks.
Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M
2014-03-01
Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Mainzer, Stephen P.
We are using more energy every year. Between 2001 and 2011, Pennsylvania residential electricity sales increased by two and a half times the number of new customers, accounting for almost one third of the state's total electricity consumption. Our ability to meet demand by acquiring new energy sources faces several challenges. Confusion surrounds the physical and economic accessibility of remaining fossil fuel sources. Immense land use requirements and subsequent environmental impacts challenge a total shift to renewable energy sources. The laws of thermodynamics limit the potential for new technology to efficiently convert raw energy to consumable sources. As a result, any rational strategy to meet future energy demands must involve conservation. Conservation is a pro-environmental behavior, an act intended to benefit the environment surrounding a person. I posit that a transdisciplinary model, the community landscape model of the pro-environmental behavior, unifies the conceptually analogous - yet disparate - fields of landscape, community, and behavior towards explaining residential energy conservation actions. Specifically, the study attempted to describe links between the physical environment, social environment, and conservation behaviors through a mixed-method framework. Two Pennsylvania townships - Spring and East Buffalo townships - were selected from an analysis of housing, electricity consumption, and land cover trends. Key informants from both townships informed the design of a survey instrument that captured the utility consumption, residential conservation actions, energy and environmental values, types and levels of community engagement, perceived barriers, and socio-demographic information from 107 randomly selected households. A mixed-method analysis produced evidence that place-based values and intention to participate in the community were significantly linked to lower utility consumption in households. People who cared deeply about their town were both more likely to attend community events and use less energy in their home. Other less significant examples of influences from the physical and social environments are presented in chapters 4 and 5.
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Distribution of ancient carbon in buried soils in an eroding loess landscape
NASA Astrophysics Data System (ADS)
Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.
2017-12-01
Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.
Relic components within the soil cover of Mexico: regional variability
NASA Astrophysics Data System (ADS)
Solleiro Rebolledo, Elizabeth; Sedov, Sergey
2015-04-01
The case of paleosols persisting on the land surface (non-buried paleosols or relict soils) besides paleoecological interest has specific implications for studies of soil geography, ecology and management. In fact these soil bodies form part of the modern soil mantle and provide ecological services for the current (agro)ecosystems but are neither formed nor re-produced by these ecosystems, conforming locally extinct soils (although similar profiles can develop at present under other bioclimatic conditions). In consequence, they are a heritage of past climatic and biotic conditions now extinct, thus presenting a non-restorable component of the present landscape. Mexico has so abundant and diverse paleosols, both surface and buried, that really could be considered to be a "paleopedological paradise". Two groups of factors promote generation of this abundance: Major part of territory of Mexico is occupied by mountainous landscapes with high intensity of tectonic, volcanic and geomorphic processes. These processes create a complex mosaic of geological materials and landforms of different age (like alluvial and lake terraces, eroded slopes, and volcanic deposits of various eruptions). Meanwhile younger landsurfaces are occupied by the recently developed soils, the older ones could bear the relict soil bodies. The same processes produce sedimentary strata (alluvial, colluvial, pyroclastic, etc.) which frequently cover the pre-existing landsurfaces and soils, producing series of buried paleosols. In this work we present three study cases of relict paleosols that are integrated to the modern soil cover of Mexico: the case of reddish-brown soils in the arid landscapes of Sonora (in the north); the pedosediments (tepetates) in central Mexico; and the red soils developed under humid conditions in Yucatan (in the south).
Morsello, Carla; Parry, Luke; Pardini, Renata
2016-01-01
Understanding the multiple ways people value forests is important, as individual values regarding nature have been shown to partly determine willingness to participate in conservation initiatives. As individual values are influenced by past experiences, the way people value forests may be related to the ecosystem services they use and receive. We here aim to investigate if people value forests because of material and non-material benefits forest provide (material and non-material values), and if these values are defined by previous experiences associated with using forest resources and having frequent contact with forests. By interviewing 363 residents across 20 landscapes varying in forest cover in a post-frontier region in Amazonia, we evaluated: (1) if the use of forest resources—especially bushmeat, important for sustenance and cash income in virtually all tropical forests—is associated with attributing higher material value to forests; (2) whether the contact with forest (estimated by local forest cover and visits to forests) is associated with attributing higher non-material value to forests. As expected, respondents from households where hunting occurs and bushmeat consumption is more frequent attributed higher material value to forests, and those living in more deforested landscapes and that visited forests less often attributed lower non-material value to forests. The importance of bushmeat in shaping the way people value forests suggests that encouraging the sustainable use of this product will encourage forest conservation. Results also point to a potential dangerous reinforcing cycle: low forest cover and the loss of contact with forests may erode forest values and facilitate further deforestation. Engaging rural communities in forest conservation initiatives is challenging yet urgent in degraded landscapes, although harnessing appreciation for bushmeat could offer a starting point. PMID:27942038
Can Landscape Evolution Models (LEMs) be used to reconstruct palaeo-climate and sea-level histories?
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.
2011-12-01
Reconstruction of palaeo-environmental conditions over long time periods is notoriously difficult, especially where there are limited or no proxy records from which to extract data. Application of landscape evolution models (LEMs) for palaeo-environmental reconstruction involves hindcast modeling, in which simulation scenarios are configured with specific model variables and parameters chosen to reflect a specific hypothesis of environmental change. In this form of modeling, the environmental time series utilized are considered credible when modeled and observed landscape metrics converge. Herein we account for the uncertainties involved in evaluating the degree to which the model simulations and observations converge using Monte Carlo analysis of reduced complexity `metamodels'. The technique is applied to a case study focused on a specific set of gullies found on the southwest coast of the Isle of Wight, UK. A key factor controlling the Holocene evolution of these coastal gullies is the balance between rates of sea-cliff retreat (driven by sea-level rise) and headwards incision caused by knickpoint migration (driven by the rate of runoff). We simulate these processes using a version of the GOLEM model that has been modified to represent sea-cliff retreat. A Central Composite Design (CCD) sampling technique was employed, enabling the trajectories of gully response to different combinations of driving conditions to be modeled explicitly. In some of these simulations, where the range of bedrock erodibility (0.03 to 0.04 m0.2 a-1) and rate of sea-level change (0.005 to 0.0059 m a-1) is tightly constrained, modeled gully forms conform closely to those observed in reality, enabling a suite of climate and sea-level change scenarios which plausibly explain the Holocene evolution of the Isle of Wight gullies to be identified.
Landscape response to rare flood events: a feedback cycle in channel-hillslope coupling
NASA Astrophysics Data System (ADS)
Golly, Antonius; Turowski, Jens; Hovius, Niels; Badoux, Alexandre
2017-04-01
Fluvial channels and the surrounding landscapes are in a permanent feedback relation, exchanging mass and energy. Only rarely we get the opportunity to observe the processes at work and study the underlying cause and effect relations. This is especially difficult, since processes can be highly non-linear, and the response to a trigger may occur after a lag time such that their correspondence is not immediately obvious. In the Erlenbach, a mountain stream in the Swiss Prealps, we study the mechanistic relations between in-channel hydrology, channel morphology, external climatic forcing and the surrounding sediment sources to identify relevant controls of sediment input and their characteristic scales. Here, we present time-lapse observations of a suspended slow-moving landslide complex with a direct connection to the channel. The channel-hillslope system was in a stable system state for several months. Only after a flood event, in which a channel step was eroded at the base of the hillslope, the hillslope was destabilized through debuttressing. As a consequence, the landslide was reactivated and entered a sustained phase of integral motion. The response phase ended when the landslide material reached the channel and formed a new channel step, re-buttressing the hillslope. The observations reveal that, at least in the Erlenbach, sediment input from the hillslopes is not a uniform process controlled by precipitation only. Instead, a perturbation of the system in form of the erosion of an alluvial channel step was necessary to initiate the feedback cycle. The observation illustrates the importance of a thorough identification of the process mechanics to understand the sediment dynamics and the formation of landscapes on long time-scales.
Carignano Torres, Patricia; Morsello, Carla; Parry, Luke; Pardini, Renata
2016-01-01
Understanding the multiple ways people value forests is important, as individual values regarding nature have been shown to partly determine willingness to participate in conservation initiatives. As individual values are influenced by past experiences, the way people value forests may be related to the ecosystem services they use and receive. We here aim to investigate if people value forests because of material and non-material benefits forest provide (material and non-material values), and if these values are defined by previous experiences associated with using forest resources and having frequent contact with forests. By interviewing 363 residents across 20 landscapes varying in forest cover in a post-frontier region in Amazonia, we evaluated: (1) if the use of forest resources-especially bushmeat, important for sustenance and cash income in virtually all tropical forests-is associated with attributing higher material value to forests; (2) whether the contact with forest (estimated by local forest cover and visits to forests) is associated with attributing higher non-material value to forests. As expected, respondents from households where hunting occurs and bushmeat consumption is more frequent attributed higher material value to forests, and those living in more deforested landscapes and that visited forests less often attributed lower non-material value to forests. The importance of bushmeat in shaping the way people value forests suggests that encouraging the sustainable use of this product will encourage forest conservation. Results also point to a potential dangerous reinforcing cycle: low forest cover and the loss of contact with forests may erode forest values and facilitate further deforestation. Engaging rural communities in forest conservation initiatives is challenging yet urgent in degraded landscapes, although harnessing appreciation for bushmeat could offer a starting point.
Experimental Study of Factors Affecting Soil Erodibility
NASA Astrophysics Data System (ADS)
Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.
2018-03-01
The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.
Biggs, C A; Prall, C; Tait, S; Ashley, R
2005-01-01
The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.
Miller, K A; Addison, R F; Bandiera, S M
2004-01-01
To assess chemical contaminant stress in the marine environment, ethoxyresorufin-O-deethylase (EROD) activity and cytochrome P450 1A (CYP1A) expression were measured in 88 English Sole (Pleuronectes vetulus) collected during May and June 1999 from four sites in Vancouver Harbour and at an expected reference site outside the harbour. Hepatic microsomes were prepared from the fish and analyzed for total CYP content, EROD activity, and CYP1A protein levels. Hepatic EROD activity and CYP1A protein levels were elevated in fish from two sites in the inner harbour. A comparison with sediment chemistry data showed that fish with increased EROD activity and CYP1A levels came from sites containing relatively high levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Unexpectedly high levels of EROD activity and CYP1A protein were also found in fish from a reference site near Gibsons, in Howe Sound. The elevated EROD activity and CYP1A expression in fish from this site cannot be explained by the chemical analysis data collected.
NASA Astrophysics Data System (ADS)
Lawson, M. J.; Yin, A.; Rhodes, E. J.
2015-12-01
Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.
McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Rengers, Francis K.; Wasklewicz, Thad A.
2016-01-01
Mountain watersheds recently burned by wildfire often experience greater amounts of runoff and increased rates of sediment transport relative to similar unburned areas. Given the sedimentation and debris flow threats caused by increases in erosion, more work is needed to better understand the physical mechanisms responsible for the observed increase in sediment transport in burned environments and the time scale over which a heightened geomorphic response can be expected. In this study, we quantified the relative importance of different hillslope erosion mechanisms during two postwildfire rainstorms at a drainage basin in Southern California by combining terrestrial laser scanner-derived maps of topographic change, field measurements, and numerical modeling of overland flow and sediment transport. Numerous debris flows were initiated by runoff at our study area during a long-duration storm of relatively modest intensity. Despite the presence of a well-developed rill network, numerical model results suggest that the majority of eroded hillslope sediment during this long-duration rainstorm was transported by raindrop-induced sediment transport processes, highlighting the importance of raindrop-driven processes in supplying channels with potential debris flow material. We also used the numerical model to explore relationships between postwildfire storm characteristics, vegetation cover, soil infiltration capacity, and the total volume of eroded sediment from a synthetic hillslope for different end-member erosion regimes. This study adds to our understanding of sediment transport in steep, postwildfire landscapes and shows how data from field monitoring can be combined with numerical modeling of sediment transport to isolate the processes leading to increased erosion in burned areas.
NASA Astrophysics Data System (ADS)
Attal, Mikaël; Lavé, Jérôme
2009-12-01
In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.
Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords
NASA Astrophysics Data System (ADS)
Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.
2017-11-01
Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.
Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.
2011-12-01
Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).
Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.
2013-12-01
Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).
NASA Astrophysics Data System (ADS)
Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.
2007-12-01
The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.
Soil organic carbon redistribution by water erosion: An experimental rainfall simulation approach
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cammeraat, Erik; Romeijn, Paul; Kalbitz, Karsten
2014-05-01
Water erosion influences the redistribution of soil organic carbon (SOC) in landscapes and there is a strong need to better understand these processes with respect to the carbon (C) budget, from local to global scales. We present a study in which the total carbon budget of a loess soil under erosion was determined in an experimental set-up. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a climate controlled pseudo-replicated rainfall-simulation laboratory experiment. This approach has been rarely followed to integrate all components of the C budget in one experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in a significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m-2 yr-1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 27% at the deposition zone in comparison to non-eroded soils. Overall, CO2 emission was the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment. However, only 1.5 % of redistributed C was mineralized highlighting that the C sink induced by deposition is much larger than previously assumed. Our study also underlines the importance of C losses by particles and as DOC for understanding effects of water erosion on the C balance at the interface of terrestrial and aquatic systems. Furthermore our study revealed that the sediment and C fluxes showed good correspondence with values obtained in real landscapes as reported in literature. This confirms that a lab-approach, despite its shortcomings with respect to scale, is valuable and gives additional information on processes affecting the soil carbon budget. This is urgently needed and improves our knowledge on the fate of SOC in erosion-depositional systems.
Insular Celtic population structure and genomic footprints of migration
Hellenthal, Garrett
2018-01-01
Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits. PMID:29370172
Vegetation change, erosion risk and land management on the Nullarbor Plain, Australia
NASA Astrophysics Data System (ADS)
Gillieson, D.; Wallbrink, P.; Cochrane, A.
1996-10-01
Arid karst landscapes that have been degraded by human activities provide a challenge for rehabilitation and an opportunity to test ideas about the stability and resilience of limestone ecosystems. The Nullarbor Plain is the largest arid karst area in Australia (220 000 km2) and is divided into extensive closed karstic depressions separated by low rocky ridges, while the dominant vegetation is chenopod shrubland. Since European settlement there has been considerable change in the vegetation, with significant reduction in shrub and grass cover over large areas of the plain. These changes are related to a state and transition model of vegetation dynamics which incorporates climatic variability, fire history and grazing pressure from sheep, kangaroos and rabbits. A partial sediment budget using 137Cs inventories reveals local and regional patterns of soil redistribution within this arid karst landscape. Rehabilitation of eroded soil in pastoral lands has been accomplished at several sites but is labour intensive and vulnerable to climatic fluctuations. Given the low stock numbers, limited number of people involved, and poor economic returns, it would be sensible to make pastoral activities on the Nullarbor secondary to conservation priorities. This would necessitate a change in land ethic to stewardship, with emphasis on rehabilitation and control of feral animals. Management of increased numbers of visitors to the caves and karst also requires that resource inventories and management plans for each area be drawn up and used.
Bedrock composition regulates mountain ecosystems and landscape evolution
Hahm, W. Jesse; Riebe, Clifford S.; Lukens, Claire E.; Araki, Sayaka
2014-01-01
Earth’s land surface teems with life. Although the distribution of ecosystems is largely explained by temperature and precipitation, vegetation can vary markedly with little variation in climate. Here we explore the role of bedrock in governing the distribution of forest cover across the Sierra Nevada Batholith, California. Our sites span a narrow range of elevations and thus a narrow range in climate. However, land cover varies from Giant Sequoia (Sequoiadendron giganteum), the largest trees on Earth, to vegetation-free swaths that are visible from space. Meanwhile, underlying bedrock spans nearly the entire compositional range of granitic bedrock in the western North American cordillera. We explored connections between lithology and vegetation using measurements of bedrock geochemistry and forest productivity. Tree-canopy cover, a proxy for forest productivity, varies by more than an order of magnitude across our sites, changing abruptly at mapped contacts between plutons and correlating with bedrock concentrations of major and minor elements, including the plant-essential nutrient phosphorus. Nutrient-poor areas that lack vegetation and soil are eroding more than two times slower on average than surrounding, more nutrient-rich, soil-mantled bedrock. This suggests that bedrock geochemistry can influence landscape evolution through an intrinsic limitation on primary productivity. Our results are consistent with widespread bottom-up lithologic control on the distribution and diversity of vegetation in mountainous terrain. PMID:24516144
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
Dioxin-ähnliche Wirkungen durch Grundwasser am Industriestandort Zeitz
NASA Astrophysics Data System (ADS)
Schirmer, Kristin; Bopp, Stephanie; Russold, Sandra; Popp, Peter
Kurzfassung Im Rahmen der Etablierung des Standortes Zeitz (Sachsen-Anhalt) als Referenztestfeld zur Implementierung des Natural-Attenuation-Ansatzes, haben wir Grundwasser auf seine Fähigkeit untersucht, eine Dioxin-ähnliche Wirkung hervorzurufen. Die Dioxin-ähnliche Wirkung ist die Arylhydrocarbon Rezeptor-vermittelte Induktion des Proteinkomplexes Cytochrom CYP1A, welches als 7-Ethoxyresorufin-O-Deethylase (EROD) Enzymaktivität in einer Fischleberzelllinie gemessen wurde. Von 32 Probennahmestellen wiesen sieben eine signifikante EROD-Induktion auf, welche zu einem geringen Teil auf Polyzyklische Aromatische Kohlenwasserstoffe zurückzuführen war. Ein weiterer Teil der EROD-Induktion konnte den Substanzen Benzofuran, Indan und Inden zugesprochen werden, welche hier erstmalig als EROD-Induktoren identifiziert wurden. Alle Probennahmestellen mit signifikanter EROD-Induktion lagen im Anstrom bzw. westlich des früheren Standortes der Benzolanlage in Zeitz, was einen signifikanten Einfluss von Benzol vor allem auf den Transport und das Lösungsverhalten EROD-induzierender Grundwasserkontaminanten vermuten lässt. Insgesamt zeigen diese Untersuchungen, wie eine Kombination von chemischer und biologischer Analytik zu einer deutlich verbesserten Aussagekraft führt und somit zu einer nachhaltigen Überwachung der Qualität von Grundwasser beitragen kann. As part of setting up the test field Zeitz (Saxony-Anhalt, Germany) as a reference site for the implementation of Natural Attenuation as a remediation option, we have investigated groundwater for its ability to cause a dioxin-like response. The dioxin-like response is the aryl hydrocarbon receptor-mediated induction of the protein complex cytochrome CYP1A, which was measured as 7-Ethoxyresorufin-O-deethylase (EROD) enzyme activity in a fish liver cell line. Out of 32 sampling locations, seven showed significant EROD induction, which could be explained, to a minor extent, by the presence of polycyclic aromatic hydrocarbons. Another small portion of the EROD induction was attributed to the low molecular weight compounds, Benzofuran, Indane and Indene, which were shown for the first time to act as EROD inducers. All sampling locations showing significant EROD induction were located upstream or to the west of the former benzene production site in Zeitz. This indicates that benzene is likely to affect the transport and dissolution of EROD-inducing groundwater contaminants. In sum, this study shows how a combination of chemical and biological analysis can greatly augment knowledge about site characteristics and thus contribute to a sustainable monitoring of groundwater quality.
NASA Astrophysics Data System (ADS)
Etienne, David; Ruffaldi, Pascale; Ritz, Frederic; Dupouey, Jean Luc; Dambrine, Etienne
2010-05-01
Recent archaeological surveys and ecological investigations in large "ancient" forests have shown that these areas had been often cultivated during the Roman or Medieval periods, and that this former land use is still deeply influencing present soil properties and plant biodiversity. This new perspective has boosted the research for sediment archives describing the state of forests across the archaeological and historical periods, especially in low altitude forest. Closed depressions (CD) or small hollows (over 30 000 CDs) are found in many silty plains of North-Western Europe (north-eastern France, Luxemburg and Belgium). They are defined as small (100 to 400 m²) closed wetlands, mostly supplied by rainwater. Their origin is debated. Recent coring campaigns in CDs of Lorraine (north-eastern France), 3 to 5 meters thick sediment cores were retrieved. It opened the way for palynological and pedological reconstruction of former landscapes. Here we present a sediment analysis of four peaty CDs (Assenoncourt, Römersberg, Sarrebourg and St Jean), located in different low altitude beech (Fagus) and oak (Quercus) forests, on silty clay soils, 50km from Nancy. As the oldest available map (Naudins, dated from 1728 to 1739) indicated forest boundaries similar to the present ones, these forests were considered as ancient forests. The sedimentation begins during the second Iron Age or Roman period. By this time, pollen analyses show an open landscape (70% of Non Arboreal Pollen), composed mostly by grassland (Plantago major/media, Poaceae and Asteraceae) and cropland (Cerealia-type, Centaurea cyanus). Around the 5th century AD, coinciding with the collapse of the Roman Empire, the pollen sequences describe rapid afforestation by Betula and Corylus, and later Carpinus forest. From the 8th century AD, Carpinus decreases in favour of Quercus which may reflect an anthropogenic clearing. From the 10th to the 14th century AD, croplands expand again with cultivation of hemp (Cannabis-type) and rye (Secale-type). From the 15th to the 19th century AD, pollen diagrams are similar at three sites and differ from the fourth. At Assenoncourt, St Jean and Römersberg, the contribution of Quercus, Carpinus and Fagus remains almost constant: 40%, 10% and 10%. This pattern may be related to short rotation forestry management applied in order to provide fuel wood to the local salt industry. At the fourth site (Sarrebourg), pollen assemblage varies with successive Quercus and Carpinus phases, following a natural sylvicultural evolution. Finally, the present-day forest extension took place during the 19th century with the replacement of wood by coal in the salt industry and the recent collapse of this salt industry during the 20th century. This study confirms, in the context of low altitude forests with heavy soils, what had been observed on shallow calcareous soils of the Lorrain plateau. Most of our state forests, that were thought to be "very ancient" or "immemorial" forest, have been managed for agriculture in the deep past. Because agriculture lands were often limed, fertilized, and eroded, this former agriculture use may to a large extent explain present soil properties and, as a consequence, present biodiversity.
Statistical analysis of cyprinid ethoxyresorufin-O-deethylase data in a large French watershed.
Flammarion, P; Migeon, B; Garric, J
1998-01-01
A comparison of ethoxyresorufin-O-deethylase (EROD) data collected in 1995 in various sites in the Rhône watershed (France) was carried out to quantify the influence of factors such as contamination and biological parameters on EROD levels and within-group variabilities. Three species of cyprinids were collected and fish chemical contamination was measured. A log transformation of EROD data provided both normalization and homogeneity of variances. The influence of female sexual maturation on the variability and EROD dimorphism was quantified. A relationship with contaminant bioaccumulation was observed. A comparison with EROD data collected during previous studies by the same laboratory was made to validate the results.
Relationship between soil erodibility and modeled infiltration rate in different soils
NASA Astrophysics Data System (ADS)
Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue
2015-09-01
The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.
The tools of competition: Differentiation, segmentation and the microprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepmeier, J.M.; Jermain, D.O.; Egnor, T.L.
1993-11-01
The microprocessor enables electric utilities to recover product differentiation and market segmentation tools that they relinquished decades ago. These tools present a [open quotes]double-edged[close quotes] opportunity to the industry. Product differentiation and market segmentation are deeply and permanently embedded in the corporate strategy and culture of virtually every successful firm. Most electric utilities, however, continue to promote a generic product to an undifferentiated captive audience. This approach was also common in the pre-Yeltsin USSR, where advertisements simply read, Buy Beer, or Eat Potatoes'. Electric utilities relinquished the differentiation/segmentation function in the far distant past to the suppliers of end-use energymore » appliances such as GE and Carrier. By default they assigned themselves the role of commodity supplier. Historically, this role has been protected in the marketplace and insulated from competition by two strong barriers: economies of scale and status as a legally franchised monopoly in a well-defined geographic territory. These two barriers do not exist independently; the second depends on the first. When scale economies cease and then reverse, the industry's legally protected position in the marketplace begins to erode. The lack of product differentiation and market segmentation, which was inconsequential before, now becomes a serious handicap: These same relinquished tools seem to be essential for success in a competitive environment.« less
NASA Astrophysics Data System (ADS)
Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.
2000-12-01
The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.
NASA Technical Reports Server (NTRS)
Stiegman, A. E.; Brinza, David E.; Anderson, Mark S.; Minton, Timothy K.; Laue, Eric G.; Liang, Ranty H.
1991-01-01
Samples of fluorinated ethylene propylene copolymer thermal blanketing material, recovered from the Long Duration Exposure Facility (LDEF), were investigated to determine the nature and the extent of degradation due to exposure to the low-Earth-orbit environment. Samples recovered from the ram-facing direction of LDEF, which received vacuum-ultraviolet (VUV) radiation and atomic-oxygen impingement, and samples from the trailing edge, which received almost exclusively VUV exposure, were investigated by scanning electron microscopy and atomic force microscopy. The most significant result of this investigation was found on samples that received only VUV exposure. These samples possessed a hard, embrittled surface layer that was absent from the atomic-oxygen exposed sample and from unexposed control samples. This surface layer is believed to be responsible for the 'synergistic' effect between VUV and atomic oxygen. Overall, the investigation revealed dramatically different morphologies for the two samples. The sample receiving both atomic-oxygen and VUV exposure was deeply eroded and had a characteristic 'rolling' surface morphology, while the sample that received only VUV exposure showed mild erosion and a surface morphology characterized by sharp high-frequency peaks. The morphologies observed in the LDEF samples, including the embrittled surface layer, were successfully duplicated in the laboratory.
Patterson, C.J.; Boerboom, Terrence
1999-01-01
Minnesota is largely underlain by Precambrian crystalline bedrock that was weathered to an average depth of 30 m prior to Late Cretaceous time. The fresh-rock-weathered-rock interface is irregular, with as much as 45 m of relief. Weathering exploited joints, locally isolating meter-sized volumes of rock known as corestones. Variable amounts of residuum were removed through glaciation to leave (1) saprolite overlain by an in-situ Late Cretaceous soil profile; (2) partially eroded saprolite; and (3) undulating fresh rock surfaces (commonly mantled by rounded boulders) that display striae and glacial or fluvial polish. Significant subglacial erosion of fresh bedrock is not required to form smoothly undulating bedrock surfaces with closed depressions; they may also form through removal of weathered bedrock and exposure of the weathering front. Large rounded boulders are not always shaped during transport; they may represent chemically rounded corestones resting at or near the bedrock source. Unambiguous evidence for glacial erosion includes striae and streamlining of bedrock parallel to striae. Polish on rock can be created fluvially, and smoothed grooves and ridges in the rock may be chemically produced. Many rounded boulders found in glacial till and strewn on bedrock surfaces probably originated as corestones.
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean
2017-04-01
The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle, aggregate and solute fluxes.
NASA Astrophysics Data System (ADS)
Kobayashi, Yusuke; Watanabe, Teiji
2017-04-01
This study has three objectives: (1) to estimate changes of the eroded volume of mountain trails from 2014 to 2016 by making DSMs, (2) to understand a relationship between the trail erosion and micro-topography, and (3) to predict the volume of soil that can be eroded in future. Trail erosion has been investigated near Mt. Hokkai-dake in Daisetzuzan National Park, Hokkaido, northern Japan, with a drone (UAV) from 2014 to 2016. Seven segments with the soil erosion from starting sites to ending sites were selected to make DSMs and Orthophotographs by Agisoft, which is one of the Structure from Motion (SfM) software. Then, at fourteen points in each of the seven segments were selected to estimate the volume of soil that can be eroded in the future by PANDA2, a soil compaction penetrometer. The eroded volume in the segment with the largest eroded value attained 274.67 m3 for the two-year period although extremely heavy rain hit this area in the 2016 summer. The result obtained by PANDA2 shows that soil more than 100 cm in depth will be potentially eroded at four points in three years to one hundred years.
Kosmala, A; Migeon, B; Flammarion, P; Garric, J
1998-09-01
The impact of a wastewater treatment plant (WWTP) effluent was assessed with the fish biomarker ethoxyresorufin-O-deethylase (EROD) using field and on-site laboratory experiments. EROD activity was measured in chub (Leuciscus cephalus) and stone loach (Noemacheilus barbatulus) caught at three sites of the Chalaronne River (southeast France). Liver somatic index (LSI) and organochloride bioaccumulation in muscle were estimated for chub only. In September, EROD activity and LSI of chub increased significantly between the sites above and below the WWTP effluent discharge. EROD induction detected in chub was confirmed by on-site tank experiments. EROD levels were determined in juvenile rainbow trout (Oncorhynchus mykiss) and mirror carp (Cyprinus carpio) exposed to different concentrations of the WWTP effluent and river water for 16 days. After a 4-day exposure, EROD activities of the carp exposed to the effluent increased significantly compared with the control. The response was linked to the effluent concentration and was stable with exposure time. WWTP effluent induced EROD activity, whereas organic and metal analyses, performed on fish muscle and sediment, did not indicate any difference between upstream and downstream of the discharge. Copyright 1998 Academic Press.
EROD activity measured in flatfish from the area of the Sea Empress oil spill.
Kirby, M F; Neall, P; Tylor, T
1999-05-01
Dab (Limanda limanda) and plaice (Pleuronectes platessa) were collected at five stations near to the site of the Sea Empress oil spill within two weeks of the incident and a further fourteen stations three months after the spillage. Ethoxyresorufin-O-deethylase (EROD) activity was determined in the livers of the specimens to determine whether induction could be detected. Statistically significant inter-site differences in EROD levels in both species were demonstrated. Elevated levels of EROD activity in dab were found at the two stations nearest to the incident up to three months after the spill but no clear relationship to putative contaminant levels was determined. EROD levels in plaice showed a generally similar pattern of induction as in dab. Correlation of EROD levels with other variables showed that sexual maturity had the greatest influence on dab during the study period. The plaice specimens were sexually immature and, therefore, did not demonstrate a corresponding relationship. It was concluded that, for EROD monitoring purposes, fish should be sampled during their sexually inactive phase and that close attention needs to be paid to other variables (depth, temperature, GSI, length, influential contaminants etc.) when interpreting the results.
Soil erodibility variability in laboratory and field rainfall simulations
NASA Astrophysics Data System (ADS)
Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán
2017-04-01
Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?
Yuen, Bonny B H; Au, Doris W T
2006-10-01
Temporal changes of intestinal and hepatic ethoxyresorufin-O-deethylase (EROD) activities and quantitative changes of secondary and tertiary (e.g., 2 degrees/3 degrees) lysosomes in enterocytes were compared for the juvenile grouper (Epinephelus coioides) on chronic exposure to foodborne benzo[a]pyrene (BaP) at two environmentally realistic levels (0.25 and 12.5 microg/g fish/d) over a four-week exposure and four-week depuration period. Intestinal EROD induction was rapid (within 3 d) and sustained in the BaP-exposed fish, while a fast recovery (within one week) was observed on withdrawal of BaP intake. A dose-response relationship was demonstrated between intestinal EROD activities and the levels of foodborne BaP. Conversely, hepatic EROD induction was weak and subsided rapidly in the exposed fish, signifying that hepatic EROD activity is not a good indicator of oral intake of BaP. Significant increase of 2 degrees/3 degrees lysosomes, as measured by Vv(lysosome, mucosa), was detected in young enterocytes of fish in the high-dosing group (12.5 microg/g fish/d) at exposure day 3 and persisted until recovery week 2. Importantly, intestinal EROD activity was significantly correlated to 2 degrees/3 degrees lysosome accumulation in enterocytes (r = 0.571, p < 0.001). These results further corroborate our earlier findings that induction of EROD activities in fish do not merely indicate exposure to BaP but also are correlated to harmful biological effects. We recommend the use of these two biochemical and cytological changes in intestines as specific biomarkers to indicate current and recent exposure of fish to BaP via oral intake.
Blind jealousy? Romantic insecurity increases emotion-induced failures of visual perception.
Most, Steven B; Laurenceau, Jean-Philippe; Graber, Elana; Belcher, Amber; Smith, C Veronica
2010-04-01
Does the influence of close relationships pervade so deeply as to impact visual awareness? Results from two experiments involving heterosexual romantic couples suggest that they do. Female partners from each couple performed a rapid detection task where negative emotional distractors typically disrupt visual awareness of subsequent targets; at the same time, their male partners rated attractiveness first of landscapes, then of photos of other women. At the end of both experiments, the degree to which female partners indicated uneasiness about their male partner looking at and rating other women correlated significantly with the degree to which negative emotional distractors had disrupted their target perception during that time. This relationship was robust even when controlling for individual differences in baseline performance. Thus, emotions elicited by social contexts appear to wield power even at the level of perceptual processing. Copyright 2010 APA, all rights reserved.
Vale, Ronald D
2012-09-01
Evaluation of scientific work underlies the process of career advancement in academic science, with publications being a fundamental metric. Many aspects of the evaluation process for grants and promotions are deeply ingrained in institutions and funding agencies and have been altered very little in the past several decades, despite substantial changes that have taken place in the scientific work force, the funding landscape, and the way that science is being conducted. This article examines how scientific productivity is being evaluated, what it is rewarding, where it falls short, and why richer information than a standard curriculum vitae/biosketch might provide a more accurate picture of scientific and educational contributions. The article also explores how the evaluation process exerts a profound influence on many aspects of the scientific enterprise, including the training of new scientists, the way in which grant resources are distributed, the manner in which new knowledge is published, and the culture of science itself.
Hypnosis as neurophenomenology
Lifshitz, Michael; Cusumano, Emma P.; Raz, Amir
2013-01-01
Hypnosis research binds phenomenology and neuroscience. Here we show how recent evidence probing the impact of hypnosis and suggestion can inform and advance a neurophenomenological approach. In contrast to meditative practices that involve lengthy and intensive training, hypnosis induces profound alterations in subjective experience following just a few words of suggestion. Individuals highly responsive to hypnosis can quickly and effortlessly manifest atypical conscious experiences as well as override deeply entrenched processes. These capacities open new avenues for suspending habitual modes of attention and achieving refined states of meta-awareness. Furthermore, hypnosis research sheds light on the effects of suggestion, expectation, and interpersonal factors beyond the narrow context of hypnotic procedures. Such knowledge may help to further foster phenomenological interviewing methods, improve experiential reports, and elucidate the mechanisms of contemplative practices. Incorporating hypnosis and suggestion into the broader landscape of neurophenomenology, therefore, would likely help bridge subjective experience and third-person approaches to the mind. PMID:23966930
Vale, Ronald D.
2012-01-01
Evaluation of scientific work underlies the process of career advancement in academic science, with publications being a fundamental metric. Many aspects of the evaluation process for grants and promotions are deeply ingrained in institutions and funding agencies and have been altered very little in the past several decades, despite substantial changes that have taken place in the scientific work force, the funding landscape, and the way that science is being conducted. This article examines how scientific productivity is being evaluated, what it is rewarding, where it falls short, and why richer information than a standard curriculum vitae/biosketch might provide a more accurate picture of scientific and educational contributions. The article also explores how the evaluation process exerts a profound influence on many aspects of the scientific enterprise, including the training of new scientists, the way in which grant resources are distributed, the manner in which new knowledge is published, and the culture of science itself. PMID:22936699
NASA Astrophysics Data System (ADS)
Paull, Charles K.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.; Keaten, Rendy; Mitts, Patrick J.; Nealon, Jeffrey W.; Greinert, Jens; Herguera, Juan-Carlos; Elena Perez, M.
2007-06-01
Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ˜10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (-53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (-51.9±8.1‰ PDB). However, the δ13C value of the CO 2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (-35.8‰ to -2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (-40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO 2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO 2 (˜+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate-methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO 2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
Hydrogeomorphic responses to explosive volcanic eruptions-what have we learned?
NASA Astrophysics Data System (ADS)
Major, J. J.
2011-12-01
Explosive eruptions can greatly alter landscape hydrology and geomorphology. Analyses of hydrogeomorphic responses to four major eruptions, spanning two orders of magnitude in eruption volume, reveal patterns in the timing, pace, and style of landscape response to explosive eruptions. Tephra fall can blanket broad swaths of landscape with sediment having a low-permeability surface, and can cause significant tree damage. Volcanic blasts can also deposit many tens of cm of fines-capped sediment across the landscape, and can raze or completely remove vast tracts of forest. Debris avalanches, pyroclastic flows, and lahars can fill channels and valley floors with meters to tens of meters of gravelly sand for tens of kilometers from source; straighten, smooth or obliterate channel planforms; and remove, bury, or smother riparian vegetation. Such disturbances can radically alter runoff regimes and the manner in which water is routed along channels. Surface-infiltration capacities of landscapes denuded by volcanic blast and pyroclastic flows following eruptions of Mount St. Helens (MSH) and Unzen were reduced 1-2 orders of magnitude (from >100 mm/hr to as little as 2-5 mm/hr). Altered hydrologic processes promoted substantial overland flow in basins normally dominated by subsurface flow; measurements at Unzen showed overland flow 3-5 times greater from barren, tephra-covered ground compared to vegetated ground. Hydrological analysis at MSH showed that post-eruption wet-season peakflow discharges increased by a few to tens of percent in eruption-affected basins. Changes in hydrological processes alter sediment erosion and transport; extensive hillslope and channel erosion can lead to sediment yields that exceed preeruption yields by orders of magnitude. Indeed, sediment yields from volcanically disturbed watersheds rival those of great sediment-producing rivers worldwide. Short-term landscape-denudation rates following explosive eruptions are typically 10-104 times greater than estimated long-term denudation rates, reflecting great mobility of highly erodible sediment delivered by eruptions. Despite sometimes cataclysmic eruption-induced disturbance, landscapes are resilient. Owing to erosional, biogenic, and cryogenic modifications of tephra surfaces, eruption-induced changes in runoff and river discharge commonly relax substantially within a decade. Elevated sediment transport, however, can persist for decades. Observations following eruption of MSH show that magnitude and duration of enhanced sediment transport varied chiefly with the nature of disturbance-high yields from basins bearing significant channel disturbance persist far longer than those from basins bearing only hillslope disturbance. Observations from MSH and Mount Pinatubo show that excessive sediment yields from severely disturbed landscapes decay considerably within a decade of eruption, but appear to plateau at levels that can exceed preeruption yields by tens of percent for at least a few decades. Studies at Mount Hood show that distal aggraded channels can take up to a century to return to preeruption base level. Prolonged excessive sediment transport following eruptions can cause environmental and socioeconomic harm that equals or exceeds that caused directly by eruptions.
NASA Astrophysics Data System (ADS)
Miccadei, E.; Piacentini, T.; Berti, C.
2010-12-01
The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.
Northwestern Branch of Mangala Vallis
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 12 June 2002) The Science One of the many branches of the Mangala Vallis channel system is seen in this image. The water that likely carved the channels emerged from a huge graben or fracture almost 1000 km to the south. The THEMIS image shows where one of the channels exits the cratered highlands terrain onto the lowland plains. A bright scarp marks the transition between the two terrain types and demonstrates that in this location the highlands terrain is being eroded back. Note how the floor of the main channel appears to be at the same level as the lowland terrain, suggestive of a base level where erosion is no longer effective. Most of the steep slope faces in the image display darker slope streaks that are thought to be dust avalanche scars and indicate that a relatively thick mantle of dust is present in this region. Wind-sculpted ridges known as yardangs cover many of the surfaces throughout the area as shown by images from the Mars Global Surveyor mission. Most of them are at the limit of resolution in the THEMIS image but some are evident on the floor of the main channel at the point at which a smaller side channel enters. In this location they appear to extend right up to the base of the channel wall, giving the appearance that they are emerging from underneath the thick pile of material into which the channel is eroded. This suggests a geologic history in which a preexisting landscape of eroded yardangs was covered over by a thick pile of younger material that is now eroding back down to the original level. Alternatively, it is possible that the yardangs formed more recently at the abrupt transition between the channel floor and wall. More analysis is necessary to sort out the story. The Story This channel system is named 'Mangala,' the word for Mars in Sanskrit, a language of the Hindus of India that goes back more than 4,000 years, with written literature almost as long. Great epic tales have been written in this language, and Odyssey is continuing in the spirit of those adventures with its daily discoveries. Long ago, many thousands of years before Sanskrit was spoken on the Earth, a rush of water emerged from a giant fracture in the Martian land, carving the channels seen above. Since this fracture is located almost 600 miles to the south of this picture, you can only image the force of the flood. Today, the only real movement is the tired fall of dust avalanches down the channel slopes, which leave long dark trickles down the side. It's a dry, dusty world now, with a thick layer of dust everywhere. This image was taken at a place of transformation on Mars, where the cratered highlands meet the smooth, lowland plains. You can see that especially well in the context image to the right. Erosion is working tirelessly over time to bring the highlands level with the lowland terrain, but that will take eons more time into the future. Erosion may be 'deadly' to geological features, but it doesn't always happen quickly. If you want to look at one thing close up in this image, click on the above image and check out the floor of the main channel, just at the point where a smaller side channel enters (about a third of the way up). What you'll find are wind-sculpted ridges known as yardangs (some of them are almost triangular). What's interesting about these ridges is that they seem to have eroded long ago, then were covered by a thick pile of younger material, which is now itself eroding back, uncovering them once again. Yardangs are pretty common in this region of Mars, but if you have trouble finding them in many THEMIS images, don't worry, you're not alone. That's because the THEMIS camera is designed to take pictures of a larger area than its sister camera on the Mars Global Surveyor spacecraft, so some smaller yardangs are barely detectable. The Mars Orbital Camera, however, takes more detailed pictures of a narrower slice of the Martian landscape, and has shown many yardangs in the area. The great thing is that the THEMIS and MOC cameras are very complementary to one another. It's important to get the larger context of the terrain, as well as the sharp details of a tinier area for the greatest understanding possible. For example, while the yardangs in this image seem to be emerging from a blanket of younger material, it's also possible that they formed more recently at the abrupt transition between the channel floor and the wall. More analysis - and more pictures from both cameras! - will be needed to sort out the story.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... Wind Erosion Prediction System for Soil Erodibility System Calculations for the Natural Resources... Erosion Prediction System (WEPS) for soil erodibility system calculations scheduled for implementation for... computer model is a process-based, daily time-step computer model that predicts soil erosion via simulation...
Habila, Safia; Leghouchi, Essaid; Valdehita, Ana; Bermejo-Nogales, Azucena; Khelili, Smail; Navas, José M
2017-08-01
EROD and BFCOD activities were measured in liver and gills of barbel (Barbus callensis, a native North African species) captured at Beni Haroun lake, the most important water reservoir in Algeria. This lake receives wastewater from different origins. Thus, we assessed the level of pollution through the induction of detoxification activities in tissues of barbel, evaluating simultaneously the suitability of this species to be used as a sentinel. Fish were collected between March 2015 and January 2016 at three locations taking into account the pollution sources and accessibility. In liver, EROD and BFCOD showed the highest induction in October specially in the location of the dam that received pollutants. In gills, only EROD, but not BFCOD, activity was detected. Maximal EROD induction was noted in samples from January. Fish cell lines (RTG-2 and PLHC-1) were exposed to sediments extracts collected at Beni Haroun lake and enzyme activities (EROD and BFCOD, respectively) were measured. Sediment extracts did not induce BFCOD activity. The EROD induction observed in RTG-2 cells was in line with the results observed in fish tissues. Our results suggest that the lake is at risk from pollution and that Barbus callensis is a good sentinel species. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.
2017-12-01
Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock
rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.
A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania
Ridge, J.C.; Evenson, E.B.; Sevon, W.D.
1992-01-01
In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and landscape stability were delayed until the Holocene by a lingering cold climate, slope erosion, colluvium and alluvial fan deposition, and eolian sedimentation. Late Quaternary erosion in the Delaware Valley was dominated by glacial and periglacial processes during glacial stages. During the warm interglacial stages, soils developed on a more stable landscape. These souls were easily colluviated by periglacial erosion during periods of intermittent cold climate. ?? 1992.
Predicting sediment delivery from debris flows after wildfire
NASA Astrophysics Data System (ADS)
Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.
2015-12-01
Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the southeast Australian highlands provide a novel basis upon which to model sediment delivery from post-fire debris flows. The modelling approach has wider relevance to post-fire debris flow prediction both from risk management and landscape evolution perspectives.
Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; ...
2017-02-03
Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less
Sensitivity of mesquite shrubland CO2 exchange to precipitation in contrasting landscape settings.
Potts, Daniel L; Scott, Russell L; Cable, Jessica M; Huxman, Travis E; Williams, David G
2008-10-01
In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.
NASA Astrophysics Data System (ADS)
Eugenio Pappalardo, Salvatore; Ferrarese, Francesco; Tarolli, Paolo; Varotto, Mauro
2016-04-01
Traditional agricultural terraced landscapes presently embody an important cultural value to be deeply investigated, both for their role in local heritage and cultural economy and for their potential geo-hydrological hazard due to abandonment and degradation. Moreover, traditional terraced landscapes are usually based on non-intensive agro-systems and may enhance some important ecosystems services such as agro-biodiversity conservation and cultural services. Due to their unplanned genesis, mapping, quantifying and classifying agricultural terraces at regional scale is often critical as far as they are usually set up on geomorphologically and historically complex landscapes. Hence, traditional mapping methods are generally based on scientific literature and local documentation, historical and cadastral sources, technical cartography and aerial images visual interpretation or, finally, field surveys. By this, limitations and uncertainty in mapping at regional scale are basically related to forest cover and lack in thematic cartography. The Veneto Region (NE of Italy) presents a wide heterogeneity of agricultural terraced landscapes, mainly distributed within the hilly and Prealps areas. Previous studies performed by traditional mapping method quantified 2,688 ha of terraced areas, showing the higher values within the Prealps of Lessinia (1,013 ha, within the Province of Verona) and in the Brenta Valley (421 ha, within the Province of Vicenza); however, terraced features of these case studies show relevant differences in terms of fragmentation and intensity of terraces, highlighting dissimilar degrees of clusterization: 1.7 ha on one hand (Province of Verona) and 1.2 ha per terraced area (Province of Vicenza) on the other one. The aim of this paper is to implement and to compare automatic methodologies with traditional survey methodologies to map and assess agricultural terraces in two representative areas of the Veneto Region. Testing different Remote Sensing analyses such as LiDAR topography survey and visual interpretation from aerial orthophotos (RGB+NIR bands) we performed a territorial analysis in the Lessinia and Brenta Valley case studies. Preliminary results show that terraced feature extraction by automatic LiDAR survey is more efficient both in identifying geometries (walls and terraced surfaces) and in quantifying features under the forest canopy; however, traditional mapping methodology confirms its strength by matching different methods and different data such as aerial photo, visual interpretation, maps and field surveys. Hence, the two methods here compared represent a cross-validation and let us to better know the complexity of this kind of landscape.
NASA Astrophysics Data System (ADS)
Hancock, G. S.; Huettenmoser, J.; Shobe, C. M.; Eppes, M. C.
2016-12-01
Rock erodibility in channels is a primary control on the stresses required to erode bedrock (e.g., Sklar and Dietrich, 2001). Erodibility tends to be treated as a uniform and fixed variable at the scale of channel cross-sections, particularly in models of channel profile evolution. Here we present field data supporting the hypothesis (Hancock et al., 2011) that erodibility is a dynamic variable, driven by the interplay between erosion rate and weathering processes within cross-sections. We hypothesize that rock weathering varies in cross-sections from virtually unweathered in the thalweg, where frequent stripping removes weathered rock, to a degree of weathering determined by the frequency of erosive events higher on the channel margin. We test this hypothesis on three tributaries to the Potomac River underlain by similar bedrock but with varying erosion rates ( 0.01 to 0.8 m/ky). At multiple heights within three cross-sections on three tributaries, we measured compressive strength with a Schmidt hammer, surface roughness with a contour gage, and density and length of visible cracks. Compressive strength decreased with height in all nine cross-sections by 10% to 50%, and surface roughness increased with height in seven cross-sections by 25% - 45%, with the remaining two showing minimal change. Crack density increased with height in the three cross-sections measured. Taken together these data demonstrate increases in weathering intensity, and presumably, rock erodibility, with height. The y-intercept of the relation between height and the three measured variables were nearly identical, suggesting that thalweg erodibility was similar on each channel, as predicted, even though erodibility higher in the cross-section were markedly different. The rate at which the three variables changed with height in each cross-section is strongly related to stream power. Assuming stream power is a reasonable surrogate for erosion rate, this result implies that erosion rate can be a primary influence on the distribution of erodibility within channel cross-sections. We conclude that the interplay between rates of erosion and weathering produces spatial as well as temporal variability in erodibility which, in turn, influences channel form and gradient.
Leopard frog PCB levels and evaluation of EROD as a biomarker in Green Bay ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.W.; Karasov, W.H.; Patnode, K.P.
1995-12-31
The induction of mixed function oxidases has been shown to be a promising biomarker in many taxa of wildlife, though not yet tested for amphibians. The three hypotheses tested in this study were (1) activities of hepatic EROD of leopard frog (Rana pipiens) are induced following exposure to planar chlorinated PCBs, (2) tissue PCB residue levels of leopard frogs are positively correlated with their wetland sediment PCB levels, and (3) EROD activities are positively correlated with tissue PCB concentrations and sediment PCB. In the laboratory, EROD was increased 2--3 times seven days after i.p. injection with PCB 126 at dosesmore » {ge} 2.3 ppm (wet mass basis). Leopard frogs from seven sites along the Lower Fox River and Green Bay in 1994--1995 were assayed for hepatic EROD activities and total PCB levels in carcasses. Tissue PCB levels ranged from 3 to 152 ppb (including coplanar congeners) and were highest from sites with higher sediment PCB. EROD activity in frogs collected in August--September was not significantly correlated with frog body mass and was similar among sites with one exception. There was no significant correlation between EROD activity and tissue PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB levels compared with what was required for induction in the laboratory. The authors conclude that EROD activity is not a sensitive biomarker of PCB exposure in leopard frogs in this ecosystem.« less
NASA Astrophysics Data System (ADS)
Battentier, Janet; Binder, Didier; Guillon, Sebastien; Maggi, Roberto; Negrino, Fabio; Sénépart, Ingrid; Tozzi, Carlo; Théry-Parisot, Isabelle; Delhon, Claire
2018-03-01
In the north western Mediterranean, in the area between the Rhone River and the Northern Apennines, the last Mesolithic societies (Castelnovian) and the first Neolithic societies (Impressed Ware or Impressa) coexisted during the first half of the 6th millennium cal. BCE (Before Common Era). Linking the two settlement distribution patterns (mainly high lands and low lands for the Castelnovian versus Mediterranean coastal areas for the Impressa) to their specific environmental backgrounds during that period of coexistence enables us to document the attractiveness of the various available landscape units as a function of the subsistence practices (hunting, fishing and gathering versus agro-pastoralism). Pollen and charcoal data from 41 archaeological sites along with contemporaneous natural (off archaeological sites) sequences (hereafter referred to as "off-site sequences") from three windows (Provence/Western Liguria, the middle Rhone valley/Prealps and Southern Alps, Eastern Liguria/Northern Apennines) were examined in order to reconstruct the vegetal landscape in the surroundings of the Mesolithic and Neolithic settlements between 6500 and 5400 cal. BCE. The importance of environmental versus cultural factors in the settlement preferences of both groups is discussed in order to document our reflection concerning non-consensual issues, such as the existence of interaction or avoidance behaviours or the sharing (or not) of parts or all of the territory and of its natural resources. The results notably highlight the expansion of fir forests that, based on ecological and accessibility criteria, could be considered as rather inauspicious for settlement and hunting as well as for pastoral activities. This expansion may have influenced the settlement patterns of both cultural complexes, leading populations to locate their settlements principally within landscape units that remained clear of extensive fir forests. It appears that, despite being motivated by the prevailing subsistence activities, the choice of an area of land for settlement is deeply guided by various other cultural factors which are less directly dependent upon natural resources. Thus, in an area providing a large range of possibilities, the landscape in which the groups establish themselves could be considered as just one of many cultural characteristics.
USDA-ARS?s Scientific Manuscript database
There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...
USDA-ARS?s Scientific Manuscript database
Seepage influences the erodibility of streambanks, streambeds, dams, and embankments. Usually the erosion rate of cohesive soils due to fluvial forces is computed using an excess shear stress model, dependent on two major soil parameters: the critical shear stress (tc) and the erodibility coefficie...
Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin
USDA-ARS?s Scientific Manuscript database
The Tarim Basin is an important source of airborne particulate matter that contributes to poor air quality in China. However, little attention has been given to estimating wind erodibility of soils in the region. The objective of this study was to determine the soil wind erodibility for six land use...
NASA Astrophysics Data System (ADS)
Corbett, S.; Sklar, L. S.; Davis, J.
2009-12-01
Linkages between form and process are much better understood in soil-mantled landscapes than in bedrock landscapes, despite the wide occurrence of bedrock landscapes in arid and mountainous terrain. Soil-mantled hillslope topography can be characterized by hillslope gradient and its spatial derivative, which is commonly referred to as curvature and defined as the Laplacian of elevation. Surface curvature can also be quantified using techniques that are invariant to the orientation of the surface. These approaches are useful in many geoscience applications, including structural analysis of folded surfaces within deforming crustal blocks. Here we explore the use of surface curvature of bedrock topography as a metric to identify and map distinct geomorphic process regimes in a landscape devoid of soil cover. Our study site is Simpson Creek, a 2.5 km2 watershed on the east flank of Mt. Hillers in the Henry Mountains, Utah, which drains to the Colorado River in Glen Canyon. The land surface is entirely exposed Navajo Sandstone bedrock, with isolated patches of wind-blown sand deposits. The channel network is discontinuous, with alternating reaches of steep, deeply-incised, frequently-potholed slots, and lower-gradient, sand-bedded channels. Hillslope topography is characterized by dome-shaped and sub-linear ridges, and is influenced by prominent structural joints. We calculate two measures of the surface-normal curvature using an ALSM-derived digital elevation model. The mean and Gaussian surface curvatures are the average and product respectively of the magnitudes of the maximum and minimum curvature vectors, obtained by differentiating a polynomial fit at each point in a grid with 1 m spacing. Plots of mean versus Gaussian curvature reveal distinct clusters of landscape elements, which we associate with specific process regimes. In this parameter space, there are four quadrants, classified as dome, basin, synformal saddle and antiformal saddle. The channel and valley network corresponds to negative mean curvature, where concave and convex profile segments plot as basins and synformal saddles (positive and negative Gaussian curvature) respectively. We are able to use surface curvature to map what can be interpreted as bedrock channel width, as well as knickpoints, sand-bedrock bed transitions, and even individual large potholes. The tips of the channel network also have a distinct surface-curvature signature, and are associated with prominent polygonal bedrock fracturing at the sub-meter scale. In the hillslope portion of the landscape (positive mean curvature), the distribution of landscape elements has several modes, including a characteristic dome curvature that may be associated with sheet jointing and weathering-influenced exfoliation erosion, and an antiformal saddle curvature where solution pits occur, particularly on higher ridges most distant from the main-stem slot canyon channels. One key goal of this work is to quantify the effect of variable erosion rate on the distribution of process regime as expressed by these characteristic modes of bedrock surface curvature.
Soil erodibility in Europe: a high-resolution dataset based on LUCAS.
Panagos, Panos; Meusburger, Katrin; Ballabio, Cristiano; Borrelli, Pasqualle; Alewell, Christine
2014-05-01
The greatest obstacle to soil erosion modelling at larger spatial scales is the lack of data on soil characteristics. One key parameter for modelling soil erosion is the soil erodibility, expressed as the K-factor in the widely used soil erosion model, the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). The K-factor, which expresses the susceptibility of a soil to erode, is related to soil properties such as organic matter content, soil texture, soil structure and permeability. With the Land Use/Cover Area frame Survey (LUCAS) soil survey in 2009 a pan-European soil dataset is available for the first time, consisting of around 20,000 points across 25 Member States of the European Union. The aim of this study is the generation of a harmonised high-resolution soil erodibility map (with a grid cell size of 500 m) for the 25 EU Member States. Soil erodibility was calculated for the LUCAS survey points using the nomograph of Wischmeier and Smith (1978). A Cubist regression model was applied to correlate spatial data such as latitude, longitude, remotely sensed and terrain features in order to develop a high-resolution soil erodibility map. The mean K-factor for Europe was estimated at 0.032 thahha(-1)MJ(-1)mm(-1) with a standard deviation of 0.009 thahha(-1)MJ(-1)mm(-1). The yielded soil erodibility dataset compared well with the published local and regional soil erodibility data. However, the incorporation of the protective effect of surface stone cover, which is usually not considered for the soil erodibility calculations, resulted in an average 15% decrease of the K-factor. The exclusion of this effect in K-factor calculations is likely to result in an overestimation of soil erosion, particularly for the Mediterranean countries, where highest percentages of surface stone cover were observed. Copyright © 2014. Published by Elsevier B.V.
Pyrosequencing reveals bacteria carried in different wind-eroded sediments.
Gardner, Terrence; Acosta-Martinez, Veronica; Calderón, Francisco J; Zobeck, Ted M; Baddock, Matthew; Van Pelt, R Scott; Senwo, Zachary; Dowd, Scot; Cox, Stephen
2012-01-01
Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. The novel technique of pyrosequencing promises to expand our understanding of the microbial diversity of soils and eroded sediments because it can sequence 10 to 100 times more DNA fragments than previous techniques, providing enhanced exploration into what microbes are being lost from soil due to wind erosion. Our study evaluated the bacterial diversity of two types of wind-eroded sediments collected from three different organic-rich soils in Michigan using a portable field wind tunnel. The wind-eroded sediments evaluated were a coarse sized fraction with 66% of particles >106 μm (coarse eroded sediment) and a finer eroded sediment with 72% of particles <106 μm. Our findings suggested that (i) bacteria carried in the coarser sediment and fine dust were effective fingerprints of the source soil, although their distribution may vary depending on the soil characteristics because certain bacteria may be more protected in soil surfaces than others; (ii) coarser wind-eroded sediment showed higher bacterial diversity than fine dust in two of the three soils evaluated; and (iii) certain bacteria were more predominant in fine dust (, , and ) than coarse sediment ( and ), revealing different locations and niches of bacteria in soil, which, depending on wind erosion processes, can have important implications on the soil sustainability and functioning. Infrared spectroscopy showed that wind erosion preferentially removes particular kinds of C from the soil that are lost via fine dust. Our study shows that eroded sediments remove the active labile organic soil particulates containing key microorganisms involved in soil biogeochemical processes, which can have a negative impact on the quality and functioning of the source soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Layzell, Anthony L.; Mandel, Rolfe D.
2014-05-01
Streambanks are the primary source of sediment for watersheds in the Midwestern USA. In much of this region, deposits of fine-grained Holocene alluvium comprising streambanks have been assigned to a single lithostratigraphic unit, the DeForest Formation. This study examines the stratigraphic relationships and measures the erodibility of the different members of the DeForest Formation in three watersheds in northeastern Kansas. Distinct differences in erodibility, measured in terms of critical shear stress (τc) by a submerged jet-test device, were observed between the different members of the DeForest Formation. The most erodible member is the Camp Creek Member (average τc = 1.0 Pa) while the most resistant is the Gunder Member (average τc = 10.4 Pa). Variability in erodibility between and within the members of the DeForest Formation is attributed to the magnitude of post-depositional soil-forming processes, including the presence of buried soils, as well as the inherent natural variability in the different parent materials. A weak positive correlation was found between percent clay and τc. Resistance to erosion by fluid flow was found to be significantly greater where clay contents exceed 28%. Although the Camp Creek Member was found to be the most erodible, it always occurs, stratigraphically, as the uppermost member. Available bankfull stage indicators suggest that bankfull discharges rarely attain elevations sufficient to erode Camp Creek Member deposits. Therefore, other members of the DeForest Formation are able to exert some control on the rate of bank erosion by hydraulic flow. Furthermore, given the observed differences in lithology, soil development and erodibility, the susceptibility to mass wasting processes is also likely to vary between the different members. Therefore, lithostratigraphic and soil-stratigraphic relationships have important implications for streambank erodibility and are crucial for accurately determining areas prone to streambank erosion in alluvial settings.
2018-04-12
split between the upper and lower gates, the tainter gate outflow can cause flow circulations or eddies to form , which requires the use of a multi...determined to not erode were assigned a bed layer thickness of zero. This included the stone weir, fossil beds, non-erodible vegetation, and upstream...606.7 Chute 0.1 606 L 0.4 Erodible Small Vegetation 606.7 Chute 0.1 606 L 0.4 Fossil Bed NA 0 NA 0 Non Erodible Small Vegetation NA 0 NA 0 Non
Dąbrowska, Jolanta; Kaczmarek, Halina; Markowska, Joanna; Tyszkowski, Sebastian; Kempa, Olgierd; Gałęza, Marta; Kucharczak-Moryl, Ewa; Moryl, Andrzej
2016-08-01
Shore zones are transition areas (ecotones) between aquatic and terrestrial ecosystems. Their function in the environment is crucial because they serve as buffer zones that capture pollutants and slow down erosion of reservoir and watercourse banks provided that they are managed properly. Research on a shore zone was conducted at the Mściwojów retention reservoir with an innovative water self-purification system. After several years of its operation, an increased phosphate concentration in the main part of the reservoir was reported. The mapping of the terrain's surface and modeling of hydrological processes in the direct catchment area of the said reservoir were done using the digital elevation model (DEM). The DEM was created from LiDAR data obtained in 2012 by airborne laser scanning. Analyses of the surface runoff led to identification of surface runoff transport pathways, along which the eroded material from cultivated fields is discharged directly to the reservoir. Surface runoff transport pathways gather the eroded material from a maximum area of 45,000 m(2) in the western part of the direct catchment and 40,000 m(2) in the eastern part of it. Due to the reservoir management negligence, the riparian zone designed for the Mściwojów Reservoir no longer exists. The percentage of the natural shore that undergoes erosion processes is over 54. The said processes and fluctuations of the water level in the reservoir, as well as degradation of the shore zone caused by human activity, bring about limited plant development in the littoral zone, which in turn lowers the reservoir's resistance to degradation.
Ancient Streamlined Islands of the Palos Outflow Channel
2016-08-24
This image shows the northern terminus of an outflow channel located in the volcanic terrains of Amenthes Planum. The channel sources from the Palos impact crater to the south, where water flowed into the crater from Tinto Vallis and eventually formed a paleo lake. As rising lake levels breached through the crater's rim and inundated the plains to the north, the resulting high velocity, large discharge floods plucked out and eroded the volcanic plains scouring out the "Palos Outflow Channel" and the streamlined mesa-islands on its floor. These streamlined forms are the eroded remnants of plains material sculpted by catastrophic floods and are not sediment deposits emplaced by lower magnitude stream flows. Both the fluvial channel floor and the volcanic island surfaces are densely cratered by impacts suggesting that both the surfaces and the flood events are ancient. The morphology (shape) of the channel system and its islands have been preserved through the eons, but water has long been absent from this drainage system. Since then, winds have transported light-toned sediments across this terrain forming extensive dune fields within the channel system, on the floors of impact craters, and in other protected locations in the Palos Outflow Channel region. A closer look shows chevron, or fish-bone shaped, light-toned dunes located near the top of the image where numerous smaller channels have cut through the landscape. These dunes likely started out as Transverse Aeolian Ridges (TAR) that form perpendicular to the prevailing wind direction where the wind-blown sediment supply is scarce. This intriguing morphology likely reflects changes in the prevailing wind environment over time. http://photojournal.jpl.nasa.gov/catalog/PIA21023
Sui, Xueyan; Wu, Zhipeng; Lin, Chen; Zhou, Shenglu
2017-07-01
Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.
An important erosion process on steep burnt hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary
2016-04-01
Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.
Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.
Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni
2018-03-01
Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.
Value-Eroding Teacher Behaviors Scale: A Validity and Reliability Study
ERIC Educational Resources Information Center
Arseven, Zeynep; Kiliç, Abdurrahman; Sahin, Seyma
2016-01-01
In the present study, it is aimed to develop a valid and reliable scale for determining value-eroding behaviors of teachers, hence their values of judgment. The items of the "Value-eroding Teacher Behaviors Scale" were designed in the form of 5-point likert type rating scale. The exploratory factor analysis (EFA) was conducted to…
Inferring sediment connectivity from high-resolution DEMs of Difference
NASA Astrophysics Data System (ADS)
Heckmann, Tobias; Vericat, Damià
2017-04-01
Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net) erosion and deposition has emerged from sediment transfer between the two epochs of the DoD (i.e. functional connectivity). In this study, we use multitemporal raster DEMs generated (i) from terrestrial LiDAR surveys and (ii) by a landscape evolution model to compute DoDs. Flow accumulation is used to compute, for the contributing area of each raster cell, (i) the net balance and (ii) the total sum of material eroded. The net balance represents the sediment yield of the contributing area. In the case of a study area delimited by a catchment boundary, it is either negative (more sediment eroded than deposited within the contributing area, i.e. net export) or zero (eroded material has been re-deposited within the contributing area). Finally, the ratio of sediment yield and gross erosion is called the sediment delivery ratio (SDR). This number has been used as a "performance factor" indicating the degree of sediment connectivity, as it describes the proportion of material eroded on the local scale that is being delivered to the outlet of the contributing area. The evaluation of a DoD to compute the SDR overcomes one major criticism of the SDR, namely that gross erosion is generally estimated (e.g. by empirical USLE-type equations) rather than measured. Both our proposed approach and the concept of SDR are subject to a number of caveats, which we will discuss in our contribution. In any case, we advocate more detailed analyses of DoD using flow routing algorithms in order to include information on potential sediment pathways in morphological sediment budgets for hillslopes and catchments.
Soil organic carbon erosion and its subsequent fate in the Karoo rangeland
NASA Astrophysics Data System (ADS)
Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus
2016-04-01
The rangelands of the Great Karoo region in South Africa have experienced a number of environmental changes. With the settling of European farmers in the second half of the 18th century, agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. Ongoing land-use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and complex gully systems in valley bottoms. Many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods, as a consequence of agricultural intensification. Most of the dams soon in-filled with sediment and many were eventually breached. Such a process offers the potential to use these breached dams as an environmental archive to analyse land use changes as well as carbon (C) erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping and sediment analysis have been employed to determine whether land degradation in the Karoo has resulted in the reversion from a net sink of C to a net source of C. Firstly, drone imagery will be used to produce a high-resolution digital elevation model for areas especially prone to erosion and for determining the volume calculation of eroded sediment in the catchment area. Secondly, sediment deposits from the same silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse and reconstruct erosional and depositional patterns. Total Carbon (TC) content was recorded and the sharp decrease in total C content with decreasing depth suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the then relatively fertile surface soils. This presumably resulted in the rapid in-filling of reservoirs with carbon-rich surface material which is found at the base of many dam deposits. Low organic Carbon (OC) content in the top layers of the reservoir in-fill, and in the eroded source areas, supports the assumption that the eroded material was transported from the degraded areas down into the reservoir, where it settled. This raises a crucial question of whether the decline of C sinks in degraded rangelands due to exacerbated soil erosion may have had a greater attenuating effect on GHG emissions than modelled scenarios of present emissions suggest.
NASA Astrophysics Data System (ADS)
Abney, Rebecca B.; Sanderman, Jonathan; Johnson, Dale; Fogel, Marilyn L.; Berhe, Asmeret Asefaw
2017-11-01
Catchments impacted by wildfire typically experience elevated rates of post-fire erosion and formation and deposition of pyrogenic carbon (PyC). To better understand the role of erosion in post-fire soil carbon dynamics, we determined distribution of soil organic carbon in different chemical fractions before and after the Gondola fire in South Lake Tahoe, CA. We analyzed soil samples from eroding and depositional landform positions in control and burned plots pre- and post-wildfire (in 2002, 2003, and 10-years post-fire in 2013). We determined elemental concentrations, stable isotope compositions, and biochemical composition of organic matter (OM) using mid-infrared (MIR) spectroscopy for all of the samples. A subset of samples was analyzed by 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (CPMAS 13C-NMR). We combined the MIR and CPMAS 13C-NMR data in the Soil Carbon Research Program partial least squares regression model to predict distribution of soil carbon into three different fractions: 1) particulate, humic, and resistant organic matter fractions representing relatively fresh larger pieces of OM, 2) fine, decomposed OM, and 3) pyrogenic C, respectively. Samples from the post-fire eroding landform position showed no major difference in soil organic carbon (SOC) fractions one year post-fire. The depositional samples, however, had increased concentrations of all SOC fractions, particularly the fraction that resembles PyC, one year post-fire (2002), which had a mean of 160 g/kg compared with burned hillslope soils, which had 84 g/kg. The increase in all SOC fractions in the post-fire depositional landform position one year post-fire indicates significant lateral mobilization of the eroded PyC. In addition, our NMR analyses revealed a post-fire increase in both the aryl and O-aryl carbon compounds in the soils from the depositional landform position, indicating increases in soil PyC concentrations post-fire. After 10 years, the C concentration from all three fractions declined in the depositional landform position to below pre-fire levels likely due to further erosion or elevated rates of decomposition. Thus, we found, at this site, that both fire and erosion exert significant influence on the distribution of PyC throughout a landscape and its long-term fate in the soil system.
NASA Astrophysics Data System (ADS)
Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.
2013-10-01
Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.
High Nutrient Load Increases Biostabilization of Sediment by Biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.
2016-12-01
Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.
Response of Muddy Sediments and Benthic Diatom-based Biofilms to Repeated Erosion Events
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.; Fagherazzi, S.
2016-02-01
Benthic biofilms, microbes aggregated within a matrix of Extracellular Polymeric Substances (EPS), are commonly found in shallow coastal areas and intertidal environments. Biofilms have the potential to stabilize sediments, hence reducing erosion and possibly mitigating land loss. The purpose of this study is to determine how repeated flow events that rework the bed affect biofilm growth and its ability to stabilize cohesive sediments. Natural mud devoid of grazers was used to create placed beds in four annular flumes; biofilms were allowed to grow on the sediment surface. Each flume was eroded at different time intervals (1 or 12 days) to allow for varied levels of biofilm growth and adjustment following erosion. In addition, experiments with abiotic mud were performed by adding bleach to the tank. Each erosion test consisted of step-wise increases in flow that were used to measured erodibility. In the experiments where the bed was eroded every day both the abiotic and biotic flumes exhibited a decrease in erodibility with time, likely due to consolidation, but the decrease in erodibility was greater in the flume with a biofilm. Specifically the presence of biofilm reduced bed erosion at low shear stresses ( 0.1 Pa). We attribute this progressive decrease in erodibility to the accumulation of EPS over time: even though the biofilm was eroded during each erosion event, the EPS was retained within the flume, mixed with the eroded sediment and eventually settled. Less frequent erosion allowed the growth of a stronger biofilm that decreased bed erosion at higher shear stresses ( 0.4 Pa). We conclude that the time between destructive flow events influences the ability of biofilms to stabilize sediments. This influence will likely be affected by biofilm growth conditions such as light, temperature, nutrients, salinity, and the microbial community.
Global patterns of dust and bedrock nutrient supply to montane ecosystems
Arvin, Lindsay J.; Riebe, Clifford S.; Aciego, Sarah M.; Blakowski, Molly A.
2017-01-01
A global compilation of erosion rates and modeled dust fluxes shows that dust inputs can be a large fraction of total soil inputs, particularly when erosion is slow and soil residence time is therefore long. These observations suggest that dust-derived nutrients can be vital to montane ecosystems, even when nutrient supply from bedrock is substantial. We tested this hypothesis using neodymium isotopes as a tracer of mineral phosphorus contributions to vegetation in the Sierra Nevada, California, where rates of erosion and dust deposition are both intermediate within the global compilation. Neodymium isotopes in pine needles, dust, and bedrock show that dust contributes most of the neodymium in vegetation at the site. Together, the global data sets and isotopic tracers confirm the ecological significance of dust in eroding mountain landscapes. This challenges conventional assumptions about dust-derived nutrients, expanding the plausible range of dust-reliant ecosystems to include many temperate montane regions, despite their relatively high rates of erosion and bedrock nutrient supply. PMID:29226246
An overview of the descent and landing of the Huygens probe on Titan.
Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B; Matson, Dennis L; Gurvits, Leonid I; Atkinson, David H; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel
2005-12-08
Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.
Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins
Pierson, Thomas C.; Major, Jon J.
2014-01-01
Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.
A rain splash transport equation assimilating field and laboratory measurements
Dunne, T.; Malmon, D.V.; Mudd, S.M.
2010-01-01
Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.
China’s Rapidly Aging Population Creates Policy Challenges In Shaping A Viable Long-Term Care System
Feng, Zhanlian; Liu, Chang; Guan, Xinping; Mor, Vincent
2013-01-01
In China, formal long-term care services for the large aging population have increased to meet escalating demands as demographic shifts and socioeconomic changes have eroded traditional elder care. We analyze China’s evolving long-term care landscape and trace major government policies and private-sector initiatives shaping it. Although home and community-based services remain spotty, institutional care is booming with little regulatory oversight. Chinese policy makers face mounting challenges overseeing the rapidly growing residential care sector, given the tension arising from policy inducements to further institutional growth, a weak regulatory framework, and the lack of enforcement capacity. We recommend addressing the following pressing policy issues: building a balanced system of services and avoiding an “institutional bias” that promotes rapid growth of elder care institutions over home or community-based care; strengthening regulatory oversight and quality assurance with information systems; and prioritizing education and training initiatives to grow a professionalized long-term care workforce. PMID:23213161
Ridges and scarps in the equatorial belt of Mars
Lucchitta, B.K.; Klockenbrink, J.L.
1981-01-01
The morphology and distribution of ridges and scarps on Mars in the ?? 30?? latitude belt were investigated. Two distinct types of ridges were recognized. The first is long and linear, resembling mare ridges on the Moon; it occurs mostly in plains areas. The other is composed of short, anastomosing segments and occurs mostly in ancient cratered terrain and intervening plateaus. Where ridges are eroded, landscape configurations suggest that they are located along regional structures. The age of ridges is uncertain, but some are as young as the latest documented volcanic activity on Mars. The origins of ridges are probably diverse-they may result from wrinkling due to compression or from buckling due to settling over subsurface structures. The similar morphologic expressions of ridge types of various origins may be related to a similar deformation mechanism caused by two main factors: (1) most ridges are developed in thick layers of competent material and (2) ridges formed under stresses near a free surface. ?? 1981 D. Reidel Publishing Co.
Mineralization of soil organic matter in biochar amended agricultural landscape
NASA Astrophysics Data System (ADS)
Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.
2015-12-01
Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.
Growth of Planted Yellow-Poplar After Vertical Mulching and Fertilization on Eroded Soils
J.B. Baker; B.G. Blackmon
1976-01-01
Fertilization and vertical mulching improved height growth of yellow-poplars planted on eroded soils. A growing demand for hardwood timber accompanied by a diminishing land base has prompted land managers to consider planting hardwoods on marginal sites such as the eroded soils in the Silty Uplands of Arkansas, Louisiana, and Mississippi. Many of these areas were well...
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2004-01-01
This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.
Ha, Ho Kyung; Ha, Hun Jun; Seo, Jun Young; Choi, Sun Min
2018-06-04
Although the Korean tidal flats in the Yellow Sea have been highlighted as a typical macrotidal system, so far, there have been no measurements of the sediment erodibility and critical shear stress for erosion (τ ce ). Using the Gust erosion microcosm system, a series of field experiments has been conducted in the Ganghwa tidal flat to investigate quantitatively the effects of biogenic materials on the erodibility of intertidal cohesive sediments. Four representative sediment cores with different surficial conditions were analyzed to estimate the τ ce and eroded mass. Results show that τ ce of the "free" sediment bed not covered by any biogenic material on the Ganghwa tidal flat was in the range of 0.1-0.2 Pa, whereas the sediment bed partially covered by vegetation (Phragmites communis) or fecal pellets had enhanced τ ce up to 0.45-0.6 Pa. The physical presence of vegetation or fecal pellets contributed to protection of the sediment bed by blocking the turbulent energy. An inverse relationship between the organic matter included in the eroded mass and the applied shear stress was observed. This suggests that the organic matter enriched in a near-bed fluff layer is highly erodible, and the organic matter within the underlying sediment layer becomes depleted and less erodible with depth. Our study underlines the role of biogenic material in stabilizing the benthic sediment bed in the intertidal zone. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ecochard, E.; Fouache, E.; Kuzucuoǧlu, C.; Carcaud, N.; Ekmekçi, M.; Ulusoy, I.; Robert, V.; Çiner, A.; Des Courtils, J.
2009-04-01
In the Hellenistic period, according to Strabo, Xanthos and Letoon were very important cities and major holy places in Lycia, a peninsula in southwestern contemporary Turkey. An archaeological study of the sites of Xanthos and Letoon cannot assume that the environment in which they are located did not change since the arrival of the first settlers in the seventh century BC. The rise of the sea level in the last 15,000 years and the subsequent Holocene alluviation has a strong impact on the landscape. The river Esen Çayı meandered in the valley leaving alluvial deposits, and the slopes were eroded. The geography of the valley of the river Esen Çayı during the Lycian and Hellenistic periods, i.e. during the 1st millennium BC, yet remains significantly unknown. What was the landscape around the Letoon shrine like? Where were the river channels? What was the progradation stage of the deltaic plain? To what extent did the slope mobility determine the location of settlements and ancient roads? To answer these questions, geomorphological dynamics at work throughout the Holocene must be reconstructed. In this communication, preliminary results from the analysis of cores and geophysical profiles, both performed during and after four field work seasons in the plain, are compared with the historical, archaeological and literary data, and a first reconstruction of the changing landscape is proposed. The sedimentary records indicate that a marine bay was gradually closed by the development of coastal sand deposits, prompting the development of a lagoonal system. As lagoons and wetlands have long been dominant in the plain, both sites probably developed in this type of landscape. In front of the Letoon site, a channel of the river Esen Çayı has been identified. It probably allowed for a direct connection by boat between the holy place and the sea downstream, and with the city of Xanthos upstream. This channel was probably responsible of the gradual sinking of the sanctuary below the alluvial deposits. The study of the morphology of the valley reveals the high mobility of landscapes in time and space. The mobility of slopes and rivers forced men to carefully choose the location of their settlements, which they often settled on rocky promontories isolated from slopes. The roads were probably established on the right bank of the river, where the slopes are less steep. The mobility of the landscape was also exploited with a symbolic aim: the Letoon shrine was installed in a hostile environment of wetlands in the middle of the floodplain, as a challenge to the laws of nature. Not only did the ancient societies adapt themselves to environmental constraints, but they also participated in the production of landscapes, with pragmatic and symbolic aims.
NASA Astrophysics Data System (ADS)
Scherler, Dirk
2017-04-01
Glacial landscapes respond rapidly to global warming: glaciers retreat, permafrost degrades, and snow cover diminishes. These changes affect the stability of glacial landscapes, manifested by enhanced rockfall activity and more frequent catastrophic slope failures. Similar changes have accompanied deglaciation after the last glacial maximum, albeit of much greater magnitude, and with potentially important feedbacks between the dynamics of mountain glaciers and the landscapes they reside in. Here, I summarize recent observations from debris-covered valley glaciers and put them into context with a more general conceptual model of how glacial landscapes respond to warming periods. I will identify key research problems and provide preliminary results from ongoing studies. Ice-free areas that are located above glaciers generally consist of steep bedrock hillslopes (headwalls), where ambient temperatures are low enough to form bedrock permafrost, but the topography is too steep to accumulate significant amounts of ice on the surface. Because headwalls erode by rockfalls and rock avalanches that mobilize fractured bedrock, the rate-limiting factor is the growth of bedrock fractures. Current theory posits that bedrock fractures in cold regions primarily expand by segregation ice growth at subfreezing temperatures, which is known as frost cracking. Because frost cracking is temperature sensitive, there exists a temperature window of high frost-cracking intensity, which is thought to correspond to an elevation zone of enhanced sediment production. During warming periods, changes in the frost-cracking intensity combine with permafrost degradation and changing stresses due to ice thinning to destabilize steep headwalls and likely increase the flux of rocks that is shed to valley glaciers below. Even if temporarily buried in the ice, most rocks eventually melt out at the ice surface and form a supraglacial debris cover. Because debris cover thicker than 2 cm reduces conductive heat transport and thus ice melt rates, heavily debris-covered glaciers are longer and extent to lower and warmer elevations compared to debris-free glaciers, all other things being equal. Therefore, if warming induces an increase in headwall erosion rates, the increased supply of rocks should lead to an increase in supraglacial debris cover, which would reduce ice melting and slow down glacier retreat. Theoretically this effect could offset part of the warming-induced glacier shrinking. Large slope failures that result in a sudden increase in debris cover may even trigger glacier advances, as has been proposed for a few glaciers already. Such geomorphic feedbacks between headwalls and valley glaciers ought to be most pronounced in steep landscapes like the Himalaya, where existing glacial chronologies often lack spatial coherence. Some heavily debris-covered valley glaciers can be found to lie entirely below the regional climatic snowline where they are sustained by snow avalanches. Such glaciers typically flow at low velocities and their key role in glacial landscape evolution may lie in keeping the base of headwalls free from talus deposits and thereby sustain a steep and retreating headwall.
NASA Astrophysics Data System (ADS)
Willett, S.; McCoy, S. W.; Beeson, H. W.
2016-12-01
Deposition of the Mio-Pliocene Ogallala gravels in the foreland of the Rocky Mountains represents a great natural experiment in landscape evolution. Starting about 20 million years ago the flux of sediment shed off the Rocky Mountains increased, likely in response to dynamic uplift of the Rockies and tilting of the High Plains. This event shifted the high plains from a state of erosion to deposition. The flux of sediment formed huge alluvial megafans, burying the pre-existing river network and effectively "repaving" the western High Plains. Today we are witnessing the re-establishment of a new river network that is dissecting, capturing and eroding these sediment fans. By mapping the modern drainage basins and noting the channel gradient with respect to the normalized length parameter, χ, we identify two types of basins in the high plains. The remnants of the alluvial megafans are drained by long narrow basins with low normalized steepness and nearly no concavity, reflecting little incision since formation. In contrast, the fan remnants are surrounded by basins with a dendritic structure and efficient water and sediment routing, resulting in low values of chi and correspondingly low elevation. The boundary between these two basin types is commonly an erosional escarpment, demonstrating that the trellis basins are consuming the fan deposits by lateral divide migration and successive river capture. We present scaling arguments that show that lateral escarpment advance is nearly an order of magnitude faster than the upstream (knickpoint) propagation of channel entrenchment. This process of landscape evolution has important implications for water in the high plains. Deprived of an efficient channel network, fan surfaces remain uneroded, preserving the Ogallala sediments, and the poorly-drained, poorly integrated surface retains ephemeral water for wetland habitat and aquifer recharge, illustrating how the surface hydrology reflects landscape evolution on million year timescales.
Eisner, Wendy R.; Bockheim, James G.; Hinkel, Kenneth M.; Brown, Thomas A.; Nelson, Frederick E.; Peterson, Kim M.; Jones, Benjamin M.
2005-01-01
The dominant landscape process on the Arctic Coastal Plain of northern Alaska is the formation and drainage of thaw lakes. Lakes and drained thaw-lake basins account for approximately 75% of the modern surface expression of the Barrow Peninsula. The thaw-lake cycle usually obliterates lacustrine or peat sediments from previous cycles, which could otherwise be used for paleoecological reconstruction of long-term landscape and vegetation changes. Several possible erosional remnants of a former topographic surface that predates the formation of the thaw lakes have been tentatively identified. These remnants are characterized by a higher elevation, a thick organic layer with very high ground ice content in the upper permafrost and a plant community somewhat atypical of the region. Ten soil cores were collected from one site, and one core was intensively sampled for soil organic carbon content, pollen analysis and 14C dating. The lowest level of the organic sediments represents the earliest phase of plant growth and dates to ca. 9000 cal BP. Palynological evidence indicates the presence of mesic shrub tundra (including sedge, birch, willow and heath vegetation), and microfossil indicators point to wetter eutrophic conditions during this period. Carbon accumulation was rapid due to high net primary productivity in a relatively nutrient-rich environment. These results are interpreted as the local response to ameliorating climate during the early Holocene. The middle Holocene portion of the record contains an unconformity, indicating that between 8200 and 4200 cal BP sediments were eroded from the site, presumably in response to wind activity during a drier period centered around 4500 cal BP. The modern vegetation community of the erosional remnant was established after 4200 cal BP and peat growth resumed. During the late Holocene, carbon accumulation rates (CARs) were greatly reduced in response to the combined effects of declining productivity associated with climatic cooling, and increased nutrient stress as paludification and permafrost aggradation sequestered mineral nutrients.
NASA Astrophysics Data System (ADS)
Munishi, Linus; Mtei, Kelvin; Bode, Samuel; Dume, Bayu; Navas, Ana; Nebiyu, Amsalu; Semmens, Brice; Smith, Hugh; Stock, Brian; Boeckx, Pascal; Blake, Will
2017-04-01
The Lake Manyara Basin (LMB), which encompasses Lake Manyara National Park a world ranking World Biosphere Reserve, is of great ecological and socio-economic value because it hosts a small-holder rain fed and extensive irrigation agriculture, grazing grounds for pastoralists, terrestrial and aquatic habitat for wildlife and tourism business contributing to poverty alleviation. Despite these multiple ecosystem services that support the local communities, the LMB is threatened by; (a) siltation from eroded soil fed from the wider catchment and rift escarpment of the basin and (b) declining water levels due to water capture by agriculture and possibly climate change. These threats to the ecosystem and its services are augmented by increasing human population, pollution by agricultural pesticides, poaching, human encroachment and infrastructure development, and illegal fisheries. Despite these challenges, here is a dearth of information on erosion hotspots and to date soil erosion and siltation problems in LMB have been interpreted largely in qualitative terms, and no coherent interpretative framework of these records exists. Despite concerns that modern sediment fluxes to the Lake may exceed long-term fluxes, little is known about erosion sources, how erosion rates and processes vary across the landscape and how erosion rates are influenced by the strong climate gradients in the basin. This contribution describes a soil erosion and sediment management project that aims to deliver a demonstration dataset generated from inter-disciplinary sediment-source tracing technologies and approaches to assess erosion hotspots, processes and spatial patterns of erosion in the area. The work focuses on a sub basin, the Monduli Sub catchment, located within the greater LMB. This is part of efforts to establish an understanding of soil erosion and landscape degradation in the basin as a pathway for generating and developing knowledge, building capacity to assist conservationists, farmers and pastoralists, agro-entrepreneurs, and their support agents to address the problems while feeding the information into the national development policies in Tanzania and the entire East African region.
Earth Observations taken by the Expedition 39 Crew
2014-03-25
ISS039-E-005258 (25 March 2014) --- Not only do millions of tourists have special attractions to the Grand Canyon, but also through the years astronauts and cosmonauts in space. One of the Expedition 39 crew members aboard the Earth-orbiting International Space Station aimed his camera, equipped with a 180mm lens, at the iconic feature. The steep walls of the Colorado River canyon and its many side canyons make an intricate landscape that contrasts with the dark green, forested plateau to the north and south. The Colorado River has done all the erosional work of carving away cubic kilometers of rock in a geologically short period of time. Visible as a darker line snaking along the bottom of the canyon, the river lies at an altitude of 715 meters (2,345 feet), thousands of meters below the North and South Rims. Temperatures are furnace-like on the river banks in the summer. But Grand Canyon Village, the classic outlook point for visitors, enjoys a milder climate at an altitude of 2,100 meters (6,890 feet). The Grand Canyon has become a geologic icon?a place where, geologists say, one can almost sense the invisible tectonic forces within the Earth. The North and South Rims are part of the Kaibab Plateau, a gentle tectonic swell in the landscape. The uplift of the plateau had two pronounced effects on the landscape that show up in this image. First, in drier parts of the world, forests usually indicate higher places; higher altitudes are cooler and wetter, conditions that allow trees to grow. The other geologic lesson on view is the canyon itself. Geologists now know that a river can cut a canyon only if the Earth surface rises vertically. If such uplift is not rapid, a river can maintain its course by eroding huge quantities of rock and forming a canyon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavson, T.C.; Holliday, V.T.
Eolian sediments have accumulated as non-glacigenic loess and thin sand sheets on the Central and Southern High Plains grasslands of Texas and new mexico since the late Miocene. Locally as much as 110 m of eolian sediments with numerous paleosols are preserved in the Quaternary Blackwater Draw formation and the upper part of the Miocene-Pleiocene Ogallala formation. These sediments and paleosols, which cover more than 130,000 km{sup 2}, are similar to recent surface sediments and soils and record a long period of episodic eolian transport and sedimentation, and pedogenesis on a stable low-relief grass-covered landscape. Eolian sections, which comprise themore » fine sand to coarse silt lithofacies of the Ogallala formation, and the very fine to fine sand and sandy mud lithofacies of the Blackwater Draw formation, generally lack primary sedimentary structures. Grain size of Ogallala sediments decreases from west to east and grain size of Blackwater Draw sediments decreases from southwest to northeast. Soil horizonation is well developed in most sections, and buried calcic and argillic horizons are common. Calcic horizons are characterized by sharply increased CaCO{sub 3} content in the form of filaments, nodules, and petrocalcic horizons (calcretes). Argillic horizons are characterized by increased illuvial clay, pedogenic structure, and darker reddish hues. Rhizocretions are common locally. Open root tubules, which are typically less than 1 mm in diameter and characteristic of small plants like grasses, are present in all Ogallala and Blackwater Draw eolian sediments. Paleosols preserved in eolian sediments of the High Plains reflect periods of sedimentation followed by episodes of landscape stability and pedogenesis, and negligible sedimentation. Episodes of sedimentation and soil development likely resulted from cyclic decreases and increases in available moisture and vegetative cover. Eolian sediments were eroded and transported eastward during dry periods when vegetation was sparse in source areas, such as the western High Plains and the Pecos Valley. During humid periods more abundant vegetation probably protected source areas from deflation, and resulted in landscape stability across the High Plains.« less
General geology and geomorphology of the Mars Pathfinder landing site
Ward, A.W.; Gaddis, L.R.; Kirk, R.L.; Soderblom, L.A.; Tanaka, K.L.; Golombek, M.P.; Parker, T.J.; Greeley, Ronald; Kuzmin, R.O.
1999-01-01
The Mars Pathfinder (MPF) spacecraft landed on relatively young (late Hesperian-early Amazonian; 3.1-0.7 Ga) plains in Chryse Planitia near the mouth of Ares Vallis. Images returned from the spacecraft reveal a complex landscape of ridges and troughs, large hills and crater rims, rocks and boulders of various sizes and shapes, and surficial deposits, indicating a complex, multistage geologic history of the landing site. After the deposition of one or more bedrock units, depositional and erosional fluvial processes shaped much of the present landscape. Multiple erosional events are inferred on the basis of observations of numerous channels, different orientations of many streamlined tails from their associated knobs and hills, and superposition of lineations and streamlines. Medium- and small-scale features, interpreted to be related to late-stage drainage of floodwaters, are recognized in several areas at the landing site. Streamlined knobs and hills seen in Viking orbiter images support this inference, as they seem to be complex forms, partly erosional and partly depositional, and may also indicate a series of scouring and depositional events that, in some cases, further eroded or partially buried these landforms. Although features such as these are cited as evidence for catastrophic flooding at Ares Vallis, some of these features may also be ascribed to alternative primary or secondary depositional processes, such as glacial or mass-wasting processes. Close inspection of the landing site reveals rocks that are interpreted to be volcanic in origin and others that may be conglomeratic. If such sedimentary rocks are confirmed, fluvial processes have had a greater significance on Mars than previously thought. For the last several hundred million to few billion years, eolian processes have been dominant. Dunes and dune-like features, ventifacts, and deflation and exhumation features around several rocks probably are the most recent landforms. The relatively pristine nature of the overall landscape at the MPF site suggests weathering and erosion processes on Mars are exceptionally slow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisner, W R; Bockheim, J G; Hinkel, K M
2005-01-02
The dominant landscape process on the Arctic Coastal Plain of northern Alaska is the formation and drainage of thaw lakes. Lakes and drained thaw lake basins account for approximately 75% of the modern surface expression of the Barrow Peninsula. The thaw lake cycle usually obliterates lacustrine or peat sediments from previous cycles which could otherwise be used for paleoecological reconstruction of long-term landscape and vegetation changes. Several possible erosional remnants of a former topographic surface that predates the formation of the thaw lakes have been tentatively identified. These remnants are characterized by a higher elevation, a thick organic layer withmore » very high ground ice content in the upper permafrost, and a plant community somewhat atypical of the region. Ten soil cores were collected from one site, and one core was intensively sampled for soil organic carbon content, pollen analysis, and {sup 14}C dating. The lowest level of the organic sediments represents the earliest phase of plant growth and dates to ca. 9000 cal BP. Palynological evidence indicates the presence of mesic shrub tundra (including sedge, birch, willow, and heath vegetation); and microfossil indicators point to wetter eutrophic conditions during this period. Carbon accumulation was rapid due to high net primary productivity in a relatively nutrient-rich environment. These results are interpreted as the local response to ameliorating climate during the early Holocene. The middle Holocene portion of the record contains an unconformity, indicating that between 8200 and 4200 cal BP sediments were eroded from the site, presumably in response to wind activity during a drier period centered around 4500 cal BP. The modern vegetation community of the erosional remnant was established after 4200 cal BP, and peat growth resumed. During the late Holocene, carbon accumulation rates were greatly reduced in response to the combined effects of declining productivity associated with climatic cooling, and increased nutrient stress as paludification and permafrost aggradation sequestered mineral nutrients.« less
Settling Velocity Specific SOC Distribution along Hillslopes - A field investigation in Denmark
NASA Astrophysics Data System (ADS)
Kuhn, N. J.; Hu, Y.
2015-12-01
The net effects of soil erosion by water, as a sink or source of atmospheric CO2, are decisively affected by the spatial re-distribution and stability of eroded soil organic carbon (SOC). The deposition position of eroded SOC, into terrestrial or aquatic systems, is actually decided by the transport distances of soil fractions where the SOC is stored. In theory, the transport distances of aggregated soil fractions are related to their settling velocities under given layer conditions. Yet, little field investigation has been conducted to examine the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of functional SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events from different topographic positions along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples from difference topographic positions along the slope were fractionated into five settling classes using a settling tube apparatus. The SOC content, 13C signature, and C:N ratios of all settling fractions were measured. Our results show that: 1) the spatial distribution of soil settling classes along the slope clearly shows a coarsening effect at the deposition area immediately below the eroding slope, followed by a fining trend on the deposition area at the slope tail. This proves the validity of the conceptual model in Starr et al. 2000 to predict SOC redistribution patterns along eroding hillslopes. 2) The isotopically enriched 13C on the slope back suggests greater decomposition rates possibly experienced by eroded SOC during transport, while the pronounced respiration rates at the slope tail indicate a great potential of CO2 emissions after deposition. Overall, our results illustrate that immediate deposition of fast settling soil fractions, and the thus induced preferential deposition of SOC at foot slope and potential CO2 emissions during transport, must be appropriately accounted for in current soil carbon balances. To achieve this, a SOC erodibility parameter based on the actual settling velocity distribution of eroded fractions (aggregated or not aggregated) is urgently needed to better parameterize soil erosion models with respect to SOC spatial redistribution.
Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes
NASA Technical Reports Server (NTRS)
Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.
1988-01-01
Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.
Do Recurring Slope Lineae (RSL) Shape their Local Landscapes?
NASA Astrophysics Data System (ADS)
McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.
2017-12-01
RSL are low-albedo features on Mars that initiate at or near bedrock outcrops and extend down steep slopes, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each martian year in the warmest season. There are hundreds of likely RSL sites, each with up to hundreds of lineae. Small gullies (1-20 m wide) are often present and control RSL paths; such small, fresh gullies are otherwise rare in equatorial regions. The RSL flow out to the ends of distinctive fans, which may get reworked by wind-driven ripples or dunes. The fans are often relatively bright but transiently become darker, and may have a distinctive color. We have detected newly-formed topographic slumps associated with RSL fans in 12 locations in Valles Marineris (VM). A distinctive landform assemblage is seen within central and eastern VM: Small channels occur on most slope aspects of isolated hills or crater walls, extend very nearly to the tops of the hills or crater rims, are associated with seasonal RSL that extend the full length of the channels and fans, and there is a set of lobate deposits (from slumps) at the base of RSL fans. RSL activity in VM changes slope aspect with season to favor warm temperatures, but the slumps are most active from Ls 0-120, the coldest time of year in VM, especially on south-facing slopes where most of the new slumps have been seen. This association between gullies, RSL, fans, and slumps suggests integrated landscape evolution. Perhaps RSL activity erodes the small gullies and deposits sediment, creating angle-of-repose sloping fans, sometimes oversteepening the fans to cause slumping. RSL activity is associated with the transient presence of hydrated salts, which may indicate some role for salty water. If the RSL mark fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28°), so these must be dry granular flows with activity possibly triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same locations for multiple Mars years, how activity is nearly synchronized for many individual flows, why similar hill slopes lack RSL, how they erode narrow gullies, why RSL fans transiently darken, and why the slumps form in the cold season.
Bierman, P.R.; Reuter, J.M.; Pavich, M.; Gellis, A.C.; Caffee, M.W.; Larsen, J.
2005-01-01
Analysis of in-situ-produced 10Be and 26Al in 52 fluvial sediment samples shows that millennial-scale rates of erosion vary widely (7 to 366 m Ma-1) through the lithologically and topographically complex Rio Puerco Basin of northern New Mexico. Using isotopic analysis of both headwater and downstream samples, we determined that the semi-arid, Rio Puerco Basin is eroding, on average, about 100 m Ma-1. This rapid rate of erosion is consistent with estimates made using other techniques and is likely to result from a combination of easily eroded lithologies, sparse vegetation, and monsoon-dominated rainfall. Data from 331 stream water samples collected by the US Geological Survey between 1960 and 1995 are consistent with basin-wide, average chemical denudation rates of only about 1??4 m Ma-1; thus, the erosion rates we calculate may be considered rates of sediment generation because physical weathering accounts for almost 99 per cent of mass loss. The isotopic data reveal that sediment is generally well mixed downstream with the area-weighted average sediment generation rate for 16 headwater samples (234 ton km-2 a-1 for basin area 170 to 1169 km2) matching well that estimated from a single sample collected far downstream (238 ton km-2 a-1, basin area = 14 225 km2). A series of 15 samples, collected from an arroyo wall and representing deposition through the late Holocene, indicates that 10Be concentration in sediment delivered by the fluvial system has not changed appreciably over the last 1200 years despite at least two cycles of arroyo cutting and filling. Other samples (n = 21) were collected along the drainage network. Rio Puerco erosion rates scale directly with a variety of metrics describing vegetation, precipitation, and rock erodibility. Using the headwater basins for calibration, the erosion rates for both the downstream samples and also the data set as a whole, are best modelled by considering a combination of relief and vegetation metrics, both of which co-vary with precipitation and erodibility as inferred from lithology. On average, contemporary sediment yields, determined by monitoring suspended-sediment discharge, exceed cosmogenically determined millennial-scale erosion rates by nearly a factor of two. This discrepancy, between short-term rates of sediment yield and long-term rates of erosion, suggests that more sediment is currently being exported from the basin than is being produced. Because the failure of incised channel walls and the head cutting of arroyo complexes appear to be the main sources of channel sediment today, this incongruence between rates of sediment supply and sediment yield is likely to be transitory, reflecting the current states of the arroyo cycle and perhaps the influence of current or past land-use patterns. Copyright ?? 2005 John Wiley & Sons, Ltd.
Study of glyphosate transport through suspended particulate matter
NASA Astrophysics Data System (ADS)
Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz
2014-05-01
The results have been produced in a project aiming to improve the water quality of the Layon localy supported by stakeholders involved in the implementation of the Water Framework Directive as the SAGE-Layon Aubance. The study site is a small vineyard catchment (2.2 ha) of the Loire Valley. The slopes of the study site are between 8 and 40% resulting in strong erosive episodes during rainy event. The main objective is to understand the transfer of pesticide residues to stream. Preliminary results have shown glyphosate can be found with high concentrations during runoff. However this study was realized only in the dissolved phase. The objective is now to understand the glyphosate transport driven by SPM. The methodology developed has been (i) characterization and production of the erodible water fraction from soils aggregates; (ii) achievement of the adsorption of glyphosate on these erodible materials to compare this results with adsorption on soil sieved to 2 mm, (iii) achievement of the desorption of glyphosate on these erodible materials. Measurements have been performed on soil samples distinguishing weed or grassed soils. Soils are sieved to 2 mm or between 2 and 5 mm (to produce the erodible water fraction). Both fractions are then used to glyphosate sorption and desorption. The erodible fraction was produce with a wet sieving machine (eijkelkampt Method Kemper and Rosenau, 1986), using sieve porosity of 250 microns. The fraction obtained at 250 microns is considered to be the erodible water fraction and is used to study the adsorption and desorption of glyphosate. Kinetics has been first carried out then the isotherm to obtain the value of Kd. A ratio soil/solution of 1/5 was used. Successive desorption's method was chosen with a stirring time of 20 min, centrifugation at 6000 g and the supernatant in each desorption of 20 min is analyzed. This step is repeated 25 times. The main results of the study are: (i) adsorption of glyphosate is rapid and almost complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.
NASA Astrophysics Data System (ADS)
Shtober-Zisu, N.; Inbar, M.; Mor, D.; Jicha, B. R.; Singer, B. S.
2018-02-01
Long-term fluvial incision processes and corresponding geomorphic evolution are difficult to quantify, especially in complex systems affected by lithological and tectonic factors. Volcanic landscapes offer the most appropriate environment for the study of landscape evolution, as there is a clear starting time of formation and the lithology is homogenous. In the present study we aim to: (1) analyse the interplay of construction and incision processes throughout eruptive activity; (2) study fluvial erosion processes; (3) analyse sedimentary and volcanic lithological responses to channel erosion; and (4) calculate the incision rates in young basaltic bedrock. We have integrated existing and new 40Ar/39Ar ages of lava flows with estimates of channel geometry and tectonic activity, and considered process geomorphology concepts, to fully understand evolution of a bedrock channel incised at the boundary between basalts and sedimentary rocks with coeval active volcanic processes forcing drainage evolution. Our findings indicate that the Sa'ar basin evolution is controlled by: (1) rock strength of the mixed lithology; (2) alternating cycles of volcanic activity followed by erosion and incision; and (3) the Plio-Pleistocene uplift of Mt. Hermon. The carbonate slopes composing the southern flank of Mt. Hermon are moderate (18-26%) while the basalt slopes deriving from the Golan Heights are much steeper (26-51%). The highly erodible sedimentary rocks at Mt. Hermon's piedmont accelerated river incision, shaping a 650 m wide by 100 m deep canyon. Inside the canyon, the steep channel slope (8.6%) enables downstream movement of large boulders, including autochthonous mega-blocks (D90 size > 2.5 m); 24 knickpoints were identified using DS plots, developed within a knick zone over a distance of 6 km. The brittle and porous structure of the rubbly and blocky interflow layers (clinkers), interbedded between two massive basalt flows, enhances erosion and accelerates scouring of the plunge-pool bottom and walls. Three volcanic phases shaped the Sa'ar basin: (1) The 3.25 Ma Cover Basalt flowed over large areas of the Levant and reached up to the northern Golan; (2) Dalwe Basalt was emplaced between 1.2 Ma and 750 ka, from vents including Mt. Qatzaa and Mt. Odem, and extended to Mt. Hermon covering sedimentary cuestas; (3) Ein Zivan Basalt (including the Sa'ar Lava Flow - the youngest basalt flow known in Israel) erupted before 110-120 ka and quickly accumulated at least three distinct flows into the deeply incised Paleo-Sa'ar canyon, refilling the canyon to a height of 50 m. Rates of incision are consistent with other rivers draining the Golan Heights. The total incision rate of the Sa'ar channel during the last 760 ka is at least 19.7 cm/ka. Over the past 100 ka, the incision rate was 22-30 cm/ka and the back-erosion of the Sa'ar highest knickpoint occurred at 68 cm/ka. Our findings reflect the latest evolution history of a special, mixed lithology channel, developed at the border of a large basaltic province, in an active tectonic environment. The results suggest that fluvial adjustment of basalt-limestone rivers is determined first by the interplay of construction and incision processes throughout alternating cycles of volcanic activity and quiescence. The lithology is an extremely important factor determining the type and rate of erosion. While the tectonic factor might determine the basin relief and slope, the lithological factor accelerates erosion and river incision.
NASA Astrophysics Data System (ADS)
Goodfellow, Bradley W.
2012-12-01
A review of published literature was undertaken to determine if there was a fingerprint of chemical weathering in regoliths subjected to periglacial conditions during their formation. If present, this fingerprint would be applied to the question of when blockfields in periglacial landscapes were initiated. These blocky diamicts are usually considered to represent remnants of regoliths that were chemically weathered under a warm, Neogene climate and therefore indicate surfaces that have undergone only a few metres to a few 10s of metres of erosion during the Quaternary. Based on a comparison of clay and silt abundances and secondary mineral assemblages from blockfields, other regoliths in periglacial settings, and regoliths from non-periglacial settings, a fingerprint of chemical weathering in periglacial landscapes was identified. A mobile regolith origin under, at least seasonal, periglacial conditions is indicated where clay(%) ≤ 0.5*silt(%) + 8 across a sample batch. This contrasts with a mobile regolith origin under non-periglacial conditions, which is indicated where clay(%) ≥ 0.5*silt(%) - 6 across a sample batch with clay(%) ≥ 0.5*silt(%) + 8 in at least one sample. A range of secondary minerals, which frequently includes interstratified minerals and indicates high local variability in leaching conditions, is also commonly present in regoliths exposed to periglacial conditions during their formation. Clay/silt ratios display a threshold response to temperature, related to the freezing point of water, but there is little response to precipitation or regolith residence time. Lithology controls clay and silt abundances, which increase from felsic, through intermediate, to mafic compositions, but does not control clay/silt ratios. Use of a sedigraph or Coulter Counter to determine regolith granulometry systematically indicates lower clay abundances and intra-site variability than use of a pipette or hydrometer. In contrast to clay/silt ratios, secondary mineral assemblages vary according to regolith residence time, temperature, and/or precipitation. A microsystems model is invoked as a conceptual framework in which to interpret the concurrent formation of the observed secondary mineral ranges. According to the fingerprint of chemical weathering in periglacial landscapes, there is generally no evidence of blockfield origins under warm Neogene climates. Nearly all blockfields appear to be a product of Quaternary physical and chemical weathering. A more dominant role for periglacial processes in further bevelling elevated, low relief, non-glacial surface remnants in otherwise glacially eroded landscapes is therefore indicated.
Non-structural origins of asymmetric topography in semi-arid environments
NASA Astrophysics Data System (ADS)
Richardson, P. W.; Perron, T.; Miller, S. R.
2012-12-01
Geoscientists have long noted that landscapes in some regions have pole-facing slopes that are steeper than equator-facing slopes. In some cases, the asymmetry has a simple structural cause, such as slopes that form parallel to bedrock strata, but in others, the absence of obvious structural controls and the consistent pole-equator orientation of the asymmetry suggest that different microclimates on opposing slopes may be the cause. Compelling as the microclimatic correlation may be, it has not been demonstrated how microclimatic effects can influence long-term landscape evolution sufficiently to generate asymmetric topography. Two conflicting hypotheses that depend on microclimates have been proposed. In one hypothesis, a microclimate-induced contrast in the efficiency of erosion processes, such as channel incision, creates a difference in erosion rates on opposing slopes that drives drainage divide migration until the slope asymmetry compensates for the difference in erosional efficiency. In the other, more popular hypothesis, the asymmetric erosional efficiency is not a sufficient condition. Instead, faster sediment aggradation at the foot of more efficiently eroding slopes forces axial streams to undercut the opposing slopes, eventually creating an asymmetry in steepness. We seek to determine whether undercutting is a necessary mechanism, and focus our efforts on understanding the mechanisms responsible for the topographic asymmetry at Gabilan Mesa, CA, a landscape with a high degree of asymmetry and a simple underlying lithology. We investigate the long-term topographic consequences of these mechanisms with a landscape evolution model. In the first set of model experiments, we explore the effects of aspect-dependent differences in the efficiency of soil creep, the magnitude of a channel incision threshold, and runoff production. The second model experiment includes undercutting of slopes in response to lateral base level migration. We examined which mechanism most accurately matches the observed topography of Gabilan Mesa, in terms of both the degree of slope asymmetry and other characteristics, including the degree of valley incision, mean gradient, and relief. Both the erosional efficiency model and the undercutting model are capable of producing landscapes with the same degree of asymmetry as Gabilan Mesa while also reproducing the other topographic characteristics. When paired with field evidence that rills and gullies are more abundant on equator-facing slopes, we believe that a discrepancy in either channel incision thresholds or runoff production may be enough to cause the observed topographic asymmetry at Gabilan Mesa without the aid of undercutting.
Simulating eroded soil organic carbon with the SWAT-C model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong
The soil erosion and associated lateral movement of eroded carbon (C) have been identified as a possible mechanism explaining the elusive terrestrial C sink of ca. 1.7-2.6 PgC yr(-1). Here we evaluated the SWAT-C model for simulating long-term soil erosion and associated eroded C yields. Our method couples the CENTURY carbon cycling processes with a Modified Universal Soil Loss Equation (MUSLE) to estimate C losses associated with soil erosion. The results show that SWAT-C is able to simulate well long-term average eroded C yields, as well as correctly estimate the relative magnitude of eroded C yields by crop rotations. Wemore » also evaluated three methods of calculating C enrichment ratio in mobilized sediments, and found that errors associated with enrichment ratio estimation represent a significant uncertainty in SWAT-C simulations. Furthermore, we discussed limitations and future development directions for SWAT-C to advance C cycling modeling and assessment.« less
Elastic wave generated by granular impact on rough and erodible surfaces
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
Cytochrome P450 1A induction in gudgeon Gobio gobio : Laboratory and Field Studies.
Flammarion, P
1999-01-01
The induction of cytochrome P450 1A was studied in gudgeon (Gobio gobio), a common European cyprinid, using both farm-raised and field-caught fish. The effects of sex, reproductive status and past exposure to xenobiotics were assessed. When exposed to beta-naphthoflavone (bNF), reared gudgeon showed a dose-dependent increase of EROD activity with a plateau observed at doses from 20 mg kg-1 (females) and 5 mg kg-1 (males). The sexual difference in EROD activity was related to the gonadosomatic index (GSI) of the female whatever the level of induction. Dose and sex effects were confirmed by the immunodetection of CYP1A protein. More than 1 month was necessary for EROD activity to decrease to baseline levels. A second bNF injection after 32 days gave similar levels of induction, suggesting that EROD induction by bNF was not impaired by a pretreatment. Wild fish were brought from two sites in the Rhone river basin: a low contaminated site (Ain) and a highly contaminated site (Rhone). Wild gudgeon were highly induced by bNF in laboratory conditions, except males from the Rhone site which exhibited EROD levels as high as the EROD plateau found in laboratory conditions. A 2- month depuration period in clean water was necessary for EROD activity in wild gudgeon to decrease to baseline levels. These results provide better knowledge of the main factors of modulation of the induction in gudgeon as well as on the influence of the history of exposure to inducers.
Impinging Jets and the Erodibility of Cohesive Sediment
NASA Astrophysics Data System (ADS)
Karamigolbaghi, M.; Bennett, S. J.; Ghaneeizad, S. M.; Atkinson, J. F.
2016-12-01
Defining the erodibility of cohesive sediment remains a critical challenge in Earth surface systems. The primary geomorphic law used in such applications relates erosion rate to an erodibility coefficient and an excess shear stress term. To assess erodibility, an inverse modeling approach can be adopted, wherein a known stress is applied to the cohesive sediment, and the erodibility parameters can be deduced through observation of erosion as a function of time. An impinging jet, as used in the jet erosion test, would appear to be an ideal flow (stress) source for erosion assessment. Recent work, however, has demonstrated that jet hydrodynamics can depart significantly from ideal flow conditions when employed for in situ erosion assessment. Here we will review jet theory and the use of jets for assessing the erodibility of cohesive sediment. Our results show that (1) flow confinement and the generation of secondary circulation can significantly change bed shear stress near and downstream of impingement, (2) the evolving scour hole shape, as conditioned by material characteristics and the erosion process, can significantly alter jet hydrodynamics and bed shear stress magnitudes and distributions near and downstream of impingement, and (3) incidental variations in material characteristics in carefully-executed, long-lived experiments can produce markedly different scour hole shapes and derived erodibility indices. Examples from experimental, numerical, and field observations will be used to illustrate these hydrodynamic and material effects on observed and predicted erosion rates. Because such effects are difficult to anticipate, the uncertainty of in situ cohesive sediment assessments using impinging jets can be quite large.
NASA Astrophysics Data System (ADS)
Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.
2017-12-01
Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.
NASA Astrophysics Data System (ADS)
Chowdhary, Bhawna
National and international science reform movements are sweeping through the educational landscape aimed at improving scientific literacy in students across the world. A myriad of professional development (PD) initiatives by governing bodies are continually initiated to help improve teacher knowledge in both science content and process. Change in not accomplished easily as visions and mission are often challenged by deeply engrained ways of being. In this study we explore the salient cultural and contextual factors that support teacher learning through the framework of Reflective Practice. The research questions aim to answer the following: (1) To what extent do teachers see PD activities connected to their daily teaching practices and (2) What are the salient cultural and contextual factors within the educational environments that encourage reflection which leads to growth in teachers? Although the geographical location, culture and PD approach of the two educational contexts vary and therefore incomparable, salient commonalities were found within the two contexts that explained a varied pattern of behavior among the participating teachers. It was found that the role of the leaders in schools, accountability structures, interaction with technology, fidelity towards the program and cultural values of the educational context deeply influenced the drive and direction of PD initiatives that led to teacher knowledge growth and change that was either fully or at the least partially realized. The knowledge gained in this study does not aim to compare one context to another, rather it points to the direction that one can go with knowledge that proves to nurture and sustain teacher knowledge growth and development through a cycle of continuous change.
An Ethical Analysis of Assisted Reproduction Providers' Websites in Pakistan.
Irshad, Ayesha; Werner-Felmayer, Gabriele
2016-07-01
Assisted reproductive technologies (ARTs) and reproductive genetic technologies (RGTs) are intertwined and coevolving. These technologies are increasingly used to fulfill socially and culturally framed requests, for example, "family balancing," or to enable postmenopausal women or homosexual couples to have genetically linked children. The areas of ART and RGT are replete with ethical issues, because different social practices and legal regulations, as well as economic inequalities within and among countries, create vulnerable groups and, therefore, the potential for exploitation. This article provides an overview of the ART and RGT landscape in Pakistan and analyzes the available online content addressing Pakistani citizens and international clients. We explored the topic in view of socioeconomic challenges in Pakistan, particularly deeply rooted poverty, lack of education, gender discrimination, and absence of regulation. As online information given by ART and RGT providers is readily available and could easily raise false hopes, make use of discriminatory statements with regard to women, and promote gender selection to meet sociocultural expectations, it should be subjected to quality control.
Evolution and Diversity of Transposable Elements in Vertebrate Genomes.
Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A
2017-01-01
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Garavaglia, Valentina; Diolaiuti, Guglielmina; Smiraglia, Claudio; Pasquale, Vera; Pelfini, Manuela
2012-12-01
Climate change effects are noticeably evident above the timberline where glacier and permafrost processes and mass movements drive the surface evolution. In particular, the cryosphere shrinkage is deeply changing the features and characteristics of several glacierized mountain areas of the world, and these modifications can also affect the landscape perception of tourists and mountaineers. On the one hand glacier retreat is increasing the interest of tourists and visitors in areas witnessing clear climate change impacts; on the other hand cryosphere shrinkage can impact the touristic appeal of mountain territories which, diminishing their ice and snow coverage, are also losing part of their aesthetic value. Then, to promote glacierized areas in a changing climate and to prepare exhaustive and actual proposals for sustainable tourism, it is important to deepen our knowledge about landscape perception of tourists and mountaineers and their awareness of the ongoing environmental modifications. Here we present the results from a pilot study we performed in summer 2009 on a representative glacierized area of the Alps, the Forni Valley (Stelvio National Park, Lombardy, Italy), a valley shaped by Forni, the largest Italian valley glacier. During the 2009 summer season we asked tourists visiting the Forni Valley to complete a questionnaire. This study was aimed at both describing the features and characteristics of tourists and mountaineers visiting this Alpine zone in summer and evaluating their landscape perception and their ability to recognize climate change impacts and evidence. Our results suggest that the dissemination strategies in a natural protected area have to take into account not only the main landscape features but also the sites where the information will be given. In particular considering the peculiarities of the huts located in the area, such as their different accessibility and the fact that they are included or not in a mountaineering network like that of the Italian Alpine Club. Both these factors can influence the kind of visitors to the area, thus requiring different dissemination strategies. Moreover, differences in the viewpoints from where visitors could watch and understand landscape also have to be considered. Next, in a protected area where climate change effects are evident, the dissemination strategies should be developed in close cooperation with scientists who are analyzing the area and with the support of periodic interviews which could be very useful to evaluate the effectiveness of the applied dissemination methods. Last but not least, the questionnaire should be standardized and distributed in several protected areas, thus permitting useful comparisons and the identification of common solutions for sharing in a friendly way scientific knowledge about climate change and its effects on the environment and the landscape.
Hillslope Soils and Life (Invited)
NASA Astrophysics Data System (ADS)
Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.
2013-12-01
That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex interplay between physical and biological processes on the Earth's surface that requires further elucidation in order to fully understand the ramifications of further climatic and physical alteration of our planet's surface.
Subsurface and terrain controls on runoff generation in deep soil landscapes
NASA Astrophysics Data System (ADS)
Mallard, John; McGlynn, Brian; Richter, Daniel
2017-04-01
Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete despite the prevalence of this setting worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA. The Piedmont region of the United States extends east of the Appalachians from Maryland to Alabama, and is home to some of the most rapid population growth in the country. Regional and local relief is modest, although the landscape is highly dissected and local slope can be quite variable. The region's soils are ancient, deeply weathered, and characterized by sharp changes in hydrologic properties due to concentration of clay in the Bt horizon. Despite a mild climate and consistent precipitation, seasonally variable energy availability and deciduous tree cover create a strong evapotranspiration mediated seasonal hydrologic dynamic: while moist soils and extended stream networks are typical of the late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. To elucidate the control of the complex vertical and planform structure of this region, as well as the strongly seasonal subsurface hydrology, on runoff generation, we installed a network of nested, shallow groundwater wells across an ephemeral to first-order watershed to continuously measure internal water levels. We also recorded local precipitation and discharge at the outlet of this watershed, a similar adjacent watershed, and in the second to third order downstream watershed. Subsurface water dynamics varied spatially, vertically, and seasonally. Shallow depths and landscape positions with minimal contributing area exhibited flashier dynamics comparable to the stream hydrographs while positions with more contributing area exhibited relatively muted dynamics. Most well positions showed minimal response to precipitation throughout the summer, and even occasionally observed response rarely co-occurred with streamflow generation. Our initial findings suggest that characterizing the terrain of a watershed must be coupled with the subsurface soil hydrology in order to understand spatiotemporal patterns of streamflow generation in regions possessing both complex vertical structure and terrain.
Human Variation in Short Regions Predisposed to Deep Evolutionary Conservation
Loots, Gabriela G.; Ovcharenko, Ivan
2010-01-01
The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species. PMID:20093432
Esler, Daniel N.; Ballachey, Brenda E.; Bowen, Lizabeth; Miles, A. Keith; Dickson, Rian D.; Henderson, John D.
2017-01-01
The authors quantified hepatic hydrocarbon-inducible cytochrome P4501A (CYP1A) expression, as ethoxyresorufin-O-deethylase (EROD) activity, in wintering harlequin ducks (Histrionicus histrionicus) captured in Prince William Sound, Alaska (USA), during 2011, 2013, and 2014 (22–25 yr following the 1989 Exxon Valdez oil spill). Average EROD activity was compared between birds from areas oiled by the spill and those from nearby unoiled areas. The present study replicated studies conducted from 1998 to 2009 demonstrating that harlequin ducks using areas oiled in 1989 had elevated EROD activity, indicative of oil exposure, up to 2 decades post spill. In the present study, it was found that average EROD activity during March 2011 was significantly higher in wintering harlequin ducks captured in oiled areas relative to unoiled areas, which the authors interpret to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 22 yr after the original spill. However, the 2011 results also indicated reductions in exposure relative to previous years. Average EROD activity in birds from oiled areas was approximately 2 times that in birds from unoiled areas in 2011, compared with observations from 2005 to 2009, in which EROD activity was 3 to 5 times higher in oiled areas. It was also found that average EROD activity during March 2013 and March 2014 was not elevated in wintering harlequin ducks from oiled areas. The authors interpret these findings to indicate that exposure of harlequin ducks to residual Exxon Valdez oil abated within 24 yr after the original spill. The present study finalizes a timeline of exposure, extending over 2 decades, for a bird species thought to be particularly vulnerable to oil contamination in marine environments
Au, Doris W T; Chen, Ping; Pollino, Carmel A
2004-04-01
Juvenile areolated grouper (Epinephelus areolatus) were exposed to two levels of dietary benzo[a]pyrene (BaP; 0.25-12.5 microg/g body wt/d) for four weeks, followed by four weeks of depuration. Significant increase in hepatic ethoxyresorufin O-deethylase (EROD) activities was found after one week, preceding an increase in lipopigments (as measured by quantitative transmission electron microscopy) in week 2 of exposure. The EROD activities in the BaP-treated fish subsided at week 4 of exposure and throughout the depuration period. Lipopigments in the high-dose group appeared to be more persistent than that of the EROD activity during the exposure period and remained significantly higher than that of the controls at week 4. Levels of lipopigments, however, rapidly subsided on withdrawal of BaP exposure. These results appear to suggest that changes in EROD activities would precede cytological changes and that both the observed cytological and biochemical changes are reversible. Results of the present study also lend further support to our earlier findings on Solea ovata, that a significant relationship exists between EROD activity and lipopigment accumulation (as measured by volume density, absolute volume, numerical density, and absolute density; r = 0.483-0.358, p < 0.05), regardless of fish species (S. ovata and aerolated grouper) as well as the routes of exposure to BaP (intraperitoneal injection or dietary exposure). This provides strong supporting evidence that elevated EROD activities in fish liver do not merely indicate exposure to polyaromatic hydrocarbons (PAHs) but are also associated with significant biological effects. Our results showed that hepatic EROD activity and lipopigments could be used to indicate recent exposure of the fish to BaP/PAHs.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.
2016-06-01
Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.
NASA Astrophysics Data System (ADS)
Stutenbecker, L. A.; Costa, A.; Schlunegger, F.
2015-10-01
The development of topography is mainly dependent on the interplay of uplift and erosion, which are in term controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables such as anthropogenic impact. While most studies have focused on the role of tectonics and climate on the landscape form and underlying processes, less attention has been paid on exploring the controls of lithology on erosion. The Central European Alps are characterized by a large spatial variability in exposed lithologies and as such offer an ideal laboratory to investigate the lithological controls on erosion and landscape form. Here, we focus on the ca. 5400 km2-large upper Rhône basin situated in the Central Swiss Alps to explore how the lithological architecture of the bedrock conditions the Alpine landscape. To this extent, we extract geomorphological parameters along the channels of ca. 50 tributary basins, whose catchments are located in either granitic basement rocks (External massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles show that all tributary rivers within the Rhône basin are in topographic transient state as testified by mainly convex or concave-convex longitudinal stream channel profiles with several knickpoints of either tectonic or glacial origin. In addition, although the entire Rhône basin shows a strong glacial inheritance (and is still partly glaciated) and some of the highest uplift rates recently measured in the Alps, the river network has responded differently to those perturbations as revealed by the morphometric data. In particular, tributary basins in the Helvetic nappes are the most equilibrated (concave river profiles, overall lower elevations, less steep slope gradients and lowest hypsometric integrals), while the tributaries located in the External massifs are least equilibrated, where streams yield strong convex long profiles, and where the tributary basins have the highest hypsometric integral and reveal the steepest hillslopes. We interpret this pattern to reflect differences in response times of the fluvial erosion in tributary streams towards glacial and tectonic perturbations, where the corresponding lengths strongly depend on the lithology and therefore on the bedrock erodibility.
The Effect of SnCl2/AmF Pretreatment on Short- and Long-Term Bond Strength to Eroded Dentin
Zumstein, Katrin; Peutzfeldt, Anne; Lussi, Adrian
2018-01-01
This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n = 92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α = 0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p < 0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques, José, Jr.
2015-04-01
The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, C.; Trudeau, S.; Kennedy, S.
1995-12-31
Pre-fledgling chicks of tree swallows, double-crested cormorants, herring gulls, common terns and hatchling snapping turtles were collected from contaminated Areas of Concern and reference sites in the Great Lakes and St. Lawrence River to determine the geographic and species variation in biomarker responses. EROD activity in colonial waterbirds was generally an order of magnitude above EROD activity in tree swallows and snapping turtles. Notably, EROD activity in colonial waterbirds did not correlate with organochlorine contamination in livers at one industrialized site suggesting that exposure to other contaminants, possibly PAHs, may be an important factor. Retinol concentrations in cormorants were non-detectablemore » and retinyl palmitate concentrations were equal or greater than those in herring gulls. In tree swallows, there was a significant negative correlation between vitamin A concentration in liver and kidney and EROD activity. In snapping turtles, there was a significant induction in EROD activity and significantly higher cytochrome P450 IAI level in livers from the Great Lakes site relative to a clean inland location. There were no significant differences in porphyrin concentrations between sites.« less
Repeated erosion of cohesive sediments with biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.; Fagherazzi, S.
2014-04-01
This study aims to explore the interplay between biofilms and erodability of cohesive sediments. Erosion experiments were run in four laboratory annular flumes with natural sediments. After each erosion the sediment was allowed to settle, mimicking intermittent physical processes like tidal currents and waves. The time between consecutive erosion events ranged from 1 to 12 days. Turbidity of the water column caused by sediment resuspension was used to determine the erodability of the sediments with respect to small and moderate shear stresses. Erodability was also compared on the basis of the presence of benthic biofilms, which were quantified using a Pulse-Amplitude Modulation (PAM) Underwater Fluorometer. We found that frequent erosion lead to the establishment of a weak biofilm, which reduced sediment erosion at small shear stresses (around 0.1 Pa). If prolonged periods without erosion were present, the biofilm fully established, resulting in lower erosion at moderate shear stresses (around 0.4 Pa). We conclude that an unstructured extracellular polymeric substances (EPS) matrix always affect sediment erodability at low shear stresses, while only a fully developed biofilm mat can reduce sediment erodability at moderate shear stresses.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Moayedi, Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko
2003-05-09
Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow. PMID:24459437
Vegetation, substrate, and eolian sediment transport at Teesto Wash, Navajo Nation, 2009-2012
Draut, Amy E.; Redsteer, Margaret Hiza; Amoroso, Lee
2012-01-01
On the Navajo Nation, southwestern United States, warming temperatures and recent drought have increased eolian (windblown) sediment mobility such that large, migrating sand dunes affect grazing lands, housing, and road access. We present an assessment of seasonal variations in sand transport, mobility, and ground cover (vegetation and substrate) within a 0.2-km2 study area near Teesto Wash, southern Navajo Nation, as part of a multiyear study measuring the effects of drought on landscape stability. Sand mobility in the study area decreased substantially as one year (2010) with near-normal monsoon rainfall somewhat abated a decade-long drought, temporarily doubling vegetation cover. The invasive annual plant Russian thistle (Salsola sp.), in particular, thrived after the monsoon rains of 2010. Vegetation that grew during that year with adequate rain died off rapidly during drier conditions in 2011 and 2012, and the proportion of bare, open sand area increased steadily after summer 2010. We infer that isolated seasonal increases in rainfall will not improve landscape stability in the long term because sustained increase in perennial plants, which are more effective than annual plants at stabilizing sand against wind erosion, requires multiple consecutive seasons of adequate rain. On the basis of climate projections, a warmer, drier climate and potentially enhanced sediment supply from ephemeral washes may further increase eolian sediment transport and dune activity, worsening the present challenges to people living in this region. Connections between climate, vegetation cover, and eolian sediment erodibility in this region also are highly relevant for studies in other regions worldwide with similar environmental characteristics.
Changes in the fluvial system of the Kondoa Irangi Hills, central Tanzania, since 1960
NASA Astrophysics Data System (ADS)
Eriksson, Mats; Reuterswärd, Karin; Christiansson, Carl
2003-11-01
Using evidence from aerial photographs, supported by field checks, changes in the fluvial systems of three catchments in the Kondoa Irangi Hills, Kondoa District, central Tanzania were mapped. This area is known for its severely eroded landscape and, today, also for the drastic measures introduced to deal with the soil erosion problem. In the early stages these included mechanical construction of contour bunds, but later emphasis was placed on tree planting and planting of elephant grass on sand fans and dry, sandy riverbeds. Restrictions were introduced on clearing land for cultivation and on felling of trees for construction material and fuel wood. The most dramatic conservation measure was the eviction, in 1979, of all livestock from 19 villages to halt the severe overgrazing.Since the different conservation measures have now been in effect for more than 20 years, their impact can be assessed. The sand rivers, conspicuous features of the study area, have in many places decreased in width. Their total surface area in the three catchments decreased by about two-thirds between 1960 and 1987. Previously unvegetated sand fans have been converted to crop production. Natural vegetation is now establishing itself on formerly barren areas. However, the badlands, which cover some 25% of the study area and which take a very long time to recover, still seem to be relatively unaffected by the conservation efforts, although they decreased in extent by about 10% between 1960 and 1987. In the present report, the biophysical landscape changes and their implications for the drainage system in parts of the Kondoa Irangi Hills are discussed. Copyright
Vandergast, A.G.; Lewallen, E.A.; Deas, J.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.
2009-01-01
Microreserves may be useful in protecting native arthropod diversity in urbanized landscapes. However, species that do not disperse through the urban matrix may eventually be lost from these fragments. Population extinctions may be precipitated by an increase in genetic differentiation among fragments and loss of genetic diversity within fragments, and these effects should become stronger with time. We analyzed population genetic structure in the dispersal limited Jerusalem cricket Stenopelmatus n. sp. "santa monica" in the Santa Monica Mountains and Simi Hills north of Los Angeles, California (CA), to determine the impacts of fragmentation over the past 70 years. MtDNA divergence was greater among urban fragments than within contiguous habitat and was positively correlated with fragment age. MtDNA genetic diversity within fragments increased with fragment size and decreased with fragment age. Genetic divergence across 38 anonymous nuclear Inter-Simple Sequence Repeat (ISSR) loci was influenced by the presence of major highways and highway age, but there was no effect of additional urban fragmentation. ISSR diversity was not correlated with fragment size or age. Differing results between markers may be due to male-biased dispersal, or different effective population sizes, sorting rates, or mutation rates among sampled genes. Results suggest that genetic connectivity among populations has been disrupted by highways and urban development, prior to declines in local population sizes. We emphasize that genetic connectivity can rapidly erode in fragmented landscapes and that flightless arthropods can serve as sensitive indicators for these effects. ?? Springer Science+Business Media B.V. 2008.
Twelve testable hypotheses on the geobiology of weathering.
Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K
2011-03-01
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. © 2011 Blackwell Publishing Ltd.
Banks, Maria E.; McEwen, Alfred S.; Kargel, Jeffrey S.; Baker, Victor R.; Strom, Robert G.; Mellon, Michael T.; Gulick, Virginia C.; Keszthelyi, Laszlo; Herkenhoff, Kenneth E.; Pelletier, Jon D.; Jaeger, Windy L.
2008-01-01
The landscape of the Argyre Planitia and adjoining Charitum and Nereidum Montes in the southern hemisphere of Mars has been heavily modified since formation of the Argyre impact basin. This study examines morphologies in the Argyre region revealed in images acquired by the High Resolution Imaging Science Experiment (HiRISE) camera and discusses the implications for glacial and periglacial processes. Distinctive features such as large grooves, semicircular embayments in high topography, and streamlined hills are interpreted as glacially eroded grooves, cirques, and whalebacks or roche moutonnée, respectively. Large boulders scattered across the floor of a valley may be ground moraine deposited by ice ablation. Glacial interpretations are supported by the association of these features with other landforms typical of glaciated landscapes such as broad valleys with parabolic cross sections and stepped longitudinal profiles, lobate debris aprons interpreted as remnant debris covered glaciers or rock glaciers, and possible hanging valleys. Aligned boulders observed on slopes may also indicate glacial processes such as fluting. Alternatively, boulders aligned on slopes and organized in clumps and polygonal patterns on flatter surfaces may indicate periglacial processes, perhaps postglaciation, that form patterned ground. At least portions of the Argyre region appear to have been modified by processes of ice accumulation, glacial flow, erosion, sediment deposition, ice stagnation and ablation, and perhaps subsequent periglacial processes. The type of bedrock erosion apparent in images suggests that glaciers were, at times, wet based. The number of superposed craters is consistent with geologically recent glacial activity, but may be due to subsequent modification.
NASA Astrophysics Data System (ADS)
Kerber, Laura; Dickson, James L.; Head, James W.; Grosfils, Eric B.
2017-01-01
Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes (between -2500 and 2200 m) and geographic locations and are likely to be chemically altered fracture planes or mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these water-related features are concentrated, and can appear in places where th morphologies are absent. Similarly, some of the ridge networks are located near hydrated mineral detections, but there is not a one-to-one correlation. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller versions of the Nili-like ridges, mostly formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data become available. Sinus Meridiani contains many flat-topped ridges arranged into quasi-circular patterns. The ridges are eroding from a clay-rich unit, and could be formed by a similar process as the Nili-type ridges, but at a much larger scale and controlled by fractures made through a different process. Hellas Basin is host to a fourth type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fifth, previously undocumented, ridge network type. The dark ridges, reaching up to 50 m in height, enclose regular polygons and erode into dark boulders. These ridge networks are interpreted to form as a result of lava flow embayment of deeply fractured Medusae Fossae Formation outcrops.
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...
2007-08-01
includes soil erodibility terms from the Universal Soil Lass Equation ( USLE ) for estimating the overland sediment transport capacity (for both the x and y...q = unit flow rate of water = va h [L2/T] vc = critical velocity for erosion overland [L/T] K = USLE soil erodibility factor C = USLE soil ...cover factor P = USLE soil management practice factor Be = width of eroding surface in flow direction [L]. In channels, sediment particles can be
NASA Astrophysics Data System (ADS)
Krenz, Juliane; Greenwood, Philip; Heckrath, Goswin; Kuhn, Brigitte; Kuhn, Nikolaus
2017-04-01
Covering about 41 % of the Earth's Land Surface drylands provide a range of ecosystem services for more than one third of the world population. Threatened by climate change and incorrect land use their natural land cover is changing and land degradation is one of their major problems. The semi-arid rangelands of the Great Karoo region in South Africa are just one example of a region that has experienced a number of environmental changes. After European farmers settled in the late 18th century agricultural activities increased, leading to overgrazing and probably representing a trigger to land degradation. As a consequence of a higher water demand and shifting rainfall patterns many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods. High erosion rates lead to a fast filling-up of reservoirs and thereby reduced their storage capacities. Thus, most of the dams are nowadays dry (filled with sediment) or even breached. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping, erosion modelling and sediment analysis have been employed to determine whether land degradation in the Karoo has resulted in the reversion from a net sink of C to a net source of C. Sediment deposits from three silted-up reservoirs were analysed for varying physicochemical parameters, in order to analyse and reconstruct erosional and depositional patterns. A sharp decrease in total carbon content with decreasing depth for two reservoirs suggests that land degradation during and after the post-European settlement most likely triggered erosion of the relatively fertile surface soils, which presumably in-filled the reservoirs. It is assumed that the carbon-rich bottom layers of the dam deposits originate from these eroded surface soils. Low organic Carbon (OC) content in the top layers of the reservoir in-fill, and in the eroded source areas, supports the assumption that the eroded material was transported from the degraded areas down into the reservoir, where it settled. This raises a crucial question of whether the decline of C sinks in degraded rangelands due to exacerbated soil erosion may have had a greater attenuating effect on GHG emissions than modelled scenarios of present emissions suggest. The slight decrease of TOC with increasing depth for the third reservoir might imply differences in geochemical cycling between dried out dams and reservoirs with continuous throughflow.
Geology and landscape evolution of the Hellas region of Mars
NASA Technical Reports Server (NTRS)
Tanaka, Kenneth L.; Leonard, Gregory J.
1995-01-01
Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S 60 deg E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (>1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topography, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approx. 1- to 2-km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approx. 100-200 m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approx. 100 km across; however, we disagree with a hypothesis that suggests that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.
Geology and landscape evolution of the Hellas region of Mars
NASA Technical Reports Server (NTRS)
Tanaka, Kenneth L.; Leonard, Gregory J.
1995-01-01
Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S60E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (greater than 1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topology, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approximately 1-to 2km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approximately 100-200m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approximately 100 km across; however, we disagree with a hypothesis that suggest that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.
Identification of in-sewer sources of organic solids contributing to combined sewer overflows.
Ahyerre, M; Chebbo, G
2002-09-01
Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead and zinc minerals. Except as provided in § 215.6(b), leases on Quapaw Indian lands, for mining...
Erosion and sediment yields in the Transverse Ranges, Southern California
Scott, Kevin M.; Williams, Rhea P.
1978-01-01
Major-storm and long-term erosion rates in mountain watersheds of the western Transverse Ranges of Ventura County, Calif., are estimated to range from low values that would not require the construction of catchments or channel-stabilization structures to values as high as those recorded anywhere for comparable bedrock erodibilities. A major reason for this extreme variability is the high degree of tectonic activity in the area--watersheds are locally being uplifted by at least as much as 25 feet per 1,000 years, yet the maximum extrapolated rate of denudation measured over the longest available period of record is 7.5 feet per 1,000 years adjusted to a drainage area of 0.5 square mile. Evidence of large amounts of uplift continuing into historic time includes structurally overturned strata of Pleistocene age, active thrust faulting, demonstrable stream antecedence, uplifted and deformed terraces, and other results of base-level change seen in stream channels. Such evidence is widespread in the Transverse Ranges, and aspects of the landscape are locally more a function of tectonic activity than of the denudational process. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L. A.; Ebel, B. A.; Tucker, G. E.
2018-05-01
The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles (>D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.
Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples
Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.
2007-01-01
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly
NASA Astrophysics Data System (ADS)
Buendía, Corina; Kleidon, Axel; Manzoni, Stefano; Reu, Björn; Porporato, Amilcare
2018-01-01
Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.
NASA Astrophysics Data System (ADS)
Berhe, Asmeret Asefaw; Barnes, Rebecca T.; Six, Johan; Marín-Spiotta, Erika
2018-05-01
Most of Earth's terrestrial surface is made up of sloping landscapes. The lateral distribution of topsoil by erosion controls the availability, stock, and persistence of essential elements in the terrestrial ecosystem. Over the last two decades, the role of soil erosion in biogeochemical cycling of essential elements has gained considerable interest from the climate, global change, and biogeochemistry communities after soil erosion and terrestrial sedimentation were found to induce a previously unaccounted terrestrial sink for atmospheric carbon dioxide. More recent studies have highlighted the role of erosion in the persistence of organic matter in soil and in the biogeochemical cycling of elements beyond carbon . Here we synthesize available knowledge and data on how erosion serves as a major driver of biogeochemical cycling of essential elements. We address implications of erosion-driven changes in biogeochemical cycles on the availability of essential elements for primary production, on the magnitude of elemental exports downstream, and on the exchange of greenhouse gases from the terrestrial ecosystem to the atmosphere. Furthermore, we explore fates of eroded material and how terrestrial mass movement events play major roles in modifying Earth's climate.
Rengers, Francis K.; McGuire, Luke; Ebel, Brian A.; Tucker, G. E.
2018-01-01
The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles ( >D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.
Detection and Classification of Motor Vehicle Noise in a Forested Landscape
NASA Astrophysics Data System (ADS)
Brown, Casey L.; Reed, Sarah E.; Dietz, Matthew S.; Fristrup, Kurt M.
2013-11-01
Noise emanating from human activity has become a common addition to natural soundscapes and has the potential to harm wildlife and erode human enjoyment of nature. In particular, motor vehicles traveling along roads and trails produce high levels of both chronic and intermittent noise, eliciting varied responses from a wide range of animal species. Anthropogenic noise is especially conspicuous in natural areas where ambient background sound levels are low. In this article, we present an acoustic method to detect and analyze motor vehicle noise. Our approach uses inexpensive consumer products to record sound, sound analysis software to automatically detect sound events within continuous recordings and measure their acoustic properties, and statistical classification methods to categorize sound events. We describe an application of this approach to detect motor vehicle noise on paved, gravel, and natural-surface roads, and off-road vehicle trails in 36 sites distributed throughout a national forest in the Sierra Nevada, CA, USA. These low-cost, unobtrusive methods can be used by scientists and managers to detect anthropogenic noise events for many potential applications, including ecological research, transportation and recreation planning, and natural resource management.
Newell, Wayne L.; Clark, Inga
2008-01-01
A recently compiled mosaic of a LIDAR-based digital elevation model (DEM) is presented with geomorphic analysis of new macro-topographic details. The geologic framework of the surficial and near surface late Cenozoic deposits of the central uplands, Pocomoke River valley, and the Atlantic Coast includes Cenozoic to recent sediments from fluvial, estuarine, and littoral depositional environments. Extensive Pleistocene (cold climate) sandy dune fields are deposited over much of the terraced landscape. The macro details from the LIDAR image reveal 2 meter-scale resolution of details of the shapes of individual dunes, and fields of translocated sand sheets. Most terrace surfaces are overprinted with circular to elliptical rimmed basins that represent complex histories of ephemeral ponds that were formed, drained, and overprinted by younger basins. The terrains of composite ephemeral ponds and the dune fields are inter-shingled at their margins indicating contemporaneous erosion, deposition, and re-arrangement and possible internal deformation of the surficial deposits. The aggregate of these landform details and their deposits are interpreted as the products of arid, cold climate processes that were common to the mid-Atlantic region during the Last Glacial Maximum. In the Pocomoke valley and its larger tributaries, erosional remnants of sandy flood plains with anastomosing channels indicate the dynamics of former hydrology and sediment load of the watershed that prevailed at the end of the Pleistocene. As the climate warmed and precipitation increased during the transition from late Pleistocene to Holocene, dune fields were stabilized by vegetation, and the stream discharge increased. The increased discharge and greater local relief of streams graded to lower sea levels stimulated down cutting and created the deeply incised valleys out onto the continental shelf. These incised valleys have been filling with fluvial to intertidal deposits that record the rising sea level and warmer, more humid climate in the mid-Atlantic region throughout the Holocene. Thus, the geomorphic details provided by the new LIDAR DEM actually record the response of the landscape to abrupt climate change. Holocene trends and land-use patterns from Colonial to modern times can also be interpreted from the local macro- scale details of the landscape. Beyond the obvious utility of these data for land-use planning and assessments of resources and hazards, the new map presents new details on the impact of climate changes on a mid-latitude, outer Coastal plain landscape.
Matsushige, T; Kraemer, M; Sato, T; Berlit, P; Forsting, M; Ladd, M E; Jabbarli, R; Sure, U; Khan, N; Schlamann, M; Wrede, K H
2018-06-07
Collateral networks in Moyamoya angiopathy have a complex angioarchitecture difficult to comprehend on conventional examinations. This study aimed to evaluate morphologic patterns and the delineation of deeply seated collateral networks using ultra-high-field MRA in comparison with conventional DSA. Fifteen white patients with Moyamoya angiopathy were investigated in this prospective trial. Sequences acquired at 7T were TOF-MRA with 0.22 × 0.22 × 0.41 mm 3 resolution and MPRAGE with 0.7 × 0.7 × 0.7 mm 3 resolution. Four raters evaluated the presence of deeply seated collateral networks and image quality in a consensus reading of DSA, TOF-MRA, and MPRAGE using a 5-point scale in axial source images and maximum intensity projections. Delineation of deeply seated collateral networks by different imaging modalities was compared by means of the McNemar test, whereas image quality was compared using the Wilcoxon signed-rank test. The relevant deeply seated collateral networks were classified into 2 categories and 6 pathways. A total of 100 collateral networks were detected on DSA; 106, on TOF-MRA; and 73, on MPRAGE. Delineation of deeply seated collateral networks was comparable between TOF-MRA and DSA ( P = .25); however, both were better than MPRAGE ( P < .001). This study demonstrates excellent delineation of 6 distinct deeply seated collateral network pathways in Moyamoya angiopathy in white adults using 7T TOF-MRA, comparable to DSA. © 2018 by American Journal of Neuroradiology.
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
NASA Astrophysics Data System (ADS)
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed
2017-11-15
This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuentes-Rios, Daniel; Orrego, Rodrigo; Rudolph, Anny; Mendoza, Gonzalo; Gavilán, Juan F; Barra, Ricardo
2005-10-01
Schroederichthys chilensis is a common shark that lives in Chilean coastal environments. In this work, the relationship between liver 7-ethoxyresorufin-O-deethylase dealkylation (EROD) activity and Fluorescent Aromatic Compounds (FAC) in bile of S. chilensis sampled in three bays with different degrees of pollution were performed including a reference area. Sixty individuals were collected, 20 for each site; (10 males and 10 females per site) livers and bile samples were obtained and immediately frozen. EROD activity and FAC were measured according to three standard methods. EROD activity and FAC were higher in polluted areas than in the reference area. Synchronous Fluorescence Spectra of the bile from the fish collected at the most polluted area showed a peak at 347nm representing a metabolite corresponding to 1-hydroxypyrene. The low EROD activity in the reference area is likely related to the low level of PAH in sediments. We propose that this species is a good indicator of exposure to FACs, since it presents a series of characteristics that make it suitable for monitoring PAH exposure in coastal zones.
Stabilization of erodible slopes with geofibers and nontraditional liquid additives.
DOT National Transportation Integrated Search
2013-05-01
Instability of erodible slopes due to extreme climate events and of permafrost slopes due degradation and thawing is a significant : engineering problem for northern transportation infrastructure. Engineers continually look for mitigation alternative...
On Engaging with Others: A Wittgensteinian Approach to (Some) Problems with Deeply Held Beliefs
ERIC Educational Resources Information Center
Bowell, Tracy
2018-01-01
My starting point for this paper is a problem in critical thinking pedagogy--the difficult of bringing students to a point where they are able, and motivated, critically to evaluate their own deeply held beliefs. I first interrogate the very idea of a deeply held belief, drawing upon Wittgenstein's idea of a framework belief--a belief that forms…
Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact
NASA Astrophysics Data System (ADS)
Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.
2012-04-01
At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat and erosion of the beach itself. Typically dunes are located behind sand beaches and they are part of the beach-dune systems. Such type of dune reduction could be driven by combination of many factors, both natural ones (such as severe storms, erosion, heavy rains or flooding) and human impacts (large number of installed coast-protection structures along the coast, which interrupt the sediment transport, create new sedimentary deficit and generate erosion). During the recent years most of the Bulgarian beaches have progressively eroded and their areas have significantly been decreased. ii) Dunes that have been reduced/damaged and lost due to expanded tourist and housing infrastructures/developments and due to afforestaion activities. The principal sources of human impacts on sand dunes in Bulgaria are rapid coastal urbanization over the recent years (i.e., hotel and residential constructions, roads, parking structures, and other related infrastructure), unregulated camping and "temporary" constructions on the dunes, a lax regulatory environment that tolerates the re-zoning of protected sand dunes to "agricultural" areas. At most recreational sites there were wide coastal dunes, which however have been destroyed during tourist constructions. Such are dunes at the most famous Bulgarian sea resorts of Golden Sands and Sunny Beach in the areas of Varna and Nessebar. As a consequence, major areas along the Bulgarian coast were completely urbanized by hotels and other infrastructures and large sand dune systems were damaged. iii) Dunes located at still undeveloped coastal sections: yet they are naturally preserved and unthreatened by human pressure boom. These are just a few dune sites: at the northernmost portion of the Bulgarian coast (in the area of Durankulak), at the central part in the region of the largest Bulgarian river, Kamchia River, and along the southernmost coastline (in the area of Veleka River). Although sand dunes in Bulgaria are protected areas and national reserves they have been exposed to large anthropogenic pressure in particular over the last decade. There is an increased demand now of proper management and urgent conservation activities. Such measures first require an accurate understanding of dune properties/behaviour, assessment of anthropogenic factors affecting dune persistence and identification of coastal areas most sensitive to risk of destruction. This research has been undertaken with the support of National Science Fund - Ministry of Education, Youth and Science, (Republic of Bulgaria); Contract No: DNTS 02/11 from 29.09.2010 in the frame of a Joint Research Project between Bulgaria and Romania (2010-2012). The Ministry of Agriculture and Food (Republic of Bulgaria) is deeply acknowledged for providing the modern orthophoto and satellite image data needed and useful also for implementation of the project activities.
Should commercial organ donation be legalized in Germany? An ethical discourse.
Keller, F; Winkler, U; Mayer, J; Stracke, S
2007-03-01
We evaluated the arguments pro and con concerning kidney sales from a German perspective. At present, we see social, medical, and ethical reasons why organ selling should not be legalized in Germany. Legalization of organ selling would weaken the principle of solidarity within the German health system. Conversely, profit making will undermine the principle of social justice. Within the present social system in Germany, there is no economic pressure to sell an organ to save life, and there is no medical need to buy a kidney. Also, there exists the risk that opening the market for organ sales will de-motivate potential directed organ donors. Relatives would have more doubts about giving their consent to donate organs of their deceased. Moreover, the historical experience with the "action T4" of the Nazi regime sensitized German society for the categorical imperative set forth by Immanuel Kant (1724-1804), namely that man is not a means, but an end to himself. By selling one's kidney, the donor uses himself as a means and as an instrument for the end result of gaining money. With directed organ donation, the welfare of the recipient is the end result. The pending reform of the German health system needs a more communitarian sense, which will be eroded should organs be sold and no longer donated as gifts. Germany's special historical experience and a deeply embedded consent toward ethical values give reason for the prohibition of organ selling in Germany.
Schwab, W.C.; Gayes, P.T.; Morton, R.A.; Driscoll, N.W.; Baldwin, W.E.; Barnhardt, W.A.; Denny, J.F.; Harris, M.S.; Katuna, M.P.; Putney, T.R.; Voulgaris, G.; Warner, J.C.; Wright, E.E.; Barnhardt, Walter A.
2009-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Sea Grant Consortium, conducted a 7-year, multidisciplinary study of coastal erosion in northeastern South Carolina. Shoreline behavior along the coast of Long Bay is dictated by waves, tidal currents, and sediment supply that act within the overall constraints of the regional geologic setting. Beaches are thin ribbons of sand that sit on top of layered sedimentary rocks, which have been deeply eroded by rivers and coastal processes over millions of years. Offshore of the beaches, these sedimentary rocks are exposed as hardgrounds over large expanses of shallow seafloor and are locally overlain by a discontinuous veneer of sandy sediment generally less than 1 m thick. Rates of shoreline retreat largely depend on the geologic framework of the shoreface that is being excavated by ocean processes. Mainland-attached beaches have remained relatively stable, whereas barrier islands have experienced large shifts in shoreline position. In this sediment-limited region, erosion of the shoreface and inner shelf probably contributes a significant amount of new material to the beach system. Oceanographic studies and numerical modeling show that sediment transport varies along the coast, depending on the type and travel path of storms that impact Long Bay, but the long-term net transport direction is generally from north to south. Changes in storm activity that might accompany climate change, coupled with anticipated increases in sea-level rise, are expected to strongly affect low-lying, heavily developed areas of the coast.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] In eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 20.5, Longitude 50 East (310 West). 19 meter/pixel resolution.The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz
French, B.M.; Cordua, W.S.; Plescia, J.B.
2004-01-01
The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.
NASA Astrophysics Data System (ADS)
Mayr, Andreas; Rutzinger, Martin; Bremer, Magnus; Geitner, Clemens
2016-06-01
In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and eroded. We propose an object-based image analysis (OBIA) workflow which consists of image segmentation and automated threshold selection for classification using the Excess Green Vegetation Index (ExG). The automated workflow is tested with ten different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos acquired at the same time.
Hallmarks of Therapeutic Management of the Cystic Fibrosis Functional Landscape
Amaral, Margarida D.; Balch, William E.
2015-01-01
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the ‘CFTR Functional Landscape (CFFL)’. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein ‘Social Network’ (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic. PMID:26526359
Controls on salt mobility and storage in the weathered dolerites of north-east Tasmania, Australia
NASA Astrophysics Data System (ADS)
Sweeney, Margaret; Moore, Leah
2014-05-01
Changes in land use and vegetation due to agriculture, forestry practices and urbanisation can mobilise naturally occurring salts in the landscape and accelerate the expression of land and water salinisation, potentially threatening built and natural assets. Some salts are released during rock weathering or are derived from marine sediments or wind-blown dust, but in Tasmania most originate from salt dissolved in rainfall that is concentrated during evaporation. The volume of salts deposited over north-east Tasmania from precipitation exceeds 70kg/ha/year. The dominant lithology of the salt affected regions in Tasmania is dolerite which breaks down to form secondary minerals including: smectite and kaolinite clays and Fe-bearing sesquioxides. The weathering of Tasmanian dolerites, sampled from fresh corestones, weathering rinds and sequentially through the soil horizon, has been examined petrographically and geochemically. The EC1:5 increases with weathering to a maximum 4.9 dS/m and decreases in the pedogenic zone. This confirms field observations that deeply weathered dolerite can serve as a significant store for salt in the landscape. The water associated with dolerite weathering is typically a bicarbonate fluid. The pH1:5 decreases as the samples weather and increases in the pedogenic zone. Clay content increases with distance from corestones (sandy clay loam to heavy clay), and this is also reflected in the density (2.6-1.3 gm/cm3) and loss on ignition (1.3-13.3 wt%). The patterns for Na are complicated as it is enriched through NaCl accession and removed during the weathering of plagioclase. The net enrichment of Cl (up to 5239 ppm) implies decoupling of Cl from Na during weathering. Potassium, Ca and Sr are mobilised from the profile as plagioclase weathers, and silica is progressively lost from the profile with the weathering of silicate phases. Iron is initially mobilised with the weathering of pyroxene and mafic accessory minerals, but is rapidly fixed in the weathering profile as Fe-oxides (hematite, goethite) in veinlets and in association with secondary clays. Pedogenic processes mobilise iron near the land surface. Elements that remain immobile during weathering are Nb, Zr and Ti which partition in resistant accessory phases including zircon. Ongoing X-Ray diffraction and microprobe analysis will further characterise the regolith materials that comprise the salt stores in the landscape. Complementary analysis of rainwater chemistry to determine the patterns and volumes of salt deposition from atmospheric aerosols will allow more accurate quantification of the salt flux in north-east Tasmania. Exploring the complex interactions of biophysical parameters such as rainfall, soil, geology, vegetation and hydrology, the study area can be divided into Hydrogeological Landscape (HGL) units. Preparation of an HGL characterisation for the study area and development of a detailed landscape evolution model will provide an understanding of how regolith materials are distributed in the landscape, how and where salt is stored and how water moves through or over the materials. Describing the association of dolerite with salinity will enable evaluation of land management in other dolerite (or basalt) dominated landscapes.
Implementation of the century ecosystem model for an eroding hillslope in Mississippi
Sharpe, Jodie; Harden, Jennifer W.; Dabney, Seth M.; Ojima, Dennis; Parton, William
1998-01-01
The objective of this study was to parameterize and implement the Century ecosystem model for an eroding, cultivated site near Senatobia, in Panola County, Mississippi, in order to understand the loss and replacement of soil organic carbon on an eroding cropland. The sites chosen for this study are located on highly eroded loess soils where USDA has conducted studies on rates of soil erosion. We used USDA sediment data from the study site and historical erosion estimates from the nearby area as model input for soil loss; in addition, inputs for parametization include particle-size data, climate data, and rainfall/runoff data that were collected and reported in companion papers. A cropping scenario was implemented to simulate a research site at the USDA watershed 2 at the Nelson Farm. Model output was compiled for comparison with data collected and reported in companion reports; interpretive comparisons are reported in Harden et al, in press.
Surface properties of beached plastics.
Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K
2015-07-01
Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.