Science.gov

Sample records for deeply supercooled confined

  1. Dynamics of deeply supercooled interfacial water

    NASA Astrophysics Data System (ADS)

    Swenson, Jan; Cerveny, Silvina

    2015-01-01

    In this review we discuss the relaxation dynamics of glassy and deeply supercooled water in different types of systems. We compare the dynamics of such interfacial water in ordinary aqueous solutions, hard confinements and biological soft materials. In all these types of systems the dielectric relaxation time of the main water process exhibits a dynamic crossover from a high-temperature non-Arrhenius temperature dependence to a low-temperature Arrhenius behavior. Moreover, at large enough water content the low-temperature process is universal and exhibits the same temperature behavior in all types of systems. However, the physical nature of the dynamic crossover is somewhat different for the different types of systems. In ordinary aqueous solutions it is not even a proper dynamic crossover, since the water relaxation decouples from the cooperative α-relaxation of the solution slightly above the glass transition in the same way as all secondary (β) relaxations of glass-forming materials. In hard confinements, the physical origin of the dynamic crossover is not fully clear, but it seems to occur when the cooperative main relaxation of water at high temperatures reaches a temperature where the volume required for its cooperative motion exceeds the size of the geometrically-confined water cluster. Due to this confinement effect the α-like main relaxation of the confined water seems to transform to a more local β-relaxation with decreasing temperature. Since this low-temperature β-relaxation is universal for all systems at high water content it is possible that it can be considered as an intrinsic β-relaxation of supercooled water, including supercooled bulk water. This possibility, together with other findings for deeply supercooled interfacial water, suggests that the most accepted relaxation scenarios for supercooled bulk water have to be altered.

  2. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water

    PubMed Central

    Mallamace, F.; Corsaro, C.; Broccio, M.; Branca, C.; González-Segredo, N.; Spooren, J.; Chen, S.-H.; Stanley, H. E.

    2008-01-01

    Using NMR, we measure the proton chemical shift δ, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because δ is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative −(∂ ln δ/∂T)P should behave roughly as the constant pressure specific heat CP(T), and we confirm this argument by detailed comparisons with literature values of CP(T) in the range 290–370 K. We find that −(∂ ln δ/∂T)P displays a pronounced maximum upon crossing the locus of maximum correlation length at ≈240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that CP(T) displays a maximum on crossing the Widom line. PMID:18753633

  3. NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water.

    PubMed

    Mallamace, F; Corsaro, C; Broccio, M; Branca, C; González-Segredo, N; Spooren, J; Chen, S-H; Stanley, H E

    2008-09-02

    Using NMR, we measure the proton chemical shift delta, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because delta is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative -( partial differential ln delta/ partial differentialT)(P) should behave roughly as the constant pressure specific heat C(P)(T), and we confirm this argument by detailed comparisons with literature values of C(P)(T) in the range 290-370 K. We find that -( partial differential ln delta/ partial differentialT)(P) displays a pronounced maximum upon crossing the locus of maximum correlation length at approximately 240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that C(P)(T) displays a maximum on crossing the Widom line.

  4. Transport properties of supercooled confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  5. Quantum effects in the dynamics of deeply supercooled water

    DOE PAGES

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  6. Quantum effects in the dynamics of deeply supercooled water

    SciTech Connect

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Sokolov, Alexei P

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  7. Dynamical properties of confined supercooled water: an NMR study

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  8. Molecular probe dynamics reveals suppression of ice-like regions in strongly confined supercooled water.

    PubMed

    Banerjee, Debamalya; Bhat, Shrivalli N; Bhat, Subray V; Leporini, Dino

    2012-01-01

    The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.

  9. Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water

    PubMed Central

    Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino

    2012-01-01

    The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747

  10. Short time properties, dynamic fragility and pressure effects in deeply supercooled polymer melts

    NASA Astrophysics Data System (ADS)

    Saltzman, Erica J.; Schweizer, Kenneth S.

    2007-05-01

    Our activated barrier hopping theory of segmental relaxation in deeply supercooled polymer melts is applied to compute short time properties including the glassy shear modulus, localization length and vibrational frequency. Numerical calculations for specific polymers suggest the theory simultaneously predicts a reasonable elastic modulus, localized state vibrational frequency, dynamic fragility and dynamic crossover and glass transition temperatures. The theory also provides explicit connections between short time-/length-scale properties and the slow alpha relaxation process. The extension of the theory to elevated pressures is initiated. Pressure is found to broaden the deeply supercooled regime and reduce the dynamic fragility. However, the predicted Rossler-Sokolov universal supra-Arrhenius law for the temperature dependence of the alpha relaxation time remains accurate at all pressures. A common theme is the essential role played by the ratio of the dynamic crossover temperature (ideal mode coupling critical temperature) and kinetic glass transition temperature even in the deeply supercooled regime where activated processes are dominant.

  11. ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water.

    PubMed

    Banerjee, D; Bhat, S N; Bhat, S V; Leporini, D

    2009-07-14

    Using electron spin resonance spectroscopy (ESR), we measure the rotational mobility of probe molecules highly diluted in deeply supercooled bulk water and negligibly constrained by the possible ice fraction. The mobility increases above the putative glass transition temperature of water, T(g) = 136 K, and smoothly connects to the thermodynamically stable region by traversing the so called "no man's land" (the range 150-235 K), where it is believed that the homogeneous nucleation of ice suppresses the liquid water. Two coexisting fractions of the probe molecules are evidenced. The 2 fractions exhibit different mobility and fragility; the slower one is thermally activated (low fragility) and is larger at low temperatures below a fragile-to-strong dynamic cross-over at approximately 225 K. The reorientation of the probe molecules decouples from the viscosity below approximately 225 K. The translational diffusion of water exhibits a corresponding decoupling at the same temperature [Chen S-H, et al. (2006) The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA 103:12974-12978]. The present findings are consistent with key issues concerning both the statics and the dynamics of supercooled water, namely the large structural fluctuations [Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behavior of metastable water. Nature 360:324-328] and the fragile-to-strong dynamic cross-over at approximately 228 K [Ito K, Moynihan CT, Angell CA (1999) Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398:492-494].

  12. More accurate X-ray scattering data of deeply supercooled bulk liquid water

    SciTech Connect

    Neuefeind, Joerg C; Benmore, Chris J; Weber, Richard; Paschek, Dietmar

    2011-01-01

    Deeply supercooled water droplets held container-less in an acoustic levitator are investigated with high energy X-ray scattering. The temperature dependence X-ray structure function is found to be non-linear. Comparison with two popular computer models reveals that structural changes are predicted too abrupt by the TIP5P model, while the rate of change predicted by TIP4P is in much better agreement with experiment. The abrupt structural changes predicted by the TIP5P model to occur in the temperature range between 260-240K as water approaches the homogeneous nucleation limit are unrealistic. Both models underestimate the distance between neighbouring oxygen atoms and overestimate the sharpness of the OO distance distribution, indicating that the strength of the H-bond is overestimated in these models.

  13. Evidence of the existence of the low-density liquid phase in supercooled, confined water.

    PubMed

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-09

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

  14. Evidence of the existence of the low-density liquid phase in supercooled, confined water

    PubMed Central

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-01

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm−1, the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL ≈ 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492–494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm−1 [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468–3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid–liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324–328]. PMID:17192402

  15. Effects of confinement on the thermodynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Strekalova, Elena G.

    The main focus of this thesis is to understand how confinement alters the phase diagram of supercooled liquid water by employing methods of statistical mechanics and numerical simulations. Water is very complex and anomalous when compared to simple liquids. For example, experimental data for liquid water reveals the presence of a temperature of maximum density (TMD) below which the density decreases under isobaric cooling. Another anomaly is the hypothesized liquid--liquid phase transition (LLPT) between two types of liquid water with different densities. In this thesis we study how confinement affects such anomalies as TMD and LLPT in supercooled liquid water. This thesis is separated into three parts: (i) Monte Carlo simulations of a 2D coarse-grained model of a water layer confined in a fixed disordered matrix of hydrophobic nanoparticles, (ii) molecular dynamics simulations of a Jagla ramp model of liquid confined in fixed ordered and disordered matrices of hydrophobic nanoparticles, and (iii) all-atom simulations of trehalose and maltose in aqueous solution of lysozyme. In Part (i), we perform Monte Carlo simulations and find that a nanoparticle concentration as small as 2.4% is enough to destroy the LLPT for pressure P > 0.14 GPa. Moreover, we find a substantial (more than 90%) decrease of compressibility, thermal expansion coefficient and specific heat at high P and low temperature T upon increase of nanoparticle concentration from 0% to 25%. In Part (ii), we ask how, for single component systems interacting via a soft-core isotropic potential with two characteristic length scales, the geometry of hydrophobic confinement affects the phase diagram. We use molecular dynamics simulations to study particles interacting through a ramp potential and a shoulder potential, each confined in a fixed matrix of nanoscopic particles with a fixed volume fraction. We find a substantial weakening of the LLPT and the disappearance of TMD upon the increase of disorder in the

  16. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.

    PubMed

    Saika-Voivod, Ivan; Poole, Peter H; Bowles, Richard K

    2006-06-14

    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modeled by the van Beest-Kramer-van Santen potential. We find that at density rho=4.38 gcm(3), spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events in numerous independent runs. We then use parallel, constrained Monte Carlo simulations to evaluate DeltaG(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200, and 3300 K. By comparing the form of DeltaG(n) to CNT, we test the ability of CNT to reproduce the observed behavior as we approach the regime where spontaneous nucleation occurs on simulation time scales. We find that the prediction of CNT for the n dependence of DeltaG(n) fits reasonably well to the data at all T studied. Deltamu, the chemical potential difference between bulk liquid and stishovite, is evaluated as a fit parameter in our analysis of the form of DeltaG(n). Compared to directly determined values of Deltamu extracted from previous work, the fitted values agree only at T=3300 K; at lower T the fitted values increasingly overestimate Deltamu as T decreases. We find that n(*), the size of the critical nucleus, is approximately ten silicon atoms at T=3300 K. At 3000 K, n(*) decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of DeltaG(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of DeltaG(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g., the diffusion length that Si atoms must travel in

  17. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Poole, Peter H.; Bowles, Richard K.

    2006-06-01

    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modeled by the van Beest-Kramer-van Santen potential [Phys. Rev. Lett. 64, 1995 (1990)]. We find that at density ρ =4.38g/cm3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T =3000K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events in numerous independent runs. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n ), the free energy to form a crystalline embryo containing n silicon atoms, at T =3000, 3100, 3200, and 3300K. By comparing the form of ΔG(n ) to CNT, we test the ability of CNT to reproduce the observed behavior as we approach the regime where spontaneous nucleation occurs on simulation time scales. We find that the prediction of CNT for the n dependence of ΔG(n ) fits reasonably well to the data at all T studied. Δμ, the chemical potential difference between bulk liquid and stishovite, is evaluated as a fit parameter in our analysis of the form of ΔG(n ). Compared to directly determined values of Δμ extracted from previous work, the fitted values agree only at T =3300K; at lower T the fitted values increasingly overestimate Δμ as T decreases. We find that n*, the size of the critical nucleus, is approximately ten silicon atoms at T =3300K. At 3000K, n* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n ) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n ) at 3000K. Finally, we directly evaluate at T =3000K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g., the diffusion length that Si atoms must travel

  18. Using nanoscale amorphous solid water films to create and study deeply supercooled liquid water at interfaces

    NASA Astrophysics Data System (ADS)

    Kay, Bruce

    Molecular beam vapor deposition of water on cryogenic substrates is known to produce amorphous solid films. When heated above their glass transition these films transform into deeply supercooled liquid water. These nanoscale liquid films can be used to study kinetic processes such as diffusion, isotope exchange, crystallization, and solvent mediated reactions in unprecedented detail. This talk will highlight our recent advances in this area. My colleagues Yuntao Xu, Chunqing Yuan, Collin Dibble, R. Scott Smith, Nick Petrik, and Greg Kimmel made important contributions to this work.This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle, operated for the U.S. DOE under Contract DE-AC05-76RL01830.

  19. Dynamic mechanical analysis of supercooled water in nanoporous confinement

    NASA Astrophysics Data System (ADS)

    Soprunyuk, Viktor; Schranz, Wilfried; Huber, Patrick

    2016-08-01

    Dynamical mechanical analysis (\\text{DMA})(f=0.2\\text{--}100 \\text{Hz}) is used to study the dynamics of confined water in mesoporous Gelsil (2.6 nm and 5 nm pores) and Vycor (10 nm) in the temperature range from T=80 \\text{K} to 300 K. Confining water into nanopores partly suppresses crystallization and allows us to perform measurements of supercooled water below 235 K, i.e., in water's so-called “no man's land”, in parts of the pores. Two distinct relaxation peaks are observed in tan δ around T1 ≈ 145 \\text{K} (P1) and T2 ≈ 205 \\text{K}~(P2) for Gelsil 2.6 nm and Gelsil 5 nm at 0.2 Hz. Both peaks shift to higher T with increasing pore size d and change with f in a systematic way, typical of an Arrhenius behaviour of the corresponding relaxation times. For P 1 we obtain an average activation energy of E\\text{a} = 0.47 \\text{eV} , in good agreement with literature values, suggesting that P 1 corresponds to the glass transition of supercooled water. The observation of a pronounced softening of the Young's modulus around 165 K (for Gelsil 2.6 nm at 0.2 Hz) supports the conjecture of a glass-to-liquid transition in the vicinity of P 1. In addition we find a clear-cut (1/d)-dependence of the calculated glass transition temperatures which extrapolates to T_\\text{g}(1/d=0)=136 \\text{K} , in agreement with the traditional value of water.

  20. High-frequency propagating density fluctuations in deeply supercooled water: evidence of a single viscous relaxation.

    PubMed

    Aliotta, F; Gapiński, J; Pochylski, M; Ponterio, R C; Saija, F; Salvato, G; Vasi, C

    2013-02-01

    We performed a Brillouin scattering experiment on deeply supercooled water and compared the results with similar literature data obtained both at the same and at higher values of the exchanged wave vector. The whole set of available experimental data can be well reproduced with the use of the generalized hydrodynamic model where all the involved thermodynamic parameters are fixed to their literature values. On the contrary, the model based on the memory function approach generates the wrong estimates for measurables when the same values of the thermodynamic parameters are used. This result confirms our recent criticisms against the utilization of models originating from linear response theory [Phys. Rev. E 84, 051202 (2011)]. The inconsistency between models explains apparent discrepancies between the different conclusions on water acoustic behavior which may be found in the literature. We demonstrate that the observed behavior can be explained by assuming only a single relaxation process that is typical of any viscoelastic system. With all thermodynamics quantities fixed, the hydrodynamic description needs only two parameters to model the experimental data, namely, the relaxation time and the high-frequency limit of the sound velocity. The whole body of the experimental data can be well reproduced when the relaxation time behaves in an Arrhenian manner and the difference between the relaxed and not relaxed sound velocities is a constant. The high-frequency sound velocity is never higher than 2200 m/s. We conclude that, at least from experiments performed within the hydrodynamic regime, there is no indication for a fast sound close to the hypersonic velocity observed in ice.

  1. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions

    NASA Astrophysics Data System (ADS)

    Biddle, John W.; Singh, Rakesh S.; Sparano, Evan M.; Ricci, Francesco; González, Miguel A.; Valeriani, Chantal; Abascal, José L. F.; Debenedetti, Pablo G.; Anisimov, Mikhail A.; Caupin, Frédéric

    2017-01-01

    One of the most promising frameworks for understanding the anomalies of cold and supercooled water postulates the existence of two competing, interconvertible local structures. If the non-ideality in the Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the "two-structure equation of state" (TSEOS) based on this concept have shown remarkable agreement with both experimental data for metastable, deeply supercooled water and simulations of molecular water models. However, existing TSEOSs were not designed to describe the negative pressure region and do not account for the stability limit of the liquid state with respect to the vapor. While experimental data on supercooled water at negative pressures may shed additional light on the source of the anomalies of water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005, one of the most accurate classical water models available. We have used recently published simulation data, and performed additional simulations, over a broad range of positive and negative pressures, from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005 with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation of the thermodynamic anomalies of water based on a "retracing spinodal," the liquid-vapor spinodal in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not giving rise to density extrema and other thermodynamic anomalies.

  2. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid.

    PubMed

    Zanatta, M; Cormier, L; Hennet, L; Petrillo, C; Sacchetti, F

    2017-03-03

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  3. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-03-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  4. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    PubMed Central

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-01-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier. PMID:28255173

  5. Scaling vs. Vogel-Fulcher-type structural relaxation in deeply supercooled materials

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2000-11-01

    A recent scaling-law analysis using τ∝( T- Tc) - γ with Tc< Tg has concluded that the resulting fits are superior over the Vogel-Fulcher-Tammann temperature dependence as regards the structural relaxation time of supercooled liquids (Colby, Phys. Rev. E 61 (2000) 1783). This issue is investigated based on the dielectric retardation data of poly(vinylacetate) which cover 16 decades in time, from 3 ns to over 1 year. In contrast to Colby's conclusions, the observed temperature dependence rules out a temperature-invariant exponent γ as well as a clear cut critical temperature Tc.

  6. Viscosity of deeply supercooled water and its coupling to molecular diffusion.

    PubMed

    Dehaoui, Amine; Issenmann, Bruno; Caupin, Frédéric

    2015-09-29

    The viscosity of a liquid measures its resistance to flow, with consequences for hydraulic machinery, locomotion of microorganisms, and flow of blood in vessels and sap in trees. Viscosity increases dramatically upon cooling, until dynamical arrest when a glassy state is reached. Water is a notoriously poor glassformer, and the supercooled liquid crystallizes easily, making the measurement of its viscosity a challenging task. Here we report viscosity of water supercooled close to the limit of homogeneous crystallization. Our values contradict earlier data. A single power law reproduces the 50-fold variation of viscosity up to the boiling point. Our results allow us to test the Stokes-Einstein and Stokes-Einstein-Debye relations that link viscosity, a macroscopic property, to the molecular translational and rotational diffusion, respectively. In molecular glassformers or liquid metals, the violation of the Stokes-Einstein relation signals the onset of spatially heterogeneous dynamics and collective motions. Although the viscosity of water strongly decouples from translational motion, a scaling with rotational motion remains, similar to canonical glassformers.

  7. Viscosity of deeply supercooled water and its coupling to molecular diffusion

    PubMed Central

    Dehaoui, Amine; Issenmann, Bruno; Caupin, Frédéric

    2015-01-01

    The viscosity of a liquid measures its resistance to flow, with consequences for hydraulic machinery, locomotion of microorganisms, and flow of blood in vessels and sap in trees. Viscosity increases dramatically upon cooling, until dynamical arrest when a glassy state is reached. Water is a notoriously poor glassformer, and the supercooled liquid crystallizes easily, making the measurement of its viscosity a challenging task. Here we report viscosity of water supercooled close to the limit of homogeneous crystallization. Our values contradict earlier data. A single power law reproduces the 50-fold variation of viscosity up to the boiling point. Our results allow us to test the Stokes–Einstein and Stokes–Einstein–Debye relations that link viscosity, a macroscopic property, to the molecular translational and rotational diffusion, respectively. In molecular glassformers or liquid metals, the violation of the Stokes–Einstein relation signals the onset of spatially heterogeneous dynamics and collective motions. Although the viscosity of water strongly decouples from translational motion, a scaling with rotational motion remains, similar to canonical glassformers. PMID:26378128

  8. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.

    PubMed

    Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino

    2013-05-14

    The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.

  9. Communication: Local structure-mobility relationships of confined fluids reverse upon supercooling.

    PubMed

    Bollinger, Jonathan A; Jain, Avni; Carmer, James; Truskett, Thomas M

    2015-04-28

    We examine the structural and dynamic properties of confined binary hard-sphere mixtures designed to mimic realizable colloidal thin films. Using computer simulations, governed by either Newtonian or overdamped Langevin dynamics, together with other techniques including a Fokker-Planck equation-based method, we measure the position-dependent and average diffusivities of particles along structurally isotropic and inhomogeneous dimensions of the fluids. At moderate packing fractions, local single-particle diffusivities normal to the direction of confinement are higher in regions of high total packing fraction; however, these trends are reversed as the film is supercooled at denser average packings. Auxiliary short-time measurements of particle displacements mirror data obtained for experimental supercooled colloidal systems. We find that average dynamics can be approximately predicted based on the distribution of available space for particle insertion across orders of magnitude in diffusivity regardless of the governing microscopic dynamics.

  10. Effect of confinement on the liquid-liquid phase transition of supercooled water.

    PubMed

    Brovchenko, I; Oleinikova, A

    2007-06-07

    We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.

  11. On the behaviour of supercooled liquids and polymers in nano-confinement

    NASA Astrophysics Data System (ADS)

    Soprunyuk, V.; Reinecker, M.; Schranz, W.

    2016-08-01

    Size effects play an important role in structural phase transitions, melting transitions, in martensitic materials, glass transitions, etc. Very often the question arises, whether a measured size effect originates from the geometrical confinement itself, or if it appears due to the interaction with the limiting surface. Using dynamic mechanical analysis (DMA) technique we have studied various microphase segregated polymers, molecular glass forming liquids and supercooled water confined in nanoporous silica as well as in biological tissues. Here we show on some selected examples that DMA measurements can be used to study relaxation processes in detail and to disentangle in favourable cases pure pore size effects from effects that are induced by the confining surface.

  12. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U.-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  13. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  14. Self-intermediate scattering function analysis of supercooled water confined in hydrophilic silica nanopores

    NASA Astrophysics Data System (ADS)

    Kuon, Nicholas; Milischuk, Anatoli A.; Ladanyi, Branka M.; Flenner, Elijah

    2017-06-01

    We study the temperature dependence of the self-intermediate scattering function for supercooled water confined in hydrophilic silica nanopores. We simulate the simple point charge/extended model of water confined to pores of radii 20 Å, 30 Å, and 40 Å over a temperature range of 210 K to 250 K. First, we examine the temperature dependence of the structure of the water and find that there is layering next to the pore surface for all temperatures and diameters. However, there exists a region in the center of the pore where the density is nearly constant. Using the density profile, we divide confined water into different regions and compare the dynamics of the water molecules that start in these regions. To this end, we examine the mean-squared displacement and the self-intermediate scattering functions for the water hydrogens, which would allow one to connect our results with quasi-elastic neutron scattering experiments. We examine the dependence of the self-intermediate scattering function on the magnitude and direction of the wavevector, as well as the proximity to the silica surface. We also examine the rotational-translational decoupling. We find that the anisotropy of the dynamics and the rotational-translational decoupling is weakly temperature dependent.

  15. Interaction of water with LiCl, LiBr, and LiI in the deeply supercooled region.

    PubMed

    Souda, Ryutaro

    2007-12-07

    The hydration mechanism of lithium halides was studied using time-of-flight secondary ion mass spectrometry as a function of temperature. The lithium halides embedded in thin films of amorphous solid water segregate to the surface at temperatures higher than 135-140 K, with efficiency increasing in the order of LiCl, LiBr, and LiI. A monolayer of LiCl and LiI adsorbed on the surface of amorphous solid water tends to diffuse into the bulk at 160 K. The infrared absorption band revealed that the aqueous lithium-halide solutions and crystals are formed simultaneously at 160 K; these phenomena are explicable as a consequence of the evolution of supercooled liquid water. The strong surfactant effect is inferred to arise from hydration of a contact ion pair having hydrophilic (lithium) and hydrophobic (halide) moieties. Furthermore, bulk diffusion of lithium halides might result from the formation of a solvent-separated ion pair in supercooled liquid water. The presence of two liquid phases of water with different local structures is probably responsible for the formation of these two hydrates, consistent with the calculated result reported by Jungwirth and Tobias[J. Phys. Chem. B 106, 6361 (2002)].

  16. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41.

    PubMed

    Kittaka, Shigeharu; Sou, Kalyan; Yamaguchi, Toshio; Tozaki, Ken-ichi

    2009-10-14

    The thermal properties of water confined to both exterior and interior of cylindrical mesoporous MCM-41 (pore diameter d = 1.8-3.6 nm) were analysed by differential scanning calorimetry and FTIR spectroscopy. A three-step freezing of the exterior water was observed just above 233 K, the homogeneous nucleation temperature of bulk water, before the interior water was frozen. The first freezing of water was ascribed to the outermost bulk water, the second one to water between bulk and water bound to the exterior wall, and the third one to the bound exterior water. With decreasing pore size, the second freezing water decreased in magnitude. This stepwise freezing of the exterior water has been found in porous zeolite materials. The exothermic peak of the interior water confined in MCM-41 was observed at 227.5 K before freezing, ascribed probably to a high-density liquid-low-density liquid phase change. FTIR data of the interior water confirmed this finding. The present results substantiate the static and dynamic crossover of supercooled water in MCM-41 reported from previous neutron scattering and NMR data.

  17. Strength, Deformability and X-ray Micro-CT Observations of Deeply Buried Marble Under Different Confining Pressures

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Ju, Yang; Gao, Feng; Gui, Yi-Lin

    2016-11-01

    In this research, a series of triaxial compression experiments and X-ray observations were conducted to explore the strength, deformability and internal damage mechanism of deeply buried marble. The results show that an increase in confining pressure results in obvious brittle-ductile transition characteristics of deeply buried marble. The Young's modulus of the marble increased nonlinearly with increasing confining pressure. The peak and residual strength of the marble exhibit a clear linear relationship with the confining pressure, which can be described by the linear Mohr-Coulomb criterion. The sensitivity of the residual strength on the confining pressure was clearly higher than that of the peak strength. After uniaxial and triaxial compression failure, marble specimens were analyzed using a three-dimensional X-ray micro-CT scanning system. Based on horizontal and vertical cross-sections, the marble specimen is mainly dominated by axial splitting tensile cracks under uniaxial compression, but under confining pressure, the marble specimen is mainly dominated by a single shear crack. To quantitatively evaluate the internal damage of the marble material, the crack area and aperture extent for each horizontal cross-section were calculated by analyzing the binarized pictures. The system of crack planes under uniaxial compression is more complicated than that under triaxial compression, which is also supported by the evolution of the crack area and aperture extent. Finally, the brittle-ductile transition mechanism of the marble is discussed and interpreted according to the proposed conceptual models.

  18. Melting Kinetics of Confined Systems at the Nanoscale: Superheating and Supercooling

    SciTech Connect

    Sharp, I. D.; Xu, Q.; Yuan, C. W.; Liao, C. Y.; Glaeser, A. M.; Chrzan, D. C.; Haller, E. E.; Yi, D. O.; Minor, A. M.; Beeman, J. W.; Ager, J. W. III; Ridgway, M. C.; Kluth, P.

    2007-04-10

    In situ electron diffraction measurements of silica-embedded Ge nanocrystals reveal a melting/solidification hysteresis of 470 K which is approximately symmetric about the bulk melting point. This surprising behavior, which is thought to be impossible in bulk systems, is well described by a simple, classical thermodynamic model. Surface pre-melting, which occurs for materials with free surfaces, is suppressed by the presence of the host matrix, thereby allowing both kinetic supercooling and kinetic superheating of the embedded nanocrystals.

  19. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  20. Metal-organic frameworks as host materials of confined supercooled liquids.

    PubMed

    Fischer, J K H; Sippel, P; Denysenko, D; Lunkenheimer, P; Volkmer, D; Loidl, A

    2015-10-21

    In this work, we examine the use of metal-organic framework (MOF) systems as host materials for the investigation of glassy dynamics in confined geometry. We investigate the confinement of the molecular glass former glycerol in three MFU-type MOFs with different pore sizes (MFU stands for "Metal-Organic Framework Ulm-University") and study the dynamics of the confined liquid via dielectric spectroscopy. In accord with previous reports on confined glass formers, we find different degrees of deviations from bulk behavior depending on pore size, demonstrating that MOFs are well-suited host systems for confinement investigations.

  1. Metal-organic frameworks as host materials of confined supercooled liquids

    NASA Astrophysics Data System (ADS)

    Fischer, J. K. H.; Sippel, P.; Denysenko, D.; Lunkenheimer, P.; Volkmer, D.; Loidl, A.

    2015-10-01

    In this work, we examine the use of metal-organic framework (MOF) systems as host materials for the investigation of glassy dynamics in confined geometry. We investigate the confinement of the molecular glass former glycerol in three MFU-type MOFs with different pore sizes (MFU stands for "Metal-Organic Framework Ulm-University") and study the dynamics of the confined liquid via dielectric spectroscopy. In accord with previous reports on confined glass formers, we find different degrees of deviations from bulk behavior depending on pore size, demonstrating that MOFs are well-suited host systems for confinement investigations.

  2. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  3. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    SciTech Connect

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally, the P dependence of the librational band also agrees with the above conclusion.

  4. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    DOE PAGES

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; ...

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally,more » the P dependence of the librational band also agrees with the above conclusion.« less

  5. Detection of the liquid-liquid transition in the deeply cooled water confined in MCM-41 with elastic neutron scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Ito, Kanae; Chen, Sow-Hsin

    2016-05-01

    In this paper we present a review on our recent experimental investigations into the phase behavior of the deeply cooled water confined in a nanoporous silica material, MCM-41, with elastic neutron scattering technique. Under such strong confinement, the homogeneous nucleation process of water is avoided, which allows the confined water to keep its liquid state at temperatures and pressures that are inaccessible to the bulk water. By measuring the average density of the confined heavy water, we observe a likely first-order low-density liquid (LDL) to high-density liquid (HDL) transition in the deeply cooled region of the confined heavy water. The phase separation starts from 1.12±0.17{ kbar} and 215±1{ K} and extends to higher pressures and lower temperatures in the phase diagram. This starting point could be the liquid-liquid critical point of the confined water. The locus of the Widom line is also estimated. The observation of the liquid-liquid transition in the confined water has potential to explain the mysterious behaviors of water at low temperatures. In addition, it may also have impacts on other disciplines, because the confined water system represents many biological and geological systems in which water resides in nanoscopic pores or in the vicinity of hydrophilic or hydrophobic surfaces.

  6. The dispersion-confinement mechanism: Phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea

    NASA Astrophysics Data System (ADS)

    Zarubin, Margarita; Lindemann, Yoav; Genin, Amatzia

    2017-06-01

    The spring phytoplankton bloom is a major, extensively studied phenomenon in temperate oceans. Much less is known about blooms in subtropical seas. Yet, even in temperate seas the processes determining the initiation of the bloom and the phytoplankton dynamics during the preceding mixed-layer deepening are still debated. Here we assess the validity of two bloom-initiation mechanisms, previously proposed for temperate oceans, for the case of the subtropical oligotrophic Gulf of Aqaba (northern Red Sea): the Critical Depth Hypothesis and the Dilution-Recoupling Hypothesis. The Gulf is a unique water body, where convective mixing during winter reaches hundreds of meters in depth, entraining nutrients that support conspicuous spring blooms. Our study is based on a long time series of oceanographic and meteorological parameters complemented with experimental measurements of grazing rates. We show that neither the Critical Depth nor the Dilution-Recoupling hypotheses explain the phytoplankton dynamics during the winter and spring in the Gulf. Instead, we suggest that the phytoplankton dynamics is governed by a ;Dispersion-Confinement Mechanism;. During winter, phytoplankton cells that photosynthesize and grow in the upper (illuminated) layer are homogeneously dispersed by vertical mixing. Thereby the deepening of the mixed layer leads to the dilution of the cells with plankton-free water from below, which together with grazing, maintain their relatively low concentration. Once mixing stops, the cells are no longer vertically dispersed, allowing their accumulation in the upper layer and, in turn, the development of the spring bloom. High specific growth rates, necessary to maintain the increase of the entire (integrated) phytoplankton biomass during the deepening of the mixed layer (the ;Dispersion Phase;) as well as supporting their rapid growth during the bloom (the ;Confinement Phase;) are possible due to the entrainment of nutrients by deep vertical mixing. Although

  7. The Dynamics of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco

    2011-03-01

    We present an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nano-meter-scale environments (nano-tubes and the protein hydration water) and in bulk solutions. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. In particular We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  8. Supercooled Water in Supramolecular Hydrogels

    NASA Astrophysics Data System (ADS)

    Wiener, Clinton; Vogt, Bryan; Weiss, R. A.

    The suppression of water crystallization with appreciable water supercooling is challenging due to its large enthalpy of fusion. A common theme to supercool water is to confine the water in the pores of microporous/mesoporous solids where mechanical confinement prevents water crystallization. Nature takes a different approach with crystallization suppression through a combination of preferential adsorption on ice nuclei and confinement between hydrophobic residues using organic components only. Here, we demonstrate that mechanically robust confinement within a hard material is not necessary to significantly supercool water. In this case, a supramolecular hydrogel, based on a random amphiphilic copolymer, is used to provide soft confinement of water between the hydrophobic aggregates with an interdomain spacing <8 nm. Small angle neutron scattering (SANS) provides insight into the structural evolution of the supramolecular structure of the hydrogel on supercooling. The structural changes are sensitive to the composition of the copolymer as determined by contrast variation SANS. Similarly, the dynamics of both the copolymer and water are probed using quasielastic neutron scattering (QENS). Using QENS, a highly mobile water phase (tau ~23 ps) is identified to be present even when slowly cooling to as low as 220K.

  9. Do supercooled liquids freeze by spinodal decomposition?

    PubMed

    Bartell, Lawrence S; Wu, David T

    2007-11-07

    Two questions are addressed in this paper: Is it likely that spinodals occur in the freezing of one-component liquids at degrees of supercooling as moderate as T/T melt=0.6, and are the ramified solidlike structural fluctuations seen in simulations of supercooled liquids the tell-tale harbingers of spinodal decomposition? It has been suggested in several papers that in the freezing of argonlike systems, a spinodal can be expected to be encountered at T/T melt of approximately 0.6 or even at a shallower degree of supercooling. Heuristic evidence, particularly that found in molecular dynamics simulations in the system of selenium hexafluoride, a substance with properties similar in several respects to those of argon, suggests that a spinodal does not occur at supercoolings even considerably deeper than T/T melt=0.6. Reinforcing this conclusion are arguments based on nucleation kinetics in the Appendix. It has been found that many of the very thin, ramified solidlike fluctuations encountered in simulations of deeply supercooled liquids do not, in themselves, qualify as true nuclei for freezing but do, nevertheless, significantly influence the properties of the liquids. They contribute to the breakdown of the Stokes-Einstein relation universally found in supercooled liquids, liquids which have not been seen to exhibit a spinodal. Although such ramified fluctuations have been postulated to be precursors of spinodal decomposition, that role has not yet been confirmed.

  10. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B.; Tyagi, Madhusudan; Chen, Sow-Hsin

    2015-09-01

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  11. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    SciTech Connect

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin; Leão, Juscelino B.; Tyagi, Madhusudan

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  12. The glass transition and relaxation behavior of bulk water and a possible relation to confined water.

    PubMed

    Swenson, Jan; Teixeira, José

    2010-01-07

    Due to the widespread importance of water and the difficulty to study it in the so-called no man's land between 150 and 235 K, deeply supercooled bulk water is currently heavily debated. It speculates about its properties from extrapolations of experimental data on bulk water above 235 K and below 150 K, computer simulations, and experiments on confined water for which the finite size effects may prevent crystallization in the no man's land. However, it is far from obvious how experimental data on bulk water should be extrapolated to the temperature range of the no man's land or how relevant results from computer simulations and studies of confined water are for bulk water. In this paper the structural and dynamical properties of supercooled bulk water are tried to be understood from experimental results on confined water and comparisons with bulk water. We propose that a similar crossover from a high temperature alpha-relaxation to a low temperature beta-relaxation occurs also for bulk water but at a higher temperature than for confined water due to the larger average number of hydrogen bonds between the water molecules in bulk water. In the case of bulk water the crossover is expected to occur around the critical temperature T(s) approximately 228 K when the buildup of an icelike tetrahedral network structure is completed. The proposed interpretation is the simplest one that is able to explain many of the peculiar properties of supercooled water.

  13. Supercooling Water: A Simple Technique.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    1980-01-01

    Describes a technique for the supercooling of water, for use in the science classroom, involving adding common salt to a mixture of ice and water. Several investigations are included for use during (and after) the process of supercooling. (DS)

  14. Supercooling Water: A Simple Technique.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    1980-01-01

    Describes a technique for the supercooling of water, for use in the science classroom, involving adding common salt to a mixture of ice and water. Several investigations are included for use during (and after) the process of supercooling. (DS)

  15. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  16. The Boson peak in supercooled water

    PubMed Central

    Kumar, Pradeep; Wikfeldt, K. Thor; Schlesinger, Daniel; Pettersson, Lars G. M.; Stanley, H. Eugene

    2013-01-01

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih. PMID:23771033

  17. Inequilibrium Glaciohydraulic Supercooling

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Clarke, G. K. C.

    Beneath many glaciers and ice sheets, hydrology modulates basal processes, includ- ing sliding and erosion. Recently, the role of glaciohydraulic supercooling was ex- posed as an important process in the overdeepening near the snout of Matanuska Glacier, Alaska. Further investigations have shown that supercooling beneath wet- based glaciers occurs in many basins. Alley et al. (1998) describe supercooling via a mathematical model that assumes downstream transport of thermal energy is small. However, high subglacial water discharge as well as the presence of frazil ice in the downstream flow suggest that the small-transport assumption is suspect. Bed- averaged water-discharge magnitudes for these glaciers vary widely but can exceed 10-1 m3 s-1 m-1. Frazil ice forms subglacially as the hydraulic potential lessens dra- matically and the water rises rapidly out of the overdeepening. Thus, the neglect of advective transport of thermal energy is unlikely to be generally acceptable. In keep- ing with these observations, we have reformulated the supercooling model so that it involves the transient solution of equations governing water pressure, velocity, temper- ature and film thickness and solved these equations numerically. We contrast results obtained using the two models and discuss the implications for freeze-on beneath glaciers and ice sheets.

  18. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  19. Supercooled liquid water Estimation Tool

    SciTech Connect

    Roskovensky, John; Sallade, Jeff

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  20. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Wang, Zhe; Chen, Sow-Hsin

    2015-10-01

    The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the ( P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature T W as the ( P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.

  1. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    PubMed

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  2. Peculiar thermodynamics of the second critical point in supercooled water.

    PubMed

    Bertrand, C E; Anisimov, M A

    2011-12-08

    On the basis of the principle of critical-point universality, we examine the peculiar thermodynamics of the liquid-liquid critical point in supercooled water. We show that the liquid-liquid criticality in water represents a special kind of critical behavior in fluids, intermediate between two limiting cases: the lattice gas, commonly used to model liquid-vapor transitions, and the lattice liquid, a weakly compressible liquid with an entropy-driven phase separation. While the ordering field in the lattice gas is associated with the chemical potential and the order parameter with the density, in the lattice liquid the ordering field is the temperature and the order parameter is the entropy. The behavior of supercooled water is much closer to lattice-liquid behavior than to lattice-gas behavior. Using new experimental data recently obtained by Mishima [J. Chem. Phys. 2010, 133, 144503], we have revised the parametric scaled equation of state, previously suggested by Fuentevilla and Anisimov [Phys. Rev. Lett. 2006, 97, 195702], and obtain a consistent description of the thermodynamic anomalies of supercooled water by adjusting linear backgrounds, one critical amplitude, and the critical pressure. We also show how the lattice-liquid description affects the finite-size scaling description of supercooled water in confined media.

  3. First-order transition in confined water between high-density liquid and low-density amorphous phases.

    PubMed

    Koga, K; Tanaka, H; Zeng, X C

    2000-11-30

    Supercooled water and amorphous ice have a rich metastable phase behaviour. In addition to transitions between high- and low-density amorphous solids, and between high- and low-density liquids, a fragile-to-strong liquid transition has recently been proposed, and supported by evidence from the behaviour of deeply supercooled bilayer water confined in hydrophilic slit pores. Here we report evidence from molecular dynamics simulations for another type of first-order phase transition--a liquid-to-bilayer amorphous transition--above the freezing temperature of bulk water at atmospheric pressure. This transition occurs only when water is confined in a hydrophobic slit pore with a width of less than one nanometre. On cooling, the confined water, which has an imperfect random hydrogen-bonded network, transforms into a bilayer amorphous phase with a perfect network (owing to the formation of various hydrogen-bonded polygons) but no long-range order. The transition shares some characteristics with those observed in tetrahedrally coordinated substances such as liquid silicon, liquid carbon and liquid phosphorus.

  4. Supercooled water escaping from metastability.

    PubMed

    Aliotta, Francesco; Giaquinta, Paolo V; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Salvato, Gabriele; Vasi, Cirino

    2014-11-27

    The return of supercooled water to a stable equilibrium condition is an irreversible process which, in large enough samples, takes place adiabatically. We investigated this phenomenon in water by fast imaging techniques. As water freezes, large energy and density fluctuations promote the spatial coexistence of solid and liquid phases at different temperatures. Upon synchronously monitoring the time evolution of the local temperature, we observed a sharp dynamic transition between a fast and a slow decay regime at about 266.6 K. We construe the observed phenomenon in terms of the temperature dependence of heat transfers from solid and liquid volumes already at their bulk coexistence temperature towards adjacent still supercooled liquid regions. These findings can be justified by observing that convective motions induced by thermal gradients in a supercooled liquid near coexistence are rapidly suppressed as the nucleated solid fraction overcomes, at low enough temperatures, a characteristic percolation threshold.

  5. Supercooled water escaping from metastability

    PubMed Central

    Aliotta, Francesco; Giaquinta, Paolo V.; Ponterio, Rosina C.; Prestipino, Santi; Saija, Franz; Salvato, Gabriele; Vasi, Cirino

    2014-01-01

    The return of supercooled water to a stable equilibrium condition is an irreversible process which, in large enough samples, takes place adiabatically. We investigated this phenomenon in water by fast imaging techniques. As water freezes, large energy and density fluctuations promote the spatial coexistence of solid and liquid phases at different temperatures. Upon synchronously monitoring the time evolution of the local temperature, we observed a sharp dynamic transition between a fast and a slow decay regime at about 266.6 K. We construe the observed phenomenon in terms of the temperature dependence of heat transfers from solid and liquid volumes already at their bulk coexistence temperature towards adjacent still supercooled liquid regions. These findings can be justified by observing that convective motions induced by thermal gradients in a supercooled liquid near coexistence are rapidly suppressed as the nucleated solid fraction overcomes, at low enough temperatures, a characteristic percolation threshold. PMID:25427603

  6. Supercooled water escaping from metastability

    NASA Astrophysics Data System (ADS)

    Aliotta, Francesco; Giaquinta, Paolo V.; Ponterio, Rosina C.; Prestipino, Santi; Saija, Franz; Salvato, Gabriele; Vasi, Cirino

    2014-11-01

    The return of supercooled water to a stable equilibrium condition is an irreversible process which, in large enough samples, takes place adiabatically. We investigated this phenomenon in water by fast imaging techniques. As water freezes, large energy and density fluctuations promote the spatial coexistence of solid and liquid phases at different temperatures. Upon synchronously monitoring the time evolution of the local temperature, we observed a sharp dynamic transition between a fast and a slow decay regime at about 266.6 K. We construe the observed phenomenon in terms of the temperature dependence of heat transfers from solid and liquid volumes already at their bulk coexistence temperature towards adjacent still supercooled liquid regions. These findings can be justified by observing that convective motions induced by thermal gradients in a supercooled liquid near coexistence are rapidly suppressed as the nucleated solid fraction overcomes, at low enough temperatures, a characteristic percolation threshold.

  7. Glass formation and thermodynamics of supercooled monatomic liquids.

    PubMed

    Hoang, Vo Van; Odagaki, Takashi

    2011-06-02

    Atomic mechanism of glass formation of a supercooled simple monatomic liquid with Lennard-Jones-Gauss (LJG) interatomic potential is studied by molecular dynamics (MD) simulation. Supercooled and glassy states are obtained by cooling from the melt. Glassy state obtained at low temperatures is annealed for very long time, on the order of microsecond, and we find that glassy state remains unchanged and that the long-lived glassy state of a simple monatomic system in three dimensions is realized. We analyze the spatiotemporal properties of solid-like and liquid-like atoms that are defined by the Lindemann-like freezing criterion. The number of solid-like atoms, distributed throughout the liquid, increases with decreasing temperature toward glass transition and they form clusters. In the deeply supercooled region, almost all solid-like atoms form a single percolation cluster and its characteristic size increases sharply on further cooling. Glass formation in supercooled liquid occurs when a single percolation cluster of solid-like atoms involves a majority of atoms to form a relatively rigid solid phase. We also obtain several physical quantities of the system, including temperature dependence of mass density, Lindemann ratio, incoherent intermediate scattering function, α-relaxation time, evolution of radial distribution function, and local bond-pair orders detected by Honeycutt-Andersen analysis. We identify three characteristic temperatures related to the vitrification: a temperature at which crossover from liquid-like to solid-like dynamics occurs on cooling, the glass transition temperature, and the Vogel-Fulcher-Tammann temperature. Behavior of liquid-like atoms in glassy state has been analyzed and discussed.

  8. Thermal conductivity of supercooled water.

    PubMed

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  9. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Broccio, M.; Corsaro, C.; Faraone, A.; Wanderlingh, U.; Liu, L.; Mou, C.-Y.; Chen, S. H.

    2006-04-01

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature TL=223±2K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1/D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time ⟨τT⟩, as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  10. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results.

    PubMed

    Mallamace, F; Broccio, M; Corsaro, C; Faraone, A; Wanderlingh, U; Liu, L; Mou, C-Y; Chen, S H

    2006-04-28

    By means of a nuclear magnetic resonance experiment, we give evidence of the existence of a fragile-to-strong dynamic crossover transition (FST) in confined water at a temperature T(L)=223+/-2 K. We have studied the dynamics of water contained in 1D cylindrical nanoporous matrices (MCM-41-S) in the temperature range 190-280 K, where experiments on bulk water were so far hampered by crystallization. The FST is clearly inferred from the T dependence of the inverse of the self-diffusion coefficient of water (1D) as a crossover point from a non-Arrhenius to an Arrhenius behavior. The combination of the measured self-diffusion coefficient D and the average translational relaxation time tau(T), as measured by neutron scattering, shows the predicted breakdown of Stokes-Einstein relation in deeply supercooled water.

  11. Thermodynamic geometry of supercooled water

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  12. A nonlinear supercooled Stefan problem

    NASA Astrophysics Data System (ADS)

    Briozzo, Adriana C.; Natale, Maria F.

    2017-04-01

    We study the supercooled one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal conductivity at the fixed face x=0. We obtain sufficient conditions for data in order to have existence of a solution of similarity type, local in time and finite-time blow-up occurs. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.

  13. Crystallization of supercooled solutions. [atmosphere

    NASA Technical Reports Server (NTRS)

    Harrison, K.; Hallett, John

    1988-01-01

    Crystallization of uniformly supercooled solutions (Na2SO4, NaCl, H2SO4, HNO3, HCl) was studied. It is shown how crystal growth velocity and habit depend on solution and concentration. The segregation coefficient for the solute in ice is measured by analysis of ice and solution, separated immediately after initial freezing, at different supercoolings. Subsequent solidification gives ion rejection at a varying rate depending on the geometry of the freezing, and may result in separation of hydrates, particularly when the initial concentration is high, as in haze (inactivated) droplets and low temperatures found in the Antarctic stratosphere. Electrical effects associated with rapid freezing are also investigated. Results suggest that more extensive measurements need to be made in solutions at different supercoolings, and that substantial electrical effects may be present for higher concentrations under these conditions. Damage to vegetation could occur under specific conditions as concentrated solutions (possibly H2SO4) are rejected in the freezing of rime or dew.

  14. Crystallization of supercooled solutions. [atmosphere

    NASA Technical Reports Server (NTRS)

    Harrison, K.; Hallett, John

    1988-01-01

    Crystallization of uniformly supercooled solutions (Na2SO4, NaCl, H2SO4, HNO3, HCl) was studied. It is shown how crystal growth velocity and habit depend on solution and concentration. The segregation coefficient for the solute in ice is measured by analysis of ice and solution, separated immediately after initial freezing, at different supercoolings. Subsequent solidification gives ion rejection at a varying rate depending on the geometry of the freezing, and may result in separation of hydrates, particularly when the initial concentration is high, as in haze (inactivated) droplets and low temperatures found in the Antarctic stratosphere. Electrical effects associated with rapid freezing are also investigated. Results suggest that more extensive measurements need to be made in solutions at different supercoolings, and that substantial electrical effects may be present for higher concentrations under these conditions. Damage to vegetation could occur under specific conditions as concentrated solutions (possibly H2SO4) are rejected in the freezing of rime or dew.

  15. Investigation of the Thermodynamics of Supercooled Water and Supercooled Saline Water

    DTIC Science & Technology

    1979-02-05

    4--... ...... L EVEL OFFICE OF NAVAL RESEARCH Investigation of the Themodynamics of Supercooled Water and Supercooled Saline Water, rao ysics Di...polar sea water and postulated to be related to ice-like fluctuations in the water. Since sea salt is carried into the atmosphere, supercooled salt water...critical points, the specific heat at constant volume Cv shows no divergence at all for supercooled water. That is, the relations 15 Cp - T ( ) T aP

  16. Differences between solid superheating and liquid supercooling.

    PubMed

    Bai, Xian-Ming; Li, Mo

    2005-10-15

    The thermodynamic and kinetic behaviors for solid superheating and liquid supercooling were critically examined and compared via molecular-dynamics simulations. It is shown that the large elastic energy associated with internal melting and solid-liquid interface disorder play important roles in superheating. The growth rate is anisotropic for supercooling, but isotropic for superheating. Supercooling can be well described by the classical nucleation theory, whereas superheating shows many exceptions. The underlying mechanisms for these differences are discussed.

  17. Weak Deeply Virtual Compton Scattering

    SciTech Connect

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2007-03-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.

  18. Thermodynamic and kinetic supercooling of liquid in a wedge pore.

    PubMed

    Nowak, Dominika; Heuberger, Manfred; Zäch, Michael; Christenson, Hugo K

    2008-10-21

    Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14 K below the bulk melting-point T(m). This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension gamma(LV) of the liquid, not the interfacial tension between the solid and liquid. At coexistence r is inversely proportional to the temperature depression DeltaT below T(m), in accordance with a recently proposed model [P. Barber, T. Asakawa, and H. K. Christenson, J. Phys. Chem. C 111, 2141 (2007)]. We have now extended this model to include effects due to the temperature dependence of both the surface tension and the enthalpy of melting. The predictions of the improved model have been quantitatively verified in experiments using both a Mark IV SFA and an extended surface force apparatus (eSFA). The three-layer interferometer formed by the two opposing, backsilvered mica surfaces in a SFA was analyzed by conventional means (Mark IV) and by fast spectral correlation of up to 40 fringes (eSFA). We discuss the absence of freezing in the outermost region of the wedge pore down to 14 K below T(m) and attribute it to nonequilibrium (kinetic) supercooling, whereas the inner region of the condensate is thermodynamically supercooled.

  19. Thermodynamic and kinetic supercooling of liquid in a wedge pore

    NASA Astrophysics Data System (ADS)

    Nowak, Dominika; Heuberger, Manfred; Zäch, Michael; Christenson, Hugo K.

    2008-10-01

    Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14K below the bulk melting-point Tm. This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension γLV of the liquid, not the interfacial tension between the solid and liquid. At coexistence r is inversely proportional to the temperature depression ΔT below Tm, in accordance with a recently proposed model [P. Barber, T. Asakawa, and H. K. Christenson, J. Phys. Chem. C 111, 2141 (2007)]. We have now extended this model to include effects due to the temperature dependence of both the surface tension and the enthalpy of melting. The predictions of the improved model have been quantitatively verified in experiments using both a Mark IV SFA and an extended surface force apparatus (eSFA). The three-layer interferometer formed by the two opposing, backsilvered mica surfaces in a SFA was analyzed by conventional means (Mark IV) and by fast spectral correlation of up to 40 fringes (eSFA). We discuss the absence of freezing in the outermost region of the wedge pore down to 14K below Tm and attribute it to nonequilibrium (kinetic) supercooling, whereas the inner region of the condensate is thermodynamically supercooled.

  20. Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled.

    PubMed

    Malek, Shahrazad M A; Morrow, Gregory P; Saika-Voivod, Ivan

    2015-03-28

    We carry out molecular dynamics (MD) and Monte Carlo (MC) simulations to characterize nucleation in liquid clusters of 600 Lennard-Jones particles over a broad range of temperatures. We use the formalism of mean first-passage times to determine the rate and find that Classical Nucleation Theory (CNT) predicts the rate quite well, even when employing simple modelling of crystallite shape, chemical potential, surface tension, and particle attachment rate, down to the temperature where the droplet loses metastability and crystallization proceeds through growth-limited nucleation in an unequilibrated liquid. Below this crossover temperature, the nucleation rate is still predicted when MC simulations are used to directly calculate quantities required by CNT. Discrepancy in critical embryo sizes obtained from MD and MC arises when twinned structures with five-fold symmetry provide a competing free energy pathway out of the critical region. We find that crystallization begins with hcp-fcc stacked precritical nuclei and differentiation to various end structures occurs when these embryos become critical. We confirm that using the largest embryo in the system as a reaction coordinate is useful in determining the onset of growth-limited nucleation and show that it gives the same free energy barriers as the full cluster size distribution once the proper reference state is identified. We find that the bulk melting temperature controls the rate, even though the solid-liquid coexistence temperature for the droplet is significantly lower. The value of surface tension that renders close agreement between CNT and direct rate determination is significantly lower than what is expected for the bulk system.

  1. Kinetics of bulk crystallisation of supercooled melt

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Pil'nik, A. A.

    2016-10-01

    The exact solution that fully describes the kinetics of the growth of a spherical crystal in supercooled melt is found. The kinetic model of nucleation-mediated crystallization is presented. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase.

  2. Supercooling behavior in aqueous solutions.

    PubMed

    Kimizuka, Norihito; Suzuki, Toru

    2007-03-08

    Using the emulsion method, we measured the homogeneous nucleation temperature depression, DeltaT(f,hom), and equilibrium melting points depression, DeltaT(m), of various aqueous solutions and then calculated lambda for each solute using the linear relationship DeltaT(f,hom) = lambdaDeltaT(m). We defined lambda as the solute-specific supercooling capacity and examined its correlation with some known hydration characteristics. The results showed that lambda is correlated with D0, the self-diffusion coefficient of solute molecules in infinite dilution.

  3. Radiometric Observations of Supercooled Liquid Water within a Split Front over the Sierra Nevada.

    NASA Astrophysics Data System (ADS)

    Heggli, Mark F.; Reynolds, David W.

    1985-11-01

    A storm bearing close structural resemblance to a katafront was observed from the ground with microwave radiometry and a vertically pointing Ka-band radar over the Sierra Nevada of California. The onset and duration of supercooled liquid water was determined and matched to a split front model used to describe the synoptic features of a katafront. Results indicate that prior to the passage of the upper front no supercooled liquid water was observed. This portion of the storm provided the deepest cloud and coldest cloud tops. Supercooled liquid water was most prevalent after the upper front passage, and persisted until the suspected surface front passage. The duration of measured supercooled water was 16 hours.This information broadens the knowledge regarding the presence of supercooled liquid water, and thus possible seeding potential, within winter storms so that treatment can be confined to the period of storms amenable to cloud seeding. Future studies may well confirm the ease with which these periods can be predicted on an operational basis in the Sierra Nevada.

  4. Self-confined dynamics in supercooled liquids during crystallization

    NASA Astrophysics Data System (ADS)

    Sanz, Alejandro; Niss, Kristine; Ezquerra, Tiberio A.; Nogales, Aurora; Jimenez, Monica; Puente-Orench, Ines

    2015-03-01

    Within the temperature window limited by the equilibrium melting temperature and the liquid to glass transition temperature, some glass forming systems tend to undergo crystallization. Unlike polymeric materials, low molecular weight liquids are able to self-organize forming fully crystalline structures, in which the dynamics of the remaining disordered regions may be examined along the whole range of crystalline volume fraction when real time studies are assessed. From the point of view of the molecular mobility, dielectric spectroscopy is a unique tool for unraveling the dynamic effects during crystallization. The aim of this contribution is to show a complete picture of the crystallization process in paradigmatic glass formers like 2-propanol, ethanol and glycerol. The interrelationships between structure and dynamics during crystallization will be discussed, paying special attention to the role played by the hydrogen-bonded network across the phase transformation. Novel results on crystallization of 2-propanol studied by real time quasielastic neutron scattering measurements will also be presented.

  5. In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.

    2005-01-01

    While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.

  6. Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass transition

    SciTech Connect

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2011-03-17

    Do liquid mixtures, cooled to temperatures below their freezing point, behave as normal liquids? We address this question using nanoscale films of methanol and ethanol supercooled liquid solutions of varying composition (7 -93% methanol) at temperatures near their glass transition,Tg. The permeation of Kr through these films is used to determine the diffusivities of the supercooled liquid mixtures. We find that the temperature dependent diffusivities of the mixtures are well-fit by a Vogel-Fulcher-Tamman equation indicating that the mixtures exhibit fragile behavior at temperatures just above their Tg. Further, for a given temperature, the composition dependent diffusivity is well-fit by a Vignes-type equation, i.e. the diffusivity of any mixture can be predicted using an exponential weighting of the diffusion of the pure methanol and ethanol diffusivities. These results show that deeply supercooled liquid mixtures can be used to provide valuable insight into the properties of normal liquid mixtures.

  7. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-11-07

    We describe in detail a diffusion model used to simulate inert gas transport through supercooled liquid overlayers. In recent work, the transport of the inert gas has been shown to be an effective probe of the diffusivity of supercooled liquid methanol in the experimentally challenging regime near the glass transition temperature. The model simulations accurately and quantitatively describe the inert gas permeation desorption spectra. The simulation results are used to validate universal scaling relationships between the diffusivity, overlayer thickness, and the temperature ramp rate for isothermal and temperature programmed desorption. From these scaling relationships we derive simple equations from which the diffusivity can be obtained using the peak desorption time or temperature for an isothermal or set of TPD experiments, respectively, without numerical simulation. The results presented here demonstrate that the permeation of gases through amorphous overlayers has the potential to be a powerful technique to obtain diffusivity data in deeply supercooled liquids.

  8. In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.

    2005-01-01

    While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.

  9. A mechanism for supercooling in organic liquids

    SciTech Connect

    Thoma, P.E.

    1996-12-31

    In this investigation, a mechanism for supercooling inorganic liquids is formulated. By comparing the melting temperature and spontaneous freezing temperature of the chemicals evaluated with their molecular characteristics, the factors promoting supercooling are developed. The results obtained indicate that the following molecular characteristics promote supercooling in organic liquids: an unequal sharing of electrons between the atoms of a molecule; a three-dimensional chemical structure; a permanent, three-dimensional, and partially charged pocket within the chemical structure; a partially charged projection having a charge opposite that of the pocket and located on the side of the molecule opposite that of the pocket.

  10. Strain Pattern in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  11. In situ High-Energy X-Ray Diffraction Study of the Local Structure of Supercooled Liquid Si

    SciTech Connect

    Kim, T.H.; Lee, G.W.; Gangopadhyay, A.K.; Kelton, K.F.; Sieve, B.; Robinson, D.S.; Goldman, A.I.; Hyers, R.W.; Rathz, T.J.; Rogers, J.R.

    2005-08-19

    Employing the technique of electrostatic levitation, coupled with high-energy x-ray diffraction and rapid data acquisition methods, we have obtained high quality structural data more deeply into the supercooled regime of liquid silicon than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.

  12. Soft glassy rheology of supercooled molecular liquids

    PubMed Central

    Zondervan, Rob; Xia, Ted; van der Meer, Harmen; Storm, Cornelis; Kulzer, Florian; van Saarloos, Wim; Orrit, Michel

    2008-01-01

    We probe the mechanical response of two supercooled liquids, glycerol and ortho-terphenyl, by conducting rheological experiments at very weak stresses. We find a complex fluid behavior suggesting the gradual emergence of an extended, delicate solid-like network in both materials in the supercooled state—i.e., above the glass transition. This network stiffens as it ages, and very early in this process it already extends over macroscopic distances, conferring all well known features of soft glassy rheology (yield-stress, shear thinning, aging) to the supercooled liquids. Such viscoelastic behavior of supercooled molecular glass formers is difficult to observe because the large stresses in conventional rheology can easily shear-melt the solid-like structure. The work presented here, combined with evidence for long-lived heterogeneity from previous single-molecule studies [Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc Natl Acad Sci USA 104:12628–12633], has a profound impact on the understanding of the glass transition because it casts doubt on the widely accepted assumption of the preservation of ergodicity in the supercooled state. PMID:18362347

  13. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  14. Structural study of supercooled liquid silicon

    SciTech Connect

    Kim, T.H.; Goldman, A.I.; Kelton, K.F.

    2007-11-06

    For many years, theoretical studies using model and ab initio potentials have predicated the existence of a liquid/liquid phase transition in silicon, based on a continuous change of the liquid A5 structure to A4. In contrast, we report here a quantitative analysis of data from high-energy X-ray diffraction measurements of containerlessly-processed supercooled liquid silicon that demonstrates that the fractions of regions with A5 and A4 order instead remain essentially constant with supercooling, but that the coherence length of the A5 order increases.

  15. PREFACE: Water in confined geometries

    NASA Astrophysics Data System (ADS)

    Rovere, Mauro

    2004-11-01

    The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is

  16. Size Dependant Nucleation of Confined 2-Decanol

    NASA Astrophysics Data System (ADS)

    Amanuel, Samuel; Bauer, Hillary; Safiq, Alexandrea; Dulmaa, Jargalsaikhan; Khraisat, Amer

    2012-02-01

    We have studied freezing and melting of physically confined 2-decanol in nano porous silica using a Differential Scanning Calorimeter (DSC). Both melting and freezing temperatures are suppressed for physically confined 2-decanol. In the presence of bulk, freezing of the confined system is triggered by freezing of the bulk where nucleation is heterogeneous. There is, however, a cutoff size between 100 nm and 300 nm where phase transition is no longer initiated through heterogeneous nucleation. Below the cutoff size, nucleation is homogeneous where the confined system has to be supercooled further before any phase transition can occur. Melting of the confined system, on the other hand, is not influenced by the presence or absence of the bulk.

  17. A study of the occurrence of supercooling of water

    NASA Astrophysics Data System (ADS)

    Tan, Kah-Chye; Ho, Wenxian; Katz, J. I.; Feng, Shi-Jiang

    2016-04-01

    Supercooling of water can be easily studied with a simple apparatus suitable for the student laboratory. We describe such an apparatus and its capabilities. The parameters influencing supercooling include the initial water temperature, as well as the type and temperature of the chilling medium. We correlate the occurrence of supercooling with the ability of the chilling medium to promptly nucleate ice; if it nucleates promptly, the layer of ice crystals formed on the boundary will initiate freezing of the bulk water without supercooling. If the chilling medium is unable to nucleate ice promptly, ice nucleation is delayed and the water supercools. Students can study and compare supercooling of distilled and natural water. Even quite dirty river water may be supercooled by as much as 5 °C.

  18. Narrow deeply bound K- atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    1999-07-01

    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.

  19. Deeply virtual Compton scattering from gauge/gravity duality

    SciTech Connect

    Costa, Miguel S.; Djuric, Marko

    2013-04-15

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  20. Gelation on heating of supercooled gelatin solutions.

    PubMed

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating.

  1. Mechanism of supercooled droplet freezing on surfaces.

    PubMed

    Jung, Stefan; Tiwari, Manish K; Doan, N Vuong; Poulikakos, Dimos

    2012-01-10

    Understanding ice formation from supercooled water on surfaces is a problem of fundamental importance and general utility. Superhydrophobic surfaces promise to have remarkable 'icephobicity' and low ice adhesion. Here we show that their icephobicity can be rendered ineffective by simple changes in environmental conditions. Through experiments, nucleation theory and heat transfer physics, we establish that humidity and/or the flow of a surrounding gas can fundamentally switch the ice crystallization mechanism, drastically affecting surface icephobicity. Evaporative cooling of the supercooled liquid can engender ice crystallization by homogeneous nucleation at the droplet-free surface as opposed to the expected heterogeneous nucleation at the substrate. The related interplay between droplet roll-off and rapid crystallization is also studied. Overall, we bring a novel perspective to icing and icephobicity, unveiling the strong influence of environmental conditions in addition to the accepted effects of the surface conditions and hydrophobicity.

  2. Surface Crystallization of Supercooled Water in Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.

  3. Ice growth in supercooled solutions of antifreeze glycoproteins

    NASA Technical Reports Server (NTRS)

    Harrison, K.; Hallett, J.; Burcham, T. S.; Feeney, R. E.; Kerr, W. L.

    1987-01-01

    The effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of antifreeze glycoproteins are reported. To isolate the influence of different solutions and supercooling alone, a system was devised that nucleated crystals in the middle of a uniformly supercooled sample. Alternatively, single crystals of selected orientation were inserted into free liquid surface. A crystallization rate up to five times greater than that in pure water was found. A mechanism explaining these results is suggested.

  4. Ice growth in supercooled solutions of antifreeze glycoproteins

    NASA Technical Reports Server (NTRS)

    Harrison, K.; Hallett, J.; Burcham, T. S.; Feeney, R. E.; Kerr, W. L.

    1987-01-01

    The effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of antifreeze glycoproteins are reported. To isolate the influence of different solutions and supercooling alone, a system was devised that nucleated crystals in the middle of a uniformly supercooled sample. Alternatively, single crystals of selected orientation were inserted into free liquid surface. A crystallization rate up to five times greater than that in pure water was found. A mechanism explaining these results is suggested.

  5. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed Central

    Wilson, P W; Leader, J P

    1995-01-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  6. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  7. Fluctuations and local ice structure in model supercooled water.

    PubMed

    Overduin, S D; Patey, G N

    2015-09-07

    Large-scale simulations (up to 32,000 molecules) are used to analyze local structures and fluctuations for the TIP4P/2005 and TIP5P water models, under deeply supercooled conditions, near previously proposed liquid-liquid critical points. Bulk freezing does not occur in our simulations, but correlations between molecules with local ice-like structure (ice-like molecules) are strong and long ranged (∼4 nm), exceeding the shortest dimension of smaller simulation cells at the lowest temperatures considered. Correlations between ice-like molecules decay slowly at low temperature, on the order of a hundred nanoseconds. Local ice-like structure is strongly correlated with highly tetrahedral liquid structure at all times, both structures contribute to density fluctuations, and to the associated anomalous scattering. For the TIP4P/2005 and TIP5P models, we show that the apparent spontaneous liquid-liquid phase separations, recently reported [T. Yagasaki, M. Matsumoto, and H. Tanaka, Phys. Rev. E 89, 020301 (2014)] for small rectangular simulation cells below the proposed critical points, exhibit strong system size dependence and do not occur at all in the largest systems we consider. Furthermore, in the smaller rectangular systems where layers of different densities do occur, we find that the appearance of a region of low density is always accompanied simultaneously by an excess of local ice density, with no separation in time. Our results suggest that the density differences observed in direct simulations for the two models considered here are likely due to long-range correlations between ice-like molecules and do not provide strong evidence of liquid-liquid phase separation.

  8. The structural validity of various thermodynamical models of supercooled water

    NASA Astrophysics Data System (ADS)

    Pathak, H.; Palmer, J. C.; Schlesinger, D.; Wikfeldt, K. T.; Sellberg, J. A.; Pettersson, L. G. M.; Nilsson, A.

    2016-10-01

    The thermodynamic response functions of water exhibit an anomalous increase upon cooling that becomes strongly amplified in the deeply supercooled regime due to structural fluctuations between disordered and tetrahedral local structures. Here, we compare structural data from recent x-ray laser scattering measurements of water at 1 bar and temperatures down to 227 K with structural properties computed for several different water models using molecular dynamics simulations. Based on this comparison, we critically evaluate four different thermodynamic scenarios that have been invoked to explain the unusual behavior of water. The critical point-free model predicts small variations in the tetrahedrality with decreasing temperature, followed by a stepwise change at the liquid-liquid transition around 228 K at ambient pressure. This scenario is not consistent with the experimental data that instead show a smooth and accelerated variation in structure from 320 to 227 K. Both the singularity-free model and ice coarsening hypothesis give trends that indirectly indicate an increase in tetrahedral structure with temperature that is too weak to be consistent with experiment. A model that includes an apparent divergent point (ADP) at high positive pressure, however, predicts structural development consistent with our experimental measurements. The terminology ADP, instead of the commonly used liquid-liquid critical point, is more general in that it focuses on the growing fluctuations, whether or not they result in true criticality. Extrapolating this model beyond the experimental data, we estimate that an ADP in real water may lie around 1500 ± 250 bars and 190 ± 6 K.

  9. Relative diffusion and memory effects in supercooled water

    NASA Astrophysics Data System (ADS)

    de Santis, Alberto; Ercoli, Alessandro; Rocca, Dario

    1998-05-01

    The relative motion of tagged pairs of water molecules, which are in a given state of the pair configuration space at the initial time, is followed along simulated trajectories in the supercooled liquid. The initial state selects particles of the first coordination shell with specific relative orientations. This allows one to study the effects produced by the local orientational order on the translational dynamics. The states of the first coordination shell, indicated as transition states (TS) in the structural study, show higher mobility than the hydrogen bonded (HB) ones. The memory of the initial state results completely last only after 20 ps. In the first 10 ps the memory effects produce an increasing difference between the mean square displacements of pairs originally tagged as TS and HB pairs. Between 10 and 20 ps, the relative motions relax toward the normal diffusion regime along trajectories with a fractal dimension higher and lower than 2 for TS and HB pairs, respectively. This fact and the evaluation of the average lifetime of H bonds suggest that the time length of the anomalous diffusion regime and the memory time are determined by the dynamics of the hydrogen bond network rearrangements. Our approach can be relevant to understand the interplay between structure and dynamics in orientationally disordered media and, particularly, to interpret the results of recent studies on protein hydration water and confined water.

  10. Deeply Virtual Compton Scattering with CLAS

    SciTech Connect

    F.X. Girod

    2007-12-17

    The beam spin asymmetries of the reaction ep -> epg in the Bjorken regime were measured over a wide kinematical domain using the CLAS detector and a new lead-tungstate calorimeter. Through the interference of the Bethe-Heitler process with Deeply Virtual Compton Scattering, those asymmetries provide constraints for the nucleon Generalized Parton Distributions models. The observed shapes are in agreement with twist-2 dominance predictions.

  11. Deeply virtual Compton scattering off nuclei

    SciTech Connect

    Voutier, Eric

    2009-01-01

    Deeply virtual Compton scattering (DVCS) is the golden exclusive channel for the study of the partonic structure of hadrons, within the universal framework of generalized parton distributions (GPDs). This paper presents the aim and general ideas of the DVCS experimental program off nuclei at the Jefferson Laboratory. The benefits of the study of the coherent and incoherent channels to the understanding of the EMC (European Muon Collaboration) effect are discussed, along with the case of nuclear targets to access neutron GPDs.

  12. Delivery after Operation for Deeply Infiltrating Endometriosis

    PubMed Central

    Allerstorfer, Christina; Enzelsberger, Simon H.; Shebl, Omar Josef; Mayer, Richard Bernhard

    2016-01-01

    Background. It has been suggested that, during pregnancy, endometriosis can cause a variety of disease-related complications. Objectives. The purpose of the study was to find out if women with histologically confirmed endometriosis do have a higher risk of adverse pregnancy outcome and if they suffer from a higher rate of complications during labor. Study Design. 51 women who underwent surgery because of deeply infiltrating endometriosis in the General Hospital Linz and the Women's General Hospital Linz and who gave birth in the Women's General Hospital Linz after the surgery were included in our survey. Results. 31 women (60.8%) had a spontaneous delivery and in 20 women (39.2%) a caesarean section was performed. There were no cases of third- and fourth-degree perineal lacerations. Collectively there were 4 cases (7.8%) of preterm delivery and one case (2.0%) of premature rupture of membranes. In two women (6.5%) a retained placenta was diagnosed. Conclusions. Our study is the first description on delivery modes after surgery for deeply infiltrating endometriosis. We did not find an elevated risk for perineal or vaginal laceration in women with a history of surgery for deeply infiltrating endometriosis, even when a resection of the rectum or of the posterior vaginal wall had been performed. PMID:27517050

  13. Deeply Virtual Exclusive Reactions with CLAS

    SciTech Connect

    Kubarovsky, Valery

    2011-03-01

    Deeply virtual exclusive reactions offer an unique opportunity to study the structure of the nucleon at the parton level as one has access to Bjorken xB and momentum transfer to the nucleon t at the same time. Such processes can reveal much more information about the structure of the nucleon than either inclusive electroproduction or elastic form factors alone. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply VirtualMeson Production (DVMP) have been carried out in Hall B at Jefferson Lab. DVCS helicity–dependent and helicity–independent cross sections and beam spin asymmetries have been measured with CLAS, as well as cross sections and asymmetries for the p 0, h, r 0, r+, w and f for exclusive electroproduction. The data were taken in a wide kinematic range in Q2=1–4.5 GeV2, xB=0.1–0.5, and |t| up to 2 GeV2. We will discuss the interpretation of these data in terms of traditional Regge and Generalized Parton Distributions models. We view the work presented in this report as leading into the program of the Jefferson Lab 12 GeV upgrade. The increased energy and luminosity will allow us to acquire data at much higher Q2 and xB, and perform Rosenbluth L/T separations of the cross sections.

  14. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects

    NASA Astrophysics Data System (ADS)

    Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-01

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  15. How do packing defects modify the cooperative motions in supercooled liquids?

    NASA Astrophysics Data System (ADS)

    Taamalli, Sonia; Belmabrouk, Hafedh; Van Hoang, Vo; Teboul, Victor

    2017-06-01

    We use molecular dynamic simulations to investigate the relation between the presence of packing defects in a glass-former and the spontaneous cooperative motions called dynamic heterogeneity. For that purpose we use a simple diatomic glass-former and add a small number of larger or smaller diatomic probes. The diluted probes modify locally the packing, inducing structural defects in the liquid, while we find that the number of defects is small enough not to disturb the average structure. We find that a small packing modification around a few molecules can deeply influence the dynamics of the whole liquid, when supercooled. When we use small probe molecules, the dynamics accelerates and the dynamic heterogeneity decreases. In contrast, for large probes the dynamics slows down and the dynamic heterogeneity increases. The induced heterogeneities and transport coefficient modification increase when the temperature decreases and disappear around the onset temperature of the cage dynamics.

  16. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.

    PubMed

    Xu, Yuntao; Petrik, Nikolay G; Smith, R Scott; Kay, Bruce D; Kimmel, Greg A

    2016-12-27

    Understanding deeply supercooled water is key to unraveling many of water's anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water's "no man's land" in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K and P ∼ 10(-8) Pa, G(T) and D(T) have super-Arrhenius ("fragile") temperature dependences, but both cross over to Arrhenius ("strong") behavior with a large activation energy in no man's land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water's properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man's land.

  17. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Greg A.

    2016-12-01

    Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water’s “no man’s land” in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K and P ˜ 10-8 Pa, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both cross over to Arrhenius (“strong”) behavior with a large activation energy in no man’s land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man’s land.

  18. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

    SciTech Connect

    Xu, Yuntao; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Greg A.

    2016-12-12

    Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, this has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed laser heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, i.e. deep within water’s “no man’s land.” The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both crossover to Arrhenius (“strong”) behavior with a large activation energy in “no man’s land.” The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K. However the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in “no man’s land.

  19. Thermodynamics and dynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Stokely, Kevin C.

    This thesis utilizes the methods of statistical physics and computer simulation to study the thermodynamic and dynamic behavior of liquid water at supercooled temperatures. The behavior of water deviates from that of a simple liquid in a number of remarkable ways, many of which become more apparent as the liquid is supercooled below its equilibrium freezing temperature. Yet, due to nucleation to the crystalline state, a large region of the phase diagram of the supercooled liquid remains unexplored. We make use of a simple model for liquid water to shed light on the behavior of real water in the experimentally inaccessible region. The model predicts a line of phase transitions in the pressure—temperature plane, between high- and low-density forms of liquid water, ending in a liquid-liquid critical point (LLCP). Such a LLCP provides a thermodynamic origin for one of liquid water's anomalies—the rapid rise, and extrapolated divergence, of thermodynamic response functions upon cooling. We find one such response function, the isobaric specific heat, CP, displays two distinct maxima as a function of temperature T in the supercooled region. One maximum is a consequence of the directional nature of hydrogen (H) bonding among molecules; the other is a consequence of the cooperative nature of H bonding. With pressurization, these two maxima move closer in T, finally coinciding at the LLCP. This suggests that measurement of CP far from any LLCP could provide evidence for the existence of water's LLCP. Recent experiments find that the T-dependence of the characteristic time for H bond rearrangement displays three distinct regimes. Our observed behavior of CP, combined with Adam-Gibbs theory, allows for a thermodynamic interpretation of this feature of water's dynamics. The dynamics of the model are also measured directly by a Monte Carlo procedure, and are found in agreement with experiment. Further, the model allows the directional and cooperative components of the H bond

  20. Molecular dynamics studies of supercooled water using a monatomic model

    NASA Astrophysics Data System (ADS)

    Moore, Emily Brooke

    There remain many unanswered questions regarding the structure and behavior of water, particularly when cooled below the melting temperature into water's supercooled region. In this region, liquid water is metastable, and rapid crystallization makes it difficult to study experimentally the liquid and the crystallization process. Computational studies are hindered by the complexity of accurately modeling water and the computational cost of simulating processes such as crystallization. In this work, the development and validation of mW, a monatomic water model, is presented. This model is able to quantitatively reproduce the structure, dynamic anomalies and phase behavior of water without hydrogen atoms or electrostatics by reproducing water's propensity to form locally tetrahedral structures. Using the mW water model in molecular dynamics simulations, we show the evolution of the local structure of water from 300--100 K. We find that the thermodynamic and structural properties studied, density, tetrahedrality and structural correlation length, change maximally or are maximum at 202 +/- 2 K, the liquid-liquid transformation temperature. Shifting to water confined within cylindrical nanopores, we present the development of a rotationally invariant method, the CHILL algorithm, to distinguish between liquid, hexagonal and cubic ice. We analyze the process of homogeneous nucleation, growth and melting within hydrophilic pores, as well as the effect of water-pore interaction strength on the melting of ice and liquid-ice coexistence within pores. Crystallization within the nanopores results in cubic ice with hexagonal stacking faults in agreement with experiments. We also investigate crystallization of bulk liquid within water's experimentally inaccessible "no man's land." Crystallization occurs through rapid development of ice nuclei that grow and consolidate, precluding the measurement of diffusion within the liquid. Analysis of how ice structure develops shows that

  1. Continuous and Discontinuous Dynamic Crossover in Supercooled Water in Computer Simulations

    PubMed Central

    2016-01-01

    The dynamic crossover behavior of supercooled water as described by the first-principle based WAIL potential was investigated. Below the second liquid–liquid critical point, the viscosity shows a discontinuous jump consistent with a first-order phase transition between the high density liquid and the low density liquid. Above the critical point, a continuous transition occurs with only the first derivative of viscosity being discontinuous, and the dynamic crossover temperature is about 8 K below the thermodynamic switchover temperature. The 8 K shift can be explained by a delay in dynamic crossover, which does not occur until the more viscous liquid starts to dominate the population and jams the flow. On the basis of finite-size effects observed in our simulations, we believe that dynamic discontinuity may be observable above the critical point in confined water when the confinement is on a length scale shorter than the spatial correlation. PMID:27476514

  2. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. © 2011 American Chemical Society

  3. Deeply Virtual Exclusive Reactions with CLAS

    SciTech Connect

    Valery Kubarovsky

    2011-11-01

    Deeply virtual exclusive reactions offer an unique opportunity to study the structure of the nucleon at the parton level as one has access to Bjorken x{sub B} and momentum transfer to the nucleon t at the same time. Such processes can reveal much more information about the structure of the nucleon than either inclusive electroproduction or elastic form factors alone. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out in Hall B at Jefferson Lab. DVCS helicity–dependent and helicity–independent cross sections and beam spin asymmetries have been measured with CLAS, as well as cross sections and asymmetries for the {pi}{sup }0, {eta} , {rho}{sup }0, {rho}{sup +}, {omega} and {phi} for exclusive electroproduction. The data were taken in a wide kinematic range in Q{sup 2}=1–4.5 GeV{sup 2}, x{sub B}=0.1–0.5, and {absval t} up to 2 GeV{sup 2}. We will discuss the interpretation of these data in terms of traditional Regge and Generalized Parton Distributions (GPDs) models. The successful description of the recent CLAS pseudoscalar meson exclusive production data by GPD-based model provides a unique opportunity to access the transversity GPDs. We view the work presented in this report as leading into the program of the Jefferson Lab 12 GeV upgrade. The increased energy and luminosity will allow us to acquire data at much higher Q{sup 2} and x{sub B}, and perform Rosenbluth L/T separations of the cross sections.

  4. Deeply Virtual Compton Scattering off the Neutron

    NASA Astrophysics Data System (ADS)

    Mazouz, M.; Camsonne, A.; Camacho, C. Muñoz; Ferdi, C.; Gavalian, G.; Kuchina, E.; Amarian, M.; Aniol, K. A.; Beaumel, M.; Benaoum, H.; Bertin, P.; Brossard, M.; Chen, J.-P.; Chudakov, E.; Craver, B.; Cusanno, F.; de Jager, C. W.; Deur, A.; Feuerbach, R.; Fieschi, J.-M.; Frullani, S.; Garçon, M.; Garibaldi, F.; Gayou, O.; Gilman, R.; Gomez, J.; Gueye, P.; Guichon, P. A. M.; Guillon, B.; Hansen, O.; Hayes, D.; Higinbotham, D.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Igarashi, R.; Jiang, X.; Jo, H. S.; Kaufman, L. J.; Kelleher, A.; Kolarkar, A.; Kumbartzki, G.; Laveissiere, G.; Lerose, J. J.; Lindgren, R.; Liyanage, N.; Lu, H.-J.; Margaziotis, D. J.; Meziani, Z.-E.; McCormick, K.; Michaels, R.; Michel, B.; Moffit, B.; Monaghan, P.; Nanda, S.; Nelyubin, V.; Potokar, M.; Qiang, Y.; Ransome, R. D.; Réal, J.-S.; Reitz, B.; Roblin, Y.; Roche, J.; Sabatié, F.; Saha, A.; Sirca, S.; Slifer, K.; Solvignon, P.; Subedi, R.; Sulkosky, V.; Ulmer, P. E.; Voutier, E.; Wang, K.; Weinstein, L. B.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2007-12-01

    The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e→,e'γ)X cross section measured at Q2=1.9GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to Eq, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  5. Deeply virtual compton scattering off the neutron.

    PubMed

    Mazouz, M; Camsonne, A; Camacho, C Muñoz; Ferdi, C; Gavalian, G; Kuchina, E; Amarian, M; Aniol, K A; Beaumel, M; Benaoum, H; Bertin, P; Brossard, M; Chen, J-P; Chudakov, E; Craver, B; Cusanno, F; de Jager, C W; Deur, A; Feuerbach, R; Fieschi, J-M; Frullani, S; Garçon, M; Garibaldi, F; Gayou, O; Gilman, R; Gomez, J; Gueye, P; Guichon, P A M; Guillon, B; Hansen, O; Hayes, D; Higinbotham, D; Holmstrom, T; Hyde, C E; Ibrahim, H; Igarashi, R; Jiang, X; Jo, H S; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Laveissiere, G; Lerose, J J; Lindgren, R; Liyanage, N; Lu, H-J; Margaziotis, D J; Meziani, Z-E; McCormick, K; Michaels, R; Michel, B; Moffit, B; Monaghan, P; Nanda, S; Nelyubin, V; Potokar, M; Qiang, Y; Ransome, R D; Réal, J-S; Reitz, B; Roblin, Y; Roche, J; Sabatié, F; Saha, A; Sirca, S; Slifer, K; Solvignon, P; Subedi, R; Sulkosky, V; Ulmer, P E; Voutier, E; Wang, K; Weinstein, L B; Wojtsekhowski, B; Zheng, X; Zhu, L

    2007-12-14

    The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,e'gamma)X cross section measured at Q2=1.9 GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to E_{q}, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  6. Deeply virtual Compton scattering and nucleon structure

    SciTech Connect

    M. Garcon

    2006-11-01

    Deeply Virtual Compton Scattering (DVCS) is the tool of choice to study Generalized Parton Distributions (GPD) in the nucleon. After a general introduction to the subject, a review of experimental results from various facilities is given. Following the first encouraging results, new generation dedicated experiments now allow unprecedented precision and kinematical coverage. Several new results were presented during the conference, showing significant progress in this relatively new field. Prospects for future experiments are presented. The path for the experimental determination of GPDs appears now open.

  7. Deeply Virtual Compton Scattering off the Neutron

    SciTech Connect

    Mazouz, M.; Guillon, B.; Real, J.-S.; Voutier, E.

    2007-12-14

    The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e-vector,e{sup '}{gamma})X cross section measured at Q{sup 2}=1.9 GeV{sup 2} and x{sub B}=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to E{sub q}, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  8. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).

  9. Vapor Condensed and Supercooled Glassy Nanoclusters.

    PubMed

    Qi, Weikai; Bowles, Richard K

    2016-03-22

    We use molecular simulation to study the structural and dynamic properties of glassy nanoclusters formed both through the direct condensation of the vapor below the glass transition temperature, without the presence of a substrate, and via the slow supercooling of unsupported liquid nanodroplets. An analysis of local structure using Voronoi polyhedra shows that the energetic stability of the clusters is characterized by a large, increasing fraction of bicapped square antiprism motifs. We also show that nanoclusters with similar inherent structure energies are structurally similar, independent of their history, which suggests the supercooled clusters access the same low energy regions of the potential energy landscape as the vapor condensed clusters despite their different methods of formation. By measuring the intermediate scattering function at different radii from the cluster center, we find that the relaxation dynamics of the clusters are inhomogeneous, with the core becoming glassy above the glass transition temperature while the surface remains mobile at low temperatures. This helps the clusters sample the highly stable, low energy structures on the potential energy surface. Our work suggests the nanocluster systems are structurally more stable than the ultrastable glassy thin films, formed through vapor deposition onto a cold substrate, but the nanoclusters do not exhibit the superheating effects characteristic of the ultrastable glass states.

  10. Nonlocal Nature of the Viscous Transport in Supercooled Liquids: Complex Fluid Approach to Supercooled Liquids

    SciTech Connect

    Furukawa, Akira; Tanaka, Hajime

    2009-09-25

    Using molecular dynamics simulations, we show clear evidence for the nonlocal mesoscopic nature of the anomalous viscous transport in a supercooled liquid and its direct link to dynamic heterogeneity: (i) a distinct crossover from the microscopic to macroscopic viscosity at a mesoscopic length scale, which is comparable to the correlation length of dynamic heterogeneity and grows with an increase in the degree of supercooling; (ii) a strong anisotropic decay of the shear-stress autocorrelation at a finite wave number, which indicates intrinsic decoupling between the longitudinal and transverse dynamics. Our findings suggest the fundamental importance of the growing dynamic correlation in anomalous transport and shed new light on the nature of slow dynamics.

  11. Some fundamental aspects of solidification in a supercooled melt

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1983-01-01

    A model of dendritic growth in both supercooled pure and alloy melts is presented. In a pure melt, dendrite morphology is determined by the value of the dimensionless parameter sigma = 2 alpha (L)d(o)/sq Rr(t) whereas, in an alloy melt it is determined by the parameter sigma = 2 lambda (c)D(L)/sq Rr(t). The application of the above analysis to cylindrical and spherical growth morphologies obtained in highly supercooled melts has been discussed. An upper and lower bound for the particle or tip radius in this case has been obtained in terms of the growth rate and the initial bath supercooling.

  12. Supercooling effects in faceted eutectic Nb-Si alloys

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Sarkar, G.; Abbaschian, G. J.; Haygarth, J. C.; Wojcik, C.

    1988-01-01

    The effect of melt supercooling on the microstructure of an Nb-58 at. pct Si alloy is investigated experimentally using an electromagnetic levitation apparatus. It is found that, starting with an alloy nominally of eutectic composition, nucleation of Nb5Si3 occurs in the supercooled liquid first. Upon further cooling, the remaining liquid continues to supercool until the second phase, NbSi2 is nucleated, which is commonly accompanied by rapid recalescence. The primary phase exibits a eutectoid-type decomposition. The observations are discussed with reference to the results of quantitative microstructural measurements, compositional and thermal analysis, and preliminary thermodynamic modeling of the phase diagram.

  13. Reproducing Black's experiments: freezing point depression and supercooling of water

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat, which was taken for granted by Black, and the instantaneous freezing of supercooled water also poses some difficulties for that theory.

  14. Supercooling effects in faceted eutectic Nb-Si alloys

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Sarkar, G.; Abbaschian, G. J.; Haygarth, J. C.; Wojcik, C.

    1988-01-01

    The effect of melt supercooling on the microstructure of an Nb-58 at. pct Si alloy is investigated experimentally using an electromagnetic levitation apparatus. It is found that, starting with an alloy nominally of eutectic composition, nucleation of Nb5Si3 occurs in the supercooled liquid first. Upon further cooling, the remaining liquid continues to supercool until the second phase, NbSi2 is nucleated, which is commonly accompanied by rapid recalescence. The primary phase exibits a eutectoid-type decomposition. The observations are discussed with reference to the results of quantitative microstructural measurements, compositional and thermal analysis, and preliminary thermodynamic modeling of the phase diagram.

  15. Cotranslational folding of deeply knotted proteins

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  16. Cotranslational folding of deeply knotted proteins.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-09

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  17. Supercooling in Overwintering Azalea Flower Buds 1

    PubMed Central

    George, Milon F.; Burke, Michael J.; Weiser, Conrad J.

    1974-01-01

    Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures. PMID:16658832

  18. Dielectric properties of supercooled cryoprotectant agents

    NASA Astrophysics Data System (ADS)

    Michelson, S. C.; Evans, S.

    1996-10-01

    The dielectric properties of glycerol, propylene glycol, ethylene glycol and dimethyl sulphoxide have been measured in various aqueous concentrations generally sufficient to allow supercooling rather than freezing. The temperature range investigated is from to and the frequency range is 100 MHz to 2 GHz. The aim is to find the materials and conditions most favourable for very rapid re-warming of perfused biological tissue by electromagnetic fields, avoiding thermal runaway in the bulk and local non-uniformity of temperature. Frequencies below 500 MHz are generally indicated.

  19. Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols.

    PubMed

    Ribeiro, H S; Gupta, R; Smith, K W; van Malssen, K F; Popp, A K; Velikov, K P

    2016-07-06

    Super-cooled and amorphous lipid-based colloids are highly desirable delivery systems because of their ability to encapsulate compounds in a soluble or in a non-crystalline state. In this study, we demonstrate the preparation and characterization of super-cooled and amorphous lipid-based nanoscale colloidal dispersions containing high concentrations of phytosterols (PSs). PSs are highly hydrophobic natural bioactive compounds that are known to significantly reduce blood cholesterol levels in humans, but are insoluble in water and are poorly soluble in common lipids such as triacylglycerols (TAGs). Using the ultrahigh pressure homogenization of pre-heated dispersions, followed by temperature quenching, colloidal dispersions with varying concentrations of PSs in the lipid phase are prepared. Long and medium chain TAGs in combination with a non-ionic surfactant are used. The particle size, morphology and stability are analysed by dynamic and static light scattering, electron microscopy, and X-ray diffraction. Rapid temperature quenching enables the formation of stable colloidal dispersions of 10 wt% PSs, more than five times the equilibrium solubility at room temperature. Super-cooled emulsions are formed using liquid TAG, whereas amorphous particles are formed in the case of solid TAG. In both cases, the complete suppression of the crystallization of both PSs and lipids is observed due to the nanoscale confinement. The colloidal dispersions are stable for at least four months. The insights of this work will help understand the colloid formation and particle morphology control in the development of delivery systems for hydrophobic bio-actives such as drugs, cosmeceuticals, nutraceuticals, nutritional and agricultural nanoscale formulations.

  20. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    SciTech Connect

    E, J. C.; Wang, L.; Luo, S. N.; Cai, Y.; Wu, H. A.

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{sup −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.

  1. Research on Outer Factor Affecting the Freezing of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Okawa, Seiji; Une, Hiroshi; Tanogashira, Ken'ichi; Tojiki, Akira

    In relation to the problem of supercooling for ice storage devices, various kinds of experiments were carried out to find some factors which control the supercooling phenomenon. Convection due to rotating solid in water, stirring, vibration, shock, rubbing glass with glass in water and collision of solid in water were selected as outer factors. It was found that factors such as convection, stirring, vibration, non-contacting shock have no effect on freezing supercooled water. They seem to be just adding some positive energy to water. On the other hand, collision or rubbing between solids or solid and liquid surface helps supercooled water to freeze. We believe that making water molecules closer to each other, whose motion were restricted by solid or liquid surface, induce the growth of ice embryo.

  2. An Easy Classroom Experiment on the Supercooling of Water

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2007-01-01

    The change from the state of supercooling to the solid state of ice is called superfreezing. This process is not uncommon and takes place in domestic freezers. It is also easy to reproduce in the laboratory. (Contains 6 figures.)

  3. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    NASA Astrophysics Data System (ADS)

    E, J. C.; Wang, L.; Cai, Y.; Wu, H. A.; Luo, S. N.

    2015-02-01

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m-3s-1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.

  4. An Easy Classroom Experiment on the Supercooling of Water

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2007-01-01

    The change from the state of supercooling to the solid state of ice is called superfreezing. This process is not uncommon and takes place in domestic freezers. It is also easy to reproduce in the laboratory. (Contains 6 figures.)

  5. Supercooling Characteristics of Isolated Peach Flower Bud Primordia 1

    PubMed Central

    Rajashekar, C. B.

    1989-01-01

    The amount of unfrozen water in dormant peach (Prunus persica [L.] Batsch, cv Redhaven) flower buds, isolated primordia, and bud axes was determined during freezing using pulse nuclear magnetic resonance methods. Differential thermal analysis studies were conducted on whole buds and isolated primordia in the presence of ice nucleation. The results showed that some of the water in isolated primordia remained supercooled in the presence of ice nucleation. Although most tissue water froze (57.5%) following ice nucleation at −2.5°C, a considerable amount of water was found to supercool. In the presence of ice nucleation, increased hydration of isolated primordia resulted in the elimination of the supercooling characteristic. The structural integrity of isolated primordia appeared to be essential for supercooling. PMID:16666658

  6. Properties of Peach Flower Buds Which Facilitate Supercooling

    PubMed Central

    Ashworth, Edward N.

    1982-01-01

    Water in dormant peach (Prunus persica [L.] Batsch. var. `Harbrite') flower buds deep supercooled. Both supercooling and the freezing of water within the bud axis and primordium as distinct components depended on the viability of the bud axis tissue. The viability of the primordium was not critical. Supercooling was prevented by wounding buds with a dissecting needle, indicating that bud structural features were important. Bud morphological features appeared to prevent the propagation of ice through the vascular tissue and into the primordium. In dormant buds, procambial cells had not yet differentiated into xylem vessel elements. Xylem continuity between the bud primordium and adjacent tissues did not appear to be established until buds had deacclimated. It was concluded that structural, morphological, and physiological features of the bud facilitated supercooling. Images Fig. 3 Fig. 4 Fig. 5 PMID:16662701

  7. Deeply Virtual Compton Scattering off 4He

    NASA Astrophysics Data System (ADS)

    Joosten, Sylvester; CLAS Collaboration

    2015-10-01

    The European Muon Collaboration (EMC) observed the first signs of a modification of the partonic structure of the nucleon when present in a nuclear medium. The precise nature of these effects, as well as their underlying cause, is yet to be determined. The generalized parton distribution (GPD) framework provides a powerful tool to study the partonic structure of nucleons inside a nucleus. Hard exclusive leptoproduction of a real photon off a nucleon, deeply virtual Compton scattering (DVCS), is presently considered the cleanest experimental access to the GPDs, through the Compton form factors (CFFs). This is especially the case for scattering off the spin-zero helium nucleus, where only a single CFF contributes to the process. The real and imaginary parts of this CFF can be constrained through the beam-spin asymmetry (BSA). We will present the first measurements of the DVCS process off 4He using the CEBAF 6 GeV polarized electron beam and the CLAS detector at JLab. The CLAS detector was supplemented with an inner electromagnetic calorimeter for photons produced at small angles, as well as a radial time projection chamber (RTPC) to detect low-energy recoil nuclei. This setup allowed for a clean measurement of the BSA in both the coherent and incoherent channels.

  8. Scaling limit of deeply virtual Compton scattering

    SciTech Connect

    A. Radyushkin

    2000-07-01

    The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.

  9. Deeply virtual Compton scattering at Jefferson Laboratory

    SciTech Connect

    Biselli, Angela S.

    2016-08-01

    The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

  10. Deeply Virtual Compton Scattering with CLAS

    NASA Astrophysics Data System (ADS)

    Girod, Francois-Xavier

    2008-10-01

    As the lightest of all baryons, and the single stable hadron, the proton can be considered as the simplest laboratory tool to investigate the non-perturbative stucture of QCD. The interest in the nucleon structure has been renewed over the past decade, due to the development of the Generalized Parton Distribution (GPD) formalism. The cleanest process to test the GPDs is Deeply Virtual Compton Scattering, which is the electroproduction of photons in the Bjorken regime of large Q^2 and ν, at fixed xB and small t. In order to access this process, the CEBAF Large Acceptance Spectrometer (CLAS) has been upgraded by the addition of a new calorimeter to detect photons at small angles. I will present an overview of the E1-DVCS experiment, starting from the conception and construction of the equipment to simulations and data taking. I will show results for the Beam Spin Asymmetry, which is linked to GPDs. I will conclude by giving perspectives on GPDs measurements at 6 and 12 GeV with CLAS.

  11. Thermodynamic properties of bulk and confined water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  12. Thermodynamic properties of bulk and confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-01

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (TL ≃ 225 K). The second, T* ˜ 315 ± 5 K, is a special locus of the isothermal compressibility KT(T, P) and the thermal expansion coefficient αP(T, P) in the P-T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (TL) and the onset of the unfolding process (T*).

  13. Thermodynamic properties of bulk and confined water.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T(L) ≃ 225 K). The second, T* ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K(T)(T, P) and the thermal expansion coefficient α(P)(T, P) in the P-T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T(L)) and the onset of the unfolding process (T*).

  14. Supercooling and freezing processes in nanoconfined water by time-resolved optical Kerr effect spectroscopy.

    PubMed

    Taschin, A; Bartolini, P; Marcelli, A; Righini, R; Torre, R

    2015-05-20

    Using heterodyne-detected optical Kerr effect (HD-OKE) measurements, we investigate the vibrational dynamics and the structural relaxation of water nanoconfined in Vycor porous silica samples (pore size ≃ 4 nm) at different levels of hydration and temperatures. At low levels of hydration corresponding to two complete superficial water layers, no freezing occurs and the water remains mobile at all the investigated temperatures with dynamic features similar, but not equal to, the bulk water. The fully hydrated sample shows the formation of ice at about 248 K. This process does not involve all the contained water; a part of it remains in a supercooled phase. The structural relaxation times measured from the decay of the time-dependent HD-OKE signal shows the temperature dependence largely affected by the hydration level; the low frequency (ν < 500 cm(-1)) vibrational spectra obtained by the Fourier transforms of the HD-OKE signal appear less affected by confinement.

  15. Frost halos from supercooled water droplets

    PubMed Central

    Jung, Stefan; Tiwari, Manish K.; Poulikakos, Dimos

    2012-01-01

    Water freezing on solid surfaces is ubiquitous in nature. Even though icing/frosting impairs the performance and safety in many processes, its mechanism remains inadequately understood. Changing atmospheric conditions, surface properties, the complexity of icing physics, and the unorthodox behavior of water are the primary factors that make icing and frost formation intriguing and difficult to predict. In addition to its unquestioned scientific and practical importance, unraveling the frosting mechanism under different conditions is a prerequisite to develop “icephobic” surfaces, which may avoid ice formation and contamination. In this work we demonstrate that evaporation from a freezing supercooled sessile droplet, which starts explosively due to the sudden latent heat released upon recalescent freezing, generates a condensation halo around the droplet, which crystallizes and drastically affects the surface behavior. The process involves simultaneous multiple phase transitions and may also spread icing by initiating sequential freezing of neighboring droplets in the form of a domino effect and frost propagation. Experiments under controlled humidity conditions using substrates differing up to three orders of magnitude in thermal conductivity establish that a delicate balance between heat diffusion and vapor transport determines the final expanse of the frozen condensate halo, which, in turn, controls frost formation and propagation. PMID:23012410

  16. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  17. Dendritic growth in a supercooled alloy melt

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1987-01-01

    A simple model which describes the growth of an 'array' of dendrites into a supercooled, binary, alloy melt is presented. Solute diffusion is calculated by superposing the solutions given by Flemings and Zener, and also, by superposing the solutions given by Ivantsov and Flemings. A general expression for the transport solution is suggested from which all other dendrite growth models presented earlier may be obtained as special cases. It is shown that both 'free' and 'constrained' growth may be described by a single transport solution, which indicates that (1) both thermal and solutal effects will be important during 'free' growth in dilute alloys, (2) only solutal effects are predominant during 'free' growth in concentrated alloys and during 'constrained' growth. An examination of the relevant dimensionless parameters also suggests that all dendrite growth models, regardless of the assumptions used to determine the tip radius (marginal stability, minimum undercooling, maximum velocity, minimum entropy production) should predict the experimentally observed extrema in tip radius and growth velocity in dilute alloys, during 'free' dendritic growth. Experimental data in binary H2O-NaCl and succinonitrile-acetone solutions are shown to be in good agreement with the model.

  18. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  19. Effect of supercooling and cell volume on intracellular ice formation.

    PubMed

    Prickett, Richelle C; Marquez-Curtis, Leah A; Elliott, Janet A W; McGann, Locksley E

    2015-04-01

    Intracellular ice formation (IIF) has been linked to death of cells cryopreserved in suspension. It has been assumed that cells can be supercooled by 2 to 10°C before IIF occurs, but measurements of the degree of supercooling that cells can tolerate are often confounded by changing extracellular temperature and solutions of different osmolality (which affect the cell volume). The purpose of this study was to examine how the incidence of IIF in the absence of cryoprotectants is affected by the degree of supercooling and cell volume. Human umbilical vein endothelial cells were suspended in isotonic (300 mOsm) and hypertonic (∼600 to 700 mOsm) solutions and exposed to supercooling ranging from 2 to 10°C before extracellular ice was nucleated. The number of cells undergoing IIF was examined in a cryostage (based on the darkening of cells upon intracellular freezing ("flashing")) as a function of the degree of supercooling, and cell survival post-thaw was assessed using a membrane integrity assay. We found that while the incidence of IIF increased with supercooling in both isotonic and hypertonic solutions, it was higher in the isotonic solution at any given degree of supercooling. Since cells in hypertonic solution were shrunken due to water efflux, we hypothesized that the difference in IIF behavior could be attributed to the decreased volume of cells in the hypertonic solution. Our results confirm that cells with a smaller diameter before extracellular ice nucleation have a decreased probability of IIF and suggest that cell volume could play a more significant role in the incidence of IIF than the extracellular ice nucleation temperature. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The transient behavior of Peltier junctions pulsed with supercooling

    NASA Astrophysics Data System (ADS)

    Mao, J. N.; Chen, H. X.; Jia, H.; Qian, X. L.

    2012-07-01

    There exists the transient thermoelectric supercooling effect that can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the Joule heating effect and Fourier heat conduction effect arriving at the cold junction, in which a transient cold spike can be produced by superimposing an additional shaped current pulse of a large magnitude on the original steady-state optimum value. Most previous work on the transient supercooling mainly focused on the minimum supercooling temperature achievable and separately analyzed the beneficial or detrimental effects on the transient supercooling performance, which was not clarified quantitatively to what extent the interactional effects were on the enhancement of the transient supercooling performance. In this work, we systematically investigate a numerical solution involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and cold-junction temperature distribution to the pulse operation parameters during the periods of pulse start-up, pulse-on time, and pulse-off time, which is served as a theoretical basis for exploiting the coupling interaction of the thermoelectric effects on the heat diffusion from or to the cold junction interrelated with the amount of the availably electrical conversion in the short time scale. Additionally, the advantage of certain pulse forms over others is described. The results indicate that Peltier supercooling capacity shows a decreasing monotonic trend in proportion to the total amount of electrical conversion, and the maximum coefficient of performance for cooling state is about 0.5 to be achieved at steady state. Taking advantage of the temporary Peltier effect focused electrical conversion as the additional cooling for a period long enough against the earlier arrival of the excessively Joule heating dominated heat accumulation is the key parameter

  1. Vascular smooth muscle cell apoptosis induced by "supercooling" and rewarming.

    PubMed

    Yiu, Wai-ki; Cheng, Stephen W K; Sumpio, Bauer E

    2006-12-01

    The underlying mechanisms for the reduction in restenosis caused by cryoplasty for peripheral atherosclerotic lesions are not well understood. Because vascular smooth muscle cells (SMCs) are known to play a critical role in restenosis and neointimal hyperplasia, the aim of this study was to determine SMC survival under conditions of "supercooling" and/or rewarming. Bovine aortic SMCs were supercooled to -10 degrees C for 0, 60, or 120 seconds with a custom-designed conduction cooling stage and then rewarmed to 37 degrees C in an incubator for 0, 12, or 24 hours. A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was used to measure the degree of apoptosis. Activation of Akt (ie, protein kinase B), a key signal protein involved in cell survival, was assessed by Western blot analysis. An increase in apoptotic SMCs was observed with increasing supercooling and rewarming time. Akt was significantly activated at only the most severe condition (120 seconds of supercooling and 24 hours of rewarming), which showed a 2.03-fold increase compared with the group without rewarming. The data suggest that SMC apoptosis occurs with supercooling and rewarming. Protective cell survival mechanisms were activated only late in the rewarming phase. This may partially explain the long-term patency observed with cryoplasty of atherosclerotic peripheral lesions.

  2. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  3. Homogeneous ice nucleation from supercooled water.

    PubMed

    Li, Tianshu; Donadio, Davide; Russo, Giovanna; Galli, Giulia

    2011-11-28

    Homogeneous ice nucleation from supercooled water was studied in the temperature range of 220-240 K through combining the forward flux sampling method (Allen et al., J. Chem. Phys., 2006, 124, 024102) with molecular dynamics simulations (FFS/MD), based on a recently developed coarse-grained water model (mW) (Molinero et al., J. Phys. Chem. B, 2009, 113, 4008). The calculated ice nucleation rates display a strong temperature dependence, ranging from 2.148 ± 0.635 × 10(25) m(-3) s(-1) at 220 K to 1.672 ± 0.970 × 10(-7) m(-3) s(-1) at 240 K. These rates can be fitted according to the classical nucleation theory, yielding an estimate of the effective ice-water interface energy γ(ls) of 31.01 ± 0.21 mJ m(-2) for the mW water model. Compared to experiments, our calculation underestimates the homogeneous ice nucleation rate by a few orders of magnitude. Possible reasons for the discrepancy are discussed. The nucleating ice embryo contains both cubic ice Ic and hexagonal ice Ih, with the fraction of each structure being roughly 50% when the critical size is reached. In particular, a novel defect structure containing nearly five-fold twin boundaries is identified in the ice clusters formed during nucleation. The way such defect structure is formed is found to be different from mechanisms proposed for the formation of the same defect in metallic nanoparticles and thin film. The quasi five-fold twin boundary structure found here is expected to occur in the crystallization of a wide range of materials with the diamond cubic structure, including ice.

  4. Fluctuations in Supercooled Fluids and Ionic Solutions

    NASA Astrophysics Data System (ADS)

    Thorpe, Dayton Gray

    An overview of five studies is presented in two parts. The first part presents two studies of supercooled fluids. The second part presents three studies of water and aqueous solutions. Each study seeks a minimal model of a condensed matter system. In the first study, kinetically constrained models (KCM's) are compared to alternative theories of the glass transition in high dimensions. Dimensionality is used as a parameter to tune the connectivity of a lattice, where a higher dimensional model has more interactions between neighboring sites. This study finds that KCM's outperform alternative theories in high dimensions. The second study explores the possibility that bacteria have evolved to exploit the glass transition to enter a dormant state when environmental conditions are unfavorable. Although the available evidence shows that the bacterial cytoplasm does not meet the strict definition of a fragile glass former, much of its behavior is similar to and can be described using close analogies with the glass transition. In the second part, the third study describes the molecular mechanisms that gives rise to large electric field fluctuations, which in turn cause autoionization and ion dissociation. The fourth study analyzes several candidate order parameters as the basis for a Gaussian field theory of ion solvation. Finally, the fifth study discusses the most popular current explanation for observed charge asymmetry at liquid-vapor interfaces. This explanation, based on linear response of the surface polarization to the presence of an ion, is incorrect. Instead, the surface polarization responds non-linearly to the presence of an ion. Incorporating these non-linear fluctuations is essential to predict solvation free energies.

  5. Presence of supercooling-facilitating (anti-ice nucleation) hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum.

    PubMed

    Wang, Donghui; Kasuga, Jun; Kuwabara, Chikako; Endoh, Keita; Fukushi, Yukiharu; Fujikawa, Seizo; Arakawa, Keita

    2012-04-01

    Xylem parenchyma cells (XPCs) in trees adapt to subzero temperatures by deep supercooling. Our previous study indicated the possibility of the presence of diverse kinds of supercooling-facilitating (SCF; anti-ice nucleation) substances in XPCs of katsura tree (Cercidiphyllum japonicum), all of which might have an important role in deep supercooling of XPCs. In the previous study, a few kinds of SCF flavonol glycosides were identified. Thus, in the present study, we tried to identify other kinds of SCF substances in XPCs of katsura tree. SCF substances were purified from xylem extracts by silica gel column chromatography and Sephadex LH-20 column chromatography. Then, four SCF substances isolated were identified by UV, mass and nuclear magnetic resonance analyses. The results showed that the four kinds of hydrolyzable gallotannins, 2,2',5-tri-O-galloyl-α,β-D-hamamelose (trigalloyl Ham or kurigalin), 1,2,6-tri-O-galloyl-β-D-glucopyranoside (trigalloyl Glc), 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (tetragalloyl Glc) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranoside (pentagalloyl Glc), in XPCs exhibited supercooling capabilities in the range of 1.5-4.5°C, at a concentration of 1 mg mL⁻¹. These SCF substances, including flavonol glycosides and hydrolyzable gallotannins, may contribute to the supercooling in XPCs of katsura tree.

  6. Supercooling and structure of levitation melted Fe-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Flemings, M. C.

    1983-01-01

    A study has been made of the effect of supercooling, quenching rate, growth inhibitors, and grain refiners on the structure of levitation-melted Fe- 25 pct Ni alloys. A combination of three morphologies, dendritic, spherical, and mixed dendritic and spherical, is observed in samples superheated or supercooled by less than 175 K. At larger supercooling, however, only the spherical morphology is observed. The grain size and the grain boundary shape are found to be strongly dependent on the subgrain morphology but not on the quenching temperature. Considerable grain growth is evident in samples with spherical and mixed morphologies but not in the dendriitic samples. The average cooling rates during solidification and the heat transfer coefficients at the metal-quenching medium boundary are calculated. For samples solidified in water, molten lead, and ceramic molds, the heat transfer coefficients are 0.41, 0.52, and 0.15 w/sq cm, respectively.

  7. Method and apparatus for supercooling and solidifying substances

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Robinson, M. B.; Rathz, T. J.; Katz, L.; Nisen, D. B. (Inventor)

    1983-01-01

    An enclosure provides a containerless environment in which a sample specimen is positioned. The specimen is heated in the containerless environment, and the specimen melt is dropped through the tube in which it cools by radiation. The tube is alternatively backfilled with an inert gas whereby the specimen melt cools by both radiation and convection during its free fall. During the free fall, the sample is in a containerless, low-gravity environment which enhances supercooling in the sample and prevents sedimentation and thermal convection influences. The sample continues to supercool until nucleation occurs which is detected by silicon photovoltaic detectors. The sample solidifies after nucleation and becomes completely solid before entering the detachable catcher. The amount of supercooling of the specimen can be measured by knowing the cooling ratio and determining the time for nucleation to occur.

  8. Effect of a magnetic field on Drosophila under supercooled conditions.

    PubMed

    Naito, Munekazu; Hirai, Shuichi; Mihara, Makoto; Terayama, Hayato; Hatayama, Naoyuki; Hayashi, Shogo; Matsushita, Masayuki; Itoh, Masahiro

    2012-01-01

    Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point). Under such supercooled conditions with the magnetic field at 0°C for 72 hours, -4°C for 24 hours and -8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things.

  9. Effect of a Magnetic Field on Drosophila under Supercooled Conditions

    PubMed Central

    Mihara, Makoto; Terayama, Hayato; Hatayama, Naoyuki; Hayashi, Shogo; Matsushita, Masayuki; Itoh, Masahiro

    2012-01-01

    Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point). Under such supercooled conditions with the magnetic field at 0°C for 72 hours, −4°C for 24 hours and −8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things. PMID:23284809

  10. Supercooling on the lunar surface - A review of analogue information

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.; Johnston, R.; Drever, H. I.

    1977-01-01

    Terrestrial analog studies of the phase petrology of supercooled melts and rapid crystal growth are reviewed for possible light shed on lunar crystallization, supercooling, and petrogenic processes, in particular rapid consolidation of lavas extruded on the lunar surface, and impact liquids. Crystallization of major constituent minerals (olivine, pyroxene, plagioclase) in dendritic or skeletal forms is found much more characteristic of lunar igneous rocks than of terrestrial counterparts. Olivine and pyroxene occur often as skeletal phenocrysts, and their stage of crystallization is crucial to the genesis and cooling history of porphyritic lavas. Widespread occurrence of glass and of immature radiate crystallization, particularly of highly zoned pyroxenes and zoned plagioclase, is noted.

  11. Experimental Study of Supercooled Large Droplet Impingement Effects

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Rachman, A.; Wong, S. C.; Hung, K. E.; Vu, G. T.

    2003-01-01

    Typically, ice accretion results from small supercooled droplets (droplets cooled below freezing), usually 5 to 50 microns in diameter, which can freeze upon impact with an aircraft surface. Recently, ice accretions resulting from supercooled large droplet (SLD) conditions have become a safety concern. Current ice accretion codes have been extensively tested for Title 14 Code of Federal Regulations Part 25, Appendix C icing conditions but have not been validated for SLD icing conditions. This report presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data.

  12. Experimental Study of Supercooled Large Droplet Impingement Effects

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Rachman, A.; Wong, S. C.; Hung, K. E.; Vu, G. T.

    2003-01-01

    Typically, ice accretion results from small supercooled droplets (droplets cooled below freezing), usually 5 to 50 microns in diameter, which can freeze upon impact with an aircraft surface. Recently, ice accretions resulting from supercooled large droplet (SLD) conditions have become a safety concern. Current ice accretion codes have been extensively tested for Title 14 Code of Federal Regulations Part 25, Appendix C icing conditions but have not been validated for SLD icing conditions. This report presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data.

  13. Supercooling Preservation Of The Rat Liver For Transplantation

    PubMed Central

    Bruinsma, Bote G.; Berendsen, Tim A.; Izamis, Maria-Louisa; Yeh, Heidi; Yarmush, Martin L.; Uygun, Korkut

    2015-01-01

    The current standard for liver preservation is limited in duration. Employing a novel subzero preservation technique that includes supercooling and machine perfusion can significantly improve preservation and prolong storage times. By loading rat livers with cryoprotectants to prevent both intra- and extracellular ice formation and protect against hypothermic injury, livers can be cooled to −6 °C without freezing and kept viable for up to 96 hours. Here, we describe the procedures of loading cryoprotectants by means of subnormothermic machine perfusion (SNMP), controlled cooling to a supercooled state, followed by SNMP recovery and orthotopic liver transplantation. PMID:25692985

  14. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This new infrared image of the Lagoon Nebula was captured as part of a five-year study of the Milky Way using ESO's VISTA telescope at the Paranal Observatory in Chile. This is a small piece of a much larger image of the region surrounding the nebula, which is, in turn, only one part of a huge survey. Astronomers are currently using ESO's Visible and Infrared Survey Telescope for Astronomy (VISTA) to scour the Milky Way's central regions for variable objects and map its structure in greater detail than ever before. This huge survey is called VISTA Variables in the Via Lactea (VVV) [1]. The new infrared image presented here was taken as part of this survey. It shows the stellar nursery called the Lagoon Nebula (also known as Messier 8, see eso0936), which lies about 4000-5000 light-years away in the constellation of Sagittarius (the Archer). Infrared observations allow astronomers to peer behind the veil of dust that prevents them from seeing celestial objects in visible light. This is because visible light, which has a wavelength that is about the same size as the dust particles, is strongly scattered, but the longer wavelength infrared light can pass through the dust largely unscathed. VISTA, with its 4.1-metre diameter mirror - the largest survey telescope in the world - is dedicated to surveying large areas of the sky at near-infrared wavelengths deeply and quickly. It is therefore ideally suited to studying star birth. Stars typically form in large molecular clouds of gas and dust, which collapse under their own weight. The Lagoon Nebula, however, is also home to a number of much more compact regions of collapsing gas and dust, called Bok globules [2]. These dark clouds are so dense that, even in the infrared, they can block the starlight from background stars. But the most famous dark feature in the nebula, for which it is named, is the lagoon-shaped dust lane that winds its way through the glowing cloud of gas. Hot, young stars, which give off intense

  15. Polarized View of Supercooled Liquid Water Clouds

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  16. Thermodynamics and dynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of the thermodynamic and dynamic behavior of liquid water. As liquid water is cooled down into the supercooled state, some regions of the sample show correlated molecular motion. Previously, only the translational motion has been the object of investigation. Given the importance of orientational dynamics for water, a question that naturally arises is whether the rotational molecular motion also shows heterogeneous dynamics. We show that the most rotationally mobile molecules tend to form clusters, "rotational heterogeneities", and we study their dependence upon observation time and temperature. Further, we show evidence that molecules belonging to dynamic heterogeneities are involved in bifurcated bonds. Since the presence of dynamic heterogeneities is increasingly important as the temperature is lowered, one would expect a signature of this phenomenon in dynamical quantities. We study the effect of dynamic heterogeneities on the origin of the breakdown of the Stokes--- Einstein and Stokes---Einstein---Debye relations for water. These relations link the diffusivity to temperature and viscosity. We study the separation of time scales of dynamic heterogeneities and the diffusive regime. We also consider different sets of mobility, slowest and fastest, for both translational and rotational heterogeneities. A long-standing problem in biology is the seemingly universal loss of biological activity of all biomolecules, a phenomenon termed the "protein glass transition". We explore the connection between the hypothesized liquid-liquid phase transition of water, and the protein glass transition. We find that the protein glass transition coincides with the crossing of the Widom line of hydration water. Many different scenarios have been proposed to rationalize water's thermodynamic anomalies. We study a tell model for water using the Wolff' cluster algorithm, which permits

  17. Thermodynamics of Supercooled and Glassy Water

    NASA Astrophysics Data System (ADS)

    Debenedetti, Pablo G.

    1998-03-01

    The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key

  18. Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Deepanjan

    This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water. Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure. Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed. Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies

  19. Flexible confinement leads to multiple relaxation regimes in glassy colloidal liquids.

    PubMed

    Williams, Ian; Oğuz, Erdal C; Bartlett, Paul; Löwen, Hartmut; Royall, C Patrick

    2015-01-14

    Understanding relaxation of supercooled fluids is a major challenge and confining such systems can lead to bewildering behaviour. Here, we exploit an optically confined colloidal model system in which we use reduced pressure as a control parameter. The dynamics of the system are "Arrhenius" at low and moderate pressure, but at higher pressures relaxation is faster than expected. We associate this faster relaxation with a decrease in density adjacent to the confining boundary due to local ordering in the system enabled by the flexible wall.

  20. Experimental Study of Sudden Solidification of Supercooled Water

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2014-01-01

    The two independent methods of measurement of the mass of ice created at sudden solidification of supercooled water are described. One is based on the calorimetric measurement of heat that is necessary for melting the ice and the second interprets the volume change that accompanies the water freezing. Experimental results are compared with the…

  1. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  2. Effect of ultrasonic vibration on freezing of supercooled water

    SciTech Connect

    Inada, Takaaki; Zhang, Xu; Yabe, Akira; Tanaka, Makoto; Kozawa, Yoshiyuki

    1999-07-01

    A method to actively control the supercooling of water is one of the critical issues for cold-energy storage systems utilizing ice slurry. The authors experimentally studied the use of ultrasonic water to ice. Figure A-1 shows a schematic of the experimental apparatus. A heat transfer plate made of copper was immersed in water and cooled by coolant from its upper side. The authors measured the maximum degree of supercooling in the absence of ultrasonic vibration (Exp. 1), and they examined the tendency for the supercooled water to freeze on the heat transfer surface when ultrasonic vibration was applied to the water (Exp. 2). Figure A-2 shows the probability of the freezing for pure water as a function of the degree of supercooling. A{sub e} represents the rate of surface erosion on an aluminum film attached to the heat transfer surface, which is an index of the cavitation intensity. Comparing the results of Exp. 1 and Exp. 2 shows that ultrasonic vibration is effective for promoting freezing. The results of Exp. 2 indicate that the probability of freezing on the heat transfer surface exposed to ultrasonic vibration increased as the surface erosion increased. Furthermore, the authors found that ultrasonic vibration is effective not only for controlling the freezing temperature but also for making ice slurry.

  3. Successful cryopreservation of human ovarian cortex tissues using supercooling.

    PubMed

    Moriguchi, Hisashi; Zhang, Yue; Mihara, Makoto; Sato, Chifumi

    2012-01-01

    The development of new method to cryopreserve human ovarian cortex tissues without damage is needed for the improvement of quality of life (QOL) of female cancer patients. Here we show novel cryopreservation method of human ovarian cortex tissues by using supercooling (S.C.) procedure. Our method will be helpful in order to preserve fertility of female cancer patients.

  4. Supercooling points of Lysiphlebus testaceipes and its host Schizaphis graminum

    USDA-ARS?s Scientific Manuscript database

    Supercooling points (SCPs) were measured for various life stages of male and female Lysiphlebus testaceipes (Cresson) parasitoids, along with mummies and its aphid host, Schizaphis graminum (Rondani). Some parasitoids were acclimated (4 h at 10°C before cooling down to the SCP) to determine whether...

  5. Influence of Supercooling on Formation of Primary Phase

    NASA Astrophysics Data System (ADS)

    Yoshimura, R.; Esaka, H.; Shinozuka, K.

    2015-06-01

    It is reported actual volume fraction of primary phase in alloys is larger than the equilibrium value. Larger volume fraction of the primary phase may cause shrinkage cavities and surface or internal cracks. Although control of solidified structure is important for the quality of cast products, this problem has not been elucidated. Taking these results into account, this study has been carried out in order to comprehend a phenomenon of larger volume fraction of primary phase. Sn-Pballoy has been used as a test alloy and to examine the relation between supercooling for nucleation and the volume fraction of primary phase has been mainly characterized. Actually, volume fraction of primary phase in Sn-Pballoy is larger than that of lever rule. It was also observed that the volume fraction of β-Sn decreases with decreasing the supercooling in early stage of solidification. In the final stage of solidification, however, the effect of supercooling on volume fraction of primary phase is small. Furthermore, when the supercooling was low, volume fraction of primary phase was slowly increased.

  6. Experimental Study of Sudden Solidification of Supercooled Water

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2014-01-01

    The two independent methods of measurement of the mass of ice created at sudden solidification of supercooled water are described. One is based on the calorimetric measurement of heat that is necessary for melting the ice and the second interprets the volume change that accompanies the water freezing. Experimental results are compared with the…

  7. Supercooled water as medium for enzyme reactions at subzero temperatures.

    PubMed

    Douzou, P; Debey, P; Franks, F

    1978-03-14

    A water-in-oil emulsion technique was employed to investigate enzyme-catalyzed reactions at sub-zero temperatures in the supercooled liquid state. The results obtained with a monooxygenase (bacterial cytochrome P-450) clearly indicate the potentialities as well as the technical problems of the procedure which might be successfully used to investigate enzyme systems sensitive to cosolvents.

  8. Adaptive elastic networks as models of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Yan, Le; Wyart, Matthieu

    2015-08-01

    The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.

  9. Structure factor changes in supercooled yttria-alumina

    SciTech Connect

    Wilding, Martin C.; Greaves, G. Neville; Quang Vu Van; Majerus, Odile; Hennet, Louis

    2009-01-29

    Changes in the structure factor of yttria-alumina liquids have been identified in the supercooled range. Different inter-polyhedral configurations between AlO{sub 4} and YO{sub 6} groups distinguish low density and high density liquid phases. The coexistence of phases at high temperatures have been identified in simultaneous measurements of small angle x-ray scattering.

  10. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  11. Successful cryopreservation of human ovarian cortex tissues using supercooling

    PubMed Central

    Moriguchi, Hisashi; Zhang, Yue; Mihara, Makoto; Sato, Chifumi

    2012-01-01

    The development of new method to cryopreserve human ovarian cortex tissues without damage is needed for the improvement of quality of life (QOL) of female cancer patients. Here we show novel cryopreservation method of human ovarian cortex tissues by using supercooling (S.C.) procedure. Our method will be helpful in order to preserve fertility of female cancer patients. PMID:22844578

  12. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  13. Analysis of supercooling-facilitating (anti-ice nucleation) activity of flavonol glycosides.

    PubMed

    Kasuga, Jun; Fukushi, Yukiharu; Kuwabara, Chikako; Wang, Donghui; Nishioka, Atsushi; Fujikawa, Emiko; Arakawa, Keita; Fujikawa, Seizo

    2010-04-01

    Deep supercooling xylem parenchyma cells (XPCs) of katsura tree (Cercidiphyllum japonicum) contain four kinds of flavonol glycosides with high supercooling-facilitating (anti-ice nucleation) activities. These flavonol glycosides have very similar structures, but their supercooling-facilitating activities are very different. In this study, we analyzed the supercooling-facilitating activities of 12 kinds of flavonol glycosides in order to determine the chemical structures that might affect supercooling-facilitating activity. All of the flavonol glycosides tested showed supercooling-facilitating activity, although the magnitudes of activity differed among the compounds. It was clear that the combination of the position of attachment of the glycosyl moiety, the kind of attached glycosyl moiety and the structure of aglycone determined the magnitude of anti-ice nucleation activity. However, there is still some ambiguity preventing the exact identification of features that affect the magnitude of supercooling-facilitating activity.

  14. Diminution of supercooling of electrolytes by carbon particles

    SciTech Connect

    Ding, S.P.; Xu, K.; Zhang, S.S.; Jow, T.R.; Amine, K.; Henriksen, G.L.

    1999-11-01

    A liquid solution composed of a pure or mixed solvent and a dissolved salt is the most common form of electrolyte used in electrochemical devices for energy storage and conversion, such as batteries and capacitors. For such an electrolyte, one of the most important properties is its crystallization temperature, which limits the low-temperature operation of a device containing such an electrolyte. If thermodynamic equilibria were strictly followed, crystallization of an electrolyte would start as soon as it is cooled to its liquidus temperature. But such is seldom the case, as an electrolyte by itself often supercools well below this temperature. This supercooling can delay or even eliminate the crystallization of an electrolyte, thus substantially extending its apparent liquid range. The authors studied the supercooling behavior of a number of solutions of LiPF{sub 6} in ethylene carbonate-ethyl methyl carbonate in 1:1 weight ratio with and without the presence of one of these carbons: activated carbon, carbon black, and mesocarbon microbeads. The results of differential scanning calorimetry (DSC) show that the supercooling of less concentrated solutions is significantly diminished by the presence of a carbon, the degree and the nature of which depends on the concentration of the electrolyte and the type of carbon present. The results of conductivity measurements also indicate precipitation in some of the electrolytes at low temperatures, which correlates well with the DSC results. The authors therefore conclude that the temperature range in which an electrolyte supercools without a nucleating material is unreliable for the operation of an electrochemical device containing such an electrolyte. Instead, the liquidus temperature of an electrolyte should be used as the lower limit of operation if the possibility of its crystallization is to be excluded.

  15. Analysis of supercooling activity of tannin-related polyphenols.

    PubMed

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  16. Theory of Activated Relaxation in Nanoscale Confined Liquids

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Schweizer, Kenneth

    2014-03-01

    We extend the recently developed Elastically Cooperative Nonlinear Langevin Equation(ECNLE) theory of activated relaxation in supercooled liquids to treat the case of geometrically confined liquids. Generically, confinement of supercooled liquids leads to a speeding up of the dynamics(with a consequent depression of the glass transition temperature) extending on the order of tens of molecular diameters away from a free surface. At present, this behavior is not theoretically well understood. Our theory interprets the speed up in dynamics in terms of two coupled effects. First, a direct surface effect, extending two to three molecular diameters from a free surface, and related to a local rearrangement of molecules with a single cage. The second is a longer ranged ``confinement'' effect, extending tens of molecular diameters from a free surface and related to the long range elastic penalty necessary for a local rearrangement. The theory allows for the calculation of relaxation time and Tg profiles within a given geometry and first principles calculations of relevant length scales. Comparison to both dynamic and pseudo-thermodynamic measurements shows reasonable agreement to experiment with no adjustable parameters.

  17. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    PubMed

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  18. Energy landscape diversity and supercooled liquid properties

    NASA Astrophysics Data System (ADS)

    Stillinger, Frank H.; Debenedetti, Pablo G.

    2002-02-01

    Families of model "rugged landscape" potential energy functions have been constructed and examined, in order to clarify the molecular-level basis for the relationship between thermodynamic and kinetic behaviors of glassforming substances. The general approach starts by forming elementary basin units, each of which contains a single local minimum (inherent structure). These units are then spliced together to create a continuous composite potential with the requisite number of basins, upper and lower limits, and boundary conditions. We demonstrate by example that this approach creates wide topographic diversity. Specifically, many pairs of model potential functions exist that share identical thermodynamic properties (depth distribution of minima), but drastically different kinetics (overall topography). Thus, within the confines of this purely mathematical exercise, the "strong" versus "fragile" classifications of thermodynamics and of kinetics are logically disconnected. We conclude that the empirically-observed correlation between thermodynamic and kinetic behaviors embodied, for example, in the Adam-Gibbs equation, must rest upon an additional physical principle involving details of interparticle interactions, transcending the purely mathematical aspects of potential energy landscape topography.

  19. Rapid Chemical Ordering in Supercooled Liquid Cu46Zr54

    SciTech Connect

    Wessels, Victor; Gangopadhyay, Anup; Sahu, K. K.; Hyers, R. W.; Canepari, S. M.; Rogers, J. R.; Kramer, Matthew J.; Goldman, Alan; Robinson, D.; Lee, Jae W; Morris, James R; Kelton, K. F.

    2011-01-01

    Evidence for abrupt chemical ordering in a supercooled Cu46Zr54 liquid, obtained from high energy x-ray diffraction in a containerless processing environment, is presented. Relatively sudden changes were observed in the topological and chemical short-range order near 850oC, a temperature significantly below the liquidus and above the glass transition temperatures. A peak in the specific heat was observed with supercooling, with an onset near 850oC, the same temperature as the onset of chemical ordering, and a maximum near 700oC, consistent with the prediction of a molecular dynamics calculation using embedded atom potentials. The dominant short-range order below 850oC is incompatible with that of the primary crystallizing phases. This, and the possible development of strongly bonded, chemically ordered clustersmay explain unlikely bulk metallic glass formation in Cu-Zr and other binary alloys.

  20. How does tetrahedral structure grow in liquid silicon upon supercooling?

    PubMed

    Morishita, Tetsuya

    2006-10-20

    We present an extensive set of isothermal-isobaric first-principles molecular-dynamics simulations of liquid silicon over a temperature range of 950-1700 K. We find that the tetrahedral order gradually grows upon cooling to approximately 1200 K, but that the growth accelerates significantly below approximately 1200 K. This growth process gives rise to anomalous changes in density and liquid structure upon supercooling. In particular, we find that the atomic coordination number remains constant to approximately 1200 K and then begins to decrease below approximately 1200 K, which resolves the existing controversy regarding liquid structure in the supercooled regime [T. H. Kim, Phys. Rev. Lett. 95, 085501 (2005)10.1103/PhysRevLett.95.085501].

  1. Decoupling of Rotational and Translational Diffusion in Supercooled Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    Edmond, Kazem V.; Hunter, Gary L.; Elsesser, Mark T.; Park, Hyunjoo; Pine, David J.; Weeks, Eric R.

    2011-03-01

    Using high-speed confocal microscopy, we directly observe the three-dimensional rotational dynamics of rigid clusters of microspheres suspended in dense colloidal suspensions. The clusters are highly ordered packings of fluorescently-labeled PMMA particles, fabricated using a recently developed emulsification technique. Our colloidal suspensions serve as good approximations to hard-sphere fluids, while the clusters probe the system's local rotational and translational dynamics. Far from the colloidal liquid's glass transition, both rotational and translational motion of the clusters are purely Brownian. However, in the liquid's supercooled regime, we observe a decoupling between the two types of motion: as the glass transition is approached, rotational diffusion slows down even more than translational diffusion. Our observation supports the notion that supercooled liquids are not merely liquids with large viscosities but that diffusion takes place by fundamentally changed mechanisms. Supported by NSF Grant No. CHE-0910707

  2. Entropy-driven liquid–liquid separation in supercooled water

    PubMed Central

    Holten, V.; Anisimov, M. A.

    2012-01-01

    Twenty years ago Poole et al. suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid–liquid separation of lower-density and higher-density water. Here we present a thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and fewer adjustable parameters than any other model. Liquid water at low temperatures is viewed as an ‘athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which liquid–liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the ‘reaction' equilibrium constant. The model predicts the location of density maxima at the locus of a near-constant fraction of the lower-density structure. PMID:23056905

  3. Structure and function of carboxypeptidase A alpha in supercooled water.

    PubMed

    Thompson, J S; Gehring, H; Vallee, B L

    1980-01-01

    The spectral and enzymatic characteristics of chromophoric derivatives of carboxypeptidase A alpha (EC 3.4.17.1) have been examined at subzero temperatures in supercooled water-in-oil emulsions. Substrate and temperature dependencies of enzyme kinetics indicated the existence of a solution-like enzyme phase that greatly extends the temperature range (greater than 60 degrees C) over which the activity of this enzyme can be measured. The emulsion spectra were virtually identical to those of solutions over a wide range of temperatures. Subzero temperatures (less than -10 degrees C) may induce changes of enzyme conformation but not of geometry at the site of the metal atom, nor do they adversely affect activity at any of the temperatures studied. Both structure and function of carboxypeptidase A alpha can be examined in supercooled water under identical reaction conditions.

  4. Structure and function of carboxypeptidase A alpha in supercooled water.

    PubMed Central

    Thompson, J S; Gehring, H; Vallee, B L

    1980-01-01

    The spectral and enzymatic characteristics of chromophoric derivatives of carboxypeptidase A alpha (EC 3.4.17.1) have been examined at subzero temperatures in supercooled water-in-oil emulsions. Substrate and temperature dependencies of enzyme kinetics indicated the existence of a solution-like enzyme phase that greatly extends the temperature range (greater than 60 degrees C) over which the activity of this enzyme can be measured. The emulsion spectra were virtually identical to those of solutions over a wide range of temperatures. Subzero temperatures (less than -10 degrees C) may induce changes of enzyme conformation but not of geometry at the site of the metal atom, nor do they adversely affect activity at any of the temperatures studied. Both structure and function of carboxypeptidase A alpha can be examined in supercooled water under identical reaction conditions. PMID:6928608

  5. Diffusion-viscosity decoupling in supercooled glycerol aqueous solutions.

    PubMed

    Trejo González, José A; Longinotti, M Paula; Corti, Horacio R

    2015-01-08

    The diffusion of ferrocene methanol in supercooled glycerol-water mixtures has been measured over a wide viscosity range, which allowed analyzing the composition dependence of the Stokes-Einstein breakdown (diffusion-viscosity decoupling). The observed decoupling exhibits a common behavior for all studied compositions (glycerol mass fractions between 0.7 and 0.9), determined by the reduced temperature (T/Tg) of the mixtures. This result differs from that reported previously for the diffusion of glycerol in its aqueous solutions, where the reduced temperature for the decoupling decreases with increasing water content. We conclude that the contradictory results are only apparent, and they can be explained by the use of inconsistent extrapolated values of the viscosity of the glycerol-water mixtures in the supercooled region.

  6. Structure analysis methods for crystalline solids and supercooled liquids.

    PubMed

    Yu, Da-Qi; Chen, Min; Han, Xiu-Jun

    2005-11-01

    The three most widely used methods for analyzing atomic structures are evaluated by simulating crystalline solids and supercooled liquids. The local order parameter approach due to Volkov [Phys. Rev. E 66, 061401 (2002)] fails in randomly perturbed body-centered-cubic environments, while the pair analysis method behaves as an approximate approach depending on how the neighborhood is defined. As to the Voronoi analysis method, we improve the procedure of Brostow [Phys. Rev. B 57, 13448 (1998)] to eliminate distorted Voronoi faces and edges which originate from thermal vibrations and computational rounding errors. The improved procedure works robustly in face-centered-cubic, body-centered-cubic, and hexagonal close-packed environments. When the pair analysis technique and the Voronoi analysis method are applied to detect the microstructure and its evolution in supercooled liquids, qualitatively consistent results are attained.

  7. Substrate-enhanced supercooling in AuSi eutectic droplets.

    PubMed

    Schülli, T U; Daudin, R; Renaud, G; Vaysset, A; Geaymond, O; Pasturel, A

    2010-04-22

    The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid and may prevent or lower supercooling. This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling, no experimental observation of such lateral ordering at interfaces is available. Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 x 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid-liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour-liquid-solid growth of semiconductor nanowires.

  8. Highly supercooled cirrus cloud water: confirmation and climatic implications.

    PubMed

    Sassen, K; Liou, K N; Kinne, S; Griffin, M

    1985-01-25

    Liquid cloud droplets supercooled to temperatures approaching -40 degrees C have been detected at the base of a cirrostratus cloud through a combination of ground-based, polarization laser radar (lidar) and in situ aircraft measurements, Solar and thermal infrared radiative budget calculations based on these observatoins indicate that significant changes in the atmospheric heating distribution and the surface radiative budget may be attributed to liquid layers in cirrus clouds.

  9. Crystallization in diblock copolymer thin films at different degrees of supercooling.

    PubMed

    Darko, C; Botiz, I; Reiter, G; Breiby, D W; Andreasen, J W; Roth, S V; Smilgies, D-M; Metwalli, E; Papadakis, C M

    2009-04-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and intermediate degrees of supercooling, but of submicrometer size for strong supercooling. Using grazing-incidence wide-angle x-ray scattering, we could determine the grain orientation distribution function which shows that the chain stems are perpendicular to the lamellae at low supercooling, but tilted at intermediate and strong supercooling. These results suggest that, at intermediate and strong supercooling, the crystalline PEO lamellae do not grow homogeneously, but by the formation of small crystallites at the growth front.

  10. Lack of supercooling evolution related to winter severity in a lizard.

    PubMed

    Michels-Boyce, Madeline; Zani, Peter A

    2015-10-01

    As organisms move into higher latitudes, they may evolve physiological mechanisms to survive in harsher climates. One such mechanism is supercooling, the capacity to survive at subzero temperatures without freezing. While interspecific comparisons reveal greater thermal tolerances at higher latitudes in insects and vertebrates, evidence for intraspecific evolution in supercooling related to latitude is only evident in insects. We measured the supercooling points of lizards from 12 populations reared from hatch in common laboratory conditions to test for evolved differences in supercooling related to winter. Results indicate that winter harshness (depth or length) cannot explain supercooling points regardless of how data are analyzed, which suggests that populations have not evolved greater supercooling capacity. While our results are consistent with the idea that thermal physiology is evolutionarily conserved in vertebrates, we cannot reject several alternatives including the possibility that lizards are able to behaviorally avoid the extreme temperatures that would select for thermal evolution.

  11. Supercooling effects in Cu-10 wt pct Co alloys solidified at different cooling rates

    NASA Technical Reports Server (NTRS)

    Munitz, A.; Elder-Randall, S. P.; Abbaschian, R.

    1992-01-01

    Electromagnetic levitation and electron beam surface melting were employed to study the effects of supercooling and cooling rate on the solidification of Cu-10 wt pct Co alloys. Two major effects were observed in the supercooled alloys: the nucleation of a metastable copper-rich phase which contains 13 wt pct to 20 wt pct Co in samples supercooled between 105 and 150 K and liquid phase separation which occurs in samples supercooled 150 K or more. The microstructure of the electron beam melted surfaces consisted of very fine spheres which were similar to those of the sample supercooled more than 150 K but with a refined microstructure. The results indicate that a dynamic bulk supercooling of 150 K may exist in the molten pool during the solidification of electron beam melted surfaces.

  12. Cold hardiness and deep supercooling in xylem of shagbark hickory.

    PubMed

    George, M F; Burke, M J

    1977-02-01

    Differential thermal analysis, differential scanning calorimetry, pulsed nuclear magnetic resonance spectroscopy, and low temperature microscopy are utilized to investigate low temperature freezing points or exotherms which occur near -40 C in the xylem of cold-acclimated shagbark hickory (Carya ovata L.). Experiments using these methods demonstrate that the low temperature exotherm results from the freezing of cellular water in a manner predicted for supercooled dilute aqueous solutions. Heat release on freezing, nuclear magnetic resonance relaxation times, and freezing and thawing curves for hickory twigs all point to a supercooled fraction in the xylem at subfreezing temperatures. Calorimetric and low temperature microscopic analyses indicate that freezing occurs intracellularly in the xylem ray parenchyma. The supercooled fraction is found to be extremely stable, even at temperatures only slightly above the homogeneous nucleation temperature for water (-38 C). Xylem water is also observed to be resistant to dehydration when exposed to 80% relative humidity at 20 C. D(2)O exchange experiments find that only a weak kinetic barrier to water transport exists in the xylem rays of shagbark hickory.

  13. Units of freezing of deep supercooled water in woody xylem.

    PubMed

    Hong, S G; Sucoff, E

    1980-07-01

    The low temperature exotherms (LTE) of 1-year-old twigs of Haralson apple (Malus pumila Mill.), shagbark hickory (Carya ovata [Mill.] K. Koch), green ash (Fraxinus pennsylvanica Marsh), honey locust (Gleditsia triacanthos L.), American chestnut (Castanea dentata [Marsh] Borkh.), and red oak (Quercus rubra L.) were determined by differential thermal analysis (DTA). In one type of experiment freezing during a DTA experiment was halted for up to 2.5 hours after part of the supercooled water had frozen at temperatures between -25 and -42 C. Upon resumption of cooling the freezing started within 2 C of the stopping temperature. In a second type of experiment living and dead cells were microscopically observed in the same ray after partial freezing in the DTA apparatus. In another experiment, the LTE persisted even after tangential and radial sectioning of the twig to 0.13 millimeters. In a final experiment the LTE of a single multiseriate ray of red oak had the same shape as the LTE of wood with many uniseriate rays.These experiments confirm that the deep supercooled water in woody xylem or pith freezes in numerous independent events over a span of as much as 20 C. The units which freeze in an event are single cells or small groups of cells. Ice grows very slowly if at all from these units, and water moves very slowly from unfrozen cells to frozen ones. Deep supercooling of ray parenchyma does not require an intact ray.

  14. Crystallization and prevention of supercooling of microencapsulated n-alkanes.

    PubMed

    Zhang, Xing-xiang; Fan, Yao-feng; Tao, Xiao-ming; Yick, Kit-lun

    2005-01-15

    Microencapsulated n-alkanes (n-octadecane, n-nonadecane, and n-eicosane) were synthesized by in situ polymerization using urea-melamine-formaldehyde polymer as shells. Microcapsules 5.0 and 10.0 wt% of 1-tetradecanol, paraffin, and 1-octadecanol were used as nucleating agents. The fabrication was characterized using Fourier transform infrared, light microscopy, and scanning electron microscopy. The crystallization and prevention of supercooling of the microcapsules are studied using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. The crystal system of the microencapsulated n-alkane is the same as that of the bulk. The enthalpies of the microcapsules containing 70 wt% n-alkanes are approximately 160 J/g. The melting temperature of the n-alkanes in the microcapsule is the same as that in the bulk. There are multiple peaks on the DSC cooling curves that are attributed to liquid-rotator, rotator-crystal, and liquid-crystal transitions. The DSC cooling behavior of microencapsulated n-octadecane is affected by the average diameters. The measured maximum degree of supercooling of the microencapsulated n-octadecane is approximately 26.0 degrees C at a heating and cooling rate of 10.0 degrees C/min. The degree of supercooling of microencapsulated n-octadecane is decreased by adding 10.0 wt% of 1-octadecanol as a nucleating agent.

  15. Photocreating supercooled spiral-spin states in a multiferroic manganite

    NASA Astrophysics Data System (ADS)

    Sheu, Y. M.; Ogawa, N.; Kaneko, Y.; Tokura, Y.

    2016-08-01

    We demonstrate that the dynamics of the a b -spiral-spin order in a magnetoelectric multiferroic Eu0.55Y0.45MnO3 can be unambiguously probed through optical second harmonic signals, generated via spin-induced ferroelectric polarization. In the case of weak excitation, the ferroelectric and the spiral-spin order remains interlocked, both relaxing through spin-lattice relaxation in the nonequilibrium state. When the additional optical pulse illuminating the sample is intense enough to induce a local phase transition thermally, the system creates a metastable state of the b c -spiral-spin order (with the electric polarization P ∥c ) via supercooling across the first-order phase transition between the a b and b c spiral. The supercooled state of the b c -spiral spin is formed in the thermodynamical ground state of the a b spiral (P ∥a ), displaying a prolonged lifetime with strong dependence on the magnetic field along the a axis. The observed phenomena provide a different paradigm for photoswitching between the two distinct multiferroic states, motivating further research into a direct observation of the photocreated supercooled b c -spiral spin in multiferroic manganites.

  16. Mixing effects in the crystallization of supercooled quantum binary liquids

    SciTech Connect

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  17. Mixing effects in the crystallization of supercooled quantum binary liquids

    NASA Astrophysics Data System (ADS)

    Kühnel, M.; Fernández, J. M.; Tramonto, F.; Tejeda, G.; Moreno, E.; Kalinin, A.; Nava, M.; Galli, D. E.; Montero, S.; Grisenti, R. E.

    2015-08-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  18. Mixing effects in the crystallization of supercooled quantum binary liquids.

    PubMed

    Kühnel, M; Fernández, J M; Tramonto, F; Tejeda, G; Moreno, E; Kalinin, A; Nava, M; Galli, D E; Montero, S; Grisenti, R E

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  19. Supercooling capacity of seeds and seedlings in Arabidopsis thaliana.

    PubMed

    Vernon, P; Vannier, G; Arondel, V

    1999-09-01

    The influence of the water content of seeds and seedlings of Arabidopsis thaliana (Ecotype Columbia:2) on their supercooling capacity was investigated. Equilibration of the seeds to various air relative humidities resulted in final moisture contents ranging from 8 to 82% (dry weight basis). No supercooling point could be detected when the water content remained below 32.5%, and in seeds at just above this moisture level ice crystals started to form at -26 degrees C. However, cooling partly affected the germination of seeds down to a water content of 26.5%. Upon imbibition, the supercooling point of the seeds remained around -21.6 degrees C and rose sharply to -14.7 degrees C when visible germination started. It remained around -13 degrees C during the following 96 h while the water content of the seedlings increased from 155 to 870%. Hydrated seeds (above 32.5% water content), germinated seeds, and seedlings of Arabidopsis cannot survive being frozen. Copyright 1999 Academic Press.

  20. Excess entropy of water in a supercooled solution of salt

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Corradini, D.; Rovere, M.

    2011-12-01

    We consider the relationship between the excess entropy and anomalies of water. We investigate by molecular dynamics simulations the thermodynamic region of supercooled water and a supercooled aqueous solution with NaCl at a salt concentration of 0.67 mol kg-1. The TIP4P potential model displays, as already established, in pure water and in solution a phase diagram with a liquid-liquid critical point. We explore how the two-body excess entropy calculated from the radial distribution functions is an indicator of density and structural anomalies of supercooled liquid water, both in the pure system and in the NaCl(aq). The two-body excess entropy shows a peculiar behaviour associated with the density anomaly and structural changes in water as revealed by the radial distribution functions. The signature of a change in the structural relaxation of water from fragile to strong is also found by examining the behaviour of the excess entropy at decreasing temperature.

  1. New JLab/Hall A Deeply Virtual Compton Scattering results

    SciTech Connect

    Defurne, Maxime

    2015-08-01

    New data points for unpolarized Deeply Virtual Compton Scattering cross sections have been extracted from the E00-110 experiment at Q2=1.9 GeV2 effectively doubling the statistics available in the valence region. A careful study of systematic uncertainties has been performed.

  2. Narrow deeply bound K- and p atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2000-01-01

    Examples of recently predicted narrow `deeply bound' K- and p atomic states are shown. The saturation of widths for strong absorptive potentials due to the induced repulsion, and the resulting suppression of atomic wave functions within the nucleus, are demonstrated. Production reactions for K- atomic states using φ(1020) decay, and the (p,p) reaction for p atomic states, are discussed.

  3. Deformation of inherent structures to detect long-range correlations in supercooled liquids

    NASA Astrophysics Data System (ADS)

    Mosayebi, Majid; Del Gado, Emanuela; Ilg, Patrick; Öttinger, Hans Christian

    2012-07-01

    We propose deformations of inherent structures as a suitable tool for detecting structural changes underlying the onset of cooperativity in supercooled liquids. The non-affine displacement (NAD) field resulting from the applied deformation shows characteristic differences between the high temperature liquid and supercooled state, which are typically observed in dynamic quantities. The average magnitude of the NAD is very sensitive to temperature changes in the supercooled regime and is found to be strongly correlated with the inherent structure energy. In addition, the NAD field is characterized by a correlation length that increases upon lowering the temperature towards the supercooled regime.

  4. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

    PubMed

    Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2011-12-01

    Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist.

  5. Structural properties and fragile to strong transition in confined water.

    PubMed

    De Marzio, M; Camisasca, G; Conde, M M; Rovere, M; Gallo, P

    2017-02-28

    We derive by computer simulation the radial distribution functions of water confined in a silica pore modeled to reproduce MCM-41. We perform the calculations in a range of temperatures from ambient to deep supercooling for the subset of water molecules that reside in the inner shell (free water) by applying the excluded volume corrections. By comparing with bulk water we find that the first shell of the oxygen-oxygen and hydrogen-hydrogen radial distribution functions is less sharp and the first minimum fills in while the oxygen-hydrogen structure does not significantly change, indicating that the free water keeps the hydrogen bond short range order. The two body excess entropy of supercooled water is calculated from the radial distribution functions. We connect the behavior of this function to the relaxation time of the same system already studied in previous simulations. We show that the two body entropy changes its behavior in coincidence with the crossover of the relaxation time from the mode coupling fragile to the strong Arrhenius regime. As for bulk water also in confinement, the two body entropy has a strict connection with the dynamical relaxation.

  6. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    SciTech Connect

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.

  7. Longitudinal target-spin asymmetries for deeply virtual compton scattering.

    PubMed

    Seder, E; Biselli, A; Pisano, S; Niccolai, S; Smith, G D; Joo, K; Adhikari, K; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Battaglieri, M; Bedlinskiy, I; Bono, J; Boiarinov, S; Bosted, P; Briscoe, W; Brock, J; Brooks, W K; Bültmann, S; Burkert, V D; Carman, D S; Carlin, C; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crabb, D; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Garçon, M; Gevorgyan, N; Ghandilyan, Y; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hirlinger Saylor, N; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joosten, S; Keith, C D; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Meekins, D G; Mineeva, T; Mirazita, M; Mokeev, V; Montgomery, R; Moody, C I; Moutarde, H; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L L; Park, K; Park, S; Pasyuk, E; Peng, P; Phelps, W; Pogorelko, O; Price, J W; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Senderovich, I; Simonyan, A; Skorodumina, I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Tang, W; Tian, Y; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zonta, I

    2015-01-23

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep→e^{'}p^{'}γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q^{2}, x_{B}, t, and ϕ, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  8. Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    NASA Astrophysics Data System (ADS)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2015-01-01

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  9. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    DOE PAGES

    Seder, E.; Biselli, A.; Pisano, S.; ...

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axialmore » charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.« less

  10. Climate change promotes hybridisation between deeply divergent species

    PubMed Central

    Chiocchio, Andrea; Zampiglia, Mauro; Nascetti, Giuseppe

    2017-01-01

    Rare hybridisations between deeply divergent animal species have been reported for decades in a wide range of taxa, but have often remained unexplained, mainly considered chance events and reported as anecdotal. Here, we combine field observations with long-term data concerning natural hybridisations, climate, land-use, and field-validated species distribution models for two deeply divergent and naturally sympatric toad species in Europe (Bufo bufo and Bufotes viridis species groups). We show that climate warming and seasonal extreme temperatures are conspiring to set the scene for these maladaptive hybridisations, by differentially affecting life-history traits of both species. Our results identify and provide evidence of an ultimate cause for such events, and reveal that the potential influence of climate change on interspecific hybridisations goes far beyond closely related species. Furthermore, climate projections suggest that the chances for these events will steadily increase in the near future. PMID:28348926

  11. Removal of Deeply Impacted Mandibular Molars by Sagittal Split Osteotomy

    PubMed Central

    Isler, Sabri Cemil

    2016-01-01

    Mandibular third molars are the most common impacted teeth. Mandibular first and second molars do not share the same frequency of occurrence. In rare cases the occlusal surfaces of impacted molars are united by the same follicular space and the roots pointing in opposite direction; these are called kissing molars. In some cases, a supernumerary fourth molar can be seen as unerupted and, in this case, such a supernumerary, deeply impacted fourth molar is seen neighboring kissing molars. The extraction of deeply impacted wisdom molars from the mandible may necessitate excessive bone removal and it causes complications such as damage to the inferior alveolar nerve and iatrogenic fractures of the mandible. This case report describes the use of the sagittal split osteotomy technique to avoid extensive bone removal and protect the inferior alveolar nerve during surgical extruction of multiple impacted teeth. PMID:27429810

  12. Climate change promotes hybridisation between deeply divergent species.

    PubMed

    Canestrelli, Daniele; Bisconti, Roberta; Chiocchio, Andrea; Maiorano, Luigi; Zampiglia, Mauro; Nascetti, Giuseppe

    2017-01-01

    Rare hybridisations between deeply divergent animal species have been reported for decades in a wide range of taxa, but have often remained unexplained, mainly considered chance events and reported as anecdotal. Here, we combine field observations with long-term data concerning natural hybridisations, climate, land-use, and field-validated species distribution models for two deeply divergent and naturally sympatric toad species in Europe (Bufo bufo and Bufotes viridis species groups). We show that climate warming and seasonal extreme temperatures are conspiring to set the scene for these maladaptive hybridisations, by differentially affecting life-history traits of both species. Our results identify and provide evidence of an ultimate cause for such events, and reveal that the potential influence of climate change on interspecific hybridisations goes far beyond closely related species. Furthermore, climate projections suggest that the chances for these events will steadily increase in the near future.

  13. Open effective field theories from deeply inelastic reactions

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Hammer, H.-W.; Lepage, G. Peter

    2016-09-01

    Effective field theories have often been applied to systems with deeply inelastic reactions that produce particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply inelastic reactions have been taken into account in previous work by adding local anti-Hermitian terms to the effective Hamiltonian. Here, we show that when multiparticle systems are considered, an additional modification is required in equations governing the density matrix. We define an effective density matrix by tracing over the states containing high-momentum particles and show that it satisfies a Lindblad equation, with local Lindblad operators determined by the anti-Hermitian terms in the effective Hamiltonian density.

  14. Deeply virtual Compton scattering: How to test handbag dominance?

    SciTech Connect

    Gousset, T.; Diehl, M.; Ralston, J. P.

    1998-05-29

    We propose detailed tests of the handbag approximation in exclusive deeply virtual Compton scattering. Those tests make no use of any prejudice about parton correlations in the proton which are basically unknown objects and beyond the scope of perturbative QCD. Since important information on the proton substructure can be gained in the regime of light cone dominance we consider that such a class of tests is of special relevance.

  15. Deeply virtual Compton scattering: How to test handbag dominance?

    SciTech Connect

    Gousset, T.; Gousset, T.; Diehl, M.; Pire, B.; Diehl, M.

    1998-05-01

    We propose detailed tests of the handbag approximation in exclusive deeply virtual Compton scattering. Those tests make no use of any prejudice about parton correlations in the proton which are basically unknown objects and beyond the scope of perturbative QCD. Since important information on the proton substructure can be gained in the regime of light cone dominance we consider that such a class of tests is of special relevance. {copyright} {ital 1998 American Institute of Physics.}

  16. Deeply subwavelength electromagnetic Tamm states in graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria; Buslaev, Pavel; Iorsh, Ivan; Shadrivov, Ilya V.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We study localized modes at a surface of a multilayer structure made of graphene layers separated by dielectric layers. We demonstrate the existence of deeply subwavelength surface modes that can be associated with the electromagnetic Tamm states, with the frequencies in the THz frequency range the negative group velocities. We suggest that the dispersion properties of these Tamm surface modes can be tuned by varying the thickness of a dielectric cap layer.

  17. Arrest as a General Property of the Supercooled Liquid State.

    PubMed

    Sluyters, Jan H; Sluyters-Rehbach, Margaretha

    2016-04-21

    Owing to the universal presence of intermolecular interactions, it has to be expected that at some well-defined lower temperature a liquid loses its dynamic properties like fluidity and self-diffusion. As a sequel to two earlier papers on the discovery of such an arrest temperature T0 for supercooled water at 243 K, where also the coexisting vapor pressure was found to become zero, in this paper a further study is undertaken of the behavior of a selection of other liquids. At first, two simple equations of state (van der Waals and virial) are shown in principle to predict a zero vapor pressure at a finite temperature. The interaction parameters B (second virial coefficient) and μJT (Joule-Thomson coefficient) of the vapor are found to become virtually infinite at a temperature T0,B, with a value equal or close to the T0 derived from the liquid properties. Just as earlier found for water, the latter is obtained by extrapolation of several available dynamic and equilibrium data, which should produce an intersection with the temperature axis at the same T0 value. With the exception of molten salts and liquid pure metals, this condition appears to be fulfilled quite accurately. Thus, the temperature of arrest is a general phenomenon for supercooled liquids. As an illustration, it is shown how the PVT diagram of carbon dioxide can be extended into the supercooled temperature region. It is argued that T0 is the temperature below which the Boltzmann energy, kT, is lower than the minimal energy needed for a molecule to break the interactions with its surrounding molecules. We propose to name this minimal energy, kT0, the multimolecular potential of the liquid object. The relationship of the liquid multimolecular potential with the pair potential, ε, of the molecular species is established for various examples and appears to be a proportionality with ε ≈ 2kT0.

  18. Persistence of deeply sourced iron in the Pacific Ocean.

    PubMed

    Horner, Tristan J; Williams, Helen M; Hein, James R; Saito, Mak A; Burton, Kevin W; Halliday, Alex N; Nielsen, Sune G

    2015-02-03

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

  19. Deeply Virtual Exclusive Processes and Generalized Parton Distributions

    SciTech Connect

    ,

    2011-06-01

    The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e, e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.

  20. Persistence of deeply sourced iron in the Pacific Ocean

    PubMed Central

    Horner, Tristan J.; Williams, Helen M.; Hein, James R.; Saito, Mak A.; Burton, Kevin W.; Halliday, Alex N.; Nielsen, Sune G.

    2015-01-01

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe−Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface. PMID:25605900

  1. Deeply Virtual Exclusive Processes and Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Hyde, Charles E.; Guidal, Michel; Radyushkin, Anatoly V.

    2011-05-01

    The goal of the comprehensive program in deeply virtual exclusive scattering at Jefferson Lab is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the generalized parton distributions (GPDs) of the target nucleus. Cross section measurements of the deeply virtual Compton scattering (DVCS) reaction ep → epγ in Hall A support the QCD factorization of the scattering amplitude for Q2 >= 2 GeV2. Quasi-free neutron-DVCS measurements on the deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,e'pγ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the Jefferson Lab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The ρ and ω channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the ϕ-production channel is dominated by the gluon distribution.

  2. Supercooling of the normal state of a type I superconductor in the presence of surface superconductivity

    SciTech Connect

    Berezin, V. A. Khlyustikov, I. N.

    2009-05-15

    Supercooling of the normal state of lead single crystals is studied experimentally in the range of surface superconductivity. The supercooling field is plotted on the phase diagram of the superconductor. The experimental data are compared with the results of theoretical calculations.

  3. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Khani, Abbas; Moharramipour, Saeid

    2010-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a worldwide apple pest, is classified as a freeze-intolerant organism and one of the most cold-tolerant pests. The objectives of this study were to examine the supercooling point of overwintering and non-diapausing larvae of C. pomonella as an index of its cold hardiness, and to assess larval mortality following 24 h exposure to extreme low temperatures ranging from -5 to -25 degrees C. The mean (+/-SE) supercooling point for feeding larvae (third through fifth instars) was -12.4 +/- 1.1 degrees C. The mean supercooling point for cocooned, non-diapausing larvae (i.e., non-feeding stages) decreased as the days that the arvae were cocooned increased and changed between -15.1 +/- 1.2 degrees C for one to two day cocooned arvae and -19.2 +/- 1.8 degrees C for less than five day cocooned larvae. The mean (+/-SE) supercooling point for other non-feeding stages containing pupae and overwintering larvae were -19.9 +/- 1.0 degrees C and -20.2 +/- 0.2 degrees C, respectively. Mean supercooling points of C. pomonella larvae were significantly lower during the winter months than the summer months, and sex had no effect on the supercooling point of C. pomonella larvae. The mortality of larvae increased significantly after individuals were exposed to temperatures below the mean supercooling point of the population. The supercooling point was a good predictor of cold hardiness.

  4. Dendrite growth within supercooled liquid tungsten and tungsten-tantalum isomorphous alloys

    NASA Astrophysics Data System (ADS)

    Hu, L.; Wang, W. L.; Yang, S. J.; Li, L. H.; Geng, D. L.; Wang, L.; Wei, B.

    2017-02-01

    The dendrite growth in both supercooled liquid pure W and binary W-Ta isomorphous alloys has been observed and measured by an electrostatic levitation technique. The liquid W and W-x%Ta (x = 25, 50, 75) alloys were substantially supercooled by up to 733 K (0.2 Tm) and 773 K (0.23TL), respectively. The measured density and the ratio of specific heat to emissivity displayed a linearly increasing tendency versus supercooling. The thermal dendrites in supercooled liquid tungsten achieved a maximum growing velocity of 41.3 m.s-1, and the concurrent recalescence process exhibited Johnson-Mehl-Avrami type kinetics. Liquid W-Ta alloys showed stronger supercoolability but a lower maximum dendrite growth velocity of only 35.2 m.s-1. The dendritic growth kinetics was always characterized by a power function relation to liquid supercooling. The microstructure of equiaxed grains transforms to the well-developed dendrites with the increase of supercooling. The grain refinement effect resulting from dendrite fragmentation took place in a moderate supercooling regime in rapidly solidified W-Ta alloys.

  5. A Database of Supercooled Large Droplet Ice Accretions

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss

    2007-01-01

    A unique, publicly available database regarding supercooled large droplet ice accretions has been developed in NASA Glenn's Icing Research Tunnel. Identical cloud and flight conditions were generated for five different airfoil models. The models chosen represent a variety of aircraft types from the horizontal stabilizer of a large trans-port aircraft to the wings of regional, business, and general aviation aircraft. In addition to the standard documentation methods of 2D ice shape tracing and imagery, ice mass measurements were also taken. This database will also be used to validate and verify the extension of the ice accretion code, LEWICE, into the SLD realm.

  6. A Database of Supercooled Large Droplet Ice Accretions [Supplement

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss

    2007-01-01

    A unique, publicly available database regarding supercooled large droplet (SLD) ice accretions has been developed in NASA Glenn's Icing Research Tunnel. Identical cloud and flight conditions were generated for five different airfoil models. The models chosen represent a variety of aircraft types from the horizontal stabilizer of a large transport aircraft to the wings of regional, business, and general aviation aircraft. In addition to the standard documentation methods of 2D ice shape tracing and imagery, ice mass measurements were also taken. This database will also be used to validate and verify the extension of the ice accretion code, LEWICE, into the SLD realm.

  7. Supercooled water near the Glacier front in Spitsbergen

    NASA Astrophysics Data System (ADS)

    Morozov, E. G.; Marchenko, A. V.; Fomin, Yu. V.

    2015-03-01

    Measurements of temperature and salinity were performed in the immediate vicinity of Paula Glacier in the Rinders Fjord (Spitsbergen) in March 2013. At a distance of 15 m from the glacier, we found water with significantly smaller salinity than the surrounding waters. The water temperature appeared 0.35°C lower than the freezing temperature. This phenomenon is related to the fact that fresh water flows from the glacier to the sea. The freshwater flowing from the glacier appears in the seawater environment with lower temperature and higher salinity and becomes supercooled while ascending to the surface

  8. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  9. Spatial dimension and the dynamics of supercooled liquids

    PubMed Central

    Eaves, Joel D.; Reichman, David R.

    2009-01-01

    Inspired by recent theories that apply ideas from critical phenomena to the glass transition, we have simulated an atomistic model of a supercooled liquid in three and four spatial dimensions. At the appropriate temperatures and density, dynamic density correlation functions in three and four spatial dimensions correspond nearly exactly. Dynamic heterogeneity, quantified through the breakdown of the Stokes–Einstein relationship, is weaker in four dimensions than in three. We discuss this in the context of recent theories for dynamical heterogeneity. Because dimensionality is a crucially important variable, our work adds a stringent test for emerging theories of glassy dynamics. PMID:19706396

  10. Decomposition of supercooled austenite of powder phosphorus steels

    NASA Astrophysics Data System (ADS)

    Antsiferov, V. N.; Oglezneva, S. A.; Shatsov, A. A.

    1999-05-01

    The structure of powder phosphorus steels is investigated. New models of isothermal decomposition of super-cooled austenite are suggested which make it possible to predict the kinetics of the γ→α transformation in the pearlite and bainite temperature ranges. It is shown that mechanical alloying has a favorable effect on the formation of structure in steels. Grain disintegration accelerates the decomposition of austenite mainly due to the growth of the specific surface. At the same time, the contribution of 0.65-1.1% phosphorus additives to the process is low.

  11. A Database of Supercooled Large Droplet Ice Accretions [Supplement

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss

    2007-01-01

    A unique, publicly available database regarding supercooled large droplet (SLD) ice accretions has been developed in NASA Glenn's Icing Research Tunnel. Identical cloud and flight conditions were generated for five different airfoil models. The models chosen represent a variety of aircraft types from the horizontal stabilizer of a large transport aircraft to the wings of regional, business, and general aviation aircraft. In addition to the standard documentation methods of 2D ice shape tracing and imagery, ice mass measurements were also taken. This database will also be used to validate and verify the extension of the ice accretion code, LEWICE, into the SLD realm.

  12. Positronium lifetime in supercooled 1-butanol: Search for polyamorphism

    NASA Astrophysics Data System (ADS)

    Zgardzińska, B.; Paluch, M.; Goworek, T.

    2010-05-01

    Isothermal transformations of supercooled 1-butanol were observed by positron lifetime spectroscopy. Transformation rate is the highest near 150 K, whereas below 140 K it slows down becoming undetectable below 120 K. At the temperature range of 123-135 K the ortho-positronium lifetime achieves the final value which is higher than the one observed for crystalline phase. This is an indication of transition to a new (meta)stable structure, in which the ortho-positronium lifetime and intensity reach values that are intermediate between liquid and crystal phases. Consistency of positron annihilation data with the concept of two coexisting phases is discussed.

  13. Raman spectroscopy of optically levitated supercooled water droplet.

    PubMed

    Suzuki, Hidenori; Matsuzaki, Yoshiki; Muraoka, Azusa; Tachikawa, Maki

    2012-06-21

    By use of an optical trap, we can levitate micrometer-sized drops of purified water and cool them below the melting point free from contact freezing. Raman spectra of the OH stretching band were obtained from those supercooled water droplets at temperatures down to -35 °C. According to the two-state model, an enthalpy change due to hydrogen-bond breaking is derived from temperature dependence of the spectral profile. The isobaric heat capacity calculated from the enthalpy data shows a sharp increase as the temperature is lowered below -20 °C in good agreement with conventional thermodynamic measurements.

  14. Supercooling of Hydrogen on Template Materials to Deterministically Seed Ignition-Quality Solid Fuel Layers

    SciTech Connect

    Shin, S. J.; Zepeda-Ruiz, L. A.; Lee, J. R. I.; Baxamusa, S. H.

    2016-09-01

    In this study, we explored templating effects of various materials for hydrogen (H2 and D2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect within a fill-tube and capsule assembly.

  15. Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Mizuno, Kaoru; Miyaji, Natsuko; Arakawa, Keita; Fujikawa, Seizo

    2006-01-01

    In order to find the possible role of intracellular contents in facilitating the supercooling capability of xylem parenchyma cells, changes in the temperature of supercooling levels were compared before and after the release of intracellular substances from beech xylem parenchyma cells by DTA. Various methods were employed to release intracellular substances from xylem parenchyma cells and all resulted in a reduction of supercooling ability. It was concluded that the reduction of supercooling ability primarily resulted from changes of intracellular conditions, including the release of intracellular contents or their mixing with extracellular solutions, rather than due to changes of cell wall structures. It is therefore suggested that any unidentified intracellular contents may function to facilitate supercooling capability in xylem parenchyma cells.

  16. Xylem Development in Prunus Flower Buds and the Relationship to Deep Supercooling

    PubMed Central

    Ashworth, Edward N.

    1984-01-01

    Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16663523

  17. Relation between the two-body entropy and the relaxation time in supercooled water.

    PubMed

    Gallo, P; Rovere, M

    2015-01-01

    The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time shows a mode coupling theory (MCT) behavior in the region of mild supercooling and a strong behavior in the deep supercooled region. We find here that the two-body entropy is connected to the relaxation time and shows a logarithmic behavior with an apparent asymptotic divergence at the mode coupling crossover temperature. There is also evidence of a change in behavior of the two-body entropy upon crossing from the fragile (hopping-free) state to the strong (hopping-dominated) state of supercooled water, and the relation that connects the two-body entropy and the relxation time in the MCT region no longer holds.

  18. Supercooling of Hydrogen on Template Materials to Deterministically Seed Ignition-Quality Solid Fuel Layers

    SciTech Connect

    Shin, S. J.; Zepeda-Ruiz, L. A.; Lee, J. R. I.; Baxamusa, S. H.

    2016-09-01

    In this study, we explored templating effects of various materials for hydrogen (H2 and D2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect within a fill-tube and capsule assembly.

  19. Supercooling of Hydrogen on Template Materials to Deterministically Seed Ignition-Quality Solid Fuel Layers

    DOE PAGES

    Shin, S. J.; Zepeda-Ruiz, L. A.; Lee, J. R. I.; ...

    2016-09-01

    In this study, we explored templating effects of various materials for hydrogen (H2 and D2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect within a fill-tubemore » and capsule assembly.« less

  20. Successful vitrification of mouse ovaries using less-concentrated cryoprotectants with Supercool X-1000 supplementation.

    PubMed

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; Liu, Guifen; Cheng, Haijian; Wan, Fachun

    2012-02-01

    The purpose of our study was to investigate the feasibility of using less-concentrated cryoprotectants supplemented with ice blocker Supercool X-1000 to vitrify ovarian tissues. Mouse ovaries were cryopreserved in different concentrations of vitrification solution alone or with Supercool X-1000, and fresh non-frozen ovaries were used as control. The proportions of morphological normality of follicles, normal GCs in follicular fluids and developing to blastocysts were higher in 12.5% ethylene glycol (EG) + 12.5% dimethylsulfoxide (DMSO) with Supercool X-1000 than those of treated in 10% EG + 10% DMSO or 15% EG + 15% DMSO alone or with Supercool X-1000. In conclusion, the inclusion of Supercool X-1000 in less-concentrated vitrification solution was effective to improve the efficiency and efficacy of cryopreservation of ovarian tissues.

  1. Polyethylene glycol protects primary hepatocytes during supercooling preservation.

    PubMed

    Puts, C F; Berendsen, T A; Bruinsma, B G; Ozer, Sinan; Luitje, Martha; Usta, O Berk; Yarmush, M L; Uygun, K

    2015-08-01

    Cold storage (at 4°C) offers a compromise between the benefits and disadvantages of cooling. It allows storage of organs or cells for later use that would otherwise quickly succumb to warm ischemia, but comprises cold ischemia that, when not controlled properly, can result in severe damage as well by both similar and unique mechanisms. We hypothesized that polyethylene glycol (PEG) 35 kDa would ameliorate these injury pathways and improve cold primary hepatocyte preservation. We show that reduction of the storage temperature to below zero by means of supercooling, or subzero non-freezing, together with PEG supplementation increases the viable storage time of primary rat hepatocytes in University of Wisconsin (UW) solution from 1 day to 4 days. We find that the addition of 5% PEG 35 kDa to the storage medium prevents cold-induced lipid peroxidation and maintains hepatocyte viability and functionality during storage. These results suggest that PEG supplementation in combination with supercooling may enable a more optimized cell and organ preservation.

  2. Supercooling preservation and transplantation of the rat liver.

    PubMed

    Bruinsma, Bote G; Berendsen, Tim A; Izamis, Maria-Louisa; Yeh, Heidi; Yarmush, Martin L; Uygun, Korkut

    2015-03-01

    The current standard for liver preservation involves cooling of the organ on ice (0-4 °C). Although it is successful for shorter durations, this method of preservation does not allow long-term storage of the liver. The gradual loss of hepatic viability during preservation puts pressure on organ sharing and allocation, may limit the use of suboptimal grafts and necessitates rushed transplantation to achieve desirable post-transplantation outcomes. In an attempt to improve and prolong liver viability during storage, alternative preservation methods are under investigation. For instance, ex vivo machine perfusion systems aim to sustain and even improve viability by supporting hepatic function at warm temperatures, rather than simply slowing down deterioration by cooling. Here we describe a novel subzero preservation technique that combines ex vivo machine perfusion with cryoprotectants to facilitate long-term supercooled preservation. The technique improves the preservation of rat livers to prolong storage times as much as threefold, which is validated by successful long-term recipient survival after orthotopic transplantation. This protocol describes how to load rat livers with cryoprotectants to prevent both intracellular and extracellular ice formation and to protect against hypothermic injury. Cryoprotectants are loaded ex vivo using subnormothermic machine perfusion (SNMP), after which livers can be cooled to -6 °C without freezing and kept viable for up to 96 h. Cooling to a supercooled state is controlled, followed by 3 h of SNMP recovery and orthotopic liver transplantation.

  3. Decoupling of Rotational and Translational Diffusion in Supercooled Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    Edmond, Kazem V.; Elsesser, Mark T.; Hunter, Gary L.; Park, Hyunjoo; Pine, David J.; Weeks, Eric R.

    2012-02-01

    Using high-speed confocal microscopy, we directly observe the three-dimensional rotational dynamics of rigid clusters of microspheres suspended in dense colloidal suspensions. The clusters are highly ordered packings of fluorescently-labeled PMMA particles, fabricated using a recently developed emulsification technique. Our colloidal suspensions serve as an excellent model of hard spheres, perhaps the simplest system with a glass transition, while the clusters probe the system's local rotational and translational dynamics. Far from the colloidal liquid's glass transition, both rotational and translational motion of the clusters are purely Brownian. However, in the liquid's supercooled regime, we observe a decoupling between the two types of motion: as the glass transition is approached, rotational diffusion slows down even more than translational diffusion. The nature of the decoupling is in good agreement with theoretical predictions and experiments with molecular glass formers. Our observation supports the notion that supercooled liquids are not merely liquids with large viscosities but that diffusion takes place by fundamentally changed mechanisms.

  4. Spontaneous freezing of supercooled water under isochoric and adiabatic conditions.

    PubMed

    Prestipino, Santi; Giaquinta, Paolo V

    2013-07-11

    The return of a supercooled liquid to equilibrium usually begins with a fast heating up of the sample which ends when the system reaches the equilibrium freezing temperature. At this stage, the system is still a microsegregated mixture of solid and liquid. Only later is solidification completed through the exchange of energy with the surroundings. Using the IAPWS-95 formulation, we investigate the adiabatic freezing of supercooled water in a closed and rigid vessel, i.e., under thermally and mechanically isolated conditions, which captures the initial stage of the decay of metastable water to equilibrium. To improve realism further, we also account for a fixed amount of foreign gas in the vessel. Under the simplifying assumption that the system is at equilibrium immediately after the nominal freezing temperature has been attained, we determine-as a function of undercooling and gas mole number-the final temperature and pressure of the system, the fraction of ice at equilibrium, and the entropy increase. Assuming a nonzero energy cost for the ice-water interface, we also show that, unless sufficiently undercooled, perfectly isolated pure-water droplets cannot start freezing in the bulk.

  5. Probing Cooperative Motion in Super-Cooled Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Sarangapani, Prasad; Zhu, Y. Elaine

    2008-03-01

    The physics of the glass transition remains inadequately understood despite its broad technological relevance. The anomalous divergence of viscosity without apparent structural change as a liquid is cooled has been attributed to the existence of growing dynamic length scales of ``cooperatively rearranging regions'' (CRR). In this work, we use ultra-fast fluorescence correlation spectroscopy (FCS) combined with high-speed imaging to determine the CRR sizes by measuring single-particle dynamics of tracer nano-particle embedded in super-cooled ``hard-sphere'' colloidal suspensions. Fluorescent poly-(methyl methacrylate) (PMMA) tracer particles of radii ranging from r=0.1-0.4 μm, mixed with plain PMMA particles of radius, r=0.6 μm and bulk volume fraction, φ = 0.38-0.58, serve as excellent probes for changes in the energy barrier landscape of the suspensions of increasing volume fraction and are sensitive to the creation and annihilation of icosahedral order in metastable colloidal fluids. We also find that the correlation length, determined by fluctuation-dissipation relations from the measured auto-correlation functions, shows a dramatic increase in the super-cooled regime until it diverges at φ=0.58.

  6. Polyethylene glycol protects primary hepatocytes during supercooling preservation

    PubMed Central

    Puts, C.F.; Berendsen, T.A.; Bruinsma, B.G.; Ozer, Sinan; Luitje, Martha; Usta, O. Berk; Yarmush, M.L.; Uygun, K.

    2015-01-01

    Cold storage (at 4 °C) offers a compromise between the benefits and disadvantages of cooling. It allows storage of organs or cells for later use that would otherwise quickly succumb to warm ischemia, but comprises cold ischemia that, when not controlled properly, can result in severe damage as well by both similar and unique mechanisms. We hypothesized that polyethylene glycol (PEG) 35 kDa would ameliaorate these injury pathways and improve cold primary hepatocyte preservation. We show that reduction of the storage temperature to below zero by means of supercooling, or subzero non-freezing, together with PEG supplementation increases the viable storage time of primary rat hepatocytes in University of Wisconsin (UW) solution from 1 day to 4 days. We find that the addition of 5% PEG 35 kDa to the storage medium prevents cold-induced lipid peroxidation and maintains hepatocyte viability and functionality during storage. These results suggest that PEG supplementation in combination with supercooling may enable a more optimized cell and organ preservation. PMID:25936340

  7. The Contribution of Constitutional Supercooling to Nucleation and Grain Formation

    NASA Astrophysics Data System (ADS)

    StJohn, D. H.; Prasad, A.; Easton, M. A.; Qian, M.

    2015-11-01

    The concept of constitutional supercooling (CS) including the term itself was first described and discussed qualitatively by Rutter and Chalmers in order to understand the formation of cellular structures during the solidification of tin, and then quantified by Tiller et al. On that basis, Winegard and Chalmers further considered `supercooling and dendritic freezing of alloys' where they described how CS promotes the heterogeneous nucleation of new crystals and the formation of an equiaxed zone. Since then the importance of CS in promoting the formation of equiaxed microstructures in both grain refined and unrefined alloys has been clearly revealed and quantified. This paper describes our current understanding of the role of CS in promoting nucleation and grain formation. It also highlights that CS, on the one hand, develops a nucleation-free zone surrounding each nucleated and growing grain and, on the other hand, protects this grain from readily remelting when temperature fluctuations occur due to convection. Further, due to the importance of the diffusion field that generates CS, recent analytical models are evaluated and compared with a numerical model. A comprehensive description of the mechanisms affecting nucleation and grain formation and the prediction of grain size is presented with reference to the influence of the casting conditions applied during the practical casting of an alloy.

  8. Slow dynamics of a tagged particle in a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Bidhoodi, Neeta; Das, Shankar P.

    2015-12-01

    The ergodicity-nonergodicity (ENE) transition of the self-consistent mode-coupling theory (MCT) is marked by the point at which the time correlation of collective density fluctuations is not zero in the long-time limit. The nonergodic state, reaching beyond the ENE transition of simple MCT, is characterized by a finite shear modulus. The MCT, formulated in the current set of papers, predicts that the single-particle density correlation, unlike the collective density correlation, decays to zero at long times on either side of the ENE transition. The self-diffusion coefficient remains finite. This differs from the existing MCT results in which both collective and single-particle correlations are simultaniously frozen at the ENE transition. We discuss in this paper mechanisms by which a sharp fall in self-diffusion coefficient may occur within the present model. This overdamping or the so-called adiabatic approximation for the supercooled state does not maintain microscopic momentum conservation. Within this approximation, the self-diffusion constant approaches zero at the ENE transition point. This approximate result, which is similar to the prediction of the existing MCT models, further illustrates the process of cage formation with increase of density. At a qualitative level, our analysis shows that the self-diffusion process depends on the structure as well as short-time transport properties of the supercooled liquid. We solve the integral equations for the nonergodicity parameters to analyze the full implications of the adiabatic approximation.

  9. On the mechanism of reorientational and structural relaxation in supercooled liquids: the role of border dynamics and cooperativity.

    PubMed

    Kim, Joohyun; Keyes, T

    2004-09-01

    Molecular dynamics simulation and analysis based upon the many-body potential energy landscape (PEL) are employed to characterize single molecule reorientation and structural relaxation, and their interrelation, in deeply supercooled liquid CS(2). The rotational mechanism changes from small-step Debye diffusion to sudden large angle reorientation (SLAR) as the temperature falls below the mode-coupling temperature T(c). The onset of SLAR is explained in terms of the PEL; it is an essential feature of low-T rotational dynamics, along with the related phenomena of dynamic heterogeneity and the bifurcation of slow and fast relaxation processes. A long trajectory in which the system is initially trapped in a low energy local minimum, and eventually escapes, is followed in detail, both on the PEL and in real space. During the trapped period, "return" dynamics occurs, always leading back to the trap. Structural relaxation is identified with irreversible escape to a new trap. These processes lead to weak and strong SLAR, respectively; strong SLAR is a clear signal of structural relaxation. Return dynamics involves small groups of two to four molecules, while a string-like structure composed of all the active groups participates in the escape. It is proposed that, rather than simple, nearly instantaneous, one-dimensional barrier crossings, relaxation involves activation of the system to the complex, multidimensional region on the borders of the basins of attraction of the minima for an extended period.

  10. On the mechanism of reorientational and structural relaxation in supercooled liquids: The role of border dynamics and cooperativity

    NASA Astrophysics Data System (ADS)

    Kim, Joohyun; Keyes, T.

    2004-09-01

    Molecular dynamics simulation and analysis based upon the many-body potential energy landscape (PEL) are employed to characterize single molecule reorientation and structural relaxation, and their interrelation, in deeply supercooled liquid CS2. The rotational mechanism changes from small-step Debye diffusion to sudden large angle reorientation (SLAR) as the temperature falls below the mode-coupling temperature Tc. The onset of SLAR is explained in terms of the PEL; it is an essential feature of low-T rotational dynamics, along with the related phenomena of dynamic heterogeneity and the bifurcation of slow and fast relaxation processes. A long trajectory in which the system is initially trapped in a low energy local minimum, and eventually escapes, is followed in detail, both on the PEL and in real space. During the trapped period, "return" dynamics occurs, always leading back to the trap. Structural relaxation is identified with irreversible escape to a new trap. These processes lead to weak and strong SLAR, respectively; strong SLAR is a clear signal of structural relaxation. Return dynamics involves small groups of two to four molecules, while a string-like structure composed of all the active groups participates in the escape. It is proposed that, rather than simple, nearly instantaneous, one-dimensional barrier crossings, relaxation involves activation of the system to the complex, multidimensional region on the borders of the basins of attraction of the minima for an extended period.

  11. Exchange of deeply trapped and interstitial hydrogen in silicon

    SciTech Connect

    Tuttle, B.; Van de Walle, C.G.; Adams, J.B.

    1999-02-01

    Using {ital ab initio} density-functional calculations, we examine possible exchange mechanisms between an interstitial hydrogen atom and a deeply bound H at a silicon-hydrogen bond. We determine a low-energy pathway for exchange, which involves an intermediate, metastable {equivalent_to}SiH{sub 2} complex with both hydrogen atoms strongly bound to the silicon atom. The energy barrier for the exchange process is E{sub ex}{lt}0.2 eV, consistent with observations of hydrogen-deuterium exchange in a-Si:H(D) films. {copyright} {ital 1999} {ital The American Physical Society}

  12. Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Fei; Sun, Zhan

    2017-08-01

    We present a compact form of the leptonic currents for the computation of the processes involving an initial virtual boson (photon, W± , or Z0). For deeply inelastic scattering, once the azimuthal angle of the plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities (such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse of the symmetry may lead to wrong results.

  13. Explosive fluid transmitted shock method for mining deeply buried coal

    DOEpatents

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  14. Study of α-, β-, and γ-relaxation processes in some supercooled liquids and supercooled plastic crystals

    NASA Astrophysics Data System (ADS)

    Gangasharan, Murthy, S. S. N.

    1993-12-01

    Using dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and other sub-Tg processes, in the supercooled liquids of tritolylphosphate (TTP), 3-bromopentane (3BP), isopropylbenzene (IPB), glucose (GL), and also in the supercooled plastic crystals of cyclohexanol (CHOL) and camphor, over a wide frequency (10-3-106 Hz) and temperature (above 77 K) range. Asymmetric Cole-Cole plots are found at temperatures above Tg in all the systems except camphor where they are very symmetric. TTP and 3BP are found to have weak sub-Tg processes and the corresponding α process do not show significant change in the shape of Cole-Cole plots with temperature. TTP, 3BP, and IPB are found to possess at least two sub-Tg processes (designated as β and γ processes, respectively) and the evidence for any of them to be intermolecular in nature is not strong. The origin of these processes probably lies in a side group and/or segmental rotation which still survive in the glassy state. In both GL and CHOL, the sub-Tg process previously designated as the β process by earlier workers is found to be non-Arrhenius in character representing another glass transition below the main Tg. Calorimetric evidence is provided for the purpose. The origin of this process is probably due to the ``free'' molecules. The origin of the various sub-Tg processes has been discussed in greater detail.

  15. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  16. Seasonal change in the capacity for supercooling by neonatal painted turtles.

    PubMed

    Packard, G C; Packard, M J; McDaniel, L L

    2001-05-01

    Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

  17. Experimental study on the effect of the electric filed on the freezing of the supercooled water

    NASA Astrophysics Data System (ADS)

    Okawa, Seiji; Saito, Akio; Harada, Tadahide

    Effect of the electric field on freezing of supercooled water was investigated, experimentally. The experiment was carried out by charging the electrode whose tip was inserted into supercooled water. It was found that supercooled water freeze instantly by applying the electric charge. There were many papers in the past which dealt with the effect of electrical field on freezing of supercooled water, but with a high voltage, order of a few kV. However, through this experimental study, it was found that the supercooled water can freeze at the voltage less than 100V, if D.C. voltage is applied directly to supercooled water. There was no deformation of water droplet or spark discharge as some papers suggest as a reason for the effect. It was also found that the probability of freezing depends upon the degree of supercooling, value of D.C. voltage applied, size of electrode and the distance between two electrods. The mechanism of this effect was discussed and suggested as follows: High electric field is formed locally due to the existence of surface edge or small projections on the surface. Water molecule which has a polarity is drawn near to the cluster on the surface whose motion is restricted by the existence of electric field. Therefore, embryo can transform to nucleus, instantly.

  18. ASSESSMENT OF SEISMIC ANALYSIS METHODOLOGIES FOR DEEPLY EMBEDDED NPP STRUCTURES.

    SciTech Connect

    XU, J.; MILLER, C.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H. .

    2005-07-01

    Several of the new generation nuclear power plant designs have structural configurations which are proposed to be deeply embedded. Since current seismic analysis methodologies have been applied to shallow embedded structures (e.g., ASCE 4 suggest that simple formulations may be used to model embedment effect when the depth of embedment is less than 30% of its foundation radius), the US Nuclear Regulatory Commission is sponsoring a program at the Brookhaven National Laboratory with the objective of investigating the extent to which procedures acceptable for shallow embedment depths are adequate for larger embedment depths. This paper presents the results of a study comparing the response spectra obtained from two of the more popular analysis methods for structural configurations varying from shallow embedment to complete embedment. A typical safety related structure embedded in a soil profile representative of a typical nuclear power plant site was utilized in the study and the depths of burial (DOB) considered range from 25-100% the height of the structure. Included in the paper are: (1) the description of a simplified analysis and a detailed approach for the SSI analyses of a structure with various DOB, (2) the comparison of the analysis results for the different DOBs between the two methods, and (3) the performance assessment of the analysis methodologies for SSI analyses of deeply embedded structures. The resulting assessment from this study has indicated that simplified methods may be capable of capturing the seismic response for much deeper embedded structures than would be normally allowed by the standard practice.

  19. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  20. Micro mold filling kinetics of metallic glasses in supercooled liquid state

    NASA Astrophysics Data System (ADS)

    Ma, J.; Huo, L. S.; Zhao, D. Q.; Wang, W. H.

    2013-03-01

    The unique thermoplastic forming ability of metallic glasses in their supercooled liquid state makes them the ideal embossing materials for miniature fabrication. However, the understanding and controlling of micro filling process that is crucial for miniature fabrication and their applications remain fundamental, yet presently unresolved issues. Here, the mold filling kinetics of a model Pd-based metallic glass in supercooled liquid state is studied using different Si micro molds with different channels. A universal kinetic equation, which can describe the filling kinetics of viscous metallic supercooled liquid in micro molds with irregular shapes, is obtained.

  1. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  2. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  3. A limit of stability in supercooled liquid clusters

    NASA Astrophysics Data System (ADS)

    Mendez-Villuendas, Eduardo; Saika-Voivod, Ivan; Bowles, Richard K.

    2007-10-01

    We examine the metastable liquid phase of a supercooled gold nanocluster by studying the free energy landscape using the largest solidlike embryo as an order parameter. Just below freezing, the free energy exhibits a local minimum at small embryo sizes and a maximum at a larger critical embryo size. At T =660K the free energy becomes a monotonically decreasing function of the order parameter as the liquid phase becomes unstable, indicating that we have reached a limit of stability. In contrast to the mean-field theory predictions for a spinodal, the size of the critical embryo remains finite as the limit of stability is approached. We also calculate the rate of nucleation, independently from our free energy calculations, and observe a rapid increase in its temperature dependence when the free energy barrier is on the order of kT. We suggest that this supports the idea that freezing becomes a barrierless process at low temperatures.

  4. Evidence for Anomalous Dynamic Heterogeneities in Isostatic Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Micoulaut, M.; Bauchy, M.

    2017-04-01

    Upon cooling, the dynamics of supercooled liquids exhibits a growing transient spatial distribution of relaxation times that is known as dynamic heterogeneities. The relationship between this now well-established crucial feature of the glass transition and some underlying liquid properties remains challenging and elusive in many respects. Here we report on computer simulations of liquids with a changing network structure (densified silicates), and show that there is a deep and important link between the mechanical nature characterized by topological constraints and the spatial extent of such fluctuations. This is not only revealed by a maximum in the dynamic correlation length ξ4 for fluctuations when the liquid becomes isostatically rigid, but also by a contraction of the volume of relaxing structural correlations upon the onset of stressed rigidity.

  5. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  6. Correlation between supercooled liquid relaxation and glass Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Sun, Qijing; Hu, Lina; Zhou, Chao; Zheng, Haijiao; Yue, Yuanzheng

    2015-10-01

    We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson's ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson's ratio v generally increases with an increase in the ratio r and this relation can be described by the empirical function v = 0.5 - A*exp(-B*r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation lies in the heredity of the structural heterogeneity from liquid to glass. This work gives insights into both the microscopic mechanism of glass deformation through the SL dynamics and the complex structural evolution during liquid-glass transition.

  7. Substrate effects on glass formation in simple monatomic supercooled liquids

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Thoa, Dao Kim; Odagaki, Takashi; Qui, Le Ngoc

    2015-02-01

    Glass formation in simple monatomic supercooled liquids on substrate is studied via molecular dynamics simulations. We find that glass formation in thin films on substrate exhibits a 'heterogeneous' behavior, i.e. solidlike atoms initiate/enhance simultaneously in the near substrate region and in the interior of the system, then solidlike domain grows outward to the free surface. Substrate causes strong layering of the near substrate region of liquid and glass. Layering is enhanced with decreasing temperature and layering region exhibits a glassy behavior instead of crystalline one. We find that structure and dynamics of liquid and glass in the near substrate region is different from those of the remaining part of thin films. This means that thin films formed on substrate can be divided into three distinct parts: near substrate region, interior and free surface region. We find a significant amount of liquidlike atoms even at T

  8. Anomalies in, and crystallization of supercooled water and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    1984-03-01

    This report summarizes research work performed under ONR auspices during the period 1978-1983. Thermodynamic studies of pure water and various aqueous solutions containing simple molecular second components such as H2O2N2H4 and formamide have been performed at temperatures down to -120 C, in order to perform extrapolations to obtain properties of normal water, i.e. water free from anomalous structure fluctuations. Properties studied have been heat capacity, expansivity and compressibility. On certain of these solutions, viscosity and also dielectric relaxation studies have been performed. Spectroscopic measurements in both the far infrared, and the near infrared, have yielded information on vibrational modes and characteristic hydrogen bonding structures. All together these measurements have done much to elucidate the anomalous behavior of water in the supercooled regime.

  9. Ice VI freezing of meat: supercooling and ultrastructural studies.

    PubMed

    Molina-García, Antonio D; Otero, Laura; Martino, Miriam N; Zaritzky, Noemí E; Arabas, Jacek; Szczepek, Janusz; Sanz, Pedro D

    2004-03-01

    While "classical" freezing (to ice I) is disruptive to the microstructure of meat, freezing to ice VI has been found to preserve it. Ice VI freeze-substitution microscopy showed no traces of structural alteration on muscle fibres compared with the extensive damage caused by ice I freezing. The different signs of the freezing volume changes associated with these two ice phases is the most likely explanation for the above effects. Ice VI exists only at high pressure (632.4-2216 MPa) but can be formed and kept at room temperature. It was found that its nucleation requires a higher degree of supercooling than ice I freezing does, both for pure water and meat. Monitoring of the freezing process (by temperature and/or pressure measurements) is, thus, essential. The possible applications of ice VI freezing for food and other biological materials and the nucleation behaviour of this ice phase are discussed.

  10. Correlation between supercooled liquid relaxation and glass Poisson's ratio.

    PubMed

    Sun, Qijing; Hu, Lina; Zhou, Chao; Zheng, Haijiao; Yue, Yuanzheng

    2015-10-28

    We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson's ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson's ratio v generally increases with an increase in the ratio r and this relation can be described by the empirical function v = 0.5 - A*exp(-B*r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation lies in the heredity of the structural heterogeneity from liquid to glass. This work gives insights into both the microscopic mechanism of glass deformation through the SL dynamics and the complex structural evolution during liquid-glass transition.

  11. NMR spectroscopy of RNA duplexes containing pseudouridine in supercooled water.

    PubMed

    Schroeder, Kersten T; Skalicky, Jack J; Greenbaum, Nancy L

    2005-07-01

    We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as -18 degrees C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal base pairs and the imino proton of a non-base-paired pseudouridine in a duplex representing the eukaryotic pre-mRNA branch site helix. Analysis of the temperature dependence of chemical shift changes (thermal coefficients) for imino protons corroborated hydrogen bonding patterns observed in the NMR-derived structural model of the branch site helix. The ability to observe non-base-paired imino protons of RNA is of significant value in structure determination of RNA motifs containing loop and bulge regions.

  12. The microscopic pathway to crystallization in supercooled liquids

    PubMed Central

    Russo, John; Tanaka, Hajime

    2012-01-01

    Despite its fundamental and technological importance, a microscopic understanding of the crystallization process is still elusive. By computer simulations of the hard-sphere model we reveal the mechanism by which thermal fluctuations drive the transition from the supercooled liquid state to the crystal state. In particular we show that fluctuations in bond orientational order trigger the nucleation process, contrary to the common belief that the transition is initiated by density fluctuations. Moreover, the analysis of bond orientational fluctuations shows that these not only act as seeds of the nucleation process, but also i) determine the particular polymorph which is to be nucleated from them and ii) at high density favour the formation of fivefold structures which can frustrate the formation of crystals. These results can shed new light on our understanding of the relationship between crystallization and vitrification. PMID:22792437

  13. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  14. Intermolecular vibrations and fast relaxations in supercooled ionic liquids

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauro C. C.

    2011-06-01

    Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ω < 100 cm-1) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (˜19 Å) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.

  15. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  16. Anomalies in bulk supercooled water at negative pressure.

    PubMed

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A; Aragones, Juan L; Abascal, José L F; Valeriani, Chantal; Caupin, Frédéric

    2014-06-03

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure.

  17. Phase metastability and supercooled metastable state of diundecanoylphosphatidylethanolamine bilayers.

    PubMed

    Xu, H; Stephenson, F A; Lin, H N; Huang, C H

    1988-08-04

    Aqueous dispersons of L-alpha-phosphatidylethanolamine (PE) with identical saturated acyl chains are known to exhibit gel-state metastability. It is also known that the metastability in PE becomes more pronounced with decreasing acyl chain-length. In an attempt to study the metastable phase behavior of PE, we have synthesized diundecanoylphosphatidylethanolamine (diC11PE) and examined its polymorphic phase behavior. A single endothermic transition at 38 degrees C is detected between 10 and 55 degrees C by DSC for the nonheated sample of diC11PE in excess water. An immediate second heating scan done after cooling slowly of the same sample from the liquid-crystalline state shows a smaller endothermic transition at a lower temperature, 18 degrees C. However, the high-temperature transition at 38 degrees C can be detected, if the sample which has been heated above 38 degrees C is quench cooled from the liquid-crystalline to a temperature between 18 and 38 degrees C. Furthermore, two endothermic transitions at 18 and 38 degrees C and an exothermic transition at 19 degrees C are recorded for diC11PE after quench supercooling of the sample from the liquid-crystalline state to an appropriate temperature below 10 degrees C. The gel-state metastability of diC11PE can be most appropriately explained in terms of changes in interbilayer headgroup-headgroup interactions. It is suggested that the kinetically trapped supercooled metastable state may be a multilamellar structure with melted acyl chains but with strong interbilayer headgroup-headgroup interactions.

  18. Dynamical Instability Causes the Demise of a Supercooled Tetrahedral Liquid

    NASA Astrophysics Data System (ADS)

    Gautam, Arvind Kumar; Pingua, Nandlal; Goyal, Aashish; Apte, Pankaj A.

    2017-09-01

    We investigate the relaxation mechanism of a supercooled tetrahedral liquid at its limit of stability using isothermal isobaric ( NPT) Monte Carlo simulations. In similarity with systems which are far from equilibrium but near the onset of jamming (O'Hern et al. in Phys Rev Lett 93:165702, 2004), we find that the relaxation is characterized by two time-scales: the decay of long-wavelength (slow) fluctuations of potential energy is controlled by the slope [partial (G/N)/partial φ ] of the Gibbs free energy ( G) at a unique value of per particle potential energy φ = φ _{mid}. The short-wavelength (fast) fluctuations are controlled by the bath temperature T. The relaxation of the supercooled liquid is initiated with a dynamical crossover after which the potential energy fluctuations are biased towards values progressively lesser than φ _{mid}. The dynamical crossover leads to the change of time-scale, i.e., the decay of long-wavelength potential energy fluctuations (intermediate stage of relaxation). Because of the condition [partial ^2 (G/N)/partial φ ^2 = 0] at φ = φ _{mid}, the slope [partial (G/N)/partial φ ] has a unique value and governs the intermediate stage of relaxation, which ends just after the crossover. In the subsequent stage, there is a relatively rapid crystallization due to lack of long-wavelength fluctuations and the instability at φ _{mid}, i.e., the condition that G decreases as configurations with potential energies lower than φ _{mid} are accessed. The dynamical crossover point and the associated change in the time-scale of fluctuations is found to be consistent with the previous studies.

  19. Intermolecular vibrations and fast relaxations in supercooled ionic liquids.

    PubMed

    Ribeiro, Mauro C C

    2011-06-28

    Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ω < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (∼19 Å) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.

  20. Anomalies in bulk supercooled water at negative pressure

    PubMed Central

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric

    2014-01-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177

  1. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team

    2016-06-01

    This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)

  2. Optical properties of the pseudogap state in deeply underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Pound, Adam; Carbotte, Jules; Nicol, Elisabeth

    2011-03-01

    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome in the phase diagram. We show that this observation is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. Within this model, we analyze the three elements that cause the overall reduction in optical conductivity in the approach to the Mott insulating state: a Gutzwiller factor associated with increased correlations, which causes a reduction in the coherent part of the carrier Green's function; a shrinking of the Fermi surface defining the hole Luttinger contours; and an increase in optical effective mass. We show that each of these elements yields qualitative agreement with various experimental observations. Finally, we show how the increased magnitude of the pseudogap at low doping modifies the microwave conductivity and the Wiedemann-Franz law.

  3. Open Effective Field Theories from Deeply Inelastic Reactions

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Hammer, Hans-Werner; Lepage, G. Peter

    2017-01-01

    Effective field theories have often been applied to systems with inelastic reactions that produce particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply inelastic reactions have been taken into account in previous work by adding local anti-Hermitian terms to the effective Hamiltonian density. We show that an additional modification is required in equations governing the density matrix when multi-particle states are considered. We define an effective density matrix by tracing out states containing high-momentum particles, and show that it satisfies a Lindblad equation, with Lindblad operators determined by the anti-Hermitian terms in the effective Hamiltonian density. This research was supported in part by the Department of Energy, the National Science Foundation, and the Simons Foundation.

  4. Roles of cell walls and intracellular contents in supercooling capability of xylem parenchyma cells of boreal trees.

    PubMed

    Kasuga, Jun; Endoh, Keita; Yoshiba, Megumi; Taido, Ippei; Arakawa, Keita; Uemura, Matsuo; Fujikawa, Seizo

    2013-05-01

    The supercooling capability of xylem parenchyma cells (XPCs) in boreal hardwood species differs depending not only on species, but also season. In this study, the roles of cell walls and intracellular contents in supercooling capability of XPCs were examined in three boreal hardwood species, Japanese beech, katsura tree and mulberry, whose supercooling capability differs largely depending on species and season. XPCs in these species harvested in winter and summer were treated by rapid freezing and thawing (RFT samples) or by RFT with further washing (RFTW samples) to remove intracellular contents from XPCs in order to examine the roles of cell walls in supercooling. RFT samples were also treated with glucose solution (RFTG samples) to examine roles of intracellular contents in supercooling. The supercooling capabilities of these samples were examined by differential thermal analysis after ultrastructural observation of XPCs by a cryo-scanning electron microscope to confirm effects of the above treatments. XPCs in RFTW samples showed a large reduction in supercooling capability to similar temperatures regardless of species or season. On the other hand, XPCs in RFTG samples showed a large increase in supercooling capability to similar temperatures regardless of species or season. These results indicate that although cell walls have an important role in maintenance of supercooling, change in supercooling capability of XPCs is induced by change in intracellular contents, but not by change in cell wall properties.

  5. Supercooling and the Mpemba effect: When hot water freezes quicker than cold

    NASA Astrophysics Data System (ADS)

    Auerbach, David

    1995-10-01

    Temperature measurements taken near vessel walls show that initially hot water may well begin to freeze quicker than cold. This is not, as previously surmised, due to the cooling history of the water (e.g., air expulsion during heating). Rather, supercooling virtually always takes place. On those occasions where the cold water supercools sufficiently more than the hot the Mpemba scenario is the following: The hot water supercools, but only slightly, before spontaneously freezing. Superficially it looks completely frozen. The cold water (in larger volume than that of the hot sample) supercools to a lower local temperature than the hot before it spontaneously freezes. This scenario can occur more often for ambient cooling temperatures between -6 °C and -12 °C.

  6. A new characterization of supercooled clouds below 10,000 feet AGL

    NASA Technical Reports Server (NTRS)

    Masters, C. O.

    1985-01-01

    Icing caused by supercooled clouds below 10,000 feet were characterized with a view toward a change in FAA standards for civil aircraft ice protection standards. Current techniques in cloud physics were employed.

  7. Supercooling capacity and cryoprotectants of overwintering larvae from different populations of Holcocerus hippophaecolus.

    PubMed

    Tian, Bin; Xu, Lili; Zhang, Miao; Feng, Yuqian; Zong, Shixiang

    2016-01-01

    Holcocerus hippophaecolus is the most serious pest occurred in seabuckthorn forest of three north areas. The primary aims of the current study were to explore the physiological mechanisms and adaptability of H. hippophaecolus to low temperatures. Assessing supercooling point, freezing point, and cryoprotectants of different larval instars from three different populations. Supercooling capacity of larvae from the 8-13 instar groups was relatively independent of temperature and other indicators such as latitude. Larvae from the 14-16 instar groups were sensitive to temperature and latitude, with generally lower limits and a wider range of SCPs than those of the other instar groups. For each population, the differences in the supercooling capacity of different instar stages for the identical period were not significant. The metabolism of fat and glycogen might not be the primary factors affecting the supercooling capacity.

  8. Temperature measurement of supercooled droplet in icing phenomenon by means of dual-luminescent imaging

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Morita, K.; Mamori, H.; Fukushima, N.; Yamamoto, M.

    2017-08-01

    The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.

  9. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  10. Indoor Confined Feedlots.

    PubMed

    Grooms, Daniel L; Kroll, Lee Anne K

    2015-07-01

    Indoor confined feedlots offer advantages that make them desirable in northern climates where high rainfall and snowfall occur. These facilities increase the risk of certain health risks, including lameness and tail injuries. Closed confinement can also facilitate the rapid spread of infectious disease. Veterinarians can help to manage these health risks by implementing management practices to reduce their occurrence.

  11. Confinement Aquaculture. Final Report.

    ERIC Educational Resources Information Center

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  12. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.

    PubMed

    Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira

    2014-01-01

    Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as

  13. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades

    PubMed Central

    Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira

    2015-01-01

    Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (−11°C) to December (−20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at −5°C for 1–14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (−20°C), a longer storage period (1–7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2–5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice

  14. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).

    PubMed

    Takata, Naoki; Kasuga, Jun; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Xylem parenchyma cells (XPCs) in larch adapt to subfreezing temperatures by deep supercooling, while cortical parenchyma cells (CPCs) undergo extracellular freezing. The temperature limits of supercooling in XPCs changed seasonally from -30 degrees C during summer to -60 degrees C during winter as measured by freezing resistance. Artificial deacclimation of larch twigs collected in winter reduced the supercooling capability from -60 degrees C to -30 degrees C. As an approach to clarify the mechanisms underlying the change in supercooling capability of larch XPCs, genes expressed in association with increased supercooling capability were examined. By differential screening and differential display analysis, 30 genes were found to be expressed in association with increased supercooling capability in XPCs. These 30 genes were categorized into several groups according to their functions: signal transduction factors, metabolic enzymes, late embryogenesis abundant proteins, heat shock proteins, protein synthesis and chromatin constructed proteins, defence response proteins, membrane transporters, metal-binding proteins, and functionally unknown proteins. All of these genes were expressed most abundantly during winter, and their expression was reduced or disappeared during summer. The expression of all of the genes was significantly reduced or disappeared with deacclimation of winter twigs. Interestingly, all but one of the genes were expressed more abundantly in the xylem than in the cortex. Eleven of the 30 genes were thought to be novel cold-induced genes. The results suggest that change in the supercooling capability of XPCs is associated with expression of genes, including genes whose functions have not been identified, and also indicate that gene products that have been thought to play a role in dehydration tolerance by extracellular freezing also have a function by deep supercooling.

  15. Cold Hardiness and Supercooling Capacity in the Overwintering Larvae of the Codling Moth, Cydia pomonella

    PubMed Central

    Khani, Abbas; Moharramipour, Saeid

    2010-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a worldwide apple pest, is classified as a freeze-intolerant organism and one of the most cold-tolerant pests. The objectives of this study were to examine the supercooling point of overwintering and non-diapausing larvae of C. pomonella as an index of its cold hardiness, and to assess larval mortality following 24 h exposure to extreme low temperatures ranging from -5 to -25°C. The mean (±SE) supercooling point for feeding larvae (third through fifth instars) was -12.4 ± 1.1°C. The mean supercooling point for cocooned, non-diapausing larvae (i.e., non-feeding stages) decreased as the days that the arvae were cocooned increased and changed between -15.1 ± 1.2°C for one to two day cocooned arvae and -19.2 ± 1.8°C for less than five day cocooned larvae. The mean (±SE) supercooling point for other non-feeding stages containing pupae and overwintering larvae were -19.9 ± 1.0°C and -20.2 ± 0.2°C, respectively. Mean supercooling points of C. pomonella larvae were significantly lower during the winter months than the summer months, and sex had no effect on the supercooling point of C. pomonella larvae. The mortality of larvae increased significantly after individuals were exposed to temperatures below the mean supercooling point of the population. The supercooling point was a good predictor of cold hardiness. PMID:20673068

  16. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    SciTech Connect

    Gallo, P.; Corradini, D.; Rovere, M.

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  17. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation.

    PubMed

    Wilson, P W; Heneghan, A F; Haymet, A D J

    2003-02-01

    In biological systems, nucleation of ice from a supercooled aqueous solution is a stochastic process and always heterogeneous. The average time any solution may remain supercooled is determined only by the degree of supercooling and heterogeneous nucleation sites it encounters. Here we summarize the many and varied definitions of the so-called "supercooling point," also called the "temperature of crystallization" and the "nucleation temperature," and exhibit the natural, inherent width associated with this quantity. We describe a new method for accurate determination of the supercooling point, which takes into account the inherent statistical fluctuations of the value. We show further that many measurements on a single unchanging sample are required to make a statistically valid measure of the supercooling point. This raises an interesting difference in circumstances where such repeat measurements are inconvenient, or impossible, for example for live organism experiments. We also discuss the effect of solutes on this temperature of nucleation. Existing data appear to show that various solute species decrease the nucleation temperature somewhat more than the equivalent melting point depression. For non-ionic solutes the species appears not to be a significant factor whereas for ions the species does affect the level of decrease of the nucleation temperature.

  18. THE EFFECTS OF FREEZING VERSUS SUPERCOOLING ON VASCULAR CELLS: Implications for Balloon Cryoplasty

    PubMed Central

    Basco, Maria Theresa G; Yiu, Wai-ki; Cheng, Stephen WK; Sumpio, Bauer E.

    2010-01-01

    Background Cryoplasty as treatment for peripheral vascular disease is thought to provide greater long-term patency rates compared to conventional angioplasty although the mechanisms remain unclear. Since smooth muscle cells are intimately involved in restenosis and neointimal hyperplasia and endothelial cells modulate healing after angioplasty, we sought to investigate the effects of supercooling, a phase whereby the cells are below 0C but still in a liquid state and freezing, the phase when the cells become solid, of vascular cells in culture. Method Bovine aortic endothelial cells and smooth muscle cells were supercooled to −10C with or without freezing for 3, 30 or 60 seconds then rewarmed to 37C for 24 hrs. Viability was assessed via trypan blue exclusion while apoptosis was assessed by the TUNEL assay. Results Viability of smooth muscle cells declined 49% after freezing versus supercooling (p<0.05). Endothelial cells maintained greater viability rates. A 19.5% smooth muscle cell apoptotic rate was observed after freezing while smooth muscle cell supercooling yield rates of only 11% (p<0.05). A 4.17% endothelial cell apoptotic rate was observed after freezing while supercooled endothelial cells yield a 1.76% rate (p<0.05). Conclusion Freezing results in decreased viability and increased apoptosis compared to supercooling in both cell lines. Smooth muscle cells appear more susceptible to freezing. The biologic effects of freezing on vascular cells may elucidate the mechanisms behind the enhanced patency after cryoplasty of atherosclerotic lesions. PMID:20417120

  19. The effects of freezing versus supercooling on vascular cells: implications for balloon cryoplasty.

    PubMed

    Basco, Maria Theresa G; Yiu, Wai-Ki; Cheng, Stephen W K; Sumpio, Bauer E

    2010-06-01

    To investigate the effects of supercooling, a phase whereby cells are below 0 degrees C but still in a liquid state, and freezing, the phase when cells become solid, of vascular cells in culture. Bovine aortic endothelial cells and smooth muscle cells were supercooled to -10 degrees C with or without freezing for 3, 30, or 60 seconds and then rewarmed to 37 degrees C for 24 hours. Viability was assessed by means of trypan blue exclusion, and apoptosis was assessed with the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assay. Viability of smooth muscle cells decreased 49% after freezing versus supercooling (P< .05). Endothelial cells maintained greater viability rates. A 19.5% smooth muscle cell apoptotic rate was observed after freezing, whereas smooth muscle cell supercooling yielded rates of only 11% (P< .05). A 4.17% endothelial cell apoptotic rate was observed after freezing, whereas supercooled endothelial cells yielded a 1.76% rate (P< .05). Freezing results in decreased viability and increased apoptosis compared to supercooling in both cell lines. Smooth muscle cells appear more susceptible to freezing. The biologic effects of freezing on vascular cells may elucidate the mechanisms behind the enhanced patency after cryoplasty of atherosclerotic lesions. Copyright (c) 2010 SIR. Published by Elsevier Inc. All rights reserved.

  20. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl.

    PubMed

    Gallo, P; Corradini, D; Rovere, M

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  1. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2014-10-28

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. We construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, ways by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. Our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.

  2. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Schweizer, Kenneth S.

    2014-10-01

    Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. We construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, ways by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. Our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.

  3. Effect of nanoscale confinement on dielectric relaxations in a 3wt.% water-galactose mixture

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2012-04-01

    We studied the effect of nanoscale confinement on dielectric relaxations in a water-galactose mixture with 3 wt.% water content (WGMIX) in the temperature range that covered the supercooled and the glassy states. We used a confining matrix with nanoporous of 3.5 nm, 8 nm, and 18 nm. For pore sizes of 3.5 nm and 8 nm, the α-relaxation process in the confined WGMIX was significantly accelerated compared to that in bulk WGMIX and approached the Johari-Goldstein (JG) β-relaxation process as the pore size decreased. The correlation length predicted by the number of correlation unit theory is an order of a few nanometers and is consistent with our results. In addition, the stretched exponent of the α-relaxation decreased with decreasing as predicted by the coupling model.

  4. Atomic-scale confinement of resonant optical fields.

    PubMed

    Kern, Johannes; Grossmann, Swen; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2012-11-14

    In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices.

  5. Withdrawn: The Dispersion-Confinement Mechanism: Phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea

    NASA Astrophysics Data System (ADS)

    Zarubin, Margarita; Lindemann, Yoav; Genin, Amatzia

    2017-06-01

    An earlier version of this article has been withdrawn: please see Elsevier Policy on Article Withdrawal. Due to a production error, an uncorrected version of this article was published in Progress in Oceanography on April 25 2017 and was withdrawn on May 2nd, 2017. This withdrawal was solely due to an error by the publisher. The authors of the paper bear no responsibility for this withdrawal. The final and corrected version of this paper is available here: We apologize both to the authors of the paper and our readers for any confusion caused by this issue.

  6. From Confinement to Superfluidity?

    NASA Astrophysics Data System (ADS)

    Zakharov, V. I.

    2011-04-01

    We describe a unified picture of confining and deconfined phases of Yang-Mills theories in terms of nonperturbative vacuum defects. The confinement is related to condensation of (magnetic) strings. The phase transition at T = Tc is viewed as change of dimensions, 4d → 3d. Namely, all the defects become time oriented. As a result, percolation of strings becomes percolation of 3d trajectories or, in field theoretic language, condensation of a 3d scalar field. The condensation, in turn, might signal superfluidity of the quark-gluon plasma. The notes are mostly a mini-review. A remark on entanglement and confinement is added.

  7. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  8. Mass gap without confinement

    NASA Astrophysics Data System (ADS)

    Faedo, Antón F.; Mateos, David; Pravos, David; Subils, Javier G.

    2017-06-01

    We revisit a one-parameter family of three-dimensional gauge theories with known supergravity duals. We show that three infrared behaviors are possible. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential; for one limiting value of the parameter the theory flows to an infrared fixed point; and for another limiting value it exhibits both a mass gap and confinement. Theories close to these limiting values exhibit quasi-conformal and quasi-confining dynamics, respectively. Eleven-dimensional supergravity provides a simple, geometric explanation of these features.

  9. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid

    NASA Astrophysics Data System (ADS)

    Leoni, Fabio; Franzese, Giancarlo

    2016-12-01

    We study via molecular-dynamics simulations the thermodynamics of an anomalous fluid confined in a slit pore with one wall structured and attractive and another unstructured and repulsive. We find that the phase diagram of the homogeneous part of the confined fluid is shifted to higher temperatures, densities, and pressures with respect to the bulk, but it can be rescaled on the bulk case. We calculate a moderate increase of mobility of the homogeneous confined fluid that we interpret as a consequence of the layering due to confinement and the collective modes due to long-range correlations. We show that, as in bulk, the confined fluid has structural, diffusion, and density anomalies that order in the waterlike hierarchy, and a liquid-liquid critical point (LLCP). The overall anomalous region moves to higher temperatures, densities, and pressure, and the LLCP displaces to higher temperature compared to bulk. Motivated by experiments, we calculate also the phase diagram not just for the homogeneous part of the confined fluid but for the entire fluid in the pore, and we show that it is shifted toward higher pressures but preserves the thermodynamics, including the LLCP. Because our model has waterlike properties, we argue that in experiments with supercooled water confined in slit pores with a width of >3 nm if hydrophilic and of >1.5 nm if hydrophobic, the existence of the LLCP could be easier to test than in bulk, where it is not directly accessible.

  10. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid.

    PubMed

    Leoni, Fabio; Franzese, Giancarlo

    2016-12-01

    We study via molecular-dynamics simulations the thermodynamics of an anomalous fluid confined in a slit pore with one wall structured and attractive and another unstructured and repulsive. We find that the phase diagram of the homogeneous part of the confined fluid is shifted to higher temperatures, densities, and pressures with respect to the bulk, but it can be rescaled on the bulk case. We calculate a moderate increase of mobility of the homogeneous confined fluid that we interpret as a consequence of the layering due to confinement and the collective modes due to long-range correlations. We show that, as in bulk, the confined fluid has structural, diffusion, and density anomalies that order in the waterlike hierarchy, and a liquid-liquid critical point (LLCP). The overall anomalous region moves to higher temperatures, densities, and pressure, and the LLCP displaces to higher temperature compared to bulk. Motivated by experiments, we calculate also the phase diagram not just for the homogeneous part of the confined fluid but for the entire fluid in the pore, and we show that it is shifted toward higher pressures but preserves the thermodynamics, including the LLCP. Because our model has waterlike properties, we argue that in experiments with supercooled water confined in slit pores with a width of >3 nm if hydrophilic and of >1.5 nm if hydrophobic, the existence of the LLCP could be easier to test than in bulk, where it is not directly accessible.

  11. Mechanical annealing in the flow of supercooled metallic liquid

    SciTech Connect

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-08-07

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr{sub 58.5}Cu{sub 15.6}Al{sub 10.3}Ni{sub 12.8}Nb{sub 2.8}, at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains were performed at the end of glass transition (T{sub g-end} = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model.

  12. Supercooled large drop detection with NASA's Icing Remote Sensing System

    NASA Astrophysics Data System (ADS)

    Serke, David J.; Reehorst, Andrew L.; Politovich, Marcia K.

    2010-10-01

    In-flight icing occurs when aircraft impact supercooled liquid drops. The supercooled liquid freezes on contact and the accreted ice changes a plane's aerodynamic characteristics, which can lead to dangerous loss of control. NASA's Icing Remote Sensing System consists of a multi-channel radiometer, a laser ceilometer and a vertically-pointing Kaband radar, whos fields are merged with internal software logic to arrive at a hazard classification for in-flight icing. The radiometer is used to derive atmospheric temperature soundings and integrated liquid water and the ceilometer and radar are used to define cloud boundaries. The integrated liquid is then distributed within the determined cloud boundaries and layers to arrive at liquid water content profiles, which if present below freezing are categorized as icing hazards. This work outlines how the derived liquid water content and measured Ka-band reflectivity factor profiles can be used to derive a vertical profile of radar-estimated particle size. This is only possible because NASA's system arrives at independent and non-correlated measures of liquid water and reflectivity factor for a given range volume. The size of the drops significantly effect the drop collection efficiency and the location that icing accretion occurs on the craft's superstructure and thus how a vehicle's performance is altered. Large drops, generally defined as over 50 μm in diameter, tend to accrete behind the normal ice protected areas of the leading edge of the wing and other control surfaces. The NASA Icing Remote Sensing System was operated near Montreal, Canada for the Alliance Icing Research Study II in 2003 and near Cleveland, Ohio from 2006 onward. In this study, we present case studies to show how NASA's Icing Remote Sensing System can detect and differentiate between no icing, small drop and large drop in-flight icing hazards to aircraft. This new product provides crucial realtime hazard detection capabilities which improve

  13. Slowing dynamics in supercooled liquids and other soft materials

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan

    The slow structural dynamics displayed by supercooled liquids and the transition to an out-of-equilibrium glass state that they engender are among the most challenging issues in condensed matter physics. This thesis reports experimental studies designed to elucidate central aspects of these slow dynamics and the nature of the glass state. The subjects of these studies include glass forming molecular liquids and other soft materials that have been advanced as model glassy systems such as clay suspensions and block copolymer micelle solutions. The main experimental techniques employed in these investigations have been dielectric susceptibility and neutron scattering. In the first half of this thesis, we report frequency-dependent dielectric susceptibility measurements characterizing the evolution in the dynamical properties, or aging, of two supercooled liquids, sorbitol and xylitol, quenched below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. Implications of these findings for aging in glasses and the nature of Johari-Goldstein relaxation are discussed. Further investigation of the aging in sorbitol reveals that it displays memory strikingly similar to that of a variety of glassy materials, particularly spin glasses. During a temporary stop in cooling, the susceptibility changes with time due to aging. The memory is revealed upon reheating as the susceptibility retraces these changes. To investigate the out-of-equilibrium state of the liquid as it displays this memory, we have employed a set of intricate

  14. Experimental evidence for supercooled brines, viscous liquids, and low temperature perchlorate glasses on Mars

    NASA Astrophysics Data System (ADS)

    Toner, J.; Catling, D. C.; Light, B.

    2013-12-01

    The presence of liquid water on the cold and dry surface of Mars is possible where concentrated salt solutions lower the freezing point of water. The eutectic temperature is the maximum equilibrium freezing point depression possible for a given salt solution, which ranges from near 0°C for carbonates and sulfates, to as low as -75°C for perchlorates. Although eutectic temperatures suggest a lower temperature limit for liquid water on Mars, salt solutions will typically supercool below their eutectic before crystallization occurs. We report on results investigating the magnitude of supercooling and its variation with salt composition and concentration for pure salt solutions and saturated soil solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. We measured supercooling by monitoring solution temperatures during slow cooling and warming experiments. Our results indicate that supercooling is pervasive. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions typically supercool 5-15°C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil solutions, increases in MgCl2 soil solutions, and is similar in NaCl and NaClO4 soil solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the Martian summer. Remarkably, we found that Mg(ClO4)2 and Ca(ClO4)2 solutions never crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120°C. Even if soil is added to the solutions, which will induce crystallization in most salt solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are

  15. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  16. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    This special issue of Journal of Physics: Condensed Matter presents the Proceedings of the Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, held in Pisa from 17-22 September 2006. This was the fourth of a series of workshops on this theme started in 1995 as a joint initiative of the Università di Pisa and the Scuola Normale Superiore. The 2006 edition was attended by about 200 participants from Europe, Asia and the Americas. As for the earlier workshops, the main objective was to bring together scientists from different areas of science, technology and engineering, to comparatively discuss experimental facts and theoretical predictions on the dynamical processes that occur in supercooled fluids and other disordered materials in non-equilibrium states. The underlying conceptual unity of the field provides a common background for the scientific community working in its various areas. In this edition the number of sessions was increased to cover a wider range of topics of general and current interest, in a larger number of stimulating lectures. The core of the workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. The sessions were in sequence devoted to: non-equilibrium dynamics, aging and secondary relaxations, biomaterials, polyamorphism and water, polymer dynamics I, complex systems, pressure-temperature scaling, thin films, nanometre length-scale studies, folded states of proteins and polymer crystals, theoretical aspects and energy landscape approaches, relaxation and heterogeneous dynamics, rheology in fluids and entangled polymers, biopolymers, and polymer dynamics II. We thank the session chairmen and all speakers for the high quality of their contributions. The structure of this issue of the proceedings follows the sequence of the oral presentations in the workshop, complemented by some papers selected from the poster sessions. Two

  17. Double Deeply Virtual Compton Scattering at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Camsonne, Alexandre; Solid Ddvcs Collaboration Collaboration

    2017-01-01

    The Generalized Parton Distributions (GPDs) are a more general formalism englobing the concept of elastic form factor (FF) and parton distributions (PDFs) introducing a third independent variable called skewdness xi in addition to usual x_bj and t variables which are defined for the PDFs. Those distributions thus contain more information than the FF and PDFs allowing to give a more spatial and dynamical description of the nucleon. To measure GPDs one has to measure exclusive reaction. The simplest exclusive reaction is the exclusive production of photons or Deeply Virtual Compton Scattering. One drawback of this measurement is that the real photon constrains the measurement of the GPDs to the line xi =x. The Doubly Virtual Compton Scattering (DDVCS) is the similar process involving a virtual photon in the final state. This virtual photon decays into a dilepton pair allowing some values of xi different than x_bj. High luminosity is required since cross sections are smaller by a factor 100. I will present options to try to measure the DDVCS process particularly in the dimuon channel using the JLab 12 GeV beam.

  18. Deeply discounted medications: Implications of generic prescription drug wars.

    PubMed

    Czechowski, Jessica L; Tjia, Jennifer; Triller, Darren M

    2010-01-01

    To describe the history of generic prescription pricing programs at major pharmacy chains and their potential implications on prescribing, quality of care, and patient safety. Publicly available generic prescription discount program drug lists as of May 1, 2009. Fierce competition among major pharmacy chains such as Walgreens, CVS, and Walmart has led to a generic prescription pricing war with unclear public health implications. Introduced in 2006, currently 7 of the 10 largest pharmacy chains advertise a version of a deeply discounted medication (DDM) program, accounting for more than 25,000 locations nationally. By early 2008, almost 70 million Americans had used these programs. Although DDM programs lower drug costs for many patients, DDM formularies include potentially ineffective or harmful medications, have the potential to influence physician prescribing behavior, and may impair pharmacists' ability to review complete drug-dispensing records. DDMs are widespread but have the potential for unintended consequences on patients, providers, and the health care system. A systematic review of DDMs needs to evaluate the clinical, economic, and system-level implications of such programs.

  19. Stereotactic radiosurgery of deeply seated low grade gliomas.

    PubMed

    Barcia, J A; Barcia-Salorio, J L; Ferrer, C; Ferrer, E; Algás, R; Hernández, G

    1994-01-01

    The authors report the results of a series of 16 cases of low-grade gliomas in whom radiosurgery was performed. This series started in 1977. All the tumours received a single radiosurgical session (with a mean dose of 21.7 Gy, 5-10 mm. collimator; one patient received two sessions and in another patient two different targets were irradiated in the same session). Prior to radiosurgery, six patients received conventional external fractionated radiotherapy, with two lateral fields of up to 10 x 10 cm. and a mean dose of 55.1 Gy and another six patients with tumours less than 5 cm. in diameter, received stereotactic radiotherapy using four fields of up to 5 x 5 cm. and a mean dose of 53.1 Gy. In both cases, conventional fractionation was used, giving a dose of 1.8 to 2 Gy/day. The tumour disappeared in 8 cases (50%) and shunk or ceased its growth in 5 additional cases (31%). In 3 cases of brainstem gliomas in which the clinical condition was previously very poor there was no evolutional change and the patients eventually died. We conclude that radiosurgery is effective in the treatment of deeply seated low-grade gliomas, where it may become the treatment of choice in the absence of other more definitive choices.

  20. Deeply virtual Compton Scattering cross section measured with CLAS

    SciTech Connect

    Guegan, Baptistse

    2014-09-01

    The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58 and 0.09 < -t < 2.0 GeV2. In this paper, we show preliminary results of unpolarized cross sections and of polarized cross section differences for the DVCS channel.

  1. K- and p¯ deeply bound atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    1999-12-01

    The strongly absorptive optical potentials Vopt which have been deduced from the strong-interaction level shifts and widths in X-ray spectra of K- and p¯ atoms produce effective repulsion leading to substantial suppression of the atomic wave functions within the nucleus. The width of atomic levels then saturates as function of the strength of Im Vopt. We find that `deeply bound' atomic states, which are inaccessible in the atomic cascade process, are generally narrow, due to this mechanism, over the entire periodic table and should be reasonably well resolved. These predictions are insensitive to Vopt, provided it was fitted to the observed X-ray spectra. In contrast, the nuclear states bound by Vopt are very broad and their spectrum depends sensitively on details of Vopt. We discuss production reactions for K- atomic states using slow K- mesons from the decay of the φ(1020) vector meson, and the ( p¯,p ) reaction for p¯ atomic states. Rough cross section estimates are given.

  2. Deeply Virtual Compton Scattering Cross-Sections with CLAS

    NASA Astrophysics Data System (ADS)

    Girod, Francois-Xavier; CLAS Collaboration

    2013-10-01

    The exclusive electroproduction of a photon off a nucleon provides three-dimensional information on the nucleon structure. This reaction proceeds via the Bethe-Heitler (BH) process (photon emitted by electron), and the Deeply Virtual Compton Scattering (DVCS) process (photon emitted by proton). BH and DVCS interfere at the amplitude level. In the Bjorken regime of large Q2 at fixed xB, and for - t /Q2 < 1 , the amplitude factorizes, the non-perturbative part described by Generalized Parton Distributions (GPDs). GPDs are the Fourier transform of the spatial distributions of partons in the transverse plane at fixed longitudinal momentum fraction xB. The BH and DVCS contributions create harmonic dependencies of observables as functions of the angle between the leptonic and hadronic planes, which are then used to extract GPDs. The BH/DVCS cross-sections on unpolarized hydrogen target have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) in a dedicated experiment, at a polarized beam of energy 5.75 GeV, in the valence region 0 . 1

  3. Confinement and the Pomeron

    SciTech Connect

    White, A.R.

    1989-09-25

    The importance of confinement for obtaining a unitary high-energy limit for QCD is discussed. Minijets'' are argued to build up non-unitary behavior{endash}when k{sub T} {gt} {Lambda} is imposed. For minijets to mix with low k{sub T} Pomeron Field Theory describing confinement, and give consistent asymptotic behavior, new quarks'' must enter the theory above the minijet transverse momentum scale. The Critical Pomeron is the resulting high-energy limit. 22 refs.

  4. Supercooling points of Lysiphlebus testaceipes and its host Schizaphis graminum.

    PubMed

    Jones, Douglas B; Giles, Kristopher L; Elliott, Norman C

    2008-10-01

    Supercooling points (SCPs) were measured for various life stages of male and female Lysiphlebus testaceipes (Cresson) parasitoids, along with mummies and its aphid host, Schizaphis graminum (Rondani). Some parasitoids were acclimated (4 h at 10 degrees C before cooling down to the SCP) to determine whether this could significantly lower the SCP. Acclimation did not improve SCPs for L. testaceipes. An inverse relationship between age of the adult parasitoid and its SCP was detected. Nonacclimated male and female parasitoids older than 12 h after emergence spontaneously froze at the warmest mean temperatures (-20.32 +/- 1.32 and -22.55 +/- 0.62 degrees C [SE], respectively). Younger female adult parasitoids (<6 h after emergence) and mummies had mean SCPs less than -26 degrees C. The SCP for the greenbug host was slightly warmer at -25.98 +/- 0.10 degrees C. Knowledge of SCPs for L. testaceipes and its host S. graminum help provide insights about their ability to successfully function throughout the winter in the southern Great Plains.

  5. Dynamics of ice drop explosions in supercooled clouds

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Wildeman, Sander; Sterl, Sebastian; Sun, Chao

    2016-11-01

    The rate at which ice particles are produced in the cold top of natural clouds is crucial in predicting whether a cloud will finally develop precipitation. It has been speculated that ice particles could multiply through freezing and subsequent bursting of supercooled cloud droplets. Here we present high-speed footage of cracking and explosive bursting of spherical water droplets that freeze radially inwards under carefully controlled conditions. We model the processes of freezing, the stress build up in the ice shell, and the fast dynamics following the crack formation. This allows us to predict the time it takes for a freezing droplet to explode and the energy released in this event as a function of the size of the droplet and the temperature of the surroundings. Both predictions are in good agreement with our experiments. The models also predict a minimum droplet radius of approximately 50 μm below which ice explosions are unlikely to occur. This finding has direct consequences in the modeling of cloud microphysics, as the droplet sizes in clouds generally fall in this critical range. Furthermore, we identify several mechanisms, besides the final explosion, by which a freezing drop can shed ice particles. This is important for the formation of ice nucleation avalanches.

  6. Source of Electrofreezing of Supercooled Water by Polar Crystals.

    PubMed

    Belitzky, Alik; Mishuk, Eran; Ehre, David; Lahav, Meir; Lubomirsky, Igor

    2016-01-07

    Polar crystals, which display pyroelectricity, have a propensity to elevate, in a heterogeneous nucleation, without epitaxy, the freezing temperature of supercooled water (SCW). Upon cooling, such crystals accumulate an electric charge at their surfaces, which creates weak electric fields,

  7. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  8. Liquid-liquid phase transition in supercooled silicon.

    PubMed

    Sastry, Srikanth; Austen Angell, C

    2003-11-01

    Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other 'tetrahedral network' liquids that show density maxima. Proper study of the 'liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.

  9. Structural evolution in the aging process of supercooled colloidal liquids.

    PubMed

    Kawasaki, Takeshi; Tanaka, Hajime

    2014-06-01

    When a liquid is rapidly quenched to a temperature below the glass-transition point, it is driven out of equilibrium; it then slowly relaxes to a (quasi)equilibrium state. This slow relaxation process is called aging. By definition, any glasses are inevitably in the process of aging and actually slowly evolving with time. Thus the study of aging phenomena is of fundamental importance for understanding not only the nonequilibrium nature of the glass transition, but also the stability of glassy materials. Here we consider aging after a rather shallow quench, for which a system is still able to reach (metastable) equilibrium. By using polydisperse colloidal liquids as a model, we show the validity of dynamical scaling that there is only one relevant length scale not only for a quasiequilibrium supercooled state but also for a nonequilibrium process of aging, which is reminiscent of dynamical critical phenomena. Our finding indicates that the aging toward (metastable) equilibrium may be regarded as the growth process of critical-like fluctuations of static order associated with low-free-energy configurations, further suggesting that this ordering is the origin of cooperative slow dynamics in the systems studied. The generality of this statement for other glass-forming systems remains for a future study.

  10. Surface-induced crystallization in supercooled tetrahedral liquids.

    PubMed

    Li, Tianshu; Donadio, Davide; Ghiringhelli, Luca M; Galli, Giulia

    2009-09-01

    Surfaces have long been known to have an intricate role in solid-liquid phase transformations. Whereas melting is often observed to originate at surfaces, freezing usually starts in the bulk, and only a few systems have been reported to exhibit signatures of surface-induced crystallization. These include assembly of chain-like molecules, some liquid metals and alloys and silicate glasses. Here, we report direct computational evidence of surface-induced nucleation in supercooled liquid silicon and germanium, and we illustrate the crucial role of free surfaces in the freezing process of tetrahedral liquids exhibiting a negative slope of their melting lines (dT/dP|coexist<0). Our molecular dynamics simulations show that the presence of free surfaces may enhance the nucleation rates by several orders of magnitude with respect to those found in the bulk. Our findings provide insight, at the atomistic level, into the nucleation mechanism of widely used semiconductors, and support the hypothesis of surface-induced crystallization in other tetrahedrally coordinated systems, in particular water in the atmosphere.

  11. Structural correlations and cooperative dynamics in supercooled liquids.

    PubMed

    Singh, Murari; Agarwal, Manish; Dhabal, Debdas; Chakravarty, Charusita

    2012-07-14

    The relationships between diffusivity and the excess, pair and residual multiparticle contributions to the entropy are examined for Lennard-Jones liquids and binary glassformers, in the context of approximate inverse power law mappings of simple liquids. In the dense liquid where diffusivities are controlled by collisions and cage relaxations, Rosenfeld-type excess entropy scaling of diffusivities is found to hold for both crystallizing as well as vitrifying liquids. The crucial differences between the two categories of liquids emerge only when local cooperative effects in the dynamics result in significant caging effects in the time-dependent behaviour of the single-particle mean square displacement. In the case of glassformers, onset of such local cooperativity coincides with onset of deviations from Rosenfeld-type excess entropy scaling of diffusivities and increasing spatiotemporal heterogeneity. In contrast, for two- and three-dimensional liquids with a propensity to crystallise, the onset of local cooperative dynamics is sufficient to trigger crystallization provided that the liquid is sufficiently supercooled that the free energy barrier to nucleation of the solid phase is negligible. The state points corresponding to onset of transient caging effects can be associated with typical values, within reasonable bounds, of the excess, pair, and residual multiparticle entropy as a consequence of the isomorph-invariant character of the excess entropy, diffusivity and related static and dynamic correlation functions.

  12. Plasticity in the Supercooled Liquid Region of Bulk Metallic Glasses

    SciTech Connect

    Nieh, T G; Wadsworth, J; Liu, C T; Ice, G E

    2000-10-30

    Intensive efforts have been carried out over the past decade to develop means to slow down the phase transformation kinetics during the forming of metallic glasses. As a result of these efforts, some metallic glasses can now be fabricated in bulk forms (BMG) from the liquid state at cooling rates on the order of 1-10 K/s, which is close to that of conventional casting. This enables the production of bulk amorphous alloys with a thickness of {approx}10 mm. While advances in amorphous metallic alloy development have been impressive, they have been made largely through experience [1]. Three main conclusions drawn from this study are: (1) Bulk metallic glasses generally have excellent mechanical formability in the supercooled liquid region. (2) Bulk metallic glasses may not be necessarily behave like a Newtonian fluid (i.e. m=1). The non-Newtonian behavior is associated with glass instability during deformation. (3) Multi-component Bulk metallic glasses can be used as the precursor of a nanocrystalline solid. However, the nanocrystalline solid is not necessarily superplastic. The non-superplastic behavior is caused by the difficult strain accommodation at grain triple junctions.

  13. Isothermal crystallization of Imwitor 742 from supercooled liquid state.

    PubMed

    Kawakami, Kohsaku

    2007-04-01

    Crystallization behavior of Imwitor 742 was investigated for use as a liquid-filled capsule carrier. The crystallization behavior of Imwitor 742 was assessed using DSC, X-ray diffraction, and microscopy. The physical stability of Imwitor 742 under refrigerated and ambient conditions was estimated by isothermal crystallization studies using DSC. The effect of hard capsule shells and additives on crystallization kinetics was also examined. When Imwitor 742 was cooled in the DSC measurement, the form alpha appeared at -20 degrees C. When this form was heated from -40 degrees C, melt-crystallization into the form beta + beta' was initiated at -30 degrees C, followed by successive melting. Isothermal crystallization studies at temperatures higher than -14 degrees C yielded the form beta + beta'. The crystallization behavior was explained in terms of the Avrami model fitting by assuming 2-dimensional crystal growth. Kinetic analysis suggested that the liquid state of Imwitor 742 was maintained for 46 h and 40 months at 5 and 25 degrees C, respectively, although the deviation in induction time was expected to be large at these temperatures. Addition of hard capsule shells promoted the crystallization behavior, while addition of drug or water prolonged the induction time. The supercooled liquid state of Imwitor 742 was quite stable. However, additives to retard crystallization should be used, because the deviation in the induction time was very large. Hard capsule shells enhanced the crystallization of Imwitor 742, possibly by acting as nuclei for crystal growth.

  14. Vibrational dynamics and boson peak in a supercooled polydisperse liquid.

    PubMed

    Abraham, Sneha Elizabeth; Bagchi, Biman

    2010-03-01

    Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.

  15. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  16. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  17. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-08-23

    Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.

  18. Diffusion-driven phase separation of deeply quenched mixtures

    NASA Astrophysics Data System (ADS)

    Vladimirova, Natalia; Malagoli, Andrea; Mauri, Roberto

    1998-12-01

    In this work, we study the phase separation of deeply quenched mixtures in which the diffusion coefficient depends on the local composition field φ. In one dimension (1D), the system evolves until it reaches a spatially periodic steady state, with a period that, for instant quenching, coincides with the wavelength of the mode of maximum growth of the linear stability analysis. Similar results are obtained also when the temperature of the system is the solution of the heat equation, but in this case the period of the periodic steady-state solution increases as the heat diffusivity decreases. In 2D the concentration profile, after reaching a periodic configuration similar to the 1D steady state, continues to evolve, forming single-phase domains separated by sharp interfaces, which then thicken as the system tries to minimize its interfacial area. When the quench takes place across, or near, the critical point, the drops merge to form filaments which later coarsen and grow. However, when the quench takes place far from the critical point and near the metastable region of the phase diagram, the length of these filaments decreases as the system becomes a collection of nucleating drops. The composition field within and without these microdomains appears to be nonuniform and time-dependent even after the formation of sharp interfaces, thereby contradicting the commonly accepted assumption of local equilibrium at the late stage of the phase separation process. These results do not depend on the amount and the form of the random noise, while they are strongly influenced by the conditions of the system at the boundaries, as the morphology of phase separation becomes anisotropic and acquires a preferential direction when these conditions are not uniform.

  19. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  20. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt.

    PubMed

    Emuna, M; Mayo, M; Greenberg, Y; Caspi, E N; Beuneu, B; Yahel, E; Makov, G

    2014-03-07

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.

  1. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    SciTech Connect

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-03-07

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.

  2. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics.

    PubMed

    Carrasco, Martin A; Buechler, Steven A; Arnold, Randy J; Sformo, Todd; Barnes, Brian M; Duman, John G

    2012-02-02

    Cucujus clavipes puniceus is a freeze avoiding beetle capable of surviving the long, extremely cold winters of the Interior of Alaska. Previous studies showed that some individuals typically supercool to mean values of approximately -40 °C, with some individuals supercooling to as low as -58 °C, but these non-deep supercooling (NDSC) individuals eventually freeze if temperatures drop below this. However, other larvae, especially if exposed to very cold temperatures, supercool even further. These deep supercooling (DSC) individuals do not freeze even if cooled to -100 °C. In addition, the body water of the DSC larvae vitrifies (turns to a glass) at glass transition temperatures of -58 to -70 °C. This study examines the proteomes of DSC and NDSC larvae to assess proteins that may contribute to or inhibit the DSC trait. Using high throughput proteomics, we identified 138 proteins and 513 Gene Ontology categories in the DSC group and 104 proteins and 573 GO categories in the NDSC group. GO categories enriched in DSC include alcohol metabolic process, cellular component morphogenesis, monosaccharide metabolic process, regulation of biological quality, extracellular region, structural molecule activity, and antioxidant activity. Proteins unique to DSC include alpha casein precursor, alpha-actinin, vimentin, tropomyosin, beta-lactoglobulin, immunoglobulins, tubulin, cuticle proteins and endothelins.

  3. The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points.

    PubMed

    Kristiansen, E; Li, N G; Averensky, A I; Laugsand, A E; Zachariassen, K E

    2009-07-01

    Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below -37 degrees C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.

  4. Liquid Supercoolability and Synthesis Kinetics of Quinary Refractory High-entropy Alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Hu, L.; Yang, S. J.; Wang, A.; Wang, L.; Wei, B.

    2016-11-01

    The high-entropy configuration of equiatomic multicomponent alloys opens an effective access to the development of advanced materials. Here we report the synthesis of a new quinary refractory WMoTaNbZr high-entropy alloy under electrostatic levitation condition. It showed a high liquidus temperature of 2686 K and achieved a maximum supercooling of 640 K (0.24 TL) at molten state. The containerless measurements revealed a linear increasing tendency for both its liquid state density and the specific heat to emissivity ratio versus alloy supercooling. A high-entropy body-centered cubic (HEB) phase dominated its phase constitution despite the formation of a negligible amount of solid solution (Zr) phase. The dendritic growth of HEB phase always governed the crystallization process, attained a fastest growth velocity of 13.5 m/s and displayed a power function relation to alloy supercooling. The high speed videographic research of recalescence phenomenon indicated Johnson-Mehl-Avrami type transition kinetics for its rapid solidification process. As supercooling increases, the microstructures of primary HEB phase were refined conspicuously and exhibited an obvious solute trapping effect of the segregative Zr component. Meanwhile, the Vickers hardness of HEB phase displayed the rising tendency with supercooling.

  5. Successful pregnancy following blastocyst cryopreservation using super-cooling ultra-rapid vitrification.

    PubMed

    Huang, Chun-Chia; Lee, Tsung-Hsien; Chen, Shee-Uan; Chen, Hsiu-Hui; Cheng, Tzu-Chun; Liu, Chung-Hsien; Yang, Yu-Shih; Lee, Maw-Sheng

    2005-01-01

    Blastocysts were cryopreserved by a new two-step ultra-rapid cooling in super-cooled liquid nitrogen (-205 degrees C). There were 308 mouse blastocysts collected from fertile B6CBF1 mice and 249 human blastocysts collected from 51 couples treated with IVF. The blastocysts were super-cooled by a Vit-Master and cryoloops after treatment in 50 and 100% vitrification solution (VS) for 2 min and 30 s, respectively. The 100% VS was composed of 20% ethylene glycol, 20% dimethylsulphoxide and 0.5 mol/l sucrose in human tubular fluid medium with 20% human serum albumin. The embryos were warmed after treatment in 0.25 and 0.125 mol/l sucrose for 2 and 3 min, respectively. The survival of embryos was observed after re-swell. The survival rate (SR) and hatching rate (HR) of mouse blastocysts in the super-cooled, the cryosolution-treated and control groups were not significantly different (SR, 87, 95.5 and 100%; HR, 50, 33 and 44.6%, respectively; P>0.05). After 96 super-cooled human blastocysts were warmed, 60 survival blastocysts were transferred into 13 patients. The successful SR and pregnancy rate (PR) for the super-cooled blastocyst group were 77.1% (74 out of 96) and 53.8% (seven out of 13). The ultra-rapid vitrification of blastocysts with a successful SR and PR could be used to replace classical slow cooling.

  6. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin.

    PubMed

    Kim, Yiseul; Hong, Geun-Pyo

    2016-10-31

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat.

  7. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Liu, Hong

    2016-06-01

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  8. Liquid Supercoolability and Synthesis Kinetics of Quinary Refractory High-entropy Alloy.

    PubMed

    Wang, W L; Hu, L; Yang, S J; Wang, A; Wang, L; Wei, B

    2016-11-16

    The high-entropy configuration of equiatomic multicomponent alloys opens an effective access to the development of advanced materials. Here we report the synthesis of a new quinary refractory WMoTaNbZr high-entropy alloy under electrostatic levitation condition. It showed a high liquidus temperature of 2686 K and achieved a maximum supercooling of 640 K (0.24 TL) at molten state. The containerless measurements revealed a linear increasing tendency for both its liquid state density and the specific heat to emissivity ratio versus alloy supercooling. A high-entropy body-centered cubic (HEB) phase dominated its phase constitution despite the formation of a negligible amount of solid solution (Zr) phase. The dendritic growth of HEB phase always governed the crystallization process, attained a fastest growth velocity of 13.5 m/s and displayed a power function relation to alloy supercooling. The high speed videographic research of recalescence phenomenon indicated Johnson-Mehl-Avrami type transition kinetics for its rapid solidification process. As supercooling increases, the microstructures of primary HEB phase were refined conspicuously and exhibited an obvious solute trapping effect of the segregative Zr component. Meanwhile, the Vickers hardness of HEB phase displayed the rising tendency with supercooling.

  9. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    SciTech Connect

    Zhang, Chen; Liu, Hong

    2016-06-15

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  10. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    NASA Astrophysics Data System (ADS)

    Weingartner, Nicholas; Nogueira, Flavio; Pueblo, Chris; Kelton, Kenneth; Nussinov, Zohar

    2016-11-01

    A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as predicted by this new classical theory and its earlier quantum counterpart, we find with the aid of a small dimensionless constant that varies in size from ˜ 0.05-0.12, a universal (16 decade) collapse of the viscosity data as a function of temperature. The collapse appears in all known types of glass forming supercooled liquids (silicates, metallic alloys, organic systems, chalcogenide, sugars, and water).

  11. Factors influencing supercooling capacity of the koinobiont endoparasitoid Venturia canescens (Hymenoptera: Ichneumonidae).

    PubMed

    Andreadis, Stefanos S; Spanoudis, Christos G; Athanassiou, Christos G; Savopoulou-Soultani, Matilda

    2014-05-01

    Venturia canescens is a parthenogenetic koinobiont endoparasitoid of several pyralid moth larvae that are major pests of stored products. Low temperatures have been extensively used to control stored-product insects as an alternative to the application of traditional pesticides. However, most studies have focused on the cold hardiness profile of the major stored-product pests. The objective of this study was to investigate how factors such as age, food, host availability and acclimation affect the cold tolerance of V. canescens by determining its supercooling capacity. Young adults displayed significantly lower supercooling points (SCPs) than older adults, irrespective of the availability of a host. Host availability had a moderate effect on supercooling, whereas food consumption resulted in a significant enhancement of SCP. Acclimation to low temperatures increased the supercooling capacity considerably. Furthermore, an increase in the duration of exposure to acclimation temperature resulted in lower SCPs. Adults of V. canescens displayed an enhanced ability to supercool, however, they appear to be less cold tolerant than their respective hosts. This information would be useful in determining the potential of using V. canescens as a biological agent in Integrated Pest Management (IPM) programs, taking into consideration the adverse effects of low temperatures on its survival. © 2013 Society of Chemical Industry.

  12. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    PubMed Central

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the same method with SAF, application of artificial supercooling accelerated the phase transition (traverse from -0.6℃ to -5℃) from 3.07 h (SAF) to 2.23 h (SSF). The observation of a microstructure indicated that the SSF prevented tissue damage caused by ice crystallization and maintained the structural integrity. The estimated quality parameters reflected that SSF exhibited superior meat quality compared with slow freezing (SAF). SSF showed better water-holding capacity (lower thawing loss, cooking loss and expressible moisture) and tenderness than SAF, and these quality parameters of SSF were not significantly different with ultra-fast freezing treatment (EIF). Consequently, the results demonstrated that the generation of supercooling followed by conventional freezing potentially had the advantage of minimizing the quality deterioration caused by the slow freezing of meat. PMID:27857541

  13. Liquid Supercoolability and Synthesis Kinetics of Quinary Refractory High-entropy Alloy

    PubMed Central

    Wang, W. L.; Hu, L.; Yang, S. J.; Wang, A.; Wang, L.; Wei, B.

    2016-01-01

    The high-entropy configuration of equiatomic multicomponent alloys opens an effective access to the development of advanced materials. Here we report the synthesis of a new quinary refractory WMoTaNbZr high-entropy alloy under electrostatic levitation condition. It showed a high liquidus temperature of 2686 K and achieved a maximum supercooling of 640 K (0.24 TL) at molten state. The containerless measurements revealed a linear increasing tendency for both its liquid state density and the specific heat to emissivity ratio versus alloy supercooling. A high-entropy body-centered cubic (HEB) phase dominated its phase constitution despite the formation of a negligible amount of solid solution (Zr) phase. The dendritic growth of HEB phase always governed the crystallization process, attained a fastest growth velocity of 13.5 m/s and displayed a power function relation to alloy supercooling. The high speed videographic research of recalescence phenomenon indicated Johnson-Mehl-Avrami type transition kinetics for its rapid solidification process. As supercooling increases, the microstructures of primary HEB phase were refined conspicuously and exhibited an obvious solute trapping effect of the segregative Zr component. Meanwhile, the Vickers hardness of HEB phase displayed the rising tendency with supercooling. PMID:27849012

  14. NMR studies on the temperature-dependent dynamics of confined water.

    PubMed

    Sattig, Matthias; Reutter, Stefan; Fujara, Franz; Werner, Mayke; Buntkowsky, Gerd; Vogel, Michael

    2014-09-28

    We use (2)H NMR to study the rotational motion of supercooled water in silica pores of various diameters, specifically, in the MCM-41 materials C10, C12, and C14. Combination of spin-lattice relaxation, line-shape, and stimulated-echo analyses allows us to determine correlation times in very broad time and temperature ranges. For the studied pore diameters, 2.1-2.9 nm, we find two crossovers in the temperature-dependent correlation times of liquid water upon cooling. At 220-230 K, a first kink in the temperature dependence is accompanied by a solidification of a fraction of the confined water, implying that the observed crossover is due to a change from bulk-like to interface-dominated water dynamics, rather than to a liquid-liquid phase transition. Moreover, the results provide evidence that α process-like dynamics is probed above the crossover temperature, whereas β process-like dynamics is observed below. At 180-190 K, we find a second change of the temperature dependence, which resembles that reported for the β process of supercooled liquids during the glass transition, suggesting a value of Tg ≈ 185 K for interface-affected liquid water. In the high-temperature range, T > 225 K, the temperature dependence of water reorientation is weaker in the smaller C10 pores than in the larger C12 and C14 pores, where it is more bulk-like, indicating a significant effect of the silica confinement on the α process of water in the former 2.1 nm confinement. By contrast, the temperature dependence of water reorientation is largely independent of the confinement size and described by an Arrhenius law with an activation energy of Ea ≈ 0.5 eV in the low-temperature range, T < 180 K, revealing that the confinement size plays a minor role for the β process of water.

  15. Simulations of Enhanced Confinement

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.

    1996-11-01

    Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.

  16. Stimulated Heterogeneous Nucleation of Supercooled Liquid H2 Droplets

    NASA Astrophysics Data System (ADS)

    Knuth, E. L.; Schaper, S.; Toennies, J. P.

    2000-07-01

    The properties of H(2) droplets formed by condensation in a supersonic freejet were probed by the capture and coagulation of CO molecules for the purpose of determining whether the droplets are liquid or solid. The CO was introduced into the H(2) droplets by passing the droplet beam through a scattering chamber containing CO at room temperature and various pressures. Reduction of droplet size as a result of droplet collisions with CO molecules was determined by measuring the droplet size downstream from the scattering region for several different values of the CO pressure. The size of the embedded clusters formed by coagulation of the captured CO molecules was determined from the mass spectra measured for several values of CO pressure in the scattering chamber. A comparison of (a) the observed dramatic loss of about 7% of the H(2) molecules from a droplet after between 2 and 8 collisions with (b) the loss predicted due to evaporation/sublimation in the event of solidification is taken to be compelling evidence that the H(2) droplets were liquid prior to their collisions with the CO scattering gas. The observed dependence of the maximum CO cluster size on the collision frequency appears to indicate that a sufficiently high collision frequency will liquify a droplet which otherwise would be solid. This observation supports the conclusion that the H(2) droplets are solidified as a consequence of heterogeneous nucleation induced by the captured CO molecules. The evidence in favor of a liquid state. coupled with the estimated 4K droplet temperature, suggest strongly that the supercooled H(2) droplets are superfluid.

  17. Stimulated heterogeneous nucleation of supercooled liquid H2 droplets

    NASA Astrophysics Data System (ADS)

    Knuth, E. L.; Schaper, S.; Toennies, J. P.

    2001-08-01

    The properties of H2 droplets formed by condensation in a supersonic freejet were probed by the capture and coagulation of CO molecules for the purpose of determining whether the droplets are liquid or solid. The CO was introduced into the H2 droplets by passing the droplet beam through a scattering chamber containing CO at room temperature and various pressures. Reduction of droplet size as a result of droplet collisions with CO molecules was determined by measuring the droplet size downstream from the scattering region for several different values of the CO pressure. The size of the embedded clusters formed by coagulation of the captured CO molecules was determined from the mass spectra measured for several values of CO pressure in the scattering chamber. A comparison of (a) the observed dramatic loss of about 7% of the H2 molecules from a droplet after between 2 and 8 collisions with (b) the loss predicted due to evaporation/sublimation in the event of solidification is taken to be compelling evidence that the H2 droplets were liquid prior to their collisions with the CO scattering gas. The observed dependence of the maximum CO cluster size on the collision frequency appears to indicate that a sufficiently high collision frequency will liquify a droplet which otherwise would be solid. This observation supports the conclusion that the H2 droplets are solidified as a consequence of heterogeneous nucleation induced by the captured CO molecules. The evidence in favor of a liquid state, coupled with the estimated 4K droplet temperature, suggest strongly that the supercooled H2 droplets are superfluid.

  18. Confined Brownian ratchets.

    PubMed

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J Miguel

    2013-05-21

    We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.

  19. Confined Brownian ratchets

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J. Miguel

    2013-05-01

    We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.

  20. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215... LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead... minerals other than lead and zinc and for lead and zinc and associated minerals below the horizon of the...

  1. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying...

  2. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying...

  3. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying...

  4. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying...

  5. Nature of the first-order liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Tan, X. M.

    2015-08-01

    The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.

  6. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    SciTech Connect

    Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.

    2014-04-28

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  7. Quantitative link between single-particle dynamics and static structure of supercooled liquids.

    PubMed

    Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2006-09-21

    We present evidence via molecular simulation that the supercooled fluid states of SPC/E water as well as the "repulsive" and "attractive" supercooled fluid states of a recently introduced model for colloids with short-ranged attractions are characterized by the same functional relationship between self-diffusivity and the pair correlation function. We discuss how this simple relationship connects to an earlier finding that the temperature dependency of a supercooled fluid's single-particle dynamics tracks that of its excess entropy (relative to ideal gas). The generality of this observed structure-property relationship is supported by its ability to successfully describe the nontrivial behaviors of these very different types of model systems.

  8. Stable glasses of indomethacin and α,α,β-tris-naphthylbenzene transform into ordinary supercooled liquids

    NASA Astrophysics Data System (ADS)

    Sepúlveda, A.; Swallen, Stephen F.; Kopff, Laura A.; McMahon, Robert J.; Ediger, M. D.

    2012-11-01

    Secondary ion mass spectrometry has been used to characterize translational motion in vapor-deposited glasses of indomethacin (IMC) and α,α,β-tris-naphthylbenzene (TNB). Vapor deposition onto substrates at ˜0.99 Tg produced ordinary glasses that evolve according to Fickian diffusion during annealing. The resulting self-diffusion coefficients for the supercooled liquids are in good agreement with previous reports. Deposition onto substrates at 0.85 Tg produced highly stable glasses that transform with a propagating front mechanism. In contrast to previous reports, the liquid produced by this transformation has the same translational mobility as the ordinary supercooled liquid; we associate this result with lower impurity levels in the current samples. The front velocities for both TNB and IMC stable glasses are very similar functions of the translational self-diffusion coefficients of the supercooled liquids, consistent with view that the growth front velocity is controlled by mobility in the liquid adjacent to the stable glass.

  9. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water

    NASA Astrophysics Data System (ADS)

    De Marzio, M.; Camisasca, G.; Rovere, M.; Gallo, P.

    2016-02-01

    We study by molecular dynamics simulations supercooled water with the TIP4P/2005 potential. This model is able to predict many properties of water in a large range of the thermodynamic space in agreement with experiments. We explore the dynamical behavior and, in particular, the self intermediate scattering function of the oxygen atoms. We find that the structural relaxation in the range of mild supercooling is in agreement with the Mode Coupling Theory (MCT). The ideal MCT crossover takes place at decreasing temperature with increasing density. Deviations from the MCT behavior are found upon further supercooling. A crossover from the MCT, fragile, regime to a strong, Arrhenius, regime is found and it is connected to the presence of a liquid-liquid phase transition and the Widom line emanating from the liquid-liquid critical point.

  10. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    NASA Astrophysics Data System (ADS)

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X.-L.

    2017-03-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  11. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.

    PubMed

    De Marzio, M; Camisasca, G; Rovere, M; Gallo, P

    2017-02-28

    We perform an accurate analysis of the density self-correlation functions of TIP4P/2005 supercooled water on approaching the region of the liquid-liquid critical point. In a previous work on this model, we provided evidence of a fragile to strong crossover of the dynamical behavior in the deep supercooled region. The structural relaxation follows the Mode Coupling theory in the fragile region and then deviates from Mode Coupling regime to a strong Arrhenius behavior. This crossover is particularly important in water because it is connected to the thermodynamics of the supercooled region. To better understand the origin of this crossover, we compute now the Van Hove self-correlation functions. In particular we aim at investigating the presence and the role of the hopping phenomena that are the cause of the fragile to strong crossover in simple liquids. In TIP4P/2005 water, we find hopping processes too and we analyze how they depend on temperature and density upon approaching the fragile to strong crossover and the Mode Coupling ideal crossover temperature. Our results show that water behaves like a simple glass former. After an initial ballistic regime, the cage effect dominates the mild supercooled region, with diffusion taking place at long time. At the fragile to strong crossover, we find that hopping (activated) processes start to play a role. This is evidenced by the appearance of peaks in the Van Hove correlation functions. In the deep supercooled regime, our analysis clearly indicates that activated processes dominate the dynamics. The comparison between the Van Hove functions and the radial distribution functions allows to better understand the mechanism of hopping phenomena in supercooled water and to connect their onset directly with the crossing of the Widom Line.

  12. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes

    NASA Astrophysics Data System (ADS)

    De Marzio, M.; Camisasca, G.; Rovere, M.; Gallo, P.

    2017-02-01

    We perform an accurate analysis of the density self-correlation functions of TIP4P/2005 supercooled water on approaching the region of the liquid-liquid critical point. In a previous work on this model, we provided evidence of a fragile to strong crossover of the dynamical behavior in the deep supercooled region. The structural relaxation follows the Mode Coupling theory in the fragile region and then deviates from Mode Coupling regime to a strong Arrhenius behavior. This crossover is particularly important in water because it is connected to the thermodynamics of the supercooled region. To better understand the origin of this crossover, we compute now the Van Hove self-correlation functions. In particular we aim at investigating the presence and the role of the hopping phenomena that are the cause of the fragile to strong crossover in simple liquids. In TIP4P/2005 water, we find hopping processes too and we analyze how they depend on temperature and density upon approaching the fragile to strong crossover and the Mode Coupling ideal crossover temperature. Our results show that water behaves like a simple glass former. After an initial ballistic regime, the cage effect dominates the mild supercooled region, with diffusion taking place at long time. At the fragile to strong crossover, we find that hopping (activated) processes start to play a role. This is evidenced by the appearance of peaks in the Van Hove correlation functions. In the deep supercooled regime, our analysis clearly indicates that activated processes dominate the dynamics. The comparison between the Van Hove functions and the radial distribution functions allows to better understand the mechanism of hopping phenomena in supercooled water and to connect their onset directly with the crossing of the Widom Line.

  13. Elastic modulus of supercooled liquid and hot solid silicon measured by inelastic X-ray scattering

    SciTech Connect

    Alatas, A.; Said, A. H.; Sinn, H.; Alp, E. E.; Kodituwakku, C. N.; Reinhart, B.; Saboungi, M. -L.; Price, D. L.

    2005-12-01

    We measured the dynamical structure factors of supercooled-liquid and hot-solid silicon by inelastic X-ray scattering at the same temperature, 1620 K. Two significant changes in the averaged longitudinal sound velocities and in the longitudinal modulus are observed. We, first observe a different longitudinal modulus in the polycrystalline hot-solid silicon compared to the extrapolated value obtained from the single-crystal measurement. Furthermore, this reduction of the modulus may be a precursor of the semiconductor-to-metal transition. Second, the increase in the longitudinal modulus in the liquid upon supercooling is consistent with an increase in the degree of the directional bonding.

  14. Effects of supercooling in the initial solidification of PbTe-SnTe solid solutions

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Crouch, R. K.; Debnam, W. J., Jr.; Clark, I. O.; Wagner, J. B.

    1985-01-01

    Deviations from compositions anticipated by the thermal equilibrium phase diagram have been observed in Bridgman-grown crystals of Pb(1-x)Sn(x)Te, in the first to freeze region of the boule. A set of experiments were conducted to determine the extent of thermal supercooling of Pb(1-x)Sn(x)Te in a Bridgman-like configuration. The results of the compositional profiles and the supercooling measurements are consistent with a diffusionless transformation occurring at the onset of solidification, and the length of uncontrolled growth is inversely related to the temperature gradient of the furnace.

  15. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  16. Enzyme kinetics in acoustically levitated droplets of supercooled water: a novel approach to cryoenzymology.

    PubMed

    Weis, David D; Nardozzi, Jonathan D

    2005-04-15

    The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail.

  17. The vapor pressures of supercooled NHO3/H2O solutions. [in polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Hanson, David R.

    1990-01-01

    A procedure utilizing the Gibbs-Duhem relation is used to extrapolate vapor pressures of supercooled HNO3 mixtures to 190 K. Values of A and B from the equation logP = A - B/T are presented for solutions between 0.20 and 0.25 mole fraction HNO3. In the stratosphere, if sufficient HNO3 vapor is present because it has not come into equilibrium with the nitric acid trihydrate, supercooled nitric acid solutions could condense at temperatures up to 1.5 + or - 0.8 K above the ice point.

  18. Molecular dynamics studies of heterogeneous dynamics and dynamic crossover in supercooled atomic liquids

    PubMed Central

    Andersen, Hans C.

    2005-01-01

    Supercooled liquids near the glass transition exhibit the phenomenon of heterogeneous relaxation; at any specific time, a nominally homogeneous equilibrium fluid undergoes dynamic fluctuations in its structure on a molecular distance scale with rates that are very different in different regions of the sample. Several theoretical and simulation studies have suggested a change in the nature of the dynamics of fluids as they are supercooled, leading to the concept of a dynamic crossover that is often associated with mode coupling theory. Here, we will review the use of molecular dynamics computer simulation methods to investigate heterogeneous dynamics and dynamic crossovers in models of atomic liquids. PMID:15870201

  19. Mechanism of translational jump of a hydrophobic solute in supercooled water: Importance of presolvation

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Daschakraborty, Snehasis

    2017-10-01

    Despite long study of translational jump of solute in supercooled water, a detailed mechanism of this jump is still lacking. Through an analysis of several simulated cage-to-cage jumps of a dissolved hydrophobic solute we find support for a pathway very similar to the proton transport in aqueous solution. Presolvation of water molecules occurs such that the final solvent cage, where the solute arrives through jump, becomes structurally and energetically comparable to the initial cage where the solute was trapped. This mechanism therefore clearly emphasizes the role of solvent for determining the jump occurrence time of a solute in supercooled water.

  20. Mean-field equation of state of supercooled water and vapor pressure approximations

    NASA Astrophysics Data System (ADS)

    Kalová, Jana; Mareš, Radim

    2017-09-01

    An equation of state for supercooled water in the mean-field approximation is presented in the paper. The model describes experimental data in the supercooled region and satisfies a condition that for very low temperatures heat capacity of liquid water is close to the heat capacity of ice. The equation is used to calculate vapor pressure data at ambient pressure in the temperature interval from 123 K to 273 K. Based on the data, two very simple formulas for vapor pressure below 230 K and above 230 K are calculated.

  1. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  2. Non-monotonic effect of confinement on the glass transition.

    PubMed

    Varnik, Fathollah; Franosch, Thomas

    2016-04-06

    The relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. This effect has mostly been observed to be a monotonic function of the slit width. Recently, a qualitatively new behaviour has been uncovered by Mittal and coworkers, who reported that the single particle dynamics in a hard-sphere fluid confined in a planar slit varies in a non-monotonic way as the slit width is decreased from five to roughly two particle diametres (Mittal et al 2008 Phys. Rev. Lett. 100 145901). In view of the great potential of this effect for applications in those fields of science and industry, where liquids occur under strong confinement (e.g. nano-technology), the number of researchers studying various aspects and consequences of this non-monotonic behaviour has been rapidly growing. This review aims at providing an overview of the research activity in this newly emerging field. We first briefly discuss how competing mechanisms such as packing effects and short-range attraction may lead to a non-monotonic glass transition scenario in the bulk. We then analyse confinement effects on the dynamics of fluids using a thermodynamic route which relates the single particle dynamics to the excess entropy. Moreover, relating the diffusive dynamics to the Widom's insertion probability, the oscillations of the local dynamics with density at moderate densities are fairly well described. At high densities belonging to the supercooled regime, however, this approach breaks down signaling the onset of strongly collective effects. Indeed, confinement introduces a new length scale which in the limit of high densities and small pore sizes competes with the short-range local order of the fluid. This gives rise to a non-monotonic dependence of the packing structure on confinement, with a corresponding effect on the dynamics of structural relaxation. This non-monotonic effect occurs also in the case of a cone-plate type channel, where the degree

  3. Non-monotonic effect of confinement on the glass transition

    NASA Astrophysics Data System (ADS)

    Varnik, Fathollah; Franosch, Thomas

    2016-04-01

    The relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. This effect has mostly been observed to be a monotonic function of the slit width. Recently, a qualitatively new behaviour has been uncovered by Mittal and coworkers, who reported that the single particle dynamics in a hard-sphere fluid confined in a planar slit varies in a non-monotonic way as the slit width is decreased from five to roughly two particle diametres (Mittal et al 2008 Phys. Rev. Lett. 100 145901). In view of the great potential of this effect for applications in those fields of science and industry, where liquids occur under strong confinement (e.g. nano-technology), the number of researchers studying various aspects and consequences of this non-monotonic behaviour has been rapidly growing. This review aims at providing an overview of the research activity in this newly emerging field. We first briefly discuss how competing mechanisms such as packing effects and short-range attraction may lead to a non-monotonic glass transition scenario in the bulk. We then analyse confinement effects on the dynamics of fluids using a thermodynamic route which relates the single particle dynamics to the excess entropy. Moreover, relating the diffusive dynamics to the Widom’s insertion probability, the oscillations of the local dynamics with density at moderate densities are fairly well described. At high densities belonging to the supercooled regime, however, this approach breaks down signaling the onset of strongly collective effects. Indeed, confinement introduces a new length scale which in the limit of high densities and small pore sizes competes with the short-range local order of the fluid. This gives rise to a non-monotonic dependence of the packing structure on confinement, with a corresponding effect on the dynamics of structural relaxation. This non-monotonic effect occurs also in the case of a cone-plate type channel, where the degree

  4. Low-temperature dielectric measurements of confined water in porous granites

    NASA Astrophysics Data System (ADS)

    Gonçalves da Silva, Hugo; Prezas, Pedro; Vinagre, Ana; Graça, Manuel F.; Monteiro, Jorge H.; Tlemçani, Mouhaydine; Moita, Patrícia; Pinho, António; Bezzeghoud, Mourad; Mendiratta, Sushil K.; Rosa, Rui N.

    2014-05-01

    Three different granitic rocks extracted from Évora (in the south of Portugal) where used to perform dielectric measurements in the frequency range from 100 Hz to 1 MHz and temperatures 100 - 350 K. Thin cylindrical samples were prepared and circular electrodes were established using silver conductive paint. A clear anomaly appears, for T ~ 200 - 220 K, in the dielectric measurements of the samples studied. This anomaly occurs in different materials and coincides with a phase transition of supercooled water. Tightly bounded water confined in the pores of the rock do not crystallize at 273 K, but form a metastable liquid down to 200 - 220 K increasing water polarization. Below this temperature water molecules solidify and polarizability decreases. The rock presenting the most sizeable anomaly has a very low specific surface area, ~ 0.09 m2g-1, and connected porosity, ~ 1.10 %. In addition, geochemical analyses reveal almost inexistence of water molecules in its structure confirming the role of confined water in the anomaly. Comparison between saturated, oven dried, and vacuum dried samples is done. Finally, a logarithmic dependency of the critical temperature for the supercooled water phase transition with the measuring frequency is found. The authors acknowledge the support of FCT (Portuguese Science and Technology Foundation) through the project PTDC/GEO-FIQ/4178/2012.

  5. Structure Of Ice Crystallized From Supercooled Water: Stacking Disordered Ice

    NASA Astrophysics Data System (ADS)

    Malkin, T. L.; Murray, B. J.; Brukhno, A.; Anwar, J.; Salzmann, C.

    2012-12-01

    At atmospheric pressures ice is thought to exist in two well defined crystalline forms: stable hexagonal ice and metastable cubic ice. A metastable form of ice is thought to form in the atmosphere [1] Using X-ray diffraction data and Monte Carlo simulations; we show that ice that crystallizes both homogeneously and heterogeneously from supercooled water adopts neither of these two phases. The resulting ice is disordered in one dimension and consequently does not possess either cubic or hexagonal symmetry. It is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd ) [2]. While similar stacking disorder has been reported before, such observations have been restricted to either samples re-crystallised from high-pressure ice phases [3] or ice formation in mesopores [4]. Review of the literature reveals that almost all ice previously identified as cubic ice in diffraction studies, which have used an array of methodologies to generate the ice, were most likely stacking-disordered ice I with varying degrees of stacking disorder. Our results suggest that the initial phase of ice formed when water freezes is the metastable stacking-disordered ice I which forms independent of the method of nucleation. Stacking-disordered ice may be the kinetic product, i.e. the material which forms fastest. Accordingly, we suggest that stacking-disordered ice is always the phase to crystallise when water freezes. In many situations it will relax to the stable hexagonal phase with time. Stacking-disordered ice may persist in the colder parts of the atmosphere and form irregular or rough crystals similar to many smaller quasi spherical ice crystals observed in the earth's atmosphere. [1] B. J. Murray et al., Nature, 2005, 434, 202-205 [2] T. L. Malkin et al., PNAS, 2012, 109 (4): 1041 - 1045 [3] T. C. Hansen et al., J. Phys. Condens. Matter, 2008, 20, 285105. [4] K. Morishige et al., J. Phys. Chem. C, 2009, 113

  6. Tunnel Boring Machine Technology for a Deeply Based Missile System. Volume I, Application Feasibility. Part 1.

    DTIC Science & Technology

    1980-08-01

    AD-A091 976 COLORADO SCHOOL OF MINES GOLDEN F/G 13/2 NNEL BORING MACHINE TECHNOLOGY FOR A DEEPLY BASED MISSILE SYS-ETC(U) .UA 80 G B CLARK. L...TR-79-120, Vol. I, Pt. 1 AFWL-TR- 79-120 Vol. I ~Pt. I TUNNEL BORING MACHINE TECHNOLOGY FOR A DEEPLY BASED MISSILE SYSTEM Volume I of 11 lApplication... BORING MACHINE TECHNOLOGY FOR A DEEPLY BASED MISSILE SYSTEM Final Report Vol I of II: Application Feasibility 6. PERFORMINGORO. REPORTNUMM Part I of 2 7

  7. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  8. Deeply Frozen Lakes in a Terrestrial Peri-Glacial Environment

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    1998-01-01

    Some of the largest lakes in the McMurdo Dry Valleys, Antarctica, have largely been ignored during past limnological studies because they were thought to be frozen solid. However, recent investigations have revealed the presence of saline water bodies beneath up to 19 m of permanent ice in two of these so-called "ice block" lakes (Lake Vida and Lake House). Lakes throughout the dry valleys that have been studied in detail more typically have ice covers ranging between 3 and 5 m. The existence of saline lakes with extremely thick ice covers is atypical, even among lakes in this region, which are themselves unique aquatic systems. These "deeply ice-covered" lakes are aquatic systems on the edge of cold-termination, and they warrant study as analogs of lakes purported to have existed on the surface of Mars in the past. Several lakes in the McMurdo Dry Valleys were presumed in the past to be frozen solid based largely on attempts at drilling the lake ice covers. Lake Vida has been the most intriguing because it is one of the two largest (in terms of surface area) lakes in the dry valleys, and yet it apparently contained no year-round liquid water at depth. Recently a ground-penetrating radar (GPR) survey was carried out on Lake Vida and another purported ice block lake, Lake House. In a large central portion of Lake Vida, the survey showed attenuation of the radar signal at approximately 19 m, suggesting saline water at this depth. Because GPR radar signals are absorbed by saline water, the depth of the water body (i.e., distance from the ice bottom to sediments) could not be determined. In Lake House, a similar water body was inferred at about 12 m depth. Ice Coring and Physical Properties: Ice cores (to 14 and 15.8 in depth) extracted in 1996 from Lake Vida contained ice bubbles with unique morphologies that were atypical when compared to other vapor inclusions in 3-5 in ice covers. Most of the vapor inclusions at depths greater than about 6 m contained hoar frost

  9. A combined experimental and theoretical study of supercooling by two-phase mist flows

    SciTech Connect

    Yang Zhihua.

    1991-01-01

    A combined experimental and theoretical study of cooling enhancement by mist flow was performed for a square channel with a smooth wall. A new method is proposed for the turbulent deposition of droplets from two-phase mist flow into the wall of the channel. The proposed analytical model shows satisfactory agreement with observations from an experimental measurement using a particle-sizing two-dimensional reference-model laser-Doppler anemometry technique. Supercooling is defined as the simultaneous attainment of high heat flux and a low temperature of a surface to be cooled. Surface cooling is by evaporation from the exposed side of the film. The film is maintained by the continuous deposition of a stream of turbulent mist. An analytical model is provided for the heat-transfer enhancement coefficient due to mist supercooling. Also, experiments were carried out to investigate cooling enhancement. A substantial supercooling by mist flow is reported. The effects on supercooling of flow rate, droplet concentration and size, and wall heat flux are also reported.

  10. Ice nucleation, propagation, and deep supercooling: the lost tribes of freezing studies

    USDA-ARS?s Scientific Manuscript database

    Prior to the emphasis on the molecular biology of cold acclimation, a considerable amount of research was conducted on the processes of ice nucleation and deep supercooling. In many species, these two processes are critical to surviving episodes of freezing temperatures. Over the past two decades,...

  11. Solidification of supercooled water in the vicinity of a solid wall

    NASA Astrophysics Data System (ADS)

    Schremb, Markus; Tropea, Cameron

    2016-11-01

    An experimental approach utilizing a Hele-Shaw cell for the investigation of the solidification of a supercooled liquid in contact with a solid wall is presented. The setup is based on an idea presented by Marín et al. [A. G. Marín et al., Phys. Rev. Lett. 113, 054301 (2014), 10.1103/PhysRevLett.113.054301], who investigated the planar freezing of a sessile drop without supercooling. This apparatus overcomes optical distortions present when observing the freezing of sessile drops, arising due to reflections and refraction of light on the drop surface. The facility is used to investigate the freezing process of water drops, supercooled down to -20∘C , and to qualitatively demonstrate that the growth behavior is uninfluenced by the use of the Hele-Shaw cell. Different features during freezing, which are known for sessile water drops, are also observed with the Hele-Shaw cell. The growth morphology within the first phase of solidification is categorized according to the initial drop supercooling. Furthermore, freezing velocities within this phase are related to data available in the literature for the growth of single ice dendrites.

  12. Physiological responses to supercooling and hypoxia in the hatchling painted turtle, Chrysemys picta.

    PubMed

    Costanzo, J P; Jones, E E; Lee, R E

    2001-05-01

    We investigated physiological responses to supercooling in hatchling painted turtles (Chrysemys picta) which remain in their natal nests over winter and therefore may become exposed to subzero temperatures. These turtles are freeze tolerant but also must rely on supercooling to survive exposure to the lower temperatures occurring in nests during winter. We compared whole-body concentrations of lactate, glucose, glycerol, and ATP in turtles chilled at 0 degrees C, -4 degrees C, or -6 degrees C for 5 days, or at 6 degrees C for 19 days. In a companion experiment, we measured metabolite concentrations in turtles exposed to a hypoxic environment for 1 day, 4 days, or 8 days. Supercooling and hypoxia exposure were both associated with an increase in concentrations of lactate and glucose and a decrease in glycerol concentrations (albeit no change in the ATP pool), suggesting that supercooling induces functional hypoxia. We conclude that hypoxia tolerance may be an important pre-adaptation for surviving exposure to subzero temperatures in hatchling C. picta.

  13. Characterization of supercooled liquid water in cirrus clouds from FIRE ETO lidar observations

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1990-01-01

    The various modes of occurrence of supercooled liquid water in cirrus clouds are discussed using the data from the FIRE extended time observations (ETO). Results from lidar observations show that cirrus cloud scenes viewed from satellites may contain mixtures of 'high' and 'middle' cloud varieties, which affect the assessment of the derived cirrus cloud properties.

  14. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates

    PubMed Central

    Holmstrup, Martin; Bayley, Mark; Ramløv, Hans

    2002-01-01

    Soil invertebrate survival in freezing temperatures has generally been considered in the light of the physiological adaptations seen in surface living insects. These adaptations, notably the ability to supercool, have evolved in concert with surface invertebrates' ability to retain body water in a dry environment. However, most soil invertebrates are orders of magnitude less resistant to desiccation than these truly terrestrial insects, opening the possibility that the mechanisms involved in their cold-hardiness are also of a radically different nature. Permeable soil invertebrates dehydrate when exposed in frozen soil. This dehydration occurs because the water vapor pressure of supercooled water is higher than that of ice at the same temperature. The force of this vapor pressure difference is so large that even a few degrees of supercooling will result in substantial water loss, continuing until the vapor pressure of body fluids equals that of the surrounding ice. At this stage, the risk of tissue ice formation has been eliminated, and subzero survival is ensured. Here we show that these soil invertebrates do not base their winter survival on supercooling, as do many other ectotherms, but instead dehydrate and equilibrate their body-fluid melting point to the ambient temperature. They can achieve this equilibration even at the extreme cooling rates seen in polar soils. PMID:11960026

  15. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia.

    PubMed

    Kuprian, Edith; Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D; Gierlinger, Notburga; Müller, Thomas; Livingston, David P; Neuner, Gilbert

    2017-09-29

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50°C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extra-organ freezing by water potential measurements and cell-specific chemical patterns by RAMAN microscopy and Mass Spectrometry Imaging. A bowl-like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At -18°C break-down of supercooling was triggered by intrinsic ice nucleators while the ice barrier remained active. Temperature-dependent freeze dehydration (-0.1 MPa/K) caused accumulation of extra-organ ice masses that by rupture of the shoot pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin-rich cell walls and intercellular spaces and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di-, tri- and tetrasaccharides. Bud architecture efficiently prevents ice penetration but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell-specific biochemical analysis. This article is protected by copyright. All rights reserved.

  16. Random Walk on a Cubic Lattice with Spatial Heterogeneity: A Model for Supercooled Liquids.

    NASA Astrophysics Data System (ADS)

    Cicerone, M. T.; Ediger, M. D.

    1996-03-01

    Rotational and translational motions of molecules within a liquid arise from the same fundamental processes. In liquids above their melting temperature, rotation and translation show the same temperature dependence. On the other hand, it has been recently established that rotational and translational relaxation times have very different temperature dependencies for many supercooled liquids.^1 By understanding this striking behavior ("decoupling") of rotation and translation we stand to learn much about the dynamics of supercooled liquids on a microscopic length scale. We propose that locally rotation and translation remain well coupled and that spatial heterogeneity in dynamics of the supercooled liquid can account for the decoupling and many other experimentally observed details. We model the supercooled liquid as a cubic lattice with local dynamics which vary in time and space. We will address the relationships between the width of the distribution of local relaxation times, the spatial extent of the heterogeneities, and the magnitude of the decoupling between rotation and translation. 1. F. Fujara, B. Geil, H. Sillescu and G. Gleischer, Z. Phys. B 88, 195 (1992); M.T. Cicerone, F.R. Blackburn and M.D. Ediger, Macromolecules (in press).

  17. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.

    PubMed

    Rzesanke, Daniel; Nadolny, Jens; Duft, Denis; Müller, René; Kiselev, Alexei; Leisner, Thomas

    2012-07-14

    Charge induced changes in homogeneous freezing rates of water have been proposed to constitute a possible link between the global atmospheric electric circuit and cloud microphysics and thus climate. We report here on high precision measurements of the homogeneous nucleation rate of charged, electro-dynamically levitated single water droplets as a function of their surface charge. No evidence has been found that the homogeneous volume specific ice nucleation rate of supercooled microdroplets is influenced by surface charges in the range between +/-200 elementary charges per μm(2). It has also been suggested that filamentation in highly electrified liquids can induce freezing at temperatures well above the homogeneous freezing limit. We report here the observation of Coulomb instabilities of highly charged droplets that are accompanied with the formation and ejection of fine filaments from the liquid supercooled droplets. Down to temperatures of 240 K, which is close to the homogeneous freezing limit of uncharged water, no filamentation induced freezing has been detected. At even lower temperatures, the droplets froze before the instability was reached. These findings rule out that filamentation exerts an important influence on ice formation in supercooled water. Combining these findings, we conclude that the surface charges (even at their maximum possible density) have no significant effect on the homogeneous ice nucleation rate of supercooled cloud droplets.

  18. Three-Layer Model for the Emergence of Ultrastable Glasses from the Surfaces of Supercooled Liquids.

    PubMed

    Mangalara, Jayachandra Hari; Marvin, Michael D; Simmons, David S

    2016-06-02

    Ultrastable glasses produced by vapor deposition exhibit properties consistent with glasses that have been aged for thousands of years or more. These materials' properties are believed to emerge from the presence of a mobile layer at the surface of supercooled liquids that allows access to lower-energy states. However, the precise mechanism by which this enhanced mobility is translated into ultrastable glass behavior remains incompletely understood. Here we show that enhanced densities and stabilities consistent with ultrastable glasses specifically can emerge as a result of a mismatch in the length scales of thermodynamic and dynamic gradients at the surfaces of equilibrium supercooled liquids. In particular, ultrastable glass properties can be understood within a three-layer model of the interface in which a "facilitated layer" intermediate between the surface and bulk exhibits bulk-like liquid-state density but suppressed Tg. This mismatch in length-scale has previously been correlated with the scale of cooperative rearrangements in the supercooled state, suggesting that ultrastable glasses may be a direct consequence of the cooperative nature of dynamics in equilibrium supercooled liquids.

  19. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-07-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  20. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Neshyba, S.; Walden, V. P.

    2013-12-01

    Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature-independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m-2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m-2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  1. Deep Supercooling in Most Tissues of Wintering Sasa senanensis and Its Mechanism in Leaf Blade Tissues

    PubMed Central

    Ishikawa, Masaya

    1984-01-01

    Cold hardiness of leaf blades, leaf sheaths, culms, rhizomes, and leaf buds in wintering Sasa senanensis (Fr. et Sav.) Rehder, a dwarf bamboo, was studied paying special attention to the types of resistance mechanisms which were determined with differential thermal analysis. Coincidence of LT25 (lethal temperature at which 25% of the tissues are injured) with the initiation temperature of LTE (low temperature exotherm) suggested that all of these tissues described above owe their cold hardiness mechanism mostly to deep supercooling. Deep supercooling in leaf blades was also substantiated with microscopic observations, suggesting that the units of supercooling were minute tissues compartmentalized by longitudinal and cross veins. It was also shown that cooling rates and storage of shoots at −5°C for 1 to 5 days in the ice-inoculated state did not greatly affect the supercooling ability of leaf blades. Sasa senanensis seemed to exhibit a unique strategy against prolonged subzero temperature, and its leaves would be a good system for the study on mechanisms of deep undercooling in plants. Images Fig. 5 Fig. 6 Fig. 7 PMID:16663570

  2. 75 FR 49865 - Extension of Comment Period; Airplane and Engine Certification Requirements in Supercooled Large...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Phase, and Ice Crystal Icing Conditions AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... for transport category airplanes most affected by these icing conditions, mixed phase and ice crystal conditions for all transport category airplanes, and supercooled large drop, mixed phase, and ice crystal...

  3. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  4. Classical confined particles

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.

  5. Energy confinement in tokamaks

    SciTech Connect

    Sugihara, M.; Singer, C.

    1986-08-01

    A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.

  6. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  7. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  8. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

    PubMed

    Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E

    2003-02-01

    Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in

  9. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    SciTech Connect

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  10. Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside.

    PubMed

    Kami, Daisuke; Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2008-12-01

    The effect of kaempferol-7-O-glucoside (KF7G), one of the supercooling-facilitating flavonol glycosides which was originally found in deep supercooling xylem parenchyma cells of the katsura tree and was found to exhibit the highest level of supercooling-facilitating activity among reported substances, was examined for successful cryopreservation by vitrification procedures, with the aim of determining the possibility of using diluted vitrification solution (VS) to reduce cryoprotectant toxicity and also to inhibit nucleation at practical cooling and rewarming by the effect of supplemental KF7G. Examination was performed using shoot apices of cranberry and plant vitrification solution 2 (PVS2) with dilution. Vitrification procedures using the original concentration (100%) of PVS2 caused serious injury during treatment with PVS2 and resulted in no regrowth after cooling and rewarming (cryopreservation). Dilution of the concentration of PVS2 to 75% or 50% (with the same proportions of constituents) significantly reduced injury by PVS2 treatment, but regrowth was poor after cryopreservation. It is thought that dilution of PVS2 reduced injury by cryoprotectant toxicity, but such dilution caused nucleation during cooling and/or rewarming, resulting in poor survival. On the other hand, addition of 0.5mg/ml (0.05% w/v) KF7G to the diluted PVS2 resulted in significantly (p<0.05) higher regrowth rates after cryopreservation. It is thought that addition of supercooling-facilitating KF7G induced vitrification even in diluted PVS2 probably due to inhibition of ice nucleation during cooling and rewarming and consequently resulted in higher regrowth. The results of the present study indicate the possibility that concentrations of routinely used VSs can be reduced by adding supercooling-facilitating KF7G, by which more successful cryopreservation might be achieved for a wide variety of biological materials.

  11. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    PubMed

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  12. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water.

    PubMed

    Singh, Rakesh S; Biddle, John W; Debenedetti, Pablo G; Anisimov, Mikhail A

    2016-04-14

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures ("states"). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  13. Next-to-leading order corrections to deeply virtual production of pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Duplančić, G.; Müller, D.; Passek-Kumerički, K.

    2017-08-01

    We complete the perturbative next-to-leading order corrections to the hard scattering amplitudes of deeply virtual meson leptoproduction processes at leading twist-two level by presenting the results for the production of flavor singlet pseudoscalar mesons. The new results are given in the common momentum fraction representation and in terms of conformal moments. We also comment on the flavor singlet results for deeply virtual vector meson production.

  14. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    SciTech Connect

    Smith, R. Scott; Kay, Bruce D.

    2012-03-15

    Experimental measurements of the properties supercooled liquids at temperatures near their respective glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg making such measurements difficult to nearly impossible. In this perspective we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  15. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  16. Confinement studies in TFTR

    SciTech Connect

    Murakami, M.; Arunasalam, V.; Bell, J.D.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Boody, F.; Boyd, D.; Bretz, N.; Bush, C.E.

    1985-06-01

    The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: B/sub T/ increased to 4.0 T, I/sub p/ to 2.0 MA, injection power (P/sub b/) to 5 MW with H/sup 0/ or D/sup 0/ beams anti n/sub e/ to 5 x 10/sup 19/ m/sup -3/, and Z/sub eff/ reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (tau/sub E/ = anti n/sub e/q) has been confirmed at higher I/sub p/ and B/sub T/, and the maximum tau/sub E/ of 0.4 sec has been achieved. With NBI at P/sub b/ substantially (by factor >2) higher than P/sub OH/, excellent power and particle accountability have been established. This suggests that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. tau/sub E/ is observed to scale approximately as I/sub p/ P/sub b//sup -0.5/ (independent of anti n/sub e/), consistent with previous L-mode scalings. With NBI we have achieved the maximum tau/sub E/ of 0.2 sec and the maximum T/sub i/(o) of 4.4 keV in the normal operating regime, and even higher T/sub i/(o) in the energetic-ion regime with low-n/sub e/ and low-I/sub p/ operation.

  17. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  18. Quark confinement dynamics

    SciTech Connect

    Allen, T.J.; Olsson, M.G.; Veseli, S.; Williams, K. |

    1997-05-01

    Starting from Buchm{umlt u}ller{close_quote}s observation that a chromoelectric flux tube meson will exhibit only the Thomas-type spin-orbit interaction, we show that a model built upon the related assumption that a quark feels only a constant radial chromoelectric field in its rest frame implies a complete relativistic effective Hamiltonian that can be written explicitly in terms of quark canonical variables. The model yields linear Regge trajectories and exhibits some similarities to scalar confinement, but with the advantage of being more closely linked to QCD. {copyright} {ital 1997} {ital The American Physical Society}

  19. Confinement Vessel Dynamic Analysis

    SciTech Connect

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  20. Quark Confinement and Strings

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerardus

    QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…

  1. Human reliability and confinement.

    PubMed

    Hauty, G T

    1964-01-01

    Problems inherent in the modifiability of circadian periodicity and in impoverished sensory environments were explored for the purpose of appraising attenuative effects upon human reliability. Accordingly, highly selected subjects were confined within a one-man altitude chamber for prolonged periods of time and under a variety of designed conditions. The findings relative to the modifiability of biological rhythm indicate that adjustment to a drastic revision of the 24-hour biological day was accomplished to a significant and practical extent by certain subjects, the extent of adjustment was directly related to the maintenance of high initial levels of proficiency, and just as subjects differ greatly in their adjustment to revised biological time, they differ to an equal extent in the degree of synchronization manifested by the apparent periodicities of the different physiological systems. In the investigation of impoverished sensory environments, it was found that the joint effects of impoverished sensory conditions and continuous work at an operator system drastically degraded the reliability of certain subjects. Further, neither prior experience nor knowledge acted to mitigate the degree of aberrancy experienced which in the case of one subject was so extreme as to necessitate his removal from the chamber prior to the termination of confinement period. Finally, management of certain aberrant behavior, specifically hallucinatory experiences, could be successfully achieved by those subjects who continuously attempted to maintain a diversity of sensory input.

  2. Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha.

    PubMed

    Melcher; Cordell; Jones; Scowcroft; Niemczura; Giambelluca; Goldstein

    2000-05-01

    Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively

  3. Amoeboid motion in confined geometry

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Thiébaud, M.; Hu, W.-F.; Farutin, A.; Rafaï, S.; Lai, M.-C.; Peyla, P.; Misbah, C.

    2015-11-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  4. Amoeboid motion in confined geometry.

    PubMed

    Wu, Hao; Thiébaud, M; Hu, W-F; Farutin, A; Rafaï, S; Lai, M-C; Peyla, P; Misbah, C

    2015-01-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  5. The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    NASA Astrophysics Data System (ADS)

    Zhelev, N.; Abhilash, T. S.; Smith, E. N.; Bennett, R. G.; Rojas, X.; Levitin, L.; Saunders, J.; Parpia, J. M.

    2017-07-01

    The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A-B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-μm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.

  6. The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    PubMed Central

    Zhelev, N.; Abhilash, T. S.; Smith, E. N.; Bennett, R. G.; Rojas, X.; Levitin, L.; Saunders, J.; Parpia, J. M.

    2017-01-01

    The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A–B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-μm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase. PMID:28671184

  7. Experimental Studies about Transient Characteristics of a Deeply Buried Grounding Electrode and a Grounding Mesh

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Yanagawa, Shunichi; Sekioka, Shozo

    When lightning strikes the tower of a cellular phone base station or other such facilities, power and communication equipments in the vicinity of the tower may suffer extensive damages due to the lightning current flowing backward from the grounding system of the tower. The use of a deeply buried grounding electrode has been proposed recently to suppress such back flow current and a potential rise in the vicinity of the tower. The deeply buried grounding electrode is a bare conductor buried deep in the ground that is connected to a lightning rod on the ground by an insulated wire. When lightning strikes the lightning rod, the lightning current is directed to the electrode from which it diffuses to the ground. The deeply buried grounding electrodes have been installed in cellular phone base stations and other such facilities to solve such problems caused by the back flow current and the potential rise. A grounding mesh is usually laid around such base stations as a grounding system for the facilities on the ground. Therefore, it is important to understand the interactions between the deeply buried grounding electrode and the grounding mesh. In this study, experiments on the interactions between a grounding mesh and a deeply buried grounding electrode have been carried out. Additionally, the transient characteristics of the mesh grounding have researched.

  8. Photon mass via current confinement

    NASA Astrophysics Data System (ADS)

    Vyas, Vivek M.; Panigrahi, Prasanta K.

    2017-08-01

    A parity invariant theory, consisting of two massive Dirac fields, defined in three dimensional space-time, with the confinement of a certain current is studied. It is found that the electromagnetic field, when coupled minimally to these Dirac fields, becomes massive owing to the current confinement. It is seen that the origin of photon mass is not due to any kind of spontaneous symmetry breaking, but only due to current confinement.

  9. Home versus hospital confinement

    PubMed Central

    Barry, C. N.

    1980-01-01

    The case for hospital rather than home delivery has been powerfully argued, especially in and since the Report of the Peel Committee. Nevertheless, evidence of comparison with other countries, notably the Netherlands, suggests the choice is not necessarily simple. Some general practitioner units are now reporting perinatal mortality rates which are consistently lower than those of specialist units, and recent statistical analyses suggest that the presence of more high risk cases in consultant units does not explain this. The only big controlled home-versus-hospital trial did not lead to a significantly lower perinatal mortality rate in the hospital group. The onus of proof now seems to lie with those who advocate 100 per cent hospital confinement. PMID:7373581

  10. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    NASA Technical Reports Server (NTRS)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  11. Role of dynamic heterogeneities in crystal nucleation kinetics in an oxide supercooled liquid

    NASA Astrophysics Data System (ADS)

    Gupta, Prabhat K.; Cassar, Daniel R.; Zanotto, Edgar D.

    2016-12-01

    The temperature at which the classical critical nucleus size is equal to the average size of the cooperatively rearranging regions (CRR) in a supercooled liquid has been referred to as a "cross-over" temperature. We show, for the first time, using published nucleation rate, viscosity, and thermo-physical data, that the cross-over temperature for the lithium disilicate melt is significantly larger than the temperature of the kinetic spinodal and is equal or close to the temperature corresponding to the maximum in the experimentally observed nucleation rates. We suggest that the abnormal decrease in nucleation rates below the cross-over temperature is most likely because, in this regime, the CRR size controls the critical nucleus size and the nucleation rate. This finding links, for the first time, measured nucleation kinetics to the dynamic heterogeneities in a supercooled liquid.

  12. Larch (Larix kaempferi) xylem parenchyma cells respond to subfreezing temperature by deep supercooling.

    PubMed

    Kasuga, Jun; Takata, Naoki; Yamane, Kenichi; Kuroda, Katsushi; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    In previous studies, xylem parenchyma cells (XPCs) in the boreal softwood species larch, which has thick and rigid walls similar to those of XPCs in boreal hardwood species, were shown to respond to subfreezing temperature by deep supercooling during summer but change their freezing behavior to extracellular freezing during winter. In this study, we re-examined freezing behavior of XPCs in larch by observation of deep etching of frozen samples as well as observation of re-warmed samples after freezing using a cryo-scanning electron microscope. The results showed that XPCs in larch adapts to subfreezing temperature by deep supercooling throughout all seasons. Such freezing behavior is the same as that of XPCs in boreal hardwood species.

  13. Crystallization at the glass transition in supercooled thin films of methanol

    NASA Astrophysics Data System (ADS)

    Dounce, Susan M.; Mundy, Julia; Dai, Hai-Lung

    2007-05-01

    The stability of an amorphous material depends on how fast and by what mechanism crystallization occurs. Based on crystallization rate measurements through optical reflectivity changes in supercooled methanol thin films, it is observed for the first time that there is a definitive and detectable change of the crystallization mechanism at the glass transition temperature Tg. For methanol glasses below Tg=103.4K, crystallization occurs as an interface controlled, one-dimension process at frozen-in embryo sites, while in the deep supercooled liquid phase above Tg crystallization is diffusion controlled in two dimensions with a constant nucleation rate and an activation energy of 107.8(±4.7)kJ/mol.

  14. Mid-tropospheric supercooled liquid water observation consistent with nucleation induced by a mountain lee wave

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Russo, Felicita; Ware, Randolph; Pappalardo, Gelsomina

    2009-09-01

    A case study relative to the observation of unexpected liquid water in an apparently cloudless atmosphere is presented. Microwave radiometer profiler observations on 14 April 2008 at Boulder, Colorado, USA, showed an increase in the liquid water path with values higher than 0.05 mm and corresponding relative humidity saturation from 4.75 to 6.75 km above the ground level in profiles retrieved using a neural network algorithm. The formation of small supercooled droplets identified in the microwave retrieval of the temperature and relative humidity vertical profiles may result from nucleation stimulated by a mountain lee wave. The presented analysis reveals the existence of supercooled liquid water in the mid troposphere related to a wave activity that occurred in a sky condition classifiable as “clear” and describes an atmospheric scenario consistent with the observation of the so-called twilight zone.

  15. Mechanism of mutarotation in supercooled liquid phase: Studies on L-sorbose

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Paluch, M.; Grzybowski, A.; Kaminski, K.; Cecotka, A.; Ziolo, J.; Markowski, J.

    2012-09-01

    We have studied mutarotation in anhydrous supercooled L-sorbose by means of dielectric spectroscopy. The phenomenon observed in L-sorbose is much faster than in the structurally similar D-fructose. The kinetics of this process has been determined by applying 1st order kinetics model. Activation energy equal to 68 kJ/mol was obtained from temperature dependence of rate constants. To understand differences in mutarotation rate between D-fructose and L-sorbose, quantum mechanical calculations were performed to study mechanism of this phenomenon. The possible impact of water absorbed from air on the mutarotation in supercooled liquid state has been checked. It turned out that the process is probably intermolecular and the water molecules or other carbohydrate molecules assist in the proton transfer process. Finally we have shown that the rate constant can be alternatively determined from frequency of the maximum of peak, obtained by performing Fourier transform of kinetic curve.

  16. Mechanistic understanding of the effect of rigidity percolation on structural relaxation in supercooled germanium selenide liquids

    SciTech Connect

    Gjersing, E. L.; Sen, S.; Youngman, R. E.

    2010-07-01

    High-resolution {sup 77}Se nuclear magnetic resonance spectroscopy is used to investigate the rotational dynamics of Se atoms in Ge{sub x}Se{sub 100-x} supercooled liquids with 5<=x<=23. The Se atoms in Se-Se-Se linkages are found to be significantly more mobile compared to those in Ge-Se-Se/Ge linkages. The time scale of the rotational dynamics of Se-Se-Se linkages and its temperature dependence are nearly identical for liquids with x<=17 but the time scale displays an abrupt increase for the liquids with x=20 and 23, at and above the rigidity percolation threshold. Such a dynamical transition is shown to be consistent with a sudden elastic stiffening of the atomic network of Ge{sub x}Se{sub 100-x} supercooled liquids at the percolation threshold.

  17. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    PubMed Central

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-01-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure. PMID:27615518

  18. Relaxation and self-diffusion of supercooled liquids derived from picosecond timescale dynamics

    NASA Astrophysics Data System (ADS)

    Cicerone, Marcus; Zhi, Miaochan; Blakely, Brandon; Tyagi, Madhusudan

    We use neutron scattering and nonlinear optical measurements to investigate ps-ns timescale dynamics in liquid, supercooled liquid, and glassy states. The experimental observables show evidence of dynamic heterogeneity on this timescale that supports a facilitated dynamics picture. We obtain a direct measure of the concentration of molecular excitations, or mobile regions, as a function of time and temperature. Using a model broadly consistent with that proposed by Chandler and co-workers, we are able to quantitatively predict self-diffusion rates and Stokes Einstein violation deep in the supercooled regime directly from ps timescale and Angstrom - nanometer length scale measurements for all systems we have investigated. The model we employ also provides a clear physical mechanism for the Johari-Goldstein relaxation process

  19. Supercooling transition in phase separated manganite thin films: An electrical transport study

    SciTech Connect

    Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Singh, H. K.; Tyagi, Pawan Kumar

    2014-05-26

    The impact of variation in the relative fractions of the ferromagnetic metallic and antiferromagnetic/charge ordered insulator phases on the supercooling/superheating transition in strongly phase separated system, La{sub 5/8−y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y ≈ 0.4), has been studied employing magnetotransport measurements. Our study clearly shows that the supercooling transition temperature is non-unique and strongly depends on the magneto-thermodynamic path through which the low temperature state is accessed. In contrast, the superheating transition temperature remains constant. The thermo-magnetic hysteresis, the separation of the two transitions and the associated resistivity, all are functions of the relative fraction of the coexisting phases.

  20. Supercooled dynamics of grain boundary particles in two-dimensional colloidal crystals

    NASA Astrophysics Data System (ADS)

    Skinner, Thomas O. E.; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2011-09-01

    We experimentally investigate the dynamics of particles constituting grain boundaries in a two-dimensional colloidal crystal, using video-microscopy. A clear plateau in the mean square displacement of the grain boundary particles is found, followed by an upswing indicative of cage breaking. The van Hove correlation functions and the non-Gaussian parameter show that grain boundary particle dynamics are highly heterogeneous. Furthermore, we identified clusters of cooperatively moving particles and analyzed the time-dependence of the weight-averaged mean cluster size. We find good correlation between the behavior of the mean square displacement, and the time dependence of the non-Gaussian parameter and the cluster size, as also reported for various supercooled systems. Our results therefore provide experimental support for the similarity between particle dynamics in grain boundaries and in supercooled liquids as suggested by recent computer simulations.

  1. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-09-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure.

  2. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis.

    PubMed

    Chen, Bing; Kang, Le

    2002-01-01

    Pupal SCP (supercooling point) of Liriomyza huidobrensis showed no variation with age, with an average of -20.9 degree C. Low temperature survival of different ages of pupae showed no correlation with their SCP. Nonlinear regression analysis found that the response of L. huidobrensis pupae to exposure time under different low temperature regimes above -5 degree C was best fitted by a logistic equation. Both low temperature and exposure time had significant effects on pupal mortality. Temperatures above 5 degree C do not prevent pupae from emergence. L. huidobrensis was shown to be a freeze susceptible, and at the same time, a chill tolerant insect. It can tolerate subzero temperatures by supercooling. Compared with L. sativae, another dominant leafminer in China, L. huidobrensis is more cold tolerant. Our results explain differences between the species in geographic distribution and phenology.

  3. Relationship between supercooling stability and solution structure in sodium acetate aqueous solution

    NASA Astrophysics Data System (ADS)

    Machida, Hironobu; Sugahara, Takeshi; Hirasawa, Izumi

    2017-10-01

    We have observed the solution structure of the supercooled sodium acetate aqueous solution, especially for the existence of clusters and their crystallization process, by means of Scanning electron microscopy (SEM) with the freeze replica method. Microscopic internal structure of sodium acetate trihydrate crystals mainly constitutes the aggregates of 100-200 nm in diameter, which consists of the clusters of 10-20 nm in diameter. In the case of a supercooled aqueous solution of 293 K, two types of aspect in the vitrified aqueous solution mainly exist: one is the clusters of 10-20 nm in diameter; the other is the smooth zone without any structure. At 263 K, the relationship among clusters of 10-20 nm and their aggregates of 100-200 nm was clearly observed. The aggregates construct the three-dimensional loose networks, which are not fully packed, different from the crystal.

  4. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    NASA Technical Reports Server (NTRS)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  5. Nonaffine deformation of inherent structure as a static signature of cooperativity in supercooled liquids.

    PubMed

    Del Gado, Emanuela; Ilg, Patrick; Kröger, Martin; Ottinger, Hans Christian

    2008-08-29

    We unveil the existence of nonaffinely rearranging regions in the inherent structures (IS) of supercooled liquids by numerical simulations of model glass formers subject to static shear deformations combined with local energy minimizations. In the liquid state IS, we find a broad distribution of large rearrangements which are correlated only over small distances. At low temperatures, the onset of the cooperative dynamics corresponds to much smaller displacements correlated over larger distances. This finding indicates the presence of nonaffinely rearranging domains of relevant size in the IS deformation, which can be seen as the static counterpart of the cooperatively rearranging regions in the dynamics. This idea provides new insight into possible structural signatures of slow cooperative dynamics of supercooled liquids and supports the connections with elastic heterogeneities found in amorphous solids.

  6. Liberty, beneficence, and involuntary confinement.

    PubMed

    Callahan, J C

    1984-08-01

    My purpose in this paper is to show that current legal criteria for paternalistic involuntary psychiatric confinement of the mentally ill are both too narrow and too broad. I do this by first developing a principle of justified paternalistic interference with adults, which I take to be acceptably protective of individual liberty, but which does not require unnecessary sacrifices of individual welfare. After offering an analysis of current legal criteria for involuntary confinement, I argue that an acceptable theory of paternalistic interference reveals that those criteria (1) exclude some cases where confinement would be morally permissible, and (2) allow paternalistic confinement of many whose detention is not morally justifiable.

  7. Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K

    2013-09-07

    We present a partial free energy profile for the homogeneous nucleation of ice using an all-atom model of water at low supercooling, at which ice growth dynamics are reasonably accessible to simulation. We demonstrate that the free energy profile is well described by classical nucleation theory, and that the nucleation barrier is entropic in origin. We also estimate to first order the temperature dependence of the interfacial free energy.

  8. The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta).

    PubMed

    Packard, Gary C; Packard, Mary J

    2006-05-01

    Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in

  9. Universal behavior of the viscosity of supercooled fragile and polymeric glassformers in different temperature regions

    NASA Astrophysics Data System (ADS)

    Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2016-11-01

    The behavior of the viscosity of supercooled liquids with temperature has been extensively studied in different regimes. We present a universal behavior for the Logarithmic Shift Factor for fragile and polymeric glassformers in two temperature regions, above and below the crossover temperature Tc, respectively. We find two different equations, one for each region, that may be represented as master plots which show universal behaviors for both cases.

  10. Solidification studies of Nb-Ge alloys at large degrees of supercooling

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Robinson, M. B.; Rathz, T. J.; Evans, N. D.; Bayuzick, R. J.

    1982-01-01

    A 32 meter evacuated drop tube has been used to investigate the solidification of Nb-Ge alloys after deep undercooling. Samples have been supercooled as much as 500 K below the liquidus by using free-fall conditions to eliminate crucible induced nucleation. Final microstructures are dependent on the quenching rates at the bottom of the drop tube with a striking extension of the beta phase solubility limit at the higher quenching rates.

  11. Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Doye, Jonathan P. K.

    2013-09-01

    We present a partial free energy profile for the homogeneous nucleation of ice using an all-atom model of water at low supercooling, at which ice growth dynamics are reasonably accessible to simulation. We demonstrate that the free energy profile is well described by classical nucleation theory, and that the nucleation barrier is entropic in origin. We also estimate to first order the temperature dependence of the interfacial free energy.

  12. QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rabani, Eran; Reichman, David R.

    2005-05-01

    We review our recent efforts to formulate and study a mode-coupling approach to real-time dynamic fluctuations in quantum liquids. Comparison is made between the theory and recent neutron scattering experiments performed on liquid ortho-deuterium and para-hydrogen. We discuss extensions of the theory to supercooled and glassy states where quantum fluctuations compete with thermal fluctuations. Experimental scenarios for quantum glassy liquids are briefly discussed.

  13. Structural transformation in supercooled water controls the crystallization rate of ice.

    PubMed

    Moore, Emily B; Molinero, Valeria

    2011-11-23

    One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature, T(H) ≈ 232 K, yet the mechanism of ice crystallization-including the size and structure of critical nuclei-has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase on moving into the supercooled region, according to power laws that would diverge (that is, approach infinity) at ~225 K (refs 1, 2), so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T(H). And although atomistic studies have captured water crystallization, high computational costs have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model in the supercooled regime around T(H) which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanisms of ice formation. The results of the simulations and classical nucleation theory using experimental data suggest that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below T(H) and well above its glass transition temperature, 136 K. By establishing a relationship between the structural transformation in liquid water and its anomalous thermodynamics and crystallization rate, our findings also provide mechanistic insight into the observed dependence of homogeneous ice nucleation rates on the thermodynamics of water.

  14. Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Guo-Feng; Dong, Shuang-Li; Sun, Jian-Hu; Chen, Rui-Yun; Xiao, Lian-Tuan; Jia, Suo-Tang

    2009-09-01

    The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glycerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel-Fulcher-Tammann-Hesse (VFTH) law is also presented experimentally.

  15. Analysis of critical melt supercooling for heteroepitaxy of Al/sub x/Ga/sub 1-x/Sb by GaSb

    SciTech Connect

    Germogenov, V.P.; Pozolotin, V.A.

    1988-08-01

    Thermodynamic computations of the critical supercooling of a melt are performed for the case of heteroepitaxy of a solid Al/sub x/Ga/sub 1-x/Sb solution on a GaSb substrate for which there should be no substrate etching. Three kinds of supercoolings are examined, where ..delta..T/sub cr//sup (1)/ is the supercooling for which they change in the system Gibbs energy should equal zero because of dissolution, ..delta..T/sub cr//sup (2)/ is the supercooling for which the diminution in the system Gibbs energy due to substrate dissolution equals the energy being liberated during crystallization of the Al/sub x/Ga/sub 1-x/Sb solid solutions layer. Finally, the influence of the specific free interphasal energy of the substrate-melt interface on the result of computing the critical supercooling (the supercooling ..delta..T/sub cr//sup (3)/) is considered.

  16. Use of a Piezosurgery Technique to Remove a Deeply Impacted Supernumerary Tooth in the Anterior Maxilla

    PubMed Central

    Sukegawa, Shintaro; Kanno, Takahiro; Kawakami, Kiyokazu; Shibata, Akane; Takahashi, Yuka; Furuki, Yoshihiko

    2015-01-01

    Deeply impacted supernumerary teeth in the anterior maxillary cannot be generally removed by the conventional labial or palatal surgical approach because of the risk of damaging the surrounding soft tissues and the possibility of injuring the roots of adjacent permanent teeth. In piezosurgery, bony tissues are selectively cut, thereby avoiding the soft tissue damage caused by rotary cutting instruments. We report the case of a 15-year-old Japanese boy from whom a deeply impacted supernumerary tooth in the anterior maxillary was safely removed through the floor of the nasal cavity. The surgical extraction was performed without damaging the nasal mucosa or adjacent structures such as the roots of the adjacent permanent teeth. Considering that piezosurgery limits the extent of surgical invasion, this technique can be practiced as a minimally invasive and safe surgical procedure for treating suitably selected cases with a deeply impacted supernumerary tooth. PMID:26779355

  17. Units of Freezing of Deep Supercooled Water in Woody Xylem 1

    PubMed Central

    Hong, Sung-Gak; Sucoff, Edward

    1980-01-01

    The low temperature exotherms (LTE) of 1-year-old twigs of Haralson apple (Malus pumila Mill.), shagbark hickory (Carya ovata [Mill.] K. Koch), green ash (Fraxinus pennsylvanica Marsh), honey locust (Gleditsia triacanthos L.), American chestnut (Castanea dentata [Marsh] Borkh.), and red oak (Quercus rubra L.) were determined by differential thermal analysis (DTA). In one type of experiment freezing during a DTA experiment was halted for up to 2.5 hours after part of the supercooled water had frozen at temperatures between −25 and −42 C. Upon resumption of cooling the freezing started within 2 C of the stopping temperature. In a second type of experiment living and dead cells were microscopically observed in the same ray after partial freezing in the DTA apparatus. In another experiment, the LTE persisted even after tangential and radial sectioning of the twig to 0.13 millimeters. In a final experiment the LTE of a single multiseriate ray of red oak had the same shape as the LTE of wood with many uniseriate rays. These experiments confirm that the deep supercooled water in woody xylem or pith freezes in numerous independent events over a span of as much as 20 C. The units which freeze in an event are single cells or small groups of cells. Ice grows very slowly if at all from these units, and water moves very slowly from unfrozen cells to frozen ones. Deep supercooling of ray parenchyma does not require an intact ray. Images PMID:16661390

  18. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Seasonal changes in the accumulation of soluble sugars in extracellular freezing cortical parenchyma cells and deep supercooling xylem parenchyma cells in Japanese white birch (Betula platyphylla var. japonica) were compared to identify the effects of soluble sugars on the mechanism of deep supercooling, which keeps the liquid state of water in cells under extremely low temperatures for long periods. Soluble sugars in both tissues were analyzed by high-performance liquid chromatography (HPLC), and the concentrations of sugars in cells were estimated by histological observation of occupancy rates of parenchyma cells in each tissue. Relative and equilibrium melting points of parenchyma cells were measured by differential thermal analysis and cryoscanning electron microscopy, respectively. In both xylem and cortical parenchyma cells, amounts of sucrose, raffinose and stachyose increased in winter, but amounts of fructose and glucose exhibited little change throughout the entire year. In addition, no sugars were found to be specific for either tissue. Combined results of HPLC analyses, histological observation and melting point analyses confirmed that the concentration of sugars was much higher in xylem cells than in cortical cells. It is thought that the higher concentration of soluble sugars in xylem cells may contribute to facilitation of deep supercooling in xylem cells by depressing the nucleation temperature.

  19. Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles.

    PubMed

    Mei, Qingsong; Li, Juying

    2015-12-24

    The liquid thermal history effect on liquid supercooling behavior has been found in various metals and alloys; typically the degree of liquid supercooling (ΔT(-)) increases with the increase of liquid overheating (ΔT⁺) up to several to tens of degrees above the equilibrium melting point (T₀). Here we report quantitative experimental measurements on the ΔT(-)-ΔT⁺ relationship of Al small particles encapsulated in Al₂O₃ shells by using a differential scanning calorimeter. We find a remarkable dependence of ΔT(-) on ΔT⁺ of Al small particles, extending to at least 340 °C above T₀ of Al (~1.36T₀), which indicates the existence of temperature-dependent crystallization centers in liquid Al up to very high liquid overheating levels. Our results demonstrate quantitatively the significant effect of liquid thermal history on the supercooling behavior of Al and its alloys, and raise new considerations about the dependence of ΔT(-) on ΔT⁺ at very high ΔT⁺ levels.

  20. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    PubMed Central

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X. -L.

    2017-01-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment. PMID:28303882

  1. Influence of solidification on the impact of supercooled water drops onto cold surfaces

    NASA Astrophysics Data System (ADS)

    Li, Hai; Roisman, Ilia V.; Tropea, Cameron

    2015-06-01

    This study presents an experimental investigation of the impact of a supercooled drop onto hydrophilic and superhydrophobic substrates. The aim is to better understand the process of airframe icing caused by supercooled large droplets, which has been recently identified as a severe hazard in aviation. The Weber number and Reynolds number of the impinging drop ranged from 200 to 300 and from 2600 to 5800, respectively. Drop impact, spreading, and rebound were observed using a high-speed video system. The maximum spreading diameter of an impacting drop on hydrophilic surfaces was measured. The temperature effect on this parameter was only minor for a wide range of the drop and substrate temperatures. However, ice/water mixtures emerged when both the drop and substrate temperatures were below 0 °C. Similarly, drop rebound on superhydrophobic substrates was significantly hindered by solidification when supercooled drop impacted onto substrates below the freezing point. The minimum receding diameter and the speed of ice accretion on the substrate were measured for various wall temperatures. Both parameters increased almost linearly with decreasing wall temperature, but eventually leveled off beyond a certain substrate temperature. The rate of ice formation on the substrate was significantly higher than the growth rate of free ice dendrites, implying that multiple nucleation sites were present.

  2. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    SciTech Connect

    Singh, Rakesh S.; Bagchi, Biman

    2014-04-28

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.

  3. Mode coupling and fragile to strong transition in supercooled TIP4P water

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2012-10-01

    We consider one of the most used model for water, the rigid four site TIP4P potential, and we study by molecular dynamics simulation the dynamical properties of the liquid upon supercooling. In the previous studies of the thermodynamics of the TIP4P model a liquid-liquid critical point (LLCP) located at the end of the coexistence between the low density liquid (LDL) and the high density liquid (HDL) of water was found. We present here the analysis of the self intermediate scattering functions in a large range of temperatures and densities and we show that the structural relaxation in the region of mild supercooling is in agreement with the predictions of the mode coupling theory. In the more deep supercooled region we observe that the α-relaxation time deviates from the mode coupling theory (MCT) trend and a crossover takes place from a fragile to a strong behavior upon crossing the Widom line emanating from the LLCP. The HDL and the LDL phases are associated with the fragile and the strong behavior, respectively.

  4. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh S.; Bagchi, Biman

    2014-04-01

    The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.

  5. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    DOE PAGES

    Lan, S.; Ren, Y.; Wei, X. Y.; ...

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in-situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clustersmore » over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase which forms the room-temperature glass phase upon quenching. Finally, the outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat-treatment.« less

  6. Supercooling and Ice Formation of Perchlorate Brines under Mars-relevant Conditions

    NASA Astrophysics Data System (ADS)

    Primm, K.; Gough, R. V.; Tolbert, M. A.

    2015-12-01

    Perchlorate salts, discovered in the Martian regolith at multiple landing sites, may provide pathways for liquid water stability on current Mars. It has previously been assumed that if perchlorate brines form in the Martian regolith via melting or deliquescence, they would be present only briefly because efflorescence into a crystal or freezing to ice would soon occur. Here, we used a Raman microscope to study the temperature and relative humidity (RH) conditions at which magnesium perchlorate brine will form ice. Although ice is thermodynamically predicted to form whenever the saturation with respect to ice (Sice) is greater than or equal to 1, ice formation by perchlorate brines did not occur until elevated Sice values were reached: Sice= 1.17, 1.29, and 1.25 at temperatures of 218 K, 230.5 K, and 244 K, respectively. If a magnesium perchlorate particle was allowed to deliquesce completely prior to experiencing ice supersaturation, the extent of supercooling was increased even further. These high supersaturation values imply perchlorate brines can exist over a wider range of conditions than previously believed. From these experiments it has been found that magnesium perchlorate exhibits supercooling well into the previous theoretical ice region of the stability diagram and that liquid brines on Mars could potentially exist for up to two additional hours per sol. This supercooling of magnesium perchlorate will help with the exploration of Mars by the Mars 2020 spacecraft by helping to understand the phase and duration of water existing in the Martian subsurface.

  7. RELATIONSHIP BETWEEN SUPERCOOLING CAPABILITY AND CRYOPROTECTANT CONTENT IN EGGS OF PARARCYPTERA MICROPTERA MERIDIONALIS (ORTHOPTERA: ACRYPTERIDAE).

    PubMed

    Zhou, X R; Li, Y Y; Li, N; Pang, Bp P

    2015-01-01

    Grasshoppers are major agricultural pests throughout the world. The egg stage is important for the low temperature resistance, and almost all grasshoppers overwinter in the egg stage. To study the relationship between cold hardiness and cryoprotectant content in Pararcyptera microptera meridionalis eggs. The supercooling point (SCP) of the eggs was measured, along with the contents of water, fat, amino acids, low molecular sugars and polyols. SCP, water content and glucose concentration decreased during egg development, whereas the contents of fat, trehalose, glycerol, inositol and sorbitol increased. SCP is negatively correlated with the concentrations of fat, trehalose, glycerol, inositol and sorbitol, but positively with water content and glucose concentration. Among low molecular weight sugars and polyols tested in eggs, trehalose concentration was highest, followed by glycerol. Although total content of free amino acids did not change much, of the tested 17 free amino acids in eggs, proline and glutamine had increased by 46.3 % and 13.2 %, respectively, and both showed a negative correlation with SCP. Stepwise regression analysis showed that proline, glycerol, trehalose and inositol contribute most to the SCP depression. Cold acclimation at 0 degree C increased the contents of trehalose and glycerol, and decreased SCP. The increase of the supercooling capacity in P. microptera meridionalis eggs during development could be attributed mainly to proline, glycerol, trehalose and inositol. Cold acclimation enhances supercooling capacity via glycerol and trehalose.

  8. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.

    PubMed

    Lan, S; Ren, Y; Wei, X Y; Wang, B; Gilbert, E P; Shibayama, T; Watanabe, S; Ohnuma, M; Wang, X-L

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  9. Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles

    PubMed Central

    Mei, Qingsong; Li, Juying

    2015-01-01

    The liquid thermal history effect on liquid supercooling behavior has been found in various metals and alloys; typically the degree of liquid supercooling (ΔT−) increases with the increase of liquid overheating (ΔT+) up to several to tens of degrees above the equilibrium melting point (T0). Here we report quantitative experimental measurements on the ΔT−-ΔT+ relationship of Al small particles encapsulated in Al2O3 shells by using a differential scanning calorimeter. We find a remarkable dependence of ΔT− on ΔT+ of Al small particles, extending to at least 340 °C above T0 of Al (~1.36T0), which indicates the existence of temperature-dependent crystallization centers in liquid Al up to very high liquid overheating levels. Our results demonstrate quantitatively the significant effect of liquid thermal history on the supercooling behavior of Al and its alloys, and raise new considerations about the dependence of ΔT− on ΔT+ at very high ΔT+ levels. PMID:28787806

  10. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C

    PubMed

    Rosenfeld; Woodley

    2000-05-25

    In cirrus and orographic wave clouds, highly supercooled water has been observed in small quantities (less than 0.15 g m(-3)). This high degree of supercooling was attributed to the small droplet size and the lack of ice nuclei at the heights of these clouds. For deep convective clouds, which have much larger droplets near their tops and which take in aerosols from near the ground, no such measurements have hitherto been reported. However, satellite data suggest that highly supercooled water (down to -38 degrees C) frequently occurs in vigorous continental convective storms. Here we report in situ measurements in deep convective clouds from an aircraft, showing that most of the condensed water remains liquid down to -37.5 degrees C. The droplets reach a median volume diameter of 17 microm and amount to 1.8 gm(-3), one order of magnitude more than previously reported. At slightly colder temperatures only ice was found, suggesting homogeneous freezing. Because of the poor knowledge of mixed-phase cloud processes, the simulation of clouds using numerical models is difficult at present. Our observations will help to understand these cloud processes, such as rainfall, hail, and cloud electrification, together with their implications for the climate system.

  11. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also

  12. Fluctuating confinement of water in aqueous organic nanodroplets

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald; Hrahsheh, Fawaz

    2013-03-01

    Supercooled and nano-confined water occurs frequently as nanometer-sized aqueous-organic aerosol droplets that are ubiquitous in the atmosphere and in many industrial processes. Nanodroplet structure is important because it influences droplet growth and evaporation rates, heterogeneous reaction rates, and radiative properties. We use classical molecular dynamic simulations to study the structure of ternary water-butanol-nonane nanodroplets for several temperatures and droplet sizes. We study the effects of butanol on the wetting of the water/butanol core-shell droplet by the nonane lens. At low concentrations, butanol acts as a surfactant to significantly enhance the wetability of the water droplet by nonane. At 250 K, with sufficient butanol and nonane, perfect wetting (thin film formation by nonane) occurs. Perfect wetting also occurs at higher temperatures, 270 K to 300 K, but this wetting state is progressively destabilized at higher temperature. All of the nanodroplets studied undergo distinct transitions between partial dewetting and perfect wetting states due to isothermal fluctuations in the local distribution of butanol on the surface of the water core. These fluctuations favor the wetted state at lower temperatures and the dewetted state at higher temperatures. Supported by NSF Grant CBET 1033387

  13. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2016-06-01

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  14. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line.

    PubMed

    Ni, Yicun; Skinner, J L

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  15. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  16. Dig Deeply

    ERIC Educational Resources Information Center

    Owings, Sharon; Merino, Barbara

    2010-01-01

    Most children enjoy being in gardens. To capitalize on this interest, the authors designed a pea project in which second- and third-grade students would discover how plants grow under different conditions while also developing observation and nonfiction writing skills. As a result of this inquiry-based project, students learned how to think and…

  17. Breathe Deeply.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2000-01-01

    Discusses the special indoor air quality issues confronting school gyms, locker rooms, and pools; and explores ways to keep the indoor environment healthy. Included are discussions of mold and fungus control and air issues stemming from indoor pools. (GR)

  18. Dig Deeply

    ERIC Educational Resources Information Center

    Owings, Sharon; Merino, Barbara

    2010-01-01

    Most children enjoy being in gardens. To capitalize on this interest, the authors designed a pea project in which second- and third-grade students would discover how plants grow under different conditions while also developing observation and nonfiction writing skills. As a result of this inquiry-based project, students learned how to think and…

  19. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  20. Confined Selective Withdrawal

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2014-11-01

    It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.