Hofmeester, Tim R; Sprong, Hein; Jansen, Patrick A; Prins, Herbert H T; van Wieren, Sipke E
2017-09-19
Understanding which factors drive population densities of disease vectors is an important step in assessing disease risk. We tested the hypothesis that the density of ticks from the Ixodes ricinus complex, which are important vectors for tick-borne diseases, is determined by the density of deer, as adults of these ticks mainly feed on deer. We performed a cross-sectional study to investigate I. ricinus density across 20 forest plots in the Netherlands that ranged widely in deer availability to ticks, and performed a deer-exclosure experiment in four pairs of 1 ha forest plots in a separate site. Ixodes ricinus from all stages were more abundant in plots with deer (n = 17) than in plots without deer (n = 3). Where deer were present, the density of ticks did not increase with the abundance of deer. Experimental exclosure of deer reduced nymph density by 66% and adult density by 32% within a timeframe of two years. In this study, deer presence rather than abundance explained the density of I. ricinus. This is in contrast to previous studies and might be related to the relatively high host-species richness in Dutch forests. This means that reduction of the risk of acquiring a tick bite would require the complete elimination of deer in species rich forests. The fact that small exclosures (< 1 ha) substantially reduced I. ricinus densities suggests that fencing can be used to reduce tick-borne disease risk in areas with high recreational pressure.
Campagnolo, E R; Tewari, D; Farone, T S; Livengood, J L; Mason, K L
2018-04-29
Studies reporting tick infection rates for Powassan virus (POWV), an emerging zoonotic arthropod-borne pathogen responsible for POWV disease in the Commonwealth of Pennsylvania, are limited. To determine the presence and ascertain a statewide prevalence of POWV, ticks were collected from 9,912 hunter-harvested white-tailed deer (Odocoileus virginianus) heads presented to six regional Pennsylvania Game Commission Chronic Wasting Disease sampling stations in early December of 2013, 2014 and 2015. Of the 2,973 ticks recovered, 1,990 (66.9%) were identified as adult Ixodes scapularis (black-legged tick). The 1,990 I. scapularis ticks were PCR-tested for the presence of POWV. The ticks had a statewide Powassan/deer tick virus infection rate of 0.05%, providing evidence of this pathogen in Pennsylvania's adult I. scapularis ticks and supporting the need for more comprehensive pathogen prevalence assessment strategies, as well as increased public health awareness for this emerging zoonotic arthropod-borne pathogen of public health concern. © 2018 Blackwell Verlag GmbH.
The effect of deer management on the abundance of Ixodes ricinus in Scotland.
Gilbert, L; Maffey, G L; Ramsay, S L; Hester, A J
2012-03-01
The management of wildlife hosts for controlling parasites and disease has a history of mixed success. Deer can be important hosts for ticks, such as Ixodes ricinus, which is the primary vector of disease-causing zoonotic pathogens in Europe. Deer are generally managed by culling and fencing for forestry protection, habitat conservation, and commercial hunting, and in this study we test whether these deer management methods can be useful for controlling ticks, with implications for tick-borne pathogens. At different spatial scales and habitats we tested the hypotheses that tick abundance is reduced by (1) culling deer and (2) deer exclusion using fencing. We compared abundance indices of hosts and questing I. ricinus nymphs using a combination of small-scale fencing experiments on moorland, a large-scale natural experiment of fenced and unfenced pairs of forests, and cross-sectional surveys of forest and moorland areas with varying deer densities. As predicted, areas with fewer deer had fewer ticks, and fenced exclosures had dramatically fewer ticks in both large-scale forest and small-scale moorland plots. Fencing and reducing deer density were also associated with higher ground vegetation. The implications of these results on other hosts, pathogen prevalence, and disease risk are discussed. This study provides evidence of how traditional management methods of a keystone species can reduce a generalist parasite, with implications for disease risk mitigation.
USDA-ARS?s Scientific Manuscript database
We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three I. scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the ‘4-Poster’ device and from control a...
Lee, Xia; Hardy, Kristin; Johnson, Diep Hoang; Paskewitz, Susan M
2013-05-01
As a result of the increasing incidence of Lyme disease and other tick-borne pathogens in Wisconsin, we assessed the distribution of adult blacklegged ticks through collections from hunter-killed deer in 2008 and 2009 and compared results with prior surveys beginning in 1981. Volunteers staffed 21 Wisconsin Department of Natural Resources registration stations in 21 counties in the eastern half of Wisconsin in 2008 and 10 stations in seven counties in northwestern Wisconsin in 2009. In total, 786 and 300 white-tailed deer (Odocoileus virginianus) were examined in 2008 and 2009, respectively. All but three stations in 2008 were positive for ticks and all stations in 2009 were positive for ticks. The three sites negative for ticks occurred within the eastern half of Wisconsin. The results indicate that range expansion of Ixodes scapularis (Say) is continuing and the risk of tick exposure is increasing, especially in the eastern one-third of the state.
Powassan/Deer Tick Virus and Borrelia Burgdorferi Infection in Wisconsin Tick Populations
Thomm, Angela M.; Harrington, Yvette A.; Ketter, Ellen; Patitucci, Jacob M.; Carrigan, Donald R.
2017-01-01
Abstract Powassan/Deer Tick Virus (POWV/DTV) is an emerging cause of arboviral neuroinvasive disease in the upper Midwest. These studies describe the prevalence and geographic distribution of Wisconsin ticks carrying POWV/DTV as well as the high frequency of Ixodes scapularis ticks coinfected with both POWV/DTV and Borrelia burgdorferi, the causative agent of Lyme disease. These findings suggest that concurrent transmission of POWV/DTV and B. Burgdorferi from coinfected ticks is likely to occur in humans. PMID:28488932
Powassan/Deer Tick Virus and Borrelia Burgdorferi Infection in Wisconsin Tick Populations.
Knox, Konstance K; Thomm, Angela M; Harrington, Yvette A; Ketter, Ellen; Patitucci, Jacob M; Carrigan, Donald R
2017-07-01
Powassan/Deer Tick Virus (POWV/DTV) is an emerging cause of arboviral neuroinvasive disease in the upper Midwest. These studies describe the prevalence and geographic distribution of Wisconsin ticks carrying POWV/DTV as well as the high frequency of Ixodes scapularis ticks coinfected with both POWV/DTV and Borrelia burgdorferi, the causative agent of Lyme disease. These findings suggest that concurrent transmission of POWV/DTV and B. Burgdorferi from coinfected ticks is likely to occur in humans.
The search for Ixodes dammini and Borrelia burgdorferi in Nova Scotia
Bell, Colin R; Specht, Harold B; Coombs, B Ann
1992-01-01
Twenty-four Ixodes dammini ticks (23 adults and one nymph) have been recovered in Nova Scotia since 1984. There has not been a systematic search for larvae and none has been identified. The recovery of the nymph from a road-killed yellow throat bird, Geothypis trichas, in late May 1990 supports the contention that migrating birds are bringing deer ticks into the province every spring. In March and April 1991, four adult deer ticks were identified, suggesting that these ticks had overwintered. These deer tick specimens indicate that it is possible that I dammini is becoming established in Nova Scotia, if it is not already established. There has been no evidence for the existence of Borrelia burgdorferi in the province. The spirochete was not cultured from 650 Dermacentor variabilis ticks, nor were antibodies detected in a small sample of feral rodents using an indirect fluorescent antibody test. A survey of 137 dog sera samples, analyzed by enzyme-linked immunosorbent assay, also proved negative. There has been no confirmed indigenous case of Lyme disease in Nova Scotia to date. PMID:22416195
The search for Ixodes dammini and Borrelia burgdorferi in Nova Scotia.
Bell, C R; Specht, H B; Coombs, B A
1992-09-01
Twenty-four Ixodes dammini ticks (23 adults and one nymph) have been recovered in Nova Scotia since 1984. There has not been a systematic search for larvae and none has been identified. The recovery of the nymph from a road-killed yellow throat bird, Geothypis trichas, in late May 1990 supports the contention that migrating birds are bringing deer ticks into the province every spring. In March and April 1991, four adult deer ticks were identified, suggesting that these ticks had overwintered. These deer tick specimens indicate that it is possible that I dammini is becoming established in Nova Scotia, if it is not already established. There has been no evidence for the existence of Borrelia burgdorferi in the province. The spirochete was not cultured from 650 Dermacentor variabilis ticks, nor were antibodies detected in a small sample of feral rodents using an indirect fluorescent antibody test. A survey of 137 dog sera samples, analyzed by enzyme-linked immunosorbent assay, also proved negative. There has been no confirmed indigenous case of Lyme disease in Nova Scotia to date.
Lee, Kyunglee; Takano, Ai; Taylor, Kyle; Sashika, Mariko; Shimozuru, Michito; Konnai, Satoru; Kawabata, Hiroki; Tsubota, Toshio
2014-10-01
A relapsing fever Borrelia sp. similar to Borrelia lonestari (herein referred to as B. lonestari-like) was detected from wild sika deer (Cervus nippon yesoensis) and Haemaphysalis ticks in the eastern part of Hokkaido, Japan. The total prevalence of this Borrelia sp. in tested deer blood samples was 10.6% using conventional PCR and real-time PCR. The prevalence was significantly higher in deer fawns compared to adults (21.9% and 9.4%, respectively). Additionally, there was significant regional difference between our two sampling areas, Shiretoko and Shibetsu with 17% and 2.8% prevalence, respectively. Regional differences were also found in tick species collected from field and on deer. In the Shiretoko region, Haemaphysalis spp. were more abundant than Ixodes spp., while in Shibetsu, Ixodes spp. were more abundant. Using real-time PCR analysis, B. lonestari-like was detected from 2 out of 290 adult Haemaphysalis spp. ticks and 4 out of 76 pools of nymphs. This is the first report of a B. lonestari-like organism in Haemaphysalis spp. ticks, and the first phylogenetic analysis of this B. lonestari-like organism in Asia. Based on our results, Haemaphysalis spp. are the most likely candidates to act as a vector for B. lonestari-like; furthermore, regional variation of B. lonestari-like prevalence in sika deer may be dependent on the population distribution of these ticks. Copyright © 2014 Elsevier GmbH. All rights reserved.
Vázquez, Luís; Panadero, Rosario; Dacal, Vicente; Pato, Francisco Javier; López, Ceferino; Díaz, Pablo; Arias, María Sol; Fernández, Gonzalo; Díez-Baños, Pablo; Morrondo, Patrocinio
2011-04-01
During the 2007 and 2008 hunting seasons (April-October) the skin of 367 roe deer (Capreolus capreolus L.), hunted in different preserves from Galicia (Northwestern Spain), were examined for ticks (Acari: Ixodidae). The overall prevalence of infestation by ticks was 83.1%. The predominant species was Ixodes ricinus (83.1%), whereas a single Dermacentor marginatus specimen appeared in one roe deer. All developmental stages of I. ricinus were found parasitizing roe deer, the adults being the most frequent (82.2%), followed by nymphs (45.6%) and larvae (27.2%). The mean intensity of infestation by I. ricinus was 43.2 ± 49.85; most of them were adults (30.7 ± 31.64) and in a lesser extend nymphs (16.9 ± 24.74) and larvae (10.7 ± 29.90). Ixodes ricinus was present all over the study with percentages that oscillated between 100% in spring and 57.4% in autumn. CHAID algorithm showed the sex of roe deer as the most influential factor in tick prevalence, followed by the climatic area. The different developmental stages of I. ricinus were more frequent in males than in females, and the prevalence of adults and larvae were higher in roe deer from coastal areas than in those from mountainous and central areas, whereas nymphs were more frequent in mountainous areas. Host age and density were not determinants for tick infestation. Our results confirm that roe deer are important hosts for I. ricinus in northwestern Spain, serving as a vehicle for the geographic distribution of these ticks.
Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)
Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.
2004-01-01
Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.
Influence of deer abundance on the abundance of questing adult Ixodes scapularis (Acari: Ixodidae)
Ginsberg, H.S.; Zhioua, E.
1999-01-01
Nymphal and adult Ixodes scapularis Say were sampled by flagging at 2 sites on a barrier island, Fire Island, NY, and at 2 sites on the nearby mainland. Nymphal densities did not differ consistently between island and mainland sites, but adult densities were consistently lower on the island. We tested whether lower adult densities on the island resulted from greater nymphal mortality on the island than the mainland, or whether adult ticks on the island were poorly sampled by flagging because they had attached abundantly to deer, which were common on Fire Island. Differential nymphal mortality on islands vs. mainland did not explain this difference in adult densities because survival of flat and engorged nymphs in enclosures was the same at island and mainland sites. Ticks were infected by parasitic wasps on the island and not the mainland, but the infection rate (4.3%) was too low to explain the difference in adult tick densities. In contrast, exclusion of deer by game fencing on Fire Island resulted in markedly increased numbers of adult ticks in flagging samples inside compared to samples taken outside the exclosures. Therefore, the scarcity of adult ticks in flagging samples on Fire Island resulted, at least in part, from the ticks being unavailable to flagging samples because they were on deer hosts. Differences in the densities of flagged ticks inside and outside the exclosures were used to estimate the percentage of questing adults on Fire Island that found deer hosts, excluding those that attached to other host species. Approximately 56% of these questing adult ticks found deer hosts in 1995 and 50% found deer hosts in 1996. Therefore, in areas where vertebrate hosts are highly abundant, large proportions of the questing tick population can find hosts. Moreover, comparisons of tick densities at different sites by flagging can potentially be biased by differences in host densities among sites.
El Khoury, Marc Y; Camargo, Jose F; White, Jennifer L; Backenson, Bryon P; Dupuis, Alan P; Escuyer, Kay L; Kramer, Laura; St George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P; Wong, Susan J
2013-12-01
Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004-2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease-endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage.
Camargo, Jose F.; White, Jennifer L.; Backenson, Bryon P.; Dupuis, Alan P.; Escuyer, Kay L.; Kramer, Laura; St. George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P.; Wong, Susan J.
2013-01-01
Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004–2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease–endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage. PMID:24274334
Fatal Deer Tick Virus Infection in Maine.
Cavanaugh, Catherine E; Muscat, Paul L; Telford, Sam R; Goethert, Heidi; Pendlebury, William; Elias, Susan P; Robich, Rebecca; Welch, Margret; Lubelczyk, Charles B; Smith, Robert P
2017-09-15
Deer tick virus (DTV), a genetic variant (lineage II) of Powassan virus, is a rare cause of encephalitis in North America. We report a fatal case of DTV encephalitis following a documented bite from an Ixodes scapularis tick and the erythema migrans rash associated with Lyme disease. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Short report: duration of tick attachment required for transmission of powassan virus by deer ticks.
Ebel, Gregory D; Kramer, Laura D
2004-09-01
Infected deer ticks (Ixodes scapularis) were allowed to attach to naive mice for variable lengths of time to determine the duration of tick attachment required for Powassan (POW) virus transmission to occur. Viral load in engorged larvae detaching from viremic mice and in resulting nymphs was also monitored. Ninety percent of larval ticks acquired POW virus from mice that had been intraperitoneally inoculated with 10(5) plaque-forming units (PFU). Engorged larvae contained approximately 10 PFU. Transstadial transmission efficiency was 22%, resulting in approximately 20% infection in nymphs that had fed as larvae on viremic mice. Titer increased approximately 100-fold during molting. Nymphal deer ticks efficiently transmitted POW virus to naive mice after as few as 15 minutes of attachment, suggesting that unlike Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum, no grace period exists between tick attachment and POW virus transmission.
Lyme Disease: A Challenge for Outdoor Educators.
ERIC Educational Resources Information Center
Whitcombe, Mark
1989-01-01
Describes signs and symptoms of Lyme disease; life cycle and feeding habits of the deer tick (Ixodes dammini), which transmits the spirochete bacterium; tick control measures; outdoor precautions; and veterinary considerations. Discusses the disease's potential impact on outdoor education, and suggests a reasoned, nonhysterical approach. Contains…
Zamoto-Niikura, Aya; Tsuji, Masayoshi; Qiang, Wei; Morikawa, Shigeru; Hanaki, Ken-Ichi; Holman, Patricia J; Ishihara, Chiaki
2018-04-01
Parasites of the Babesia divergens Asia lineage, which are closely related to B. divergens in Europe and Babesia sp. strain MO1 in the United States, were recently reported in sika deer ( Cervus nippon ) in eastern Japan. To identify the tick vector(s) for this parasite, we conducted a field survey in Hokkaido, Japan, where the infection rate in sika deer is the highest in the country. A specific PCR system which detects and discriminates between lineages within B. divergens and between those lineages and Babesia venatorum showed that Ixodes persulcatus (11/822), but not sympatric Ixodes ovatus (0/595) or Haemaphysalis sp. (0/163) ticks, carried B. divergens Asia lineage. Genomic DNA was archived from salivary glands of partially engorged I. persulcatus females and three isolates of B. divergens Asia lineage were newly described. The 18S rRNA gene sequence of the isolates formed the Asia lineage cluster with those previously described in sika deer isolates. One salivary gland also contained parasites of Babesia microti U.S. lineage, which were subsequently isolated in a hamster in vivo B. venatorum (strain Etb5) was also detected in one I. persulcatus tick. The 18S rRNA sequence of Etb5 was 99.7% identical to that of B. venatorum (AY046575) and was phylogenetically positioned in a taxon composed of B. venatorum isolates from Europe, China, and Russia. The geographical distribution of I. persulcatus is consistent with that of B. divergens in sika deer in Japan. These results suggest that I. persulcatus is a principal vector for B. divergens in Japan and Eurasia, where I. persulcatus is predominantly distributed. IMPORTANCE The Babesia divergens Asia lineage of parasites closely related to B. divergens in Europe and Babesia sp. MO1 in the United States was recently reported in Cervus nippon in eastern Japan. In this study, specific PCR for the Asia lineage identified 11 positives in 822 host-seeking Ixodes persulcatus ticks, a principal vector for many tick-borne disease agents. Gene sequences of three isolates obtained from DNA in salivary glands of female ticks were identical to each other and to those in C. nippon We also demonstrate the coinfection of B. divergens Asia lineage with Babesia microti U.S. lineage in a tick salivary gland and, furthermore, isolated the latter in a hamster. These results suggest that I. persulcatus is the principal vector for B. divergens as well as for B. microti , and both parasites may be occasionally cotransmitted by I. persulcatus This report will be important for public health, since infection may occur through transfusion. Copyright © 2018 American Society for Microbiology.
Hoen, Anne Gatewood; Rollend, Lindsay G; Papero, Michele A; Carroll, John F; Daniels, Thomas J; Mather, Thomas N; Schulze, Terry L; Stafford, Kirby C; Fish, Durland
2009-08-01
We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three Ixodes scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the "4-Poster" device and from control areas over a 6-year period in five geographically diverse study locations in the Northeastern United States and tested for infection with two known agents of human disease, Borrelia burgdorferi and Anaplasma phagocytophilum, and for a novel relapsing fever-group spirochete related to Borrelia miyamotoi. Overall, 38.2% of adults and 12.5% of nymphs were infected with B. burgdorferi; 8.5% of adults and 4.2% of nymphs were infected with A. phagocytophilum; and 1.9% of adults and 0.8% of nymphs were infected with B. miyamotoi. In most cases, treatment with the 4-Poster device was not associated with changes in the prevalence of infection with any of these three microorganisms among nymphal or adult ticks. However, the density of nymphs infected with B. burgdorferi, and consequently the entomologic risk for Lyme disease, was reduced overall by 68% in treated areas compared to control areas among the five study sites at the end of the study. The frequency of bacterial coinfections in ticks was generally equal to the product of the proportion of ticks infected with a single bacterium, indicating that enzootic maintenance of these pathogens is independent. We conclude that controlling ticks on deer by self-application of acaricide results in an overall decrease in the human risk for exposure to these three bacterial agents, which is due solely to a reduction in tick density.
Jemeršić, Lorena; Dežđek, Danko; Brnić, Dragan; Prpić, Jelena; Janicki, Zdravko; Keros, Tomislav; Roić, Besi; Slavica, Alen; Terzić, Svjetlana; Konjević, Dean; Beck, Relja
2014-02-01
Tick-borne encephalitis (TBE) is a growing public health concern in central and northern European countries. Even though TBE is a notifiable disease in Croatia, there is a significant lack of information in regard to vector tick identification, distribution as well as TBE virus prevalence in ticks or animals. The aim of our study was to identify and to investigate the viral prevalence of TBE virus in ticks removed from red fox (Vulpes vulpes) carcasses hunted in endemic areas in northern Croatia and to gain a better insight in the role of wild ungulates, especially red deer (Cervus elaphus) in the maintenance of the TBE virus in the natural cycle. We identified 5 tick species (Ixodes ricinus, Ixodes hexagonus, Haemaphysalis punctata, Dermacentor reticulatus, Rhipicephalus sanguineus) removed from 40 red foxes. However, TBE virus was isolated only from adult I. ricinus and I. hexagonus ticks showing a viral prevalence (1.6%) similar to or higher than reported in endemic areas of other European countries. Furthermore, 2 positive spleen samples from 182 red deer (1.1%) were found. Croatian TBE virus isolates were genetically analyzed, and they were shown to be closely related, all belonging to the European TBE virus subgroup. However, on the basis of nucleotide and amino acid sequence analysis, 2 clusters were identified. Our results show that further investigation is needed to understand the clustering of isolates and to identify the most common TBE virus reservoir hosts in Croatia. Sentinel surveys based on wild animal species would give a better insight in defining TBE virus-endemic and possible risk areas in Croatia. Copyright © 2013. Published by Elsevier GmbH.
Valcárcel, F; González, J; Tercero Jaime, J M; Olmeda, A S
2016-05-01
Red deer (Cervus elaphus L.) are very valuable in trophy-hunting but also contribute to the preservation of natural areas. They are affected by many parasites and pathogens, including hard ticks that are not only important parasites themselves but can also act as vectors and/or reservoirs of pathogens. Tick phenology is complex insofar as population dynamics depend on environmental conditions, vegetation, host availability and their own intrinsic characteristic. Ticks were collected monthly from January 2007 to December 2014 from red deer on a natural reserve located in a meso-Mediterranean environment in Central Spain. A total of 8978 specimens of ixodid ticks were recovered with a mean Parasitization Index of 65.06 ticks/deer. Red deer were infected the whole year round with a summer-spring pattern and two secondary peaks in February and October. The main species was Hyalomma lusitanicum Koch followed by Rhipicephalus bursa Canestrini and Fanzago, Rhipicephalus pusillus Gil Collado, Dermacentor marginatus Sulzer and Ixodes ricinus L. Hyalomma lusitanicum has a complex life cycle in which several generations initiate their cycle at different times throughout the year, most probably lasting more than 1 year. We also describe the ability of nymphs to feed on large ungulates even though their habitual host is wild rabbit.
USDA-ARS?s Scientific Manuscript database
The 4-Poster device for the topical treatment of white-tailed deer, Odocoileus virginianus (Zimmermann) against ticks using the acaricide amitraz was evaluated in a Lyme borreliosis endemic community in Connecticut. As part of a 5-year project from 1997 to 2002, 21–24 of the 4-Posters were distribut...
Carroll, J F; Mills, G D; Schmidtmann, E T
1996-07-01
In a field test, adult blacklegged ticks, Ixodes scapularis Say, of both sexes exhibited an arrestant response to substances associated with external glands on the legs of white-tailed deer, Odocoileus virginianus (Zimmermann), their principal host. Substances rubbed from the pelage covering tarsal and interdigital glands were applied to artificial vantage points simulating vegetation on which I. scapularis adults wait for host contact. A combination of tarsal substances (applied to the apex of the simulated vantage point) and interdigital gland substances (applied to the horizontal base) elicited a greater response than either treatment alone. A minimal response was observed on untreated vantage points. In laboratory bioassays using glass tubing as vantage points, substances associated with preorbital glands of deer elicited a strong arrestant response among I. scapularis females, whereas samples rubbed from the forehead, back, and a nonglandular area on deer tarsi evoked weak arrestant responses. These results support the hypothesis that the kairomonal properties of host-generated residues, either in conjunction with or in lieu of the effects of carbon dioxide, help account for the prevalence of host-seeking ticks along animal trails.
Molecular epidemiology of Powassan virus in North America.
Pesko, Kendra N; Torres-Perez, Fernando; Hjelle, Brian L; Ebel, Gregory D
2010-11-01
Powassan virus (POW) is a tick-borne flavivirus distributed in Canada, the northern USA and the Primorsky region of Russia. POW is the only tick-borne flavivirus endemic to the western hemisphere, where it is transmitted mainly between Ixodes cookei and groundhogs (Marmota monax). Deer tick virus (DTV), a genotype of POW that has been frequently isolated from deer ticks (Ixodes scapularis), appears to be maintained in an enzootic cycle between these ticks and white-footed mice (Peromyscus leucopus). DTV has been isolated from ticks in several regions of North America, including the upper Midwest and the eastern seaboard. The incidence of human disease due to POW is apparently increasing. Previous analysis of tick-borne flaviviruses endemic to North America have been limited to relatively short genome fragments. We therefore assessed the evolutionary dynamics of POW using newly generated complete and partial genome sequences. Maximum-likelihood and Bayesian phylogenetic inferences showed two well-supported, reciprocally monophyletic lineages corresponding to POW and DTV. Bayesian skyline plots based on year-of-sampling data indicated no significant population size change for either virus lineage. Statistical model-based selection analyses showed evidence of purifying selection in both lineages. Positive selection was detected in NS-5 sequences for both lineages and envelope sequences for POW. Our findings confirm that POW and DTV sequences are relatively stable over time, which suggests strong evolutionary constraint, and support field observations that suggest that tick-borne flavivirus populations are extremely stable in enzootic foci.
Fuehrer, Hans-Peter; Biro, Nora; Harl, Josef; Worliczek, Hanna L; Beiglböck, Christoph; Farkas, Robert; Joachim, Anja; Duscher, Georg G
2013-11-08
Theileria spp. are intracellular protozoa transmitted by ixodid ticks. T. parva and T. annulata are highly pathogenic and responsible for serious disease in domestic ruminants in tropical and subtropical countries. However, asymptomatic findings of Theileria sp. in wild ungulates lead to the suggestion that wild ruminants play a role as reservoirs for these piroplasms. In a game enclosure in Eastern Austria (Federal county of Burgenland), piroplasms were detected with molecular analysis in blood samples of all 80 examined asymptomatic red deer (Cervus elaphus). Furthermore, piroplasms were detected in four out of 12 questing nymphs of Haemaphysalis concinna. In 32 Ixodes ticks sampled on-site, no Theileria DNA was detected. Sequence analysis identified these samples from both red deer and ticks as Theileria sp. ZS TO4. Our findings indicate that farmed red deer serve as asymptomatic carriers and adapted intermediate hosts of Theileria sp. in Central Europe and H. concinna was identified as a possible vector species of Theileria sp. ZS TO4. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The 4-Poster device for the topical treatment of white-tailed deer, Odocoileus virginianus (Zimmermann), against ticks using the acaricide amitraz, was evaluated in a Lyme borreliosis endemic community in Connecticut. As part of a 5-year project from 1997 to 2002, 21–24 of the 4-Posters were distrib...
Tick borne illness-Lyme disease.
Bush, Larry M; Vazquez-Pertejo, Maria T
2018-05-01
Lyme disease is the most commonly reported tick-borneillness in the United States. Thecausative spirochete, Borrelia burgdorferi is transmitted by 4 species of Ixodes tick species. Over 90% of US cases occur in northeasternstates from Maine to Virginia, and in Wisconsin, Minnesota, and Michigan. Infection also takes place in northern California and Oregon. Lyme borreliosis is also diagnosed in parts of Europe, China, and Japan. The white-footed mouse is the primary animal reservoir for B. burgdorferi in the U.S. and the preferred host for nymphal and larval forms of the deer tick. Deer are hosts for the adult ticks but do not carry the spirochete. Signs and symptomsof infection occur in 3 stages; early localized, typified by erythema migrans; early disseminated with a flu-like syndrome, neurologic, and cardiac manifestations; and late, characteristically with arthritis. Although, the term 'Chronic Lyme Disease' has been assigned to many patients with a variety of unexplained symptoms, experts in the field question the validity of this diagnosis and warn against prolonged unproven antimicrobial therapies. Diagnosis relies upon clinical evaluation and is supported by serologic testing using a 2-step process which requires careful interpretation. Treatmentvaries with stage of disease, but normally includes doxycycline, amoxicillin,and ceftriaxone. Currently, no preventative vaccine is available. In some geographic areas, patients may be confected with Babesia, Ehrlichia, and Anaplasma since the same Ixodes ticks transmit these pathogens. Copyright © 2018 Mosby, Inc. All rights reserved.
Stable prevalence of Powassan virus in Ixodes scapularis in a northern Wisconsin focus.
Brackney, Doug E; Nofchissey, Robert A; Fitzpatrick, Kelly A; Brown, Ivy K; Ebel, Gregory D
2008-12-01
Deer tick virus (DTV), a variant of Powassan virus (POWV), appears to be maintained in nature in an enzootic cycle between Ixodes scapularis ticks and small mammals. Although POWV infection of human beings is rare, a recent report suggests increasing incidence and the possibility that POWV may be an emerging tick-borne zoonosis. Therefore, we assessed the long-term stability of the POWV transmission cycle in northwestern Wisconsin. Adult I. scapularis and Dermacentor variabilis were collected from Hayward and Spooner, Wisconsin, screened for infection by reverse transcriptase polymerase chain reaction (RT-PCR), and virus was isolated. Seventeen of 1,335 (1.3%) of I. scapularis and 0 of 222 (0%) of D. variabilis ticks were infected. All isolated virus belonged to the DTV genotype of POWV. These findings suggest stable transmission of POWV in this focus over ten years and highlight the potential for this agent to emerge as a public health concern.
Co-Infection and Genetic Diversity of Tick-Borne Pathogens in Roe Deer from Poland
Werszko, Joanna; Cydzik, Krystian; Bajer, Anna; Michalik, Jerzy; Behnke, Jerzy M.
2013-01-01
Abstract Wild species are essential hosts for maintaining Ixodes ticks and the tick-borne diseases. The aim of our study was to estimate the prevalence, the rate of co-infection with Babesia, Bartonella, and Anaplasma phagocytophilum, and the molecular diversity of tick-borne pathogens in roe deer in Poland. Almost half of the tested samples provided evidence of infection with at least 1 species. A. phagocytophilum (37.3%) was the most common and Bartonella (13.4%) the rarest infection. A total of 18.3% of all positive samples from roe deer were infected with at least 2 pathogens, and one-third of those were co-infected with A. phagocytophilum, Bartonella, and Babesia species. On the basis of multilocus molecular studies we conclude that: (1) Two different genetic variants of A. phagocytophilum, zoonotic and nonzoonotic, are widely distributed in Polish roe deer population; (2) the roe deer is the host for zoonotic Babesia (Bab. venatorum, Bab. divergens), closely related or identical with strains/species found in humans; (3) our Bab. capreoli and Bab. divergens isolates differed from reported genotypes at 2 conserved base positions, i.e., positions 631 and 663; and (4) this is the first description of Bart. schoenbuchensis infections in roe deer in Poland. We present 1 of the first complex epidemiological studies on the prevalence of Babesia, Bartonella, and A. phagocytophilum in naturally infected populations of roe deer. These game animals clearly have an important role as reservoir hosts of tick-borne pathogens, but the pathogenicity and zoonotic potential of the parasite genotypes hosted by roe deer requires further detailed investigation. PMID:23473225
2012-01-01
Background Ixodes ricinus is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that Ixodes ricinus ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study. Methods A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present. Results Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, I. ricinus has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden. Conclusions The results suggest that I. ricinus has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region I. ricinus is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (Capreolus capreolus) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of I. ricinus and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of I. ricinus. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly C. capreolus and Dama dama, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (Vulpes vulpes) and lynx (Lynx lynx), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades. PMID:22233771
Factors affecting the ecology of tick-borne encephalitis in Slovenia.
Knap, N; Avšič-Županc, T
2015-07-01
Recognition of factors that influence the formation of tick-borne encephalitis (TBE) foci is important for assessing the risk of humans acquiring the viral infection and for establishing what can be done (within reasonable boundaries) to minimize that risk. In Slovenia, the dynamics of the TBE vector, i.e. Ixodes ricinus, was studied over a 4-year period and the prevalence of infection in ticks was established. Two groups of tick hosts were investigated: deer and small mammals. Red deer have been confirmed as having a direct influence on the incidence of TBE and rodents have been recognized as important sentinels for TBE infections, although their role in the enzootic cycle of the virus still remains to be elucidated. Last, forest and agricultural areas, which are influenced by human activity, are suitable habitats for ticks, and important for TBEV transmission and establishment. Human behaviour is also therefore an important factor and should always be considered in studies of TBE ecology.
Clinical Manifestations and Treatment of Lyme Disease.
Sanchez, Joyce L
2015-12-01
Lyme disease is the most common tick-borne illness in the United States and is also seen in areas of Europe and Asia. The growing deer and Ixodes species tick populations in many areas underscore the importance of clinicians to properly recognize and treat the different stages of Lyme disease. Controversy regarding the cause and management of persistent symptoms following treatment of Lyme disease persists and is highlighted in this review. Copyright © 2015 Elsevier Inc. All rights reserved.
Short Report: Stable Prevalence of Powassan Virus in Ixodes scapularis in a Northern Wisconsin Focus
Brackney, Doug E.; Nofchissey, Robert A.; Fitzpatrick, Kelly A.; Brown, Ivy K.; Ebel, Gregory D.
2008-01-01
Abstract. Deer tick virus (DTV), a variant of Powassan virus (POWV), appears to be maintained in nature in an enzootic cycle between Ixodes scapularis ticks and small mammals. Although POWV infection of human beings is rare, a recent report suggests increasing incidence and the possibility that POWV may be an emerging tick-borne zoonosis. Therefore, we assessed the long-term stability of the POWV transmission cycle in northwestern Wisconsin. Adult I. scapularis and Dermacentor variabilis were collected from Hayward and Spooner, Wisconsin, screened for infection by reverse transcriptase polymerase chain reaction (RT-PCR), and virus was isolated. Seventeen of 1,335 (1.3%) of I. scapularis and 0 of 222 (0%) of D. variabilis ticks were infected. All isolated virus belonged to the DTV genotype of POWV. These findings suggest stable transmission of POWV in this focus over ten years and highlight the potential for this agent to emerge as a public health concern. PMID:19052313
Scheid, Patrick; Speck, Stephanie; Schwarzenberger, Rafael; Litzinger, Mark; Balczun, Carsten; Dobler, Gerhard
2016-10-01
Ixodes ricinus is a well-known vector of different human pathogens including Rickettsia helvetica. The role of wild mammals in the distribution and probable maintenance of Rickettsia in nature is still to be determined. We therefore investigated various parasites from different wild mammals as well as companion animals for the presence of Rickettsia. A total of 606 I. ricinus, 38 Cephenemyia stimulator (botfly larvae), one Dermacentor reticulatus, 24 Haematopinus suis (hog lice) and 30 Lipoptena cervi (deer flies) were collected from free-ranging animals during seasonal hunting, and from companion animals. Sample sites included hunting leases at three main sampling areas and five additional areas in West and Central Germany. All collected parasites were screened for Rickettsia spp. and I. ricinus were investigated for tick-borne encephalitis virus (TBEV) in addition. While no TBEV was detected, the minimum infection rate (MIR) of I. ricinus with Rickettsia was 4.1% referring to all sampling sites and up to 6.9% at the main sampling site in Koblenz area. Sequencing of a fragment of the ompB gene identified R. helvetica. Approximately one third (29.5%) of the animals carried Rickettsia-positive ticks and the MIR in ticks infesting wild mammals ranged from 4.1% (roe deer) to 9.5%. These data affirm the widespread distribution of R. helvetica in Germany. One botfly larva from roe deer also harboured R. helvetica. Botfly larvae are obligate parasites of the nasal cavity, pharynx and throat of cervids and feed on cell fragments and blood. Based on this one might hypothesise that R. helvetica likely induces rickettsemia in cervids thus possibly contributing to maintenance and distribution of this rickettsia in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.
The use of animal host-targeted pesticide application to control blacklegged ticks, which transmit the Lyme disease bacterium between wildlife hosts and humans, is receiving increased attention as an approach to Lyme disease risk management. Included among the attractive feature...
Johnson, Tammi L; Graham, Christine B; Boegler, Karen A; Cherry, Cara C; Maes, Sarah E; Pilgard, Mark A; Hojgaard, Andrias; Buttke, Danielle E; Eisen, Rebecca J
2017-05-01
Tick-borne pathogens transmitted by Ixodes scapularis Say (Acari: Ixodidae), also known as the deer tick or blacklegged tick, are increasing in incidence and geographic distribution in the United States. We examined the risk of tick-borne disease exposure in 9 national parks across six Northeastern and Mid-Atlantic States and the District of Columbia in 2014 and 2015. To assess the recreational risk to park visitors, we sampled for ticks along frequently used trails and calculated the density of I. scapularis nymphs (DON) and the density of infected nymphs (DIN). We determined the nymphal infection prevalence of I. scapularis with a suite of tick-borne pathogens including Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti. Ixodes scapularis nymphs were found in all national park units; DON ranged from 0.40 to 13.73 nymphs per 100 m2. Borrelia burgdorferi, the causative agent of Lyme disease, was found at all sites where I. scapularis was documented; DIN with B. burgdorferi ranged from 0.06 to 5.71 nymphs per 100 m2. Borrelia miyamotoi and A. phagocytophilum were documented at 60% and 70% of the parks, respectively, while Ba. microti occurred at just 20% of the parks. Ixodes scapularis is well established across much of the Northeastern and Mid-Atlantic States, and our results are generally consistent with previous studies conducted near the areas we sampled. Newly established I. scapularis populations were documented in two locations: Washington, D.C. (Rock Creek Park) and Greene County, Virginia (Shenandoah National Park). This research demonstrates the potential risk of tick-borne pathogen exposure in national parks and can be used to educate park visitors about the importance of preventative actions to minimize tick exposure. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Rizzoli, Annapaola; Silaghi, Cornelia; Obiegala, Anna; Rudolf, Ivo; Hubálek, Zdeněk; Földvári, Gábor; Plantard, Olivier; Vayssier-Taussat, Muriel; Bonnet, Sarah; Špitalská, Eva; Kazimírová, Mária
2014-01-01
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, “Candidatus Neoehrlichia mikurensis,” Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases. PMID:25520947
The use of animal host-targeted pesticide application to control blacklegged ticks, which transmit the Lyme disease bacterium between wildlife hosts and humans, is receiving increased attention as an approach to Lyme disease risk management. Included among the attractive features...
2013-01-01
Background Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. Methods More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Results Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. Conclusions These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections. PMID:24016533
Dupuis, Alan P; Peters, Ryan J; Prusinski, Melissa A; Falco, Richard C; Ostfeld, Richard S; Kramer, Laura D
2013-07-15
Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections.
Karbowiak, Grzegorz; Biernat, Beata; Stańczak, Joanna; Werszko, Joanna; Wróblewski, Piotr; Szewczyk, Tomasz; Sytykiewicz, Hubert
In Central European conditions, two species of Anaplasmataceae have epidemiological significance – Candidatus Neoehrlichia micurensis and Anaplasma phagocytophilum. Tick Ixodes ricinus is considered as their main vector, wild mammals as the animal reservoir. There is presented the transstadial transmission in ticks, due to the lack of transovarial mode the circulation goes mainly between immature ticks and hosts; pathogen circulates primarily in the cycle: infected rodent → the tick larva → the nymph → the mammal reservoir → the larva of the tick. The tick stages able to effectively infect human are nymphs and adult females, males do not participate in the follow transmission. The summary of available data of different A. phagocytophilum strains associations with different hosts revealed at least few distinct enzootic cycle, concern the same ticks species and different mammal hosts. It is possible to reveal in Central Europe the existence of at least three different epidemiological transmission cycles of A. phagocytophilum. The first cycle involves strains pathogenic for human and identical strains from horses, dogs, cats, wild boars, hedgehogs, possibly red foxes. The second cycle involves deer, European bison and possibly domestic ruminants. The third cycle contains strains from voles, shrew and possibly Apodemus mice. In Western Europe voles might be involved in separate enzootic cycle with Ixodes trianguliceps as the vector.
Hilpertshauser, Heidi; Deplazes, Peter; Schnyder, Manuela; Gern, Lise; Mathis, Alexander
2006-10-01
Concurrent infections with vector-borne pathogens affected a cattle herd in Switzerland, and one of the pathogens was identified as Babesia bigemina, which had never been observed in this country before. Therefore, a survey of the occurrence of ruminant Babesia spp. and their tick vectors in Switzerland was conducted. A total of 2,017 ticks were collected from sheep, goats, cattle, and wild ruminants (deer, roe deer, and chamois) in southern parts of Switzerland and identified morphologically. The vast majority of the ticks (99.2%) were Ixodes ricinus, but 14 ticks from sheep and goats were identified as Dermacentor marginatus and two ticks from wild ruminants were identified as Hemaphysalis punctata. PCR analyses of 700 ticks revealed the presence of Babesia divergens (n = 6), Babesia sp. genotype EU1 (n = 14), and B. major (n = 2), whose suggested occurrence was confirmed in this study by molecular analysis, and the presence of novel Babesia sp. genotype CH1 (n = 4), which is closely related to B. odocoilei and to Babesia sp. genotype RD61 reported from North America. The identification of B. divergens and B. major in ticks collected from wild ruminants cast doubt on the postulated strict host specificity of these bovine Babesia species. Furthermore, the zoonotic Babesia sp. genotype EU1 was detected in ticks collected from domestic animals but was obtained predominantly from ticks collected from wild ruminants. More than one tick containing DNA of different Babesia spp. were collected from two red deer. Hence, the role of these game animals as reservoir hosts of Babesia spp. seems to be important but requires further investigation.
Bos, Jan H; Klip, Fokko C; Sprong, Hein; Broens, Els M; Kik, Marja J L
2017-08-01
From a herd of captive reindeer (Rangifer tarandus tarandus) consisting of two males and seven females with five calves, three calves were diagnosed on post mortem examination with a Babesia capreoli infection. The diagnosis was indicated by PCR and when the other reindeer were examined two adult females and a one-year-old male were Babesia-positive. Molecular characterization of the 18S rDNA of the parasite showed complete identity with known B. capreoli sequences. Ixodes ricinus has been demonstrated to be a competent vector for B. capreoli from infected roe deer (Capreolus capreolus), the natural host of B. capreoli. The B. capreoli infection in these reindeer may have been transmitted by infected ticks (Ixodes ricinus) originating from roe deer living in the forest and meadows surrounding the enclosure. Copyright © 2017 Elsevier GmbH. All rights reserved.
Beasley, D W; Suderman, M T; Holbrook, M R; Barrett, A D
2001-11-05
Deer tick virus (DTV) is a recently recognized North American virus isolated from Ixodes dammini ticks. Nucleotide sequencing of fragments of structural and non-structural protein genes suggested that this virus was most closely related to the tick-borne flavivirus Powassan (POW), which causes potentially fatal encephalitis in humans. To determine whether DTV represents a new and distinct member of the Flavivirus genus of the family Flaviviridae, we sequenced the structural protein genes and 5' and 3' non-coding regions of this virus. In addition, we compared the reactivity of DTV and POW in hemagglutination inhibition tests with a panel of polyclonal and monoclonal antisera, and performed cross-neutralization experiments using anti-DTV antisera. Nucleotide sequencing revealed a high degree of homology between DTV and POW at both nucleotide (>80% homology) and amino acid (>90% homology) levels, and the two viruses were indistinguishable in serological assays and mouse neuroinvasiveness. On the basis of these results, we suggest that DTV should be classified as a genotype of POW virus.
Widespread distribution of ticks and selected tick-borne pathogens in Kentucky (USA).
Lockwood, Bessie H; Stasiak, Iga; Pfaff, Madeleine A; Cleveland, Christopher A; Yabsley, Michael J
2018-03-01
The geographical distribution of Ixodes scapularis and Amblyomma maculatum ticks is poorly understood in Kentucky. We conducted a convenience survey of wildlife species (white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis) and black bears (Ursus americanus)) for ticks from October 2015 to January 2017. We detected four tick species including Amblyomma americanum, Dermacentor albipictus, I. scapularis and A. maculatum. Although the former two tick species were previously known to be widely distributed in Kentucky, we also found that I. scapularis and A. maculatum were also widespread. Because of the limited data available for pathogens from I. scapularis and A. maculatum, we tested them for Borrelia and Rickettsia spp. by polymerase chain reaction assays. Prevalence of Borrelia burgdorferi sensu stricto and Rickettsia parkeri were 11% and 3%, respectively. These data indicate that public health measures are important to prevent tick-borne diseases in Kentucky. Copyright © 2018 Elsevier GmbH. All rights reserved.
Jore, Solveig; Vanwambeke, Sophie O; Viljugrein, Hildegunn; Isaksen, Ketil; Kristoffersen, Anja B; Woldehiwet, Zerai; Johansen, Bernt; Brun, Edgar; Brun-Hansen, Hege; Westermann, Sebastian; Larsen, Inger-Lise; Ytrehus, Bjørnar; Hofshagen, Merete
2014-01-08
Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 - 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.
Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America.
Hermance, Meghan E; Thangamani, Saravanan
2017-07-01
Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.
Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America
Hermance, Meghan E.
2017-01-01
Abstract Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized. PMID:28498740
Different Ecological Niches for Ticks of Public Health Significance in Canada
Gabriele-Rivet, Vanessa; Arsenault, Julie; Badcock, Jacqueline; Cheng, Angela; Edsall, Jim; Goltz, Jim; Kennedy, Joe; Lindsay, L. Robbin; Pelcat, Yann; Ogden, Nicholas H.
2015-01-01
Tick-borne diseases are a growing public health concern as their incidence and range have increased in recent decades. Lyme disease is an emerging infectious disease in Canada due to northward expansion of the geographic range of Ixodes scapularis, the principal tick vector for the Lyme disease agent Borrelia burgdorferi, into central and eastern Canada. In this study the geographical distributions of Ixodid ticks, including I. scapularis, and environmental factors associated with their occurrence were investigated in New Brunswick, Canada, where few I. scapularis populations have been found to date. Density of host-seeking ticks was evaluated by drag sampling of woodland habitats in a total of 159 sites. Ixodes scapularis ticks (n = 5) were found on four sites, Ixodes muris (n = 1) on one site and Haemaphysalis leporispalustris (n = 243) on 41 sites. One of four adult I. scapularis ticks collected was PCR-positive for B. burgdorferi. No environmental variables were significantly associated with the presence of I. scapularis although comparisons with surveillance data in neighbouring provinces (Québec and Nova Scotia) suggested that temperature conditions may be too cold for I. scapularis (< 2800 annual degree days above 0°C [DD > 0°C]) across much of New Brunswick. In contrast, the presence of H. leporispalustris, which is a competent vector of tularaemia, was significantly (P < 0.05) associated with specific ranges of mean DD > 0°C, mean annual precipitation, percentage of clay in site soil, elevation and season in a multivariable logistic regression model. With the exception of some localized areas, temperature conditions and deer density may be too low for the establishment of I. scapularis and Lyme disease risk areas in New Brunswick, while environmental conditions were suitable for H. leporispalustris at many sites. These findings indicate differing ecological niches for two tick species of public health significance. PMID:26131550
Different Ecological Niches for Ticks of Public Health Significance in Canada.
Gabriele-Rivet, Vanessa; Arsenault, Julie; Badcock, Jacqueline; Cheng, Angela; Edsall, Jim; Goltz, Jim; Kennedy, Joe; Lindsay, L Robbin; Pelcat, Yann; Ogden, Nicholas H
2015-01-01
Tick-borne diseases are a growing public health concern as their incidence and range have increased in recent decades. Lyme disease is an emerging infectious disease in Canada due to northward expansion of the geographic range of Ixodes scapularis, the principal tick vector for the Lyme disease agent Borrelia burgdorferi, into central and eastern Canada. In this study the geographical distributions of Ixodid ticks, including I. scapularis, and environmental factors associated with their occurrence were investigated in New Brunswick, Canada, where few I. scapularis populations have been found to date. Density of host-seeking ticks was evaluated by drag sampling of woodland habitats in a total of 159 sites. Ixodes scapularis ticks (n = 5) were found on four sites, Ixodes muris (n = 1) on one site and Haemaphysalis leporispalustris (n = 243) on 41 sites. One of four adult I. scapularis ticks collected was PCR-positive for B. burgdorferi. No environmental variables were significantly associated with the presence of I. scapularis although comparisons with surveillance data in neighbouring provinces (Québec and Nova Scotia) suggested that temperature conditions may be too cold for I. scapularis (< 2800 annual degree days above 0°C [DD > 0°C]) across much of New Brunswick. In contrast, the presence of H. leporispalustris, which is a competent vector of tularaemia, was significantly (P < 0.05) associated with specific ranges of mean DD > 0°C, mean annual precipitation, percentage of clay in site soil, elevation and season in a multivariable logistic regression model. With the exception of some localized areas, temperature conditions and deer density may be too low for the establishment of I. scapularis and Lyme disease risk areas in New Brunswick, while environmental conditions were suitable for H. leporispalustris at many sites. These findings indicate differing ecological niches for two tick species of public health significance.
Detection of human pathogenic Ehrlichia muris-like agent in Peromyscus leucopus.
Castillo, Caroline G; Eremeeva, Marina E; Paskewitz, Susan M; Sloan, Lynne M; Lee, Xia; Irwin, William E; Tonsberg, Stefan; Pritt, Bobbi S
2015-03-01
An Ehrlichia muris-like (EML) bacterium was recently detected in humans and Ixodes scapularis ticks in Minnesota and Wisconsin. The reservoir for this agent is unknown. To investigate the occurrence of the EML agent, groEL PCR testing and sequencing was performed on blood from small mammals and white-tailed deer that were collected in areas where human and tick infections were previously demonstrated. DNA of the EML agent was detected in two Peromyscus leucopus of 146 small mammals (1.4%); while 181 O. virginianus tested negative. This report provides the first evidence that DNA from the EML agent is found in P. leucopus, the same animal that is a reservoir for Anaplasma phagocytophilum in this region. The role of white-tailed deer remains inconclusive. Further sampling is warranted to understand the spatial and temporal distribution, transmission and maintenance of this pathogen. Copyright © 2014 Elsevier GmbH. All rights reserved.
Powassan Virus and Other Arthropod-Borne Viruses in Wildlife and Ticks in Ontario, Canada.
Smith, Kathryn; Oesterle, Paul T; Jardine, Claire M; Dibernardo, Antonia; Huynh, Chris; Lindsay, Robbin; Pearl, David L; Bosco-Lauth, Angela M; Nemeth, Nicole M
2018-06-04
Powassan virus (POWV) is a tick-borne zoonosis maintained in natural enzootic cycles between ixodid ticks and wild mammals. Reported human cases have increased in recent years; these infections can be fatal or lead to long-term neurologic sequelae. However, both the geographic distribution and the role of common, potential mammalian hosts in POWV transmission are poorly understood, creating challenges to public health surveillance. We looked for evidence of POWV infection among candidate wildlife host species and ticks collected from mammals and birds in southern Ontario. Tissues (including blood) and ticks from trapped wild mammals were collected in the summers of 2015 and 2016. Ticks removed from dogs in 2015-2016 and wildlife diagnostic cases from 2011 to 2013 were also included. Tissue and tick ( Ixodes spp.) homogenates were tested for POWV by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, sera from wild mammals were tested for antibodies to POWV, West Nile virus (WNV), and heartland virus (HRTV) by plaque reduction neutralization test. All 724 tissue samples were negative for POWV by RT-PCR. One of 53 pools of Ixodes cookei (among 98 total tick pools) was RT-PCR positive for deer tick virus (POWV) lineage. Antibodies to POWV and WNV were detected in 0.4% of 265 and 6.1% of 264 samples, respectively, and all of 219 serum samples tested negative for anti-HRTV antibodies. These results reveal low POWV detection rates in southern Ontario, while highlighting the challenges and need for continued efforts into understanding POWV epidemiology and targeted surveillance strategies.
2014-01-01
Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487
Anderson, John F.; Armstrong, Philip M.
2012-01-01
A total of 30 Powassan virus (POWV) isolates from Ixodes scapularis collected from Bridgeport and North Branford, CT in 2008, 2010, 2011, and 2012 and one earlier isolate from Ixodes cookei collected in Old Lyme, CT in 1978 were characterized by phylogenetic analysis of their envelope gene sequences. Powassan virus sequences segregated into two major groups termed the deer tick virus (DTV) and Powassan (POW) lineages. The lineage from I. cookei was POW. The remaining viruses from I. scapularis grouped with the DTV lineage. Powassan viruses from Bridgeport were nearly identical and clustered with a virus strain from a human in New York. Viruses from North Branford were homogeneous and grouped with viruses from Massachusetts, northwestern Connecticut, and Ontario. These findings suggest that POWV was independently introduced into these geographical locations in Connecticut and maintained focally in their respective environments. An improved method of isolation of POWV in vitro is described. PMID:22890037
Anderson, John F; Armstrong, Philip M
2012-10-01
A total of 30 Powassan virus (POWV) isolates from Ixodes scapularis collected from Bridgeport and North Branford, CT in 2008, 2010, 2011, and 2012 and one earlier isolate from Ixodes cookei collected in Old Lyme, CT in 1978 were characterized by phylogenetic analysis of their envelope gene sequences. Powassan virus sequences segregated into two major groups termed the deer tick virus (DTV) and Powassan (POW) lineages. The lineage from I. cookei was POW. The remaining viruses from I. scapularis grouped with the DTV lineage. Powassan viruses from Bridgeport were nearly identical and clustered with a virus strain from a human in New York. Viruses from North Branford were homogeneous and grouped with viruses from Massachusetts, northwestern Connecticut, and Ontario. These findings suggest that POWV was independently introduced into these geographical locations in Connecticut and maintained focally in their respective environments. An improved method of isolation of POWV in vitro is described.
Zolnik, Christine P; Makkay, Amanda M; Falco, Richard C; Daniels, Thomas J
2015-09-01
Ticks and whole blood were collected from American black bears (Ursus americanus Pallas) between October 2011 and October 2012 across four counties in northwestern New Jersey, an area where blacklegged ticks (Ixodes scapularis Say) and their associated tick-borne pathogens are prevalent. Adult American dog ticks (Dermacentor variabilis Say) were the most frequently collected tick species in late spring, whereas adult and nymphal blacklegged ticks were found in both the late spring and fall months. Additionally, for blacklegged ticks, we determined the quality of bloodmeals that females acquired from black bears compared with bloodmeals from white-tailed deer (Odocoileus virginianus Zimmerman), the most important host for the adult stage of this tick species. Measures of fecundity after feeding on each host species were not significantly different, suggesting that the bloodmeal a female blacklegged tick acquires from a black bear is of similar quality to that obtained from a white-tailed deer. These results establish the American black bear as both a host and quality bloodmeal source to I. scapularis. Thus, black bears may help support blacklegged tick populations in areas where they are both present. In addition, samples of black bear blood were tested for DNA presence of three tick-borne pathogens. Anaplasma phagocytophilum Foggie and Babesia microti Franca were found in 9.2 and 32.3% of blood samples, respectively. All blood samples were quantitative polymerase chain reaction-negative for Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt, & Brenner. Although circulating pathogens were found in blood, the status of black bears as reservoirs for these pathogens remains unknown. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Halsey, Samniqueka J; Allan, Brian F; Miller, James R
2018-04-16
Due to the ongoing expansion of Ixodes scapularis (blacklegged tick) throughout the northeastern and midwestern United States, there is need to identify the role wildlife hosts play in the establishment and maintenance of tick populations. To quantify and synthesize the patterns of I. scapularis and Borrelia burgdorferi sensu stricto and sensu lato prevalence relative to wildlife hosts, we reviewed the findings of independent studies conducted throughout the United States. We performed a comprehensive literature search from 1970 to 2017 using the ISS Web of Science Core Collection and the keywords "Ixodes scapularis," "Ixodes dammini" and "Borrelia burgdorferi." We identified 116 studies for inclusion in our meta-analysis, with 187,414 individual wildlife hosts captured and examined for I. scapularis and either the host or ticks collected subsequently tested for B. burgdorferi. We found that only 13% of the wildlife mammals sampled comprised species other than Odocoileus virginianus (white-tailed deer) and Peromyscus leucopus (white-footed mouse). To examine whether there were regional differences between the Northeast, Midwest and the Southeast U.S. in I. scapularis infestation rates on wildlife hosts, we used general linear models (glm), with post hoc pairwise comparisons. In most cases, detection of I. scapularis and B. burgdorferi was significantly higher in the Northeast than the Midwest. Using data on host-specific I. scapularis infestation prevalence, B. burgdorferi prevalence in feeding larvae, and host permissiveness, we developed an epizootiological model to determine the relative contributions of individual hosts to B. burgdorferi-infected nymphs. Our model provides additional evidence that wildlife hosts other than P. leucopus may contribute more to Lyme disease risk than commonly thought. To aid in understanding the ecology of Lyme disease, we propose that additional studies sample non-Peromyscus spp. hosts to obtain more detailed tick and pathogen infestation and infection estimates, respectively, for these less frequently sampled wildlife hosts. Copyright © 2018 Elsevier GmbH. All rights reserved.
Anderson, J F
1989-06-01
Borrelia burgdorferi is transmitted from wild animals to humans by the bite of Ixodes dammini. This tick is common in many areas of southern Connecticut where it parasitizes three different host animals during its two-year life cycle. Larval and nymphal ticks have parasitized 31 different species of mammals and 49 species of birds. White-tailed deer (Odocoileus virginianus) appear to be crucial hosts for adult ticks. All three feeding stages of the tick parasitize humans, though most infections are acquired from feeding nymphs in May through early July. Reservoir hosts for the spirochete include rodents, other mammals, and even birds. White-footed mice (Peromyscus leucopus) are particularly important reservoirs, and in parts of southern Connecticut where Lyme disease is prevalent in humans, borreliae are universally present during the summer in these mice. Prevalence of infected ticks has ranged from 10-35%. Isolates of B. burgdorferi from humans, rodents, and I. dammini are usually indistinguishable, but strains of B. burgdorferi with different major proteins have been identified.
Distribution and host associations of ixodid ticks collected from wildlife in Florida, USA.
Hertz, Jeffrey C; Ferree Clemons, Bambi C; Lord, Cynthia C; Allan, Sandra A; Kaufman, Phillip E
2017-10-01
A tick survey was conducted to document tick-host associations with Florida (USA) wildlife, and to determine the relative abundance and distribution of ixodid ticks throughout the state. The survey was conducted using collection kits distributed to licensed Florida hunters as well as the examination of archived specimens from ongoing state wildlife research programs. Collected tick samples were obtained from 66% of Florida counties and were collected from nine wildlife hosts, including black bear, bobcat, coyote, deer, gray fox, Florida panther, raccoon, swine, and wild turkey. In total, 4176 ticks were identified, of which 75% were Amblyomma americanum, 14% Ixodes scapularis, 8% A. maculatum, 3% Dermacentor variabilis, and < 1% were I. affinis and I. texanus. americanum, D. variabilis, and I. scapularis had the broadest host range, while A. maculatum, D. variabilis, and I. scapularis had the widest geographic distribution. While the survey data contribute to an understanding of tick-host associations in Florida, they also provide insight into the seasonal and geographic distribution of several important vector species in the southeastern USA.
Low risk of Lyme borreliosis in a protected area on the Tyrrhenian coast, in central Italy.
Mannelli, A; Cerri, D; Buffrini, L; Rossi, S; Rosati, S; Arata, T; Innocenti, M; Grignolo, M C; Bianchi, G; Iori, A; Tolari, F
1999-04-01
A comprehensive Lyme borreliosis risk assessment process was applied in S. Rossore Estate, on the Tyrrhenian coast, near Pisa, Italy. Host-seeking Ixodes ricinus nymphs peaked in May in oak-dominated deciduous wood (median, Q1-Q3, number of nymphs/50 m dragging = 4.5, 2.5-8), whereas host-seeking larvae peaked in August in the same habitat type (6.0, 4-17/50 m dragging). Prevalence of I. ricinus infestation was 88.9% in wild rodents (n = 11), 64.3% in fallow deer (n = 28) and 0.0% in wild boars (n = 5). Borrelia burgdorferi sensu lato was not isolated from rodents' organs, and from 80 I. ricinus nymphs and 50 adults. Moreover, PCR for B. burgdorferi sl carried out on 110 nymphs and 12 adult ticks also gave negative results. Forest workers were at higher risk of tick bite than other Estate employees (relative risk (RR): 1.7, p = 0.02). In spite of high levels of tick exposure, B. burgdorferi sl specific antibodies were not detected in sera from Estate personnel (n = 30) and sentinel animals (dogs, n = 23, fallow deer, n = 61).
Swei, Andrea; Ostfeld, Richard S; Lane, Robert S; Briggs, Cheryl J
2011-05-01
Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.
Hornok, Sándor; Mulvihill, Maria; Szőke, Krisztina; Gönczi, Enikő; Sulyok, Kinga M; Gyuranecz, Miklós; Hofmann-Lehmann, Regina
2017-06-01
Man-made barriers are well known for their effects on ecosystems. Habitat fragmentation, for instance, is a recognised consequence of modern-day infrastructure. The aim of the present study was to investigate the diversity and abundance of tick species, as well as the risks of acquiring tick-borne infections in habitats adjacent to a freeway. Therefore, ixodid ticks were collected from the vegetation at two-week intervals (in the main tick season, from March to June) in eight habitats of different types (forest, grove, grassland) along both sides of a freeway. Ixodes ricinus females were molecularly screened for three species of tick-borne bacteria. In the study period, 887 ixodid ticks were collected. These included 704 I. ricinus (79.4%), 51 Dermacentor reticulatus (5.7%), 78 D. marginatus (8.8%), 35 Haemaphysalis inermis (3.9%) and 19 H. concinna (2.1%). There was no significant difference in the abundance of tick species between similar habitats separated by the freeway, except for the absence of Dermacentor spp. on one side. In I. ricinus females, the overall prevalence of Anaplasma phagocytophilum was low, and (in part due to this low rate) did not show significant difference between the two sides of the freeway. Rickettsia helvetica had significantly different overall prevalence between two distant habitats along the same side of the freeway (12.3% vs. 31.4%), but not between habitats on the opposite sides. Borrelia burgdorferi s.l. showed significantly different overall prevalence between habitats both on the same and on the opposite sides of the freeway (8.6-35.9%), and the difference was higher if relevant habitats were also separated by the freeway. Importantly, the prevalence rate of the Lyme disease agent was highest in a forested resting area of the freeway, and was significantly inversely proportional to the prevalence of A. phagocytophilum (taking into account all evaluated habitats), apparently related to deer population density. Prevalence rates of these bacteria also differed significantly on single sampling occasions between: (1) closely situated habitats of different types; (2) distant and either similar or different habitat types; and (3) habitats on the opposite sides of the freeway. In conclusion, the findings of the present study show that a fenced freeway may contribute to differences in tick species diversity and tick-borne pathogen prevalence along its two sides, and this effect is most likely a consequence of its barrier role preventing deer movements.
Eisen, Lars; Dolan, Marc C
2016-07-20
In the 1980s, the blacklegged tick, Ixodes scapularis Say, and rodents were recognized as the principal vector and reservoir hosts of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, and deer were incriminated as principal hosts for I. scapularis adults. These realizations led to pioneering studies aiming to reduce the risk for transmission of B. burgdorferi to humans by attacking host-seeking ticks with acaricides, interrupting the enzootic transmission cycle by killing immatures infesting rodent reservoirs by means of acaricide-treated nesting material, or reducing deer abundance to suppress tick numbers. We review the progress over the past three decades in the fields of: 1) prevention of human-tick contact with repellents and permethrin-treated clothing, and 2) suppression of I. scapularis and disruption of enzootic B. burgdorferi transmission with environmentally based control methods. Personal protective measures include synthetic and natural product-based repellents that can be applied to skin and clothing, permethrin sprays for clothing and gear, and permethrin-treated clothing. A wide variety of approaches and products to suppress I. scapularis or disrupt enzootic B. burgdorferi transmission have emerged and been evaluated in field trials. Application of synthetic chemical acaricides is a robust method to suppress host-seeking I. scapularis ticks within a treated area for at least 6-8 wk. Natural product-based acaricides or entomopathogenic fungi have emerged as alternatives to kill host-seeking ticks for homeowners who are unwilling to use synthetic chemical acaricides. However, as compared with synthetic chemical acaricides, these approaches appear less robust in terms of both their killing efficacy and persistence. Use of rodent-targeted topical acaricides represents an alternative for homeowners opposed to open distribution of acaricides to the ground and vegetation on their properties. This host-targeted approach also provides the benefit of the intervention impacting the entire rodent home range. Rodent-targeted oral vaccines against B. burgdorferi and a rodent-targeted antibiotic bait have been evaluated in laboratory and field trials but are not yet commercially available. Targeting of deer-via deer reduction or treatment of deer with topical acaricides-can provide area-wide suppression of host-seeking I. scapularis These two deer-targeted approaches combine great potential for protection that impacts the entire landscape with severe problems relating to public acceptance or implementation logistics. Integrated use of two or more methods has unfortunately been evaluated in very few published studies, but additional field evaluations of integrated tick and pathogen strategies are underway. Published by Oxford University Press on behalf of Journal of Medical Entomology 2016. This work is written by US Government employees and is in the public domain in the US.
Eisen, Lars; Dolan, Marc C.
2018-01-01
In the 1980s, the blacklegged tick, Ixodes scapularis Say, and rodents were recognized as the principal vector and reservoir hosts of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, and deer were incriminated as principal hosts for I. scapularis adults. These realizations led to pioneering studies aiming to reduce the risk for transmission of B. burgdorferi to humans by attacking host-seeking ticks with acaricides, interrupting the enzootic transmission cycle by killing immatures infesting rodent reservoirs by means of acaricide-treated nesting material, or reducing deer abundance to suppress tick numbers. We review the progress over the past three decades in the fields of: 1) prevention of human–tick contact with repellents and permethrin-treated clothing, and 2) suppression of I. scapularis and disruption of enzootic B. burgdorferi transmission with environmentally based control methods. Personal protective measures include synthetic and natural product-based repellents that can be applied to skin and clothing, permethrin sprays for clothing and gear, and permethrin-treated clothing. A wide variety of approaches and products to suppress I. scapularis or disrupt enzootic B. burgdorferi transmission have emerged and been evaluated in field trials. Application of synthetic chemical acaricides is a robust method to suppress host-seeking I. scapularis ticks within a treated area for at least 6–8 wk. Natural product-based acaricides or entomopathogenic fungi have emerged as alternatives to kill host-seeking ticks for homeowners who are unwilling to use synthetic chemical acaricides. However, as compared with synthetic chemical acaricides, these approaches appear less robust in terms of both their killing efficacy and persistence. Use of rodent-targeted topical acaricides represents an alternative for homeowners opposed to open distribution of acaricides to the ground and vegetation on their properties. This host-targeted approach also provides the benefit of the intervention impacting the entire rodent home range. Rodent-targeted oral vaccines against B. burgdorferi and a rodent-targeted antibiotic bait have been evaluated in laboratory and field trials but are not yet commercially available. Targeting of deer—via deer reduction or treatment of deer with topical acaricides—can provide area-wide suppression of host-seeking I. scapularis. These two deer-targeted approaches combine great potential for protection that impacts the entire landscape with severe problems relating to public acceptance or implementation logistics. Integrated use of two or more methods has unfortunately been evaluated in very few published studies, but additional field evaluations of integrated tick and pathogen strategies are underway. PMID:27439616
Daniel, Milan; Benes, Cestmir; Maly, Marek
2014-01-01
Abstract In the Czech Republic, the incidence of human tick-borne encephalitis (TBE) has been increasing over the last two decades. At the same time, populations of game have also shown an upward trend. In this country, the ungulate game is the main host group of hosts for Ixodes ricinus female ticks. This study examined the potential contribution of two most widespread game species (roe deer [Capreolus capreolus] and wild boar [Sus scrofa]) to the high incidence of TBE in the Czech Republic, using the annual numbers of culls as a proxy for the game population. This was an ecological study, with annual figures for geographical areas—municipalities with extended competence (MEC)—used as units of analysis. Between 2003 and 2011, a total of 6213 TBE cases were reported, and 1062,308 roe deer and 989,222 wild boars were culled; the culls of roe deer did not demonstrate a clear temporal trend, but wild boar culls almost doubled (from 77,269 to 143,378 per year). Statistical analyses revealed a positive association between TBE incidence rate and the relative number of culled wild boars. In multivariate analyses, a change in the numbers of culled wild boars between the 25th and 75th percentile was associated with TBE incidence rate ratio of 1.23 (95% confidence interval 1.07–1.41, p=0.003). By contrast, the association of TBE with culled roe deer was not statistically significant (p=0.481). The results suggest that the size of the wild boar population may have contributed to the current high levels and the rising trend in incidence of TBE, whereas the regulated population of roe deer does not seem to be implicated in recent geographical or temporal variations in TBE in the Czech Republic. PMID:25409271
Climate, Deer, Rodents, and Acorns as Determinants of Variation in Lyme-Disease Risk
Canham, Charles D; Oggenfuss, Kelly; Winchcombe, Raymond J; Keesing, Felicia
2006-01-01
Risk of human exposure to vector-borne zoonotic pathogens is a function of the abundance and infection prevalence of vectors. We assessed the determinants of Lyme-disease risk (density and Borrelia burgdorferi-infection prevalence of nymphal Ixodes scapularis ticks) over 13 y on several field plots within eastern deciduous forests in the epicenter of US Lyme disease (Dutchess County, New York). We used a model comparison approach to simultaneously test the importance of ambient growing-season temperature, precipitation, two indices of deer (Odocoileus virginianus) abundance, and densities of white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus), and acorns ( Quercus spp.), in both simple and multiple regression models, in predicting entomological risk. Indices of deer abundance had no predictive power, and precipitation in the current year and temperature in the prior year had only weak effects on entomological risk. The strongest predictors of a current year's risk were the prior year's abundance of mice and chipmunks and abundance of acorns 2 y previously. In no case did inclusion of deer or climate variables improve the predictive power of models based on rodents, acorns, or both. We conclude that interannual variation in entomological risk of exposure to Lyme disease is correlated positively with prior abundance of key hosts for the immature stages of the tick vector and with critical food resources for those hosts. PMID:16669698
Trout Fryxell, R T; Steelman, C D; Szalanski, A L; Billingsley, P M; Williamson, P C
2015-05-01
Rocky Mountain spotted fever (RMSF), caused by the etiological agent Rickettsia rickettsii, is the most severe and frequently reported rickettsial illness in the United States, and is commonly diagnosed throughout the southeast. With the discoveries of Rickettsia parkeri and other spotted fever group rickettsiae (SFGR) in ticks, it remains inconclusive if the cases reported as RMSF are truly caused by R. rickettsii or other SFGR. Arkansas reports one of the highest incidence rates of RMSF in the country; consequently, to identify the rickettsiae in Arkansas, 1,731 ticks, 250 white-tailed deer, and 189 canines were screened by polymerase chain reaction (PCR) for the rickettsial genes gltA, rompB, and ompA. None of the white-tailed deer were positive, while two of the canines (1.1%) and 502 (29.0%) of the ticks were PCR positive. Five different tick species were PCR positive: 244 (37%) Amblyomma americanum L., 130 (38%) Ixodes scapularis Say, 65 (39%) Amblyomma maculatum (Koch), 30 (9%) Rhipicephalus sanguineus Latreille, 7 (4%) Dermacentor variabilis Say, and 26 (44%) unidentified Amblyomma ticks. None of the sequenced products were homologous to R. rickettsii. The most common Rickettsia via rompB amplification was Rickettsia montanensis and nonpathogenic Candidatus Rickettsia amblyommii, whereas with ompA amplification the most common Rickettsia was Ca. R. amblyommii. Many tick specimens collected in northwest Arkansas were PCR positive and these were commonly A. americanum harboring Ca. R. amblyommii, a currently nonpathogenic Rickettsia. Data reported here indicate that pathogenic R. rickettsii was absent from these ticks and suggest by extension that other SFGR are likely the causative agents for Arkansas diagnosed RMSF cases. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.
2010-07-05
Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d{sub N}/d{sub S} ratios (0.092) for interhost diversitymore » were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks.« less
Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis.
Brackney, Doug E; Brown, Ivy K; Nofchissey, Robert A; Fitzpatrick, Kelly A; Ebel, Gregory D
2010-07-05
Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d(N)/d(S) ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks. Copyright 2010 Elsevier Inc. All rights reserved.
HOMOGENEITY OF POWASSAN VIRUS POPULATIONS IN NATURALLY INFECTED IXODES SCAPULARIS
Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.; Fitzpatrick, Kelly A.; Ebel, Gregory D.
2010-01-01
Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and dN/dS ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks. PMID:20434750
Lyme disease in Wisconsin: epidemiologic, clinical, serologic, and entomologic findings.
Davis, J P; Schell, W L; Amundson, T E; Godsey, M S; Spielman, A; Burgdorfer, W; Barbour, A G; LaVenture, M; Kaslow, R A
1984-01-01
In 1980-82, 80 individuals (71 Wisconsin residents) had confirmed Lyme disease (LD-c) reported; 39 additional patients had probable or possible LD. All cases of LD-c occurred during May-November; 73 percent occurred during June-July; 54 (68 percent) occurred in males. The mean age was 38.7 years (range, 7-77 years). Among LD-c patients, likely exposure to the presumed vector Ixodes dammini (ID) occurred in 22 different Wisconsin counties. Antibodies to the ID spirochete that causes LD occurred in 33 of 49 LD-c cases versus 0 of 18 in ill controls (p less than .001) and in 13 of 26 LD-c cases treated with penicillin or tetracycline versus 16 of 19 LD-c cases not treated. Early antibiotic therapy appears to blunt the antibody response to the ID spirochete. Regional tick surveys conducted in Wisconsin during each November in 1979-82 have demonstrated regions of greater density of ID. Utilizing comparable tick collection in these surveys, increases were noted in the percentage of deer with ID from 24 percent (31/128) in 1979 to 38 percent (58/152) in 1981, in the standardized mean value of ID/deer from 1.0 in 1979 to 2.2 in 1981, in the percentage of ID of the total ticks collected from 13 percent in 1979 to 71 percent in 1981, or in the ratio of ID to Dermacentor albipictus ticks from 0.14 in 1979 to 2.44 in 1981. However, a reduction in the density of ID/deer was noted generally throughout Wisconsin in 1982 when compared to 1981. LD is widespread in Wisconsin, with ecologic and clinical features similar to those occurring along the eastern seaboard.
Oh, Sung-Suck; Chae, Jeong-Byoung; Kang, Jun-Gu; Kim, Heung-Chul; Chong, Sung-Tae; Shin, Jeong-Hwa; Hur, Moon-Suk; Suh, Jae-Hwa; Oh, Myoung-Don; Jeong, Soo-Myoung; Shin, Nam-Shik; Choi, Kyoung-Seong; Chae, Joon-Seok
2016-06-01
Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a novel bunyavirus reported to be endemic to central-northeastern China, southern Japan, and the Republic of Korea (ROK). To investigate SFTSV infections, we collected serum samples and ticks from wild animals. Using serum samples and ticks, SFTSV-specific genes were amplified by one-step RT-PCR and nested PCR and sequenced. Indirect immunofluorescence assay (IFA) was performed to analyze virus-specific antibody levels in wild animals. Serum samples were collected from a total of 91 animals: 21 Korean water deer (KWD), 3 Siberian roe deer, 5 gorals, 7 raccoon dogs, 54 wild boars (WBs), and 1 carrion crow. The SFTSV infection rate in wild animals was 3.30% (3 of 91 animals: 1 KWD and 2 WBs). The seropositive rate was 6.59% (6 of 91 animals: 5 KWD and 1 WB). A total of 891 ticks (3 species) were collected from 65 wild animals (9 species). Of the attached tick species, Haemaphysalis longicornis (74.86%) was the most abundant, followed by Haemaphysalis flava (20.20%) and Ixodes nipponensis (4.94%). The average minimum infection rate (MIR) of SFTSV in ticks was 4.98%. The MIRs of H. longicornis, H. flava, and I. nipponensis were 4.51%, 2.22%, and 22.73%, respectively. The MIRs of larvae, nymphs, and adult ticks were 0.68%, 6.88%, and 5.53%, respectively. In addition, the MIRs of fed and unfed ticks were 4.67% and 4.96%, respectively. We detected a low SFTSV infection rate in wild animals, no differences in SFTSV infection rate with respect to bloodsucking in ticks, and SFTSV infection for all developmental stages of ticks. This is the first report describing the detection of SFTSV in wild animals in the ROK.
Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.
Scott, John D; Anderson, John F; Durden, Lance A
2012-02-01
Millions of Lyme disease vector ticks are dispersed annually by songbirds across Canada, but often overlooked as the source of infection. For clarity on vector distribution, we sampled 481 ticks (12 species and 3 undetermined ticks) from 211 songbirds (42 species/subspecies) nationwide. Using PCR, 52 (29.5%) of 176 Ixodes ticks tested were positive for the Lyme disease spirochete, Borrelia burgdorferi s.l. Immature blacklegged ticks, Ixodes scapularis , collected from infested songbirds had a B. burgdorferi infection prevalence of 36% (larvae, 48%; nymphs, 31%). Notably, Ixodes affinis is reported in Canada for the first time and, similarly, Ixodes auritulus for the initial time in the Yukon. Firsts for bird-parasitizing ticks include I. scapularis in Quebec and Saskatchewan. We provide the first records of 3 tick species cofeeding on passerines (song sparrow, Swainson's thrush). New host records reveal I. scapularis on the blackpoll warbler and Nashville warbler. We furnish the following first Canadian reports of B. burgdorferi-positive ticks: I. scapularis on chipping sparrow, house wren, indigo bunting; I. auritulus on Bewick's wren; and I. spinipalpis on a Bewick's wren and song sparrow. First records of B. burgdorferi-infected ticks on songbirds include the following: the rabbit-associated tick, Ixodes dentatus, in western Canada; I. scapularis in Quebec, Saskatchewan, northern New Brunswick, northern Ontario; and Ixodes spinipalpis (collected in British Columbia). The presence of B. burgdorferi in Ixodes larvae suggests reservoir competency in 9 passerines (Bewick's wren, common yellowthroat, dark-eyed junco, Oregon junco, red-winged blackbird, song sparrow, Swainson's thrush, swamp sparrow, and white-throated sparrow). We report transstadial transmission (larva to nymph) of B. burgdorferi in I. auritulus. Data suggest a possible 4-tick, i.e., I. angustus, I. auritulus, I. pacificus, and I. spinipalpis, enzootic cycle of B. burgdorferi on Vancouver Island, British Columbia. Our results suggest that songbirds infested with B. burgdorferi-infected ticks have the potential to start new tick populations endemic for Lyme disease. Because songbirds disperse B. burgdorferi-infected ticks outside their anticipated range, health-care providers are advised that people can contract Lyme disease locally without any history of travel.
Diapause in ticks of the medically important Ixodes ricinus species complex
Gray, Jeremy S.; Kahl, Olaf; Lane, Robert S.; Levin, Michael L.; Tsao, Jean I.
2017-01-01
Four members of the Ixodes ricinus species complex, Ixodes pacificus, Ixodes persulcatus, Ixodes ricinus and Ixodes scapularis, have, between them, a worldwide distribution within the northern hemisphere. They are responsible for the transmission of several animal and human pathogens, including the causal agents of Lyme borreliosis, tick-borne encephalitis, human granulocytic anaplasmosis and human babesiosis. Despite the importance of these ticks as vectors, the knowledge and understanding of the role that diapause plays in their complex life cycles are confused and incomplete. In view of the continuing geographic spread of these tick species, as well as the effects of climate change on vector-borne diseases, it is timely encourage research on diapause phenomena to improve understanding of their biology and of pathogen transmission dynamics. In our review we seek to clarify thinking on the topic and to address gaps in our knowledge that require the attention of researchers. PMID:27263092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlop, Jason A.; Apanaskevich, Dmitry A.; Lehmann, Jens
Background: Fossil ticks are extremely rare, whereby Ixodes succineus Weidner, 1964 from Eocene (ca. 44–49 Ma) Baltic amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758). Results: Restudy using phase contrast synchrotron x-ray tomography yielded images of exceptional quality. These confirm the fossil’s referral to Ixodes Latreille, 1795, but the characters resolved here suggest instead affinities with the Asian subgenus Partipalpiger Hoogstraal et al., 1973 and its single living (and medically significant) species Ixodesmore » ovatus Neumann, 1899. We redescribe the amber fossil here as Ixodes (Partipalpiger) succineus. Conclusions: Our data suggest that Ixodes ricinus is unlikely to be directly derived from Weidner’s amber species, but instead reveals that the Partipalpiger lineage was originally more widely distributed across the northern hemisphere. The closeness of Ixodes (P.) succineus to a living vector of a wide range of pathogens offers the potential to correlate its spatial and temporal position (northern Europe, nearly 50 million years ago) with the estimated origination dates of various tick-borne diseases.« less
Bacteria of the genus Rickettsia in ticks (Acari: Ixodidae) collected from birds in Costa Rica.
Ogrzewalska, Maria; Literák, Ivan; Capek, Miroslav; Sychra, Oldřich; Calderón, Víctor Álvarez; Rodríguez, Bernardo Calvo; Prudencio, Carlos; Martins, Thiago F; Labruna, Marcelo B
2015-06-01
The aim of this study was to document the presence of Rickettsia spp. in ticks parasitizing wild birds in Costa Rica. Birds were trapped at seven locations in Costa Rica during 2004, 2009, and 2010; then visually examined for the presence of ticks. Ticks were identified, and part of them was tested individually for the presence of Rickettsia spp. by polymerase chain reaction (PCR) using primers targeting fragments of the rickettsial genes gltA and ompA. PCR products were DNA-sequenced and analyzed in BLAST to determine similarities with previously reported rickettsial agents. A total of 1878 birds were examined, from which 163 birds (9%) were infested with 388 ticks of the genera Amblyomma and Ixodes. The following Amblyomma (in decreasing order of abundance) were found in immature stages (larvae and nymphs): Amblyomma longirostre, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma sabanerae, Amblyomma varium, Amblyomma maculatum, and Amblyomma ovale. Ixodes ticks were represented by Ixodes minor and two unclassified species, designated here as Ixodes sp. genotype I, and Ixodes sp. genotype II. Twelve of 24 tested A. longirostre ticks were found to be infected with 'Candidatus Rickettsia amblyommii', and 2 of 4 A. sabanerae were found to be infected with Rickettsia bellii. Eight of 10 larval Ixodes minor were infected with an endosymbiont (a novel Rickettsia sp. agent) genetically related to the Ixodes scapularis endosymbiont. No rickettsial DNA was found in A. calcaratum, A. coelebs, A. maculatum, A. ovale, A. varium, Ixodes sp. I, and Ixodes sp. II. We report the occurrence of I. minor in Costa Rica for the first time and a number of new bird host-tick associations. Moreover, 'Candidatus R. amblyommii' and R. bellii were found in A. longirostre and A. sabanerae, respectively, in Costa Rica for the first time. Copyright © 2015 Elsevier GmbH. All rights reserved.
Heylen, Dieter; De Coninck, Eliane; Jansen, Famke; Madder, Maxime
2014-10-01
The three most common Ixodes spp. ticks found on songbirds in Western Europe are Ixodes frontalis, I. arboricola and I. ricinus. As the latter species is a generalist, it shares several avian hosts with the two strictly ornithophilic species. Infestations of the three species can overlap in time and space, implying that tick-borne pathogens maintained by the ornithophilic ticks and their hosts could be bridged by I. ricinus to non-avian hosts. Whereas the endophilic Ixodes arboricola only occurs in cavities, I. frontalis has been collected frequently by flagging methods from understory vegetation, which is also the habitat of the field-dwelling I. ricinus. As the latter two species have rather similar morphological characteristics, they can easily be confused with each other. In this study, we present scanning electron photomicrographs of all developmental stages of I. arboricola and I. frontalis, and provide a differential diagnosis key to distinguish the ornithophilic ticks from I. ricinus. In addition, we interpreted their phylogenetic associations based on mitochondrial 16S rDNA with other Ixodes spp. ticks (I. lividus, I. turdus, I. brunneus, I. vespertilionis, I. trianguliceps, I. hexagonus, I. scapularis). Copyright © 2014 Elsevier GmbH. All rights reserved.
Brei, Brandon; Brownstein, John S; George, John E; Pound, J Mathews; Miller, J Allen; Daniels, Thomas J; Falco, Richard C; Stafford, Kirby C; Schulze, Terry L; Mather, Thomas N; Carroll, John F; Fish, Durland
2009-08-01
As part of the Northeast Area-wide Tick Control Project (NEATCP), meta-analyses were performed using pooled data on the extent of tick-vector control achieved through seven concurrent studies, conducted within five states, using U.S. Department of Agriculture "4-Poster" devices to deliver targeted-acaricide to white-tailed deer. Although reductions in the abundance of all life-stages of Ixodes scapularis were the measured outcomes, this study focused on metrics associated with I. scapularis nymphal tick densities as this measure has consistently proven to directly correlate with human risk of acquiring Lyme disease. Since independent tick sampling schemes were undertaken at each of the five environmentally distinct study locations, a meta-analytic approach permitted estimation of a single true control-effect size for each treatment year of the NEATCP. The control-effect is expressed as the annual percent I. scapularis nymphal control most consistent with meta-analysis data for each treatment year. Our meta-analyses indicate that by the sixth treatment year, the NEATCP effectively reduced the relative density of I. scapularis nymphs by 71% on the 5.14 km(2) treatment sites, corresponding to a 71% lower relative entomologic risk index for acquiring Lyme disease.
Bockenstedt, Linda K; Gonzalez, David; Mao, Jialing; Li, Ming; Belperron, Alexia A; Haberman, Ann
2014-03-01
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.
Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.
1997-01-01
The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.
Correlation of TBE Incidence with Red Deer and Roe Deer Abundance in Slovenia
Knap, Nataša; Avšič-Županc, Tatjana
2013-01-01
Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks' host finding and consequently may not be possible to correlate with incidence of human TBE. PMID:23776668
Barker, Stephen C; Walker, Alan R; Campelo, Dayana
2014-10-15
Seventy species of ticks are known from Australia: 14 soft ticks (family Argasidae) and 56 hard ticks (family Ixodidae). Sixteen of the 70 ticks in Australia may feed on humans and domestic animals (Barker and Walker 2014). The other 54 species of ticks in Australia feed only on wild mammals, reptiles and birds. At least 12 of the species of ticks in Australian also occur in Papua New Guinea. We use an image-matching system much like the image-matching systems of field guides to birds and flowers to identify Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). Our species accounts have reviews of the literature on I. holocyclus (paralysis tick) from the first paper on the biology of an Australian tick by Bancroft (1884), on paralysis of dogs by I. holocyclus, to papers published recently, and of I. cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). We comment on four controversial questions in the evolutionary biology of ticks: (i) were labyrinthodont amphibians in Australia in the Devonian the first hosts of soft, hard and nuttalliellid ticks?; (ii) are the nuttalliellid ticks the sister-group to the hard ticks or the soft ticks?; (iii) is Nuttalliella namaqua the missing link between the soft and hard ticks?; and (iv) the evidence for a lineage of large bodied parasitiform mites (ticks plus the holothyrid mites plus the opiliocarid mites). Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Seifert, Veronica Aili
Lyme disease is the most prevalent tick-borne disease in North America and presents challenges to clinicians, researchers and the public in diagnosis, treatment and prevention. Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is a zoonotic pathogen obligate upon hematophagous arthropod vectors and propagates in small mammal reservoir hosts. Identifying factors governing zoonotic diseases within regions of high-risk provides local health and agricultural agencies with necessary information to formulate public policy and implement treatment protocols to abate the rise and expansion of infectious disease outbreaks. In the United States, the documented primary reservoir host of Lyme disease is the white-footed mouse, Peromyscus leucopus, and the arthropod vector is the deer tick, Ixodes scapularis. Reducing the impact of Lyme disease will need novel methods for identifying both the reservoir host and the tick vector. The reservoir host, Peromyscus leucopus is difficult to distinguish from the virtually identical Peromyscus maniculatus that also is present in Northern Minnesota, a region where Lyme disease is endemic. Collection of the Ixodes tick, the Lyme disease vector, is difficult as this is season dependent and differs from year to year. This study develops new strategies to assess the extent of Borrelia burgdorferi in the local environment of Northern Minnesota. A selective and precise method to identify Peromyscus species was developed. This assay provides a reliable and definitive method to identify the reservoir host, Peromyscus leucopus from a physically identical and sympatric Peromyscus species, Peromyscus maniculatus. A new strategy to collect ticks for measuring the disbursement of Borrelia was employed. Students from local high schools were recruited to collect ticks. This strategy increased the available manpower to cover greater terrain, provided students with valuable experience in research methodology, and highlighted the prospect of increasing community engagement in university-based research projects.
Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle
NASA Astrophysics Data System (ADS)
Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.
2016-04-01
Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.
Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia
NASA Astrophysics Data System (ADS)
Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan
2018-04-01
This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.
Elfving, Karin; Malmsten, Jonas; Dalin, Anne-Marie; Nilsson, Kenneth
2015-09-01
Both Rickettsia helvetica and Anaplasma phagocytophilum are common in Ixodes ricinus ticks in Sweden. Knowledge is limited regarding different animal species' competence to act as reservoirs for these organism. For this reason, blood samples were collected from wild cervids (roe deer, moose) and domestic mammals (horse, cat, dog) in central Sweden, and sera were tested using immunofluorescence assay to detect antibodies against spotted fever rickettsiae using Rickettsia helvetica as antigen. Sera with a titer ≥1:64 were considered as positive, and 23.1% (104/450) of the animals scored positive. The prevalence of seropositivity was 21.5% (23/107) in roe deer, 23.3% (21/90) in moose, 36.5% (23/63) in horses, 22.1% (19/90) in cats, and 17.0% (17/100) in dogs. PCR analysis of 113 spleen samples from moose and sheep from the corresponding areas were all negative for rickettsial DNA. In roe deer, 85% (91/107) also tested seropositive for A. phagocytophilum with a titer cutoff of 1:128. The findings indicate that the surveyed animal species are commonly exposed to rickettsiae and roe deer also to A. phagocytophilum.
Vaccination against Lyme disease: past, present, and future.
Embers, Monica E; Narasimhan, Sukanya
2013-01-01
Lyme borreliosis is a zoonotic disease caused by Borrelia burgdorferi sensu lato bacteria transmitted to humans and domestic animals by the bite of an Ixodes spp. tick (deer tick). Despite improvements in diagnostic tests and public awareness of Lyme disease, the reported cases have increased over the past decade to approximately 30,000 per year. Limitations and failed public acceptance of a human vaccine, comprised of the outer surface A (OspA) lipoprotein of B. burgdorferi, led to its demise, yet current research has opened doors to new strategies for protection against Lyme disease. In this review we discuss the enzootic cycle of B. burgdorferi, and the unique opportunities it poses to block infection or transmission at different levels. We present the correlates of protection for this infectious disease, the pros and cons of past vaccination strategies, and new paradigms for future vaccine design that would include elements of both the vector and the pathogen.
Vaccination against Lyme disease: past, present, and future
Embers, Monica E.; Narasimhan, Sukanya
2013-01-01
Lyme borreliosis is a zoonotic disease caused by Borrelia burgdorferi sensu lato bacteria transmitted to humans and domestic animals by the bite of an Ixodes spp. tick (deer tick). Despite improvements in diagnostic tests and public awareness of Lyme disease, the reported cases have increased over the past decade to approximately 30,000 per year. Limitations and failed public acceptance of a human vaccine, comprised of the outer surface A (OspA) lipoprotein of B. burgdorferi, led to its demise, yet current research has opened doors to new strategies for protection against Lyme disease. In this review we discuss the enzootic cycle of B. burgdorferi, and the unique opportunities it poses to block infection or transmission at different levels. We present the correlates of protection for this infectious disease, the pros and cons of past vaccination strategies, and new paradigms for future vaccine design that would include elements of both the vector and the pathogen. PMID:23407755
Molecular identification of Borrelia spirochetes in questing Ixodes ricinus from northwestern Spain.
Díaz, Pablo; Arnal, Jose Luis; Remesar, Susana; Pérez-Creo, Ana; Venzal, José Manuel; Vázquez-López, María Esther; Prieto, Alberto; Fernández, Gonzalo; López, Ceferino Manuel; Panadero, Rosario; Benito, Alfredo; Díez-Baños, Pablo; Morrondo, Patrocinio
2017-12-20
Ixodes ricinus, the predominant tick species in Europe, can transmit the causative agents of important human diseases such as Lyme borreliosis (LB), caused by Borrelia spirochetes. In northern Spain, LB is considered endemic; recently, a significant increase of the annual incidence of LB was reported in the northwestern (NW) region. In order to provide information on the prevalence of Borrelia spp., pooled and individually free-living I. ricinus from NW Spain were molecularly analyzed. Positive samples were characterized at the fla and Glpq genes and the rrfA-rrlB intergenic spacer region to identify Borrelia species/genospecies. Borrelia burgdorferi (sensu lato) (s.l.) individual prevalence and MIR were significantly higher in adult females (32.3 and 16%) than in nymphs (18.8 and 6.2%) and adult males (15.6 and 8.4%). Five Borrelia genospecies belonging to the B. burgdorferi (s.l.) group were identified: B. garinii was predominant, followed by B. valaisiana, B. lusitaniae, B. afzelii and B. burgdorferi (sensu stricto) (s.s.). One species belonging to the tick-borne relapsing fever group (B. miyamotoi) was also found, showing low individual prevalence (1%), positive pool (0.7%) and MIR (0.1%) values. To our knowledge, this is the first citation of B. miyamotoi in free-living ticks from Spain. The significant prevalences of B. burgdorferi (s.l.) genospecies detected in questing ticks from NW Spain are similar to those detected in northern and central European countries and higher to those previously found in Spain. These results together with the high incidence of LB in humans and the high seroprevalence of B. burgdorferi (s.l.) in roe deer shown in other studies reveal that the northwest area is one of the most risky regions for acquiring LB in Spain.
Williams, Scott C; Ward, Jeffrey S; Worthley, Thomas E; Stafford, Kirby C
2009-08-01
In many Connecticut forests with an overabundance of white-tailed deer (Odocoileus virginianus Zimmermann), Japanese barberry (Berberis thunbergii DC) has become the dominant understory shrub, which may provide a habitat favorable to blacklegged tick (Ixodes scapularis Say) and white-footed mouse (Peromyscus leucopus Rafinesque) survival. To determine mouse and larval tick abundances at three replicate sites over 2 yr, mice were trapped in unmanipulated dense barberry infestations, areas where barberry was controlled, and areas where barberry was absent. The number of feeding larval ticks/mouse was recorded. Adult and nymphal ticks were sampled along 200-m draglines in each treatment, retained, and were tested for Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner) presence. Total first-captured mouse counts did not differ between treatments. Mean number of feeding larval ticks per mouse was highest on mice captured in dense barberry. Adult tick densities in dense barberry were higher than in both controlled barberry and no barberry areas. Ticks sampled from full barberry infestations and controlled barberry areas had similar infection prevalence with B. burgdorferi the first year. In areas where barberry was controlled, infection prevalence was reduced to equal that of no barberry areas the second year of the study. Results indicate that managing Japanese barberry will have a positive effect on public health by reducing the number of B. burgdorferi-infected blacklegged ticks that can develop into motile life stages that commonly feed on humans.
Coinfections acquired from ixodes ticks.
Swanson, Stephen J; Neitzel, David; Reed, Kurt D; Belongia, Edward A
2006-10-01
The pathogens that cause Lyme disease (LD), human anaplasmosis, and babesiosis can coexist in Ixodes ticks and cause human coinfections. Although the risk of human coinfection differs by geographic location, the true prevalence of coinfecting pathogens among Ixodes ticks remains largely unknown for the majority of geographic locations. The prevalence of dually infected Ixodes ticks appears highest among ticks from regions of North America and Europe where LD is endemic, with reported prevalences of < or =28%. In North America and Europe, the majority of tick-borne coinfections occur among humans with diagnosed LD. Humans coinfected with LD and babesiosis appear to have more intense, prolonged symptoms than those with LD alone. Coinfected persons can also manifest diverse, influenza-like symptoms, and abnormal laboratory test results are frequently observed. Coinfecting pathogens might alter the efficiency of transmission, cause cooperative or competitive pathogen interactions, and alter disease severity among hosts. No prospective studies to assess the immunologic effects of coinfection among humans have been conducted, but animal models demonstrate that certain coinfections can modulate the immune response. Clinicians should consider the likelihood of coinfection when pursuing laboratory testing or selecting therapy for patients with tick-borne illness.
Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico.
Rodríguez-Vivas, R I; Apanaskevich, D A; Ojeda-Chi, M M; Trinidad-Martínez, I; Reyes-Novelo, E; Esteve-Gassent, M D; Pérez de León, A A
2016-01-15
Domestic animals and wildlife play important roles as reservoirs of zoonotic pathogens that are transmitted to humans by ticks. Besides their role as vectors of several classes of microorganisms of veterinary and public health relevance, ticks also burden human and animal populations through their obligate blood-feeding habit. It is estimated that in Mexico there are around 100 tick species belonging to the Ixodidae and Argasidae families. Information is lacking on tick species that affect humans, domestic animals, and wildlife through their life cycle. This study was conducted to bridge that knowledge gap by inventorying tick species that infest humans, domestic animals and wildlife in the State of Yucatan, Mexico. Amblyomma ticks were observed as euryxenous vertebrate parasites because they were found parasitizing 17 animal species and human. Amblyomma mixtum was the most eryxenous species found in 11 different animal species and humans. Both A. mixtum and A. parvum were found parasitizing humans. Ixodes near affinis was the second most abundant species parasitizing six animal species (dogs, cats, horses, white-nosed coati, white-tail deer and black vulture) and was found widely across the State of Yucatan. Ixodid tick populations may increase in the State of Yucatan with time due to animal production intensification, an increasing wildlife population near rural communities because of natural habitat reduction and fragmentation. The diversity of ticks across host taxa documented here highlights the relevance of ecological information to understand tick-host dynamics. This knowledge is critical to inform public health and veterinary programs for the sustainable control of ticks and tick-borne diseases. Copyright © 2015. Published by Elsevier B.V.
Ticks (Acari: Ixodidae) of the state of Amazonas, Brazil.
Gianizella, Sergio L; Martins, Thiago F; Onofrio, Valeria C; Aguiar, Nair O; Gravena, Waleska; do Nascimento, Carlos A R; Neto, Laérzio C; Faria, Diogo L; Lima, Natália A S; Solorio, Monica R; Maranhão, Louise; Lima, Ivan J; Cobra, Iury V D; Santos, Tamily; Lopes, Gerson P; Ramalho, Emiliano E; Luz, Hermes R; Labruna, Marcelo B
2018-02-01
The tick fauna of Brazil is currently composed by 72 species. The state of Amazonas is the largest of Brazil, with an area of ≈ 19% of the Brazilian land. Besides its vast geographic area, only 19 tick species have been reported for Amazonas. Herein, lots containing ticks from the state of Amazonas were examined in three major tick collections from Brazil. A total of 5933 tick specimens were examined and recorded, comprising 2693 males, 1247 females, 1509 nymphs, and 484 larvae. These ticks were identified into the following 22 species: Amblyomma cajennense sensu lato, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma dissimile, Amblyomma dubitatum, Amblyomma geayi, Amblyomma goeldii, Amblyomma humerale, Amblyomma latepunctatun, Amblyomma longirostre, Amblyomma naponense, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma rotundatum, Amblyomma scalpturatum, Amblyomma varium, Dermacentor nitens, Haemaphysalis juxtakochi, Ixodes cf. Ixodes fuscipes, Ixodes luciae, Rhipicephalus microplus, Rhipicephalus sanguineus sensu lato. Ticks were collected from 17 (27.4%) out of the 62 municipalities that currently compose the state of Amazonas. The following four species are reported for the first time in the state of Amazonas: A. coelebs, A. dubitatum, H. juxtakochi, and Ixodes cf. I. fuscipes. The only tick species previously reported for Amazonas and not found in the present study is Amblyomma parvum. This study provides a great expansion of geographical and host records of ticks for the state of Amazonas, which is now considered to have a tick fauna composed by 23 species. It is noteworthy that we report 1391 Amblyomma nymphs that were identified to 13 different species.
Ticks and tick-borne pathogens in wild birds in Greece.
Diakou, Anastasia; Norte, Ana Cláudia; Lopes de Carvalho, Isabel; Núncio, Sofia; Nováková, Markéta; Kautman, Matej; Alivizatos, Haralambos; Kazantzidis, Savas; Sychra, Oldřich; Literák, Ivan
2016-05-01
Wild birds are common hosts of ticks and can transport them for long distances, contributing to the spreading of tick-borne pathogens. The information about ticks on birds and tick-borne pathogens in Greece is limited. The present study aimed to evaluate the prevalence and species of ticks infesting wild resident birds (mostly small passerines) in Greece, and to assess Borrelia and Rickettsia infection in the collected ticks. Detection of Borrelia burgdorferi s.l. was performed by nested PCR targeting the flaB gene. Rickettsia spp. were detected by PCR targeting the gltA and ompA genes. Seven (2 %) out of 403 birds examined in northern Greece in 2013 were infested with 15 ticks, identified as Ixodes frontalis, Ixodes acuminatus, Hyalomma marginatum, Hyalomma aegyptium and Hyalomma sp. All ticks were negative for Borrelia spp. while four of them were positive for rickettsiae (Rickettsia aeschlimannii in H. aegyptium and Rickettsia sp. in I. frontalis, H. aegyptium and H. marginatum). Ixodes acuminatus is reported for the first time in Greece and Sylvia borin is reported as a new host record for I. acuminatus.
Brei, Brandon; George, John E.; Pound, J. Mathews; Miller, J. Allen; Daniels, Thomas J.; Falco, Richard C.; Stafford, Kirby C.; Schulze, Terry L.; Mather, Thomas N.; Carroll, John F.; Fish, Durland
2009-01-01
Abstract As part of the Northeast Area-wide Tick Control Project (NEATCP), meta-analyses were performed using pooled data on the extent of tick-vector control achieved through seven concurrent studies, conducted within five states, using U.S. Department of Agriculture “4-Poster” devices to deliver targeted-acaricide to white-tailed deer. Although reductions in the abundance of all life-stages of Ixodes scapularis were the measured outcomes, this study focused on metrics associated with I. scapularis nymphal tick densities as this measure has consistently proven to directly correlate with human risk of acquiring Lyme disease. Since independent tick sampling schemes were undertaken at each of the five environmentally distinct study locations, a meta-analytic approach permitted estimation of a single true control-effect size for each treatment year of the NEATCP. The control-effect is expressed as the annual percent I. scapularis nymphal control most consistent with meta-analysis data for each treatment year. Our meta-analyses indicate that by the sixth treatment year, the NEATCP effectively reduced the relative density of I. scapularis nymphs by 71% on the 5.14 km2 treatment sites, corresponding to a 71% lower relative entomologic risk index for acquiring Lyme disease. PMID:19650737
Ferrell, A Michelle; Brinkerhoff, R Jory
2018-04-12
Patterns of vector-borne disease risk are changing globally in space and time and elevated disease risk of vector-borne infection can be driven by anthropogenic modification of the environment. Incidence of Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, has risen in a number of locations in North America and this increase may be driven by spatially or numerically expanding populations of the primary tick vector, Ixodes scapularis . We used a model selection approach to identify habitat fragmentation and land-use/land cover variables to test the hypothesis that the amount and configuration of forest cover at spatial scales relevant to deer, the primary hosts of adult ticks, would be the predominant determinants of tick abundance. We expected that land cover heterogeneity and amount of forest edge, a habitat thought to facilitate deer foraging and survival, would be the strongest driver of tick density and that larger spatial scales (5-10 km) would be more important than smaller scales (1 km). We generated metrics of deciduous and mixed forest fragmentation using Fragstats 4.4 implemented in ArcMap 10.3 and found, after adjusting for multicollinearity, that total forest edge within a 5 km buffer had a significant negative effect on tick density and that the proportion of forested land cover within a 10 km buffer was positively associated with density of I. scapularis nymphs. None of the 1 km fragmentation metrics were found to significantly improve the fit of the model. Elevation, previously associated with increased density of I. scapularis nymphs in Virginia, while significantly predictive in univariate analysis, was not an important driver of nymph density relative to fragmentation metrics. Our results suggest that amount of forest cover (i.e., lack of fragmentation) is the most important driver of I. scapularis density in our study system.
Quantifying the Availability of Vertebrate Hosts to Ticks: A Camera-Trapping Approach
Hofmeester, Tim R.; Rowcliffe, J. Marcus; Jansen, Patrick A.
2017-01-01
The availability of vertebrate hosts is a major determinant of the occurrence of ticks and tick-borne zoonoses in natural and anthropogenic ecosystems and thus drives disease risk for wildlife, livestock, and humans. However, it remains challenging to quantify the availability of vertebrate hosts in field settings, particularly for medium-sized to large-bodied mammals. Here, we present a method that uses camera traps to quantify the availability of warm-bodied vertebrates to ticks. The approach is to deploy camera traps at questing height at a representative sample of random points across the study area, measure the average photographic capture rate for vertebrate species, and then correct these rates for the effective detection distance. The resulting “passage rate” is a standardized measure of the frequency at which vertebrates approach questing ticks, which we show is proportional to contact rate. A field test across twenty 1-ha forest plots in the Netherlands indicated that this method effectively captures differences in wildlife assemblage composition between sites. Also, the relative abundances of three life stages of the sheep tick Ixodes ricinus from drag sampling were correlated with passage rates of deer, which agrees with the known association with this group of host species, suggesting that passage rate effectively reflects the availability of medium- to large-sized hosts to ticks. This method will facilitate quantitative studies of the relationship between densities of questing ticks and the availability of different vertebrate species—wild as well as domesticated species—in natural and anthropogenic settings. PMID:28770219
[Studies of the biological age in adult taiga ticks Ixodes persulcatus (Ixodinae)].
Grigor'eva, L A
2013-01-01
The history of studies of the biological age in ixodid ticks is discussed. A method of estimation of the biological age in adult ticks of the genus Ixodes by the degree of fat inclusions in midgut cells and in the fat body is developed. An "age scale" for the determination of the calendar age was assumed.
Two Anaplasma phagocytophilum Strains in Ixodes scapularis Ticks, Canada
Krakowetz, Chantel N.; Dibernardo, Antonia; Lindsay, L. Robbin
2014-01-01
We developed PCR-based assays to distinguish a human pathogenic strain of Anaplasma phagocytophilum, Ap-ha, from Ap-variant 1, a strain not associated with human infection. The assays were validated on A. phagocytophilum-infected blacklegged ticks (Ixodes scapularis) collected in Canada. The relative prevalence of these 2 strains in I. scapularis ticks differed among geographic regions. PMID:25417645
Jacquet, Maxime; Genné, Dolores; Belli, Alessandro; Maluenda, Elodie; Sarr, Anouk; Voordouw, Maarten J
2017-05-25
The population dynamics of vector-borne pathogens inside the arthropod vector can have important consequences for vector-to-host transmission. Tick-borne spirochete bacteria of the Borrelia burgdorferi (sensu lato) species complex cause Lyme borreliosis in humans and spend long periods of time (>12 months) in their Ixodes tick vectors. To date, few studies have investigated the dynamics of Borrelia spirochete populations in unfed Ixodes nymphal ticks. Larval ticks from our laboratory colony of I. ricinus were experimentally infected with B. afzelii, and killed at 1 month and 4 months after the larva-to-nymph moult. The spirochete load was also compared between engorged larval ticks and unfed nymphs (from the same cohort) and between unfed nymphs and unfed adult ticks (from the same cohort). The spirochete load of B. afzelii in each tick was estimated using qPCR. The mean spirochete load in the 1-month-old nymphs (~14,000 spirochetes) was seven times higher than the 4-month-old nymphs (~2000 spirochetes). Thus, the nymphal spirochete load declined by 80% over a period of 3 months. An engorged larval tick acquired ~100 spirochetes, and this population was 20 times larger in a young, unfed nymph. The spirochete load also appeared to decline in adult ticks. Comparison between wild and laboratory populations found that lab ticks were more susceptible to acquiring B. afzelii. The spirochete load of B. afzelii declines dramatically over time in domesticated I. ricinus nymphs under laboratory conditions. Future studies should investigate whether temporal declines in spirochete load occur in wild Ixodes ticks under natural conditions and whether these declines influence the tick-to-host transmission of Borrelia.
Borrelia miyamotoi in vectors and hosts in The Netherlands.
Wagemakers, Alex; Jahfari, Seta; de Wever, Bob; Spanjaard, Lodewijk; Starink, Markus V; de Vries, Henry J C; Sprong, Hein; Hovius, Joppe W
2017-03-01
Ixodes ticks transmit Borrelia burgdorferi sensu lato (s.l.), the causative agent of Lyme borreliosis (LB). These tick species also transmit Borrelia miyamotoi, which was recently found to cause infections in humans. We were interested in the prevalence of B. miyamotoi infection in ticks and natural hosts in The Netherlands, and to what extent ticks are co-infected with B. burgdorferi. In addition, erythema migrans has been sporadically described in B. miyamotoi-infected patients, but these skin lesions might as well represent co-infections with B. burgdorferi s.l. We therefore investigated whether B. miyamotoi was present in LB-suspected skin lesions of patients referred to our tertiary Lyme disease clinic. 3360 questing Ixodes ricinus nymphs as well as spleen tissue of 74 rodents, 26 birds and 10 deer were tested by PCR for the presence of B. miyamotoi. Tick lysates were also tested for the presence of B. burgdorferi s.l. Next, we performed a PCR for B. miyamotoi in 31 biopsies from LB-suspected skin lesions in patients visiting our tertiary Lyme center. These biopsies had been initially tested for B. burgdorferi s.l. by PCR, and the skin lesions had been investigated by specialized dermatologists. Out of 3360 unfed (or questing) nymphs, 313 (9.3%) were infected with B. burgdorferi s.l., 70 (2.1%) were infected with B. miyamotoi, and 14 (0.4%) were co-infected with B. burgdorferi s.l. and B. miyamotoi. Co-infection of B. burgdorferi s.l. with B. miyamotoi occurred more often than expected from single infection prevalences (p=0.03). Both rodents (9%) and birds (8%) were found positive for B. miyamotoi by PCR, whereas the roe deer samples were negative. Out of 31 LB-suspected skin biopsies, 10 (32%) were positive for B. burgdorferi s.l. while none were positive for B. miyamotoi. The significant association of B. burgdorferi s.l. with B. miyamotoi in nymphs implies the existence of mutual reservoir hosts. Indeed, the presence of B. miyamotoi DNA indicates systemic infections in birds as well as rodents. However, their relative contributions to the enzootic cycle of B. miyamotoi requires further investigation. We could not retrospectively diagnose B. miyamotoi infection using biopsies of LB-suspected skin lesions, supporting the hypothesis that B. miyamotoi is not associated with LB-associated skin manifestations. However, this warrants further studies in larger sets of skin biopsies. A prospective study focused on acute febrile illness after a tick bite could provide insight into the incidence and clinical manifestations of B. miyamotoi infection in The Netherlands. Copyright © 2016 The Author(s). Published by Elsevier GmbH.. All rights reserved.
Murase, Yusuke; Konnai, Satoru; Githaka, Naftaly; Hidano, Arata; Taylor, Kyle; Ito, Takuya; Takano, Ai; Ando, Shuji; Kawabata, Hiroki; Tsubota, Toshio; Murata, Shiro; Ohashi, Kazuhiko
2013-02-01
In this study, the prevalence of Borrelia infections in Ixodes ticks from a site in Hokkaido, Japan, with confirmed cases of Lyme disease was determined by a PCR method capable of detecting and differentiating between strains of pathogenic Borrelia, with particular emphasis on Borrelia garinii (B. garinii) and Borrelia afzelli (B. afzelli), using tick-derived DNA extracts as template. A total of 338 ticks, inclusive of 284 Ixodes persulcatus (I. persulcatus), were collected by flagging vegetation in mid-spring. Ninety-eight (34.5%) of I. persulcatus tested positive for Borrelia species DNA, whereas the overall prevalence of Borrelia species in Ixodes ovatus and Haemaphysalis longicornis ticks was 19.5 and 7.7%, respectively. PCR-RFLP and sequence analysis of Borrelia rrf(5S)-rrl(23S) intergenic spacer DNA amplicons indicated that they originated from three different Borrelia species namely, B. garinii, B. afzelii and B. japonica. Among the I. persulcatus species, which is a known vector of human borreliosis, 86 were mono-infected with B. garinii, 2 ticks were mono-infected with B. afzelii and whereas 12 ticks had dual infections. Most significant, 11 of the I. persulcatus ticks were coinfected with Anaplasma phagocytophilum and B. garinii. The difference between the number of obtained and expected co-infections was significant (χ(2)=4.32, P=0.038).
Hahn, N E; Fletcher, M; Rice, R M; Kocan, K M; Hansen, J W; Hair, J A; Barker, R W; Perry, B D
1990-01-01
Dermacentor variabilis, Rhipicephalus sanguineus, Amblyomma americanum, and Ixodes scapularis ticks were investigated for their ability to transmit Potomac horse fever. Larval and nymphal ticks were exposed to Ehrlichia risticii by feeding on mice inoculated with the organism. Molted exposed ticks were then allowed to feed on susceptible ponies or mice. No evidence of transmission, either clinically or by detection of antibodies to E. risticii in mice or ponies, was observed for any tick species examined.
Büchel, Kerstin; Bendin, Juliane; Gharbi, Amina; Rahlenbeck, Sibylle; Dautel, Hans
2015-06-01
Repellent efficacy of 10% EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid, ethyl ester) and 10% Icaridin ((2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester)) were evaluated against 20% DEET (N,N-diethyl-3-methylbenzamide) in human subject trials against ticks. Responses of host-seeking nymphs of the European castor bean tick (Ixodes ricinus L.; Acari: Ixodidae) and the North American blacklegged tick (I. scapularis Say; Acari: Ixodidae) were compared. Tests were carried out according to the US-EPA standard protocol with ethanolic solutions of the active ingredients of repellents being applied to the forearm of 10 volunteers. The upward movement of ticks was monitored until repellent failure taking up to 12.5 h. Application of 20% DEET resulted in median complete protection times (CPT; Kaplan-Meier median) between 4 and 4.5 h, while 10% EBAAP yielded CPTs of 3.5-4h. No significant differences were found between the efficacies of two repellents nor between the two species tested. The median of the CPT of a 10% Icaridin solution was 5h in nymphs of I. scapularis, but 8h in those of I. ricinus (P<0.01). Based on these studies, EBAAP and Icaridin are efficacious alternatives to DEET in their repellent activity against nymphs of the two Ixodes ticks with Icaridin demonstrating particularly promising results against I. ricinus. Future research should investigate whether similar results occur when adult Ixodes ticks or other tick species are tested. Copyright © 2015 Elsevier GmbH. All rights reserved.
Nováková, Markéta; Heneberg, Petr; Heylen, Dieter J A; Medvecký, Matej; Muñoz-Leal, Sebastián; Šmajs, David; Literák, Ivan
2018-03-01
In the last two decades, the advent of molecular methods has revealed a remarkable diversity of rickettsiae (Rickettsiales: Rickettsiaceae) in invertebrates. Several species of these obligate intracellular bacteria are known to cause human infections, hence more attention has been directed towards human-biting ectoparasites. A spotted fever group Rickettsia sp. was previously detected in Ixodes lividus ticks (Ixodidae) associated with sand martins (Hirundinidae: Riparia riparia). In order to identify whether this rickettsia varies among isolated tick populations, a total of 1758 I. lividus ticks and five Ixodes ricinus ticks (Ixodidae) were collected in the Czech Republic and 148 I. lividus ticks were collected in Belgium, from nests of sand martins, European bee-eaters (Meropidae: Merops apiaster), Eurasian tree sparrows (Passeridae: Passer montanus), and from captured sand martins. We screened 165 and 78 I. lividus ticks (from the Czech Republic and Belgium, respectively) and all five I. ricinus ticks for the presence of rickettsial DNA. Only I. lividus samples were positive for Rickettsia vini, a spotted fever group rickettsia that commonly infects the tree-hole tick Ixodes arboricola (Ixodidae). Maximum likelihood analysis of the rickettsial sequences showed that the most closely related organism to R. vini corresponds to an uncharacterized rickettsia detected in Argas lagenoplastis (Argasidae), a nidicolous soft tick of the fairy martin (Hirundinidae: Petrochelidon ariel) in Australia. The observed variability of R. vini sequences from isolated tick populations was low; all 85 sequenced samples were identical to each other in five out of six partial rickettsial genes, except for the sca4 sequence (99.9% identity, 808/809 nt) that differed in I. lividus ticks from two sampling sites in the Czech Republic. Copyright © 2018 Elsevier GmbH. All rights reserved.
Parasitism of mustelids by ixodid ticks (Acari: Ixodidae), Maine and New Hampshire, U.S.A.
Lubelczyk, Charles; Lacombe, Eleanor H; Elias, Susan P; Beati, Lorenza; Rand, Peter W; Smith, Robert P
2014-06-01
Ticks collected from mustelids from four counties in Maine and one in New Hampshire were identified after harvest. Of the 18 fishers Martes pennanti Erxleben, two mink Neovison vison Schreber, and one long-tailed weasel Mustela frenata Lichtenstein, 589 ticks were collected and identified. They were identified as, in order of abundance, Ixodes gregsoni Lindquist, Wu, and Redner (158 larvae, 189 nymphs, four adults), Ixodes cookei Packard (99 larvae, 77 nymphs, six adults), Ixodes scapularis Say (53 adults), Dermacentor variabilis Say (two nymphs), and Ixodes angustus Neumann (one nymph). Seasonally, all but the D. variabilis were collected in winter. This study reports the first record of adult I. scapularis from a M. pennanti in the northeastern United States. Copyright © 2014 Elsevier GmbH. All rights reserved.
Fatal Case of Deer Tick Virus Encephalitis
Tavakoli, Norma P.; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D.; Gilmore, Emily J.; Faust, Phyllis L.
2010-01-01
SUMMARY Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. PMID:19439744
Fatal case of deer tick virus encephalitis.
Tavakoli, Norma P; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D; Gilmore, Emily J; Faust, Phyllis L
2009-05-14
Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. 2009 Massachusetts Medical Society
Williams, Heike; Demeler, Janina; Taenzler, Janina; Roepke, Rainer K A; Zschiesche, Eva; Heckeroth, Anja R
2015-06-30
Fluralaner is a new antiparasitic drug that was recently introduced as Bravecto chewable tablets for the treatment of tick and flea infestations in dogs. Most marketed tick products exert their effect via topical application and contact exposure to the parasite. In contrast, Bravecto delivers its acaricidal activity through systemic exposure. Tick exposure to fluralaner occurs after attachment to orally treated dogs, which induces a tick-killing effect within 12 h. The fast onset of killing lasts over the entire treatment interval (12 weeks) and suggests that only marginal uptake by ticks is required to induce efficacy. Three laboratory studies were conducted to quantify the extent of uptake by comparison of ticks' weight and coxal index obtained from Bravecto-treated and negative-control dogs. Three studies were conducted using experimental tick infestation with either Ixodes ricinus or Ixodes scapularis after oral administration of fluralaner to dogs. All studies included a treated (Bravecto chewable tablets, MSD Animal Health) and a negative control group. Each study had a similar design for assessing vitality and weighing of ticks collected from dogs of both groups. Additionally, in one study the coxal index (I. ricinus) was calculated as a ratio of tick's ventral coxal gap and dorsal width of scutum. Tick weight data and coxal indices from Bravecto-treated and negative-control groups were compared via statistical analysis. Ticks collected from Bravecto-treated dogs weighed significantly less (p ≤ 0.0108) than ticks collected from negative-control dogs, and their coxal index was also significantly lower (p < 0.0001). The difference in tick weights was demonstrated irrespective of the tick species investigated (I. ricinus, I. scapularis). At some assessments the mean tick weights of Bravecto-treated dogs were significantly lower than those of unfed pre-infestation (baseline) ticks. The demonstrated tick-killing efficacy was in the range of 94.6 - 100%. Tick weights and coxal indices confirm that a minimal uptake results in a sufficient exposure of ticks to fluralaner (Bravecto) and consequently in a potent acaricidal effect.
Igolkina, Yana P; Rar, Vera A; Yakimenko, Valeriy V; Malkova, Marina G; Tancev, Aleksey K; Tikunov, Artem Yu; Epikhina, Tamara I; Tikunova, Nina V
2015-08-01
Rickettsia spp. are the causative agents of a number of diseases in humans. These bacteria are transmitted by arthropods, including ixodid ticks. DNA of several Rickettsia spp. was identified in Ixodes persulcatus ticks, however, the association of Ixodes trianguliceps ticks with Rickettsia spp. is unknown. In our study, blood samples of small mammals (n=108), unfed adult I. persulcatus ticks (n=136), and I. persulcatus (n=12) and I. trianguliceps (n=34) ticks feeding on voles were collected in two I. persulcatus/I. trianguliceps sympatric areas in Western Siberia. Using nested PCR, ticks and blood samples were studied for the presence of Rickettsia spp. Three distinct Rickettsia species were found in ticks, but no Rickettsia species were found in the blood of examined voles. Candidatus Rickettsia tarasevichiae DNA was detected in 89.7% of unfed I. persulcatus, 91.7% of engorged I. persulcatus and 14.7% of I. trianguliceps ticks. Rickettsia helvetica DNA was detected in 5.9% of I. trianguliceps ticks. In addition, a new Rickettsia genetic variant was found in 32.4% of I. trianguliceps ticks. Sequence analysis of the 16S rRNA, gltA, ompA, оmpB and sca4 genes was performed and, in accordance with genetic criteria, a new Rickettsia genetic variant was classified as a new Candidatus Rickettsia species. We propose to name this species Candidatus Rickettsia uralica, according to the territory where this species was initially identified. Candidatus Rickettsia uralica was found to belong to the spotted fever group. The data obtained in this study leads us to propose that Candidatus Rickettsia uralica is associated with I. trianguliceps ticks. Copyright © 2015 Elsevier B.V. All rights reserved.
Discovery of a novel iflavirus sequence in the eastern paralysis tick Ixodes holocyclus.
O'Brien, Caitlin A; Hall-Mendelin, Sonja; Hobson-Peters, Jody; Deliyannis, Georgia; Allen, Andy; Lew-Tabor, Ala; Rodriguez-Valle, Manuel; Barker, Dayana; Barker, Stephen C; Hall, Roy A
2018-05-11
Ixodes holocyclus, the eastern paralysis tick, is a significant parasite in Australia in terms of animal and human health. However, very little is known about its virome. In this study, next-generation sequencing of I. holocyclus salivary glands yielded a full-length genome sequence which phylogenetically groups with viruses classified in the Iflaviridae family and shares 45% amino acid similarity with its closest relative Bole hyalomma asiaticum virus 1. The sequence of this virus, provisionally named Ixodes holocyclus iflavirus (IhIV) has been identified in tick populations from northern New South Wales and Queensland, Australia and represents the first virus sequence reported from I. holocyclus.
Grigor'eva, L A
2012-01-01
Some criteria for the estimation of the biological and calendar age by the fat storage in midgut cells of Ixodes persulcatus males were established on the basis of examination of ticks from the laboratory culture.
Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B
2016-03-01
Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs.
Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia
2013-08-01
In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti-infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals.
Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia
2013-01-01
Abstract In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti–infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals. PMID:23697771
MacDonald, Andrew J; Hyon, David W; Brewington, John B; O'Connor, Kerry E; Swei, Andrea; Briggs, Cheryl J
2017-01-05
Tick-borne diseases, particularly Lyme disease, are emerging across the northern hemisphere. In order to manage emerging diseases and predict where emergence will likely occur, it is necessary to understand the factors influencing the distribution, abundance and infection prevalence of vector species. In North America, Lyme disease is the most common vector-borne disease and is transmitted by blacklegged ticks. This study aimed to explore the abiotic and environmental drivers of density and infection prevalence of western blacklegged ticks (Ixodes pacificus) in southern California, an understudied and densely populated region of North America. Over the course of this two-year study, densities of I. pacificus adults were consistently positively associated with host availability for juvenile ticks and dense oak woodland habitat. Densities of nymphal and larval I. pacificus, on the other hand were primarily predicted by host availability for juvenile ticks in the first year of the study, and by habitat characteristics such as dense leaf litter in the second year. Infection with the causative agent of Lyme disease, Borrelia burgdorferi (sensu stricto), and related spirochetes was not predicted by the abiotic conditions promoting I. pacificus populations, but rather by diversity of the tick community, and in particular by the presence of two Ixodes tick species that do not generally feed on humans (Ixodes spinipalpis and Ixodes peromysci). Borrelia spp. infection was not detected in the I. pacificus populations sampled, but was detected in other vector species that may maintain enzootic transmission of the pathogen on the landscape. This study identified dense oak woodlands as high-risk habitats for I. pacificus tick encounter in southern California. The shift in relative importance of host availability to habitat characteristics in predicting juvenile tick abundance occurred as California's historic drought intensified, suggesting that habitat providing suitable microclimates for tick survivorship became centrally important to patterns of abundance in the face of deleterious abiotic conditions. These results underscore the need for further investigation of the effects of climate change on tick-borne disease in California. Finally, despite low risk of human Lyme disease infection posed by I. pacificus in southern California, evidence of infection was found in other tick species, suggesting that enzootic transmission of tick-borne borreliae may be occurring in southern California, and involve parallel enzootic cycles with other tick and host species but not necessarily humans.
Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae)
Zhioua, Elyes; Heyer, Klaus; Browning, M.; Ginsberg, Howard S.; LeBrun, Roger A.
1999-01-01
Pathogenicity of the entomopathogenic bacterium Bacillus thuringiensis var. kurstaki de Barjac & Lemille was tested against the black-legged tick, Ixodes scapularis Say. Engorged larvae dipped in a solution of 108 spores per ml showed 96% mortality, 3 wk post-infection. The LC50 value for engorged larvae (concentration required to kill 50% of ticks) was 107 spores/ml. Bacillus thuringiensis shows considerable potential as a microbial control agent for the management of Ixodes scapularis.
Lyme borreliosis: ten years after discovery of the etiologic agent, Borrelia burgdorferi.
Burgdorfer, W
1991-01-01
Since the recovery of its causative agent, Borrelia burgdorferi, in 1981, Lyme borreliosis has become the most prevalent tick-borne disease in the United States as well as in Europe. Its steadily increasing clinical spectrum now includes erythema migrans, acrodermatitis chronica atrophicans, lymphadenosis beniga cutis, arthritis, myocarditis, progressive meningoencephalitis, myositis, and various ocular and skin disorders. The true incidence of Lyme borreliosis in the world is unknown. In the United States, it has increased from 2,000 cases in 1987, to more than 8,000 in 1989. It occurs now in regions where the tick vectors, Ixodes dammini and Ixodes pacificus, are absent and where other species of ticks may be responsible for maintaining and distributing the spirochete. In Europe, Lyme borreliosis has been reported from 19 countries; its occurrence coincides with the distribution of the vector tick, Ixodes ricinus and possibly Ixodes hexagonus. Specific and dependable serological tests are still not available, but development of probes for specific antigens and the polymerase chain reaction appear promising in detecting ongoing infections and in identifying B. burgdorferi in ticks, animal, and human hosts. Brief reference is made to advances in the preparation of whole cell and genetically engineered vaccines.
Mihalca, Andrei D; Sándor, Attila D
2013-01-01
Rodents comprise more species than any other mammal order. Most rodents are considered keystone species in their ecological communities, hence the survival of many other species in the ecosystem depend on them. From medical point of view, this is particularly important for rodent-dependent pathogens. In the particular case of tick-borne diseases, rodents are important as hosts for vector ticks and as reservoir hosts (Lyme borreliosis, human granulocytic anaplasmosis, Crimean-Congo hemorrhagic fever, Tick-borne relapsing fevers, tick-borne rickettsioses, babesiosis). Community and population ecology of rodents was shown to be correlated with disease ecology in the case of many tick-borne diseases. In Eastern Europe, several adult hard-tick species use rodents as their principal hosts: Ixodes apronophorus, I. crenulatus, I. laguri, I. redikorzevi, I. trianguliceps. However, the majority of ticks feeding on rodents are immature stages of ticks which as adults are parasitic on larger mammals. Larvae and nymphs of Ixodes ricinus, the most abundant and medically important tick from Europe, are commonly found on rodents. This is particularly important, as many rodents are synanthropic and, together with other micromammals and birds are often the only available natural hosts for ticks in urban environments. This work reviews the correlated ecology of rodents and I. ricinus.
Effect of prescribed fire for tick control in California chaparral.
Padgett, K A; Casher, L E; Stephens, S L; Lane, R S
2009-09-01
Prescribed fire was investigated as a method for controlling ixodid and argasid ticks in chaparral habitats in northern California. Two experimental and two adjacent control plots within a wildlife preserve were monitored for 1 yr postburn. Ticks were collected by flagging vegetation, by CO2-baited pitfall trap, and by live-trapping rodents. Twice as many rodents were caught at control sites compared with burn sites and no dusky-footed woodrats, Neotoma fuscipes Baird, were found in the treatment sites postburn. This species is known to be a reservoir of the agents of Lyme disease, Borrelia burgdorferi sensu stricto Johnson, Schmid, Hyde, Steigerwalt & Brenner, and human granulocytic anaplasmosis, Anaplasma phagocytophilum Dumler, Barbet, Bekker, Dasch, Palmer, Ray, Rikihisa, Rurangirwa. Six ixodid tick species were removed from rodents (Ixodes pacificus Cooley & Kohls, Ixodes jellisoni Cooley & Kohls, Ixodes spinipalpis Hadwen & Nuttall, Ixodes woodi Bishopp, Dermacentor occidentalis Marx, and Dermacentor parumapertus Neumann), two of which transmit bacterial zoonotic agents to people in the far-western United States. There was no decrease in number of ticks per animal trapped at either burn site compared with controls; in fact, the mean number of immature I. pacificus per rodent was significantly higher at one burn site than its control site. Soil refugia may protect ticks from fire-induced mortality; the argasid tick Ornithodoros coriaceus Koch, which lives in soil, was unaffected by the prescribed fire as were I. pacificus and D. occidentalis buried in packets 2.5 cm below ground. We conclude that although prescribed fires in chaparral habitats may diminish local rodent abundance, it does not decrease tick loads on rodents. Furthermore, burning chaparral does not result in a decreased abundance of adult ixodid ticks on vegetation and apparently does not affect argasid or ixodid ticks that are sheltered within soil refugia.
Kurilshikov, Alexander; Livanova, Natalya N; Fomenko, Nataliya V; Tupikin, Alexey E; Rar, Vera A; Kabilov, Marsel R; Livanov, Stanislav G; Tikunova, Nina V
2015-01-01
Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species), Rickettsia (I. persulcatus and D. reticulatus) and Francisella (D. reticulatus). B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002). Between-sex variation was confirmed by PERMANOVA testing in I. persulcatus (p = 0.042) and I. pavlovskyi (p = 0.042) ticks. Our study indicated that 16S metagenomic profiling could be used for rapid assessment of the occurrence of medically important bacteria in tick populations inhabiting different natural biotopes and therefore the epidemic danger of studied foci.
Detection of Borrelia Genomospecies 2 in Ixodes spinipalpis Ticks Collected from a Rabbit in Canada.
Scott, John D; Clark, Kerry L; Foley, Janet E; Anderson, John F; Durden, Lance A; Manord, Jodi M; Smith, Morgan L
2017-02-01
Lyme disease is a serious health problem, with many patients requiring in-depth clinical assessment and extended treatment. In the present study, we provide the first records of the western blacklegged tick, Ixodes pacificus , and Ixodes spinipalpis parasitizing eastern cottontails, Sylvilagus floridanus . We also documented a triple co-infestation of 3 tick species (Ixodes angustus, I. pacificus , I. spinipalpis) feeding on an eastern cottontail. Notably, we discovered a unique member of the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.) in Canada. Ixodes spinipalpis ticks, which were collected from an eastern cottontail on Vancouver Island, British Columbia (BC), were positive for B. burgdorferi s.l. With the use of polymerase chain reaction amplification on the tick extracts and DNA sequencing on the borrelial amplicons, we detected Borrelia genomospecies 2, a novel subgroup of the B. burgdorferi s.l. complex. Based on 416 nucleotides of the flagellin B (flaB) gene, our amplicons are identical to the Borrelia genomospecies 2 type strain CA28. Borrelia genomospecies 2 is closely related genetically to other B. burgdorferi s.l. genospecies, namely Borrelia americana, Borrelia andersonii, and B. burgdorferi sensu stricto (s.s.) that cause Lyme disease. Like some other borrelial strains, Borrelia genomospecies 2 can be missed by current Lyme disease serology. Health-care providers must be aware that Borrelia genomospecies 2 is present in I. pacificus and I. spinipalpis ticks in far-western North America, and patients with clinical symptoms of Lyme disease need to be assessed for potential infection with this pathogen.
Impact of the experimental removal of lizards on Lyme disease risk.
Swei, Andrea; Ostfeld, Richard S; Lane, Robert S; Briggs, Cheryl J
2011-10-07
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.
Blum, Kenneth; Modestino, Edward J; Febo, Marcelo; Steinberg, Bruce; McLaughlin, Thomas; Fried, Lyle; Baron, David; Siwicki, David; Badgaiyan, Rajendra D
2017-01-01
The principal vector of Lyme disease in the United States is Ixodes scapularis: black legged or deer ticks. There is increased evidence that those infected may be plagued by anxiety or depression as well. Researchers have identified transcripts coding for two putative cytosolic sulfotransferases in these ticks, which recognized phenolic monoamines as their substrates. It is hypothesized that protracted Lyme disease sequelae may be due to impairment of dopaminergic function of the brain reward circuitry. The subsequent recombinant proteins exhibited sulfotransferase function against two neurotransmitters: dopamine and octopamine. This, in itself, can reduce dopamine function leading to many Reward Deficiency Syndrome behaviors, including depression and possibly, anxiety. In fact, it was shown that activity of Ixosc Sult 1 and Sult 2 in the Ixodid tick salivary glands might contain inactivation of the salivation signal through sulfonation of either dopamine or octopamine. This infraction results in a number of clinically observed mood changes, such as anxiety and depression. In fact, there are common symptoms observed for both Parkinson and Lyme diseases. The importance of understanding the mechanistic and neurobiological effects of Lyme on the central nervous system (CNS) provides the basis for pro-dopamine regulation as a treatment. WC 195 PMID:28736624
Blum, Kenneth; Modestino, Edward J; Febo, Marcelo; Steinberg, Bruce; McLaughlin, Thomas; Fried, Lyle; Baron, David; Siwicki, David; Badgaiyan, Rajendra D
2017-05-01
The principal vector of Lyme disease in the United States is Ixodes scapularis: black legged or deer ticks. There is increased evidence that those infected may be plagued by anxiety or depression as well. Researchers have identified transcripts coding for two putative cytosolic sulfotransferases in these ticks, which recognized phenolic monoamines as their substrates. It is hypothesized that protracted Lyme disease sequelae may be due to impairment of dopaminergic function of the brain reward circuitry. The subsequent recombinant proteins exhibited sulfotransferase function against two neurotransmitters: dopamine and octopamine. This, in itself, can reduce dopamine function leading to many Reward Deficiency Syndrome behaviors, including depression and possibly, anxiety. In fact, it was shown that activity of Ixosc Sult 1 and Sult 2 in the Ixodid tick salivary glands might contain inactivation of the salivation signal through sulfonation of either dopamine or octopamine. This infraction results in a number of clinically observed mood changes, such as anxiety and depression. In fact, there are common symptoms observed for both Parkinson and Lyme diseases. The importance of understanding the mechanistic and neurobiological effects of Lyme on the central nervous system (CNS) provides the basis for pro-dopamine regulation as a treatment. WC 195.
Schneider, Sarah C; Parker, Christine M; Miller, James R; Page Fredericks, L; Allan, Brian F
2015-03-01
The geographic distributions of Ixodes scapularis (black-legged tick) and the bacterium Borrelia burgdorferi (the causative agent of Lyme disease) are expanding in the USA. To assess the role of migratory songbirds in the spread of this tick and pathogen, we captured passerines in central Illinois during the fall of 2012. We compared forested sites in regions where I. scapularis populations were either previously or not yet established. Ticks were removed from birds and blood samples were taken from select avian species. Ticks were identified by morphology and molecular techniques were used to detect B. burgdorferi and other tick-borne pathogens in ticks and avian blood samples. Ixodes spp. were detected on 10 of 196 migrants (5.1%), with I. scapularis larvae found on 2 individuals. Borrelia burgdorferi sensu stricto was detected in the blood of 9 of 29 birds sampled (31%), yet only 1 infected bird was infested by ticks. The ticks were mostly Haemaphysalis leporispalustris and I. dentatus larvae, and none tested positive for B. burgdorferi. Infestation of birds by Ixodes spp. differed significantly by region, while B. burgdorferi infection did not. These data suggest that migratory birds may play a larger role in the dispersal of B. burgdorferi than previously realized.
USDA-ARS?s Scientific Manuscript database
The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of the trypanosomatid protozoa Leishmania major, which causes leishmaniasis in parts of the Afro-Eurasian region. The black- legged tick Ixodes scapularis is the primary tick vector of the bacterium Borrelia burgdorfe...
Eisen, Rebecca J.; Eisen, Lars; Ogden, Nicholas H.; Beard, Charles B.
2016-01-01
Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs. PMID:26681789
Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex
Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R. Jory; Gonzalez, Antonio; Parobek, Christian M.; Juliano, Jonathan J.; Andreadis, Theodore G.; Falco, Richard C.; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A.; Roe, R. Michael; Apperson, Charles S.; Knight, Rob
2015-01-01
Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. PMID:26150449
Seasonal infestation of birds with immature stages of Ixodes ricinus and Ixodes arboricola.
Kocianová, Elena; Rusňáková Tarageľová, Veronika; Haruštiaková, Danka; Špitalská, Eva
2017-03-01
This study assessed the parasitization of cavity-nesting birds and ground-nesting/foraging birds with larvae and nymphs of two Ixodes species, Ixodes ricinus and Ixodes arboricola. Totals of 679 (52.3%) I. ricinus and 619 (47.7%) I. arboricola ticks were collected from 15 species of passerine birds which were caught during the nesting and non-nesting periods of 2003-2006, in the south-eastern part of the Czech Republic, the Drahanská Vrchovina Uplands. In the non-nesting period from October to March, 6.8% (101/1492) of birds were infested with ticks, mainly with I. arboricola larvae. In the non-nesting period, the average intensity of infestation by I. arboricola and I. ricinus was 8.5 and 1.5 individuals per infested bird, respectively. In the nesting period from April to June, 21.6% (50/232) of birds were infested by both tick species but mainly with I. ricinus nymphs. The average intensity of infestation by I. ricinus and I. arboricola was 13.3 and 10.8 individuals per infested bird, respectively. Altogether, 23.2% of the infested birds were parasitized by both immature life stages of one or both tick species. From an enzootic perspective, co-feeding and co-infestation of I. ricinus and I. arboricola subadults on passerine birds might happen and may be important for the dissemination of tick-borne agents. Copyright © 2017 Elsevier GmbH. All rights reserved.
Radulović, Željko; Porter, Lindsay M.; Kim, Tae K.; Mulenga, Albert
2015-01-01
Organic anion-transporting polypeptides (Oatps) are an integral part of the detoxification mechanism in vertebrates and invertebrates. These cell surface proteins are involved in mediating the sodium-independent uptake and/or distribution of a broad array of organic amphipathic compounds and xenobiotic drugs. This study describes bioinformatics and biological characterization of 9 Oatp sequences in the Ixodes scapularis genome. These sequences have been annotated on the basis of 12 transmembrane domains, consensus motif D-X-RW-(I,V)-GAWW-X-G-(F,L)-L, and 11 conserved cysteine amino acid residues in the large extracellular loop 5 that characterize the Oatp superfamily. Ixodes scapularis Oatps may regulate non-redundant cross-tick species conserved functions in that they did not cluster as a monolithic group on the phylogeny tree and that they have orthologs in other ticks. Phylogeny clustering patterns also suggest that some tick Oatp sequences transport substrates that are similar to those of body louse, mosquito, eye worm, and filarial worm Oatps. Semi-quantitative RT-PCR analysis demonstrated that all 9 I. scapularis Oatp sequences were expressed during tick feeding. Ixodes scapularis Oatp genes potentially regulate functions during early and/or late-stage tick feeding as revealed by normalized mRNA profiles. Normalized transcript abundance indicates that I. scapularis Oatp genes are strongly expressed in unfed ticks during the first 24 h of feeding and/or at the end of the tick feeding process. Except for 2 I. scapularis Oatps, which were expressed in the salivary glands and ovaries, all other genes were expressed in all tested organs, suggesting the significance of I. scapularis Oatps in maintaining tick homeostasis. Different I. scapularis Oatp mRNA expression patterns were detected and discussed with reference to different physiological states of unfed and feeding ticks. PMID:24582512
Detection and identification of Rickettsia species in Ixodes tick populations from Estonia.
Katargina, Olga; Geller, Julia; Ivanova, Anna; Värv, Kairi; Tefanova, Valentina; Vene, Sirkka; Lundkvist, Åke; Golovljova, Irina
2015-09-01
A total of 1640 ticks collected in different geographical parts of Estonia were screened for the presence of Rickettsia species DNA by real-time PCR. DNA of Rickettsia was detected in 83 out of 1640 questing ticks with an overall prevalence of 5.1%. The majority of the ticks infected by rickettsiae were Ixodes ricinus (74 of 83), while 9 of the 83 positive ticks were Ixodes persulcatus. For rickettsial species identification, a part of the citrate synthase gltA gene was sequenced. The majority of the positive samples were identified as Rickettsia helvetica (81 out of 83) and two of the samples were identified as Rickettsia monacensis and Candidatus R. tarasevichiae, respectively. Genetic characterization based on the partial gltA gene showed that the Estonian sequences within the R. helvetica, R. monacensis and Candidatus R. tarasevichiae species demonstrated 100% similarity with sequences deposited in GenBank, originating from Rickettsia species distributed over large territories from Europe to Asia. Copyright © 2015 Elsevier GmbH. All rights reserved.
Barros-Battesti, D M; Yoshinari, N H; Bonoldi, V L; De Castro Gomes, A
2000-11-01
From January 1995 to June 1996, ticks were studied in a fragment of Atlantic Forest in a residential area in the city of Itapevi, State of Sao Paulo, Brazil. Cases of human Lyme disease-like illness were registered in this area during the spring of 1992. The monthly relative density of ticks was determined and the influence of seasonal climatic conditions was evaluated as well as the relationship between ticks and hosts. Ticks (n = 88) were collected from small mammals captured (n = 134) in monthly trappings where the traps were operated for five consecutive days. Immature ticks (n = 42, 47.7%) were identified as Ixodes spp. The adult ticks (n = 46, 52.3%) were identified as Ixodes didelphidis Fonseca and Aragão (n = 19, 21.6%), I. loricatus Neumann (n = 26, 29.5%) and Amblyomma cajennense (F.) (n = 1, 1.1%). The monthly correlations between tick numbers and meteorological data were not significant. The correlation between the different stages of ticks and the two seasons (cold-dry and warm-rainy) indicated that both immature and adult ticks showed a seasonal pattern of abundance. The highest numbers of immature ticks were observed on rodents, during the cold-dry season (from April to September) with a peak in August 1995. Adults ticks were predominant during the warm-rainy season (from October to March) with a peak in January 1995. Adult ticks were only collected on marsupials.
Brown, Scott M; Lehman, Preston M; Kern, Ryan A; Henning, Jill D
2015-06-01
Prevalence studies of Borrelia burgdorferi and Anaplasma phagocytophilum have been rare for ticks from southwestern Pennsylvania. We collected 325 Ixodes scapularis ticks between 2011 and 2012 from four counties in southwestern Pennsylvania. We tested for the presence of Borrelia burgdorferi and Anaplasma phagocytophilum using PCR. Of the ticks collected from Pennsylvania, B. burgdorferi (causative agent of Lyme disease) was present in 114/325 (35%) and Anaplasma phagocytophilum (causative agent of Human Granulocytic Anaplasmosis) was present in 48/325 (15%) as determined by PCR analysis. © 2015 The Society for Vector Ecology.
Tick-Borne Transmission of Murine Gammaherpesvirus 68
Hajnická, Valeria; Kúdelová, Marcela; Štibrániová, Iveta; Slovák, Mirko; Bartíková, Pavlína; Halásová, Zuzana; Pančík, Peter; Belvončíková, Petra; Vrbová, Michaela; Holíková, Viera; Hails, Rosemary S.; Nuttall, Patricia A.
2017-01-01
Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68) is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females) transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus), the largest biological group of viruses. Currently, African swine fever virus (ASFV) is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer) including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission of MHV68 in nature, and whether humans are at risk of infection. PMID:29164067
Whole-genome sequencing of Borrelia garinii BgVir, isolated from Taiga ticks (Ixodes persulcatus).
Brenner, Evgeniy V; Kurilshikov, Alexander M; Stronin, Oleg V; Fomenko, Nataliya V
2012-10-01
Most Lyme borreliosis cases in Russia result from Borrelia garinii NT29 group infection. Borrelias of this group circulate exclusively in Ixodes persulcatus ticks, which are seldom found beyond Russia and the far east. Here we report the whole-genome sequence of Borrelia garinii BgVir isolated from an I. persulcatus female.
A case of tick bite by a spontaneously retreated Ixodes nipponensis.
Cho, B K; Nam, H W; Cho, S Y; Lee, W K
1995-09-01
A 58-year old housewife consulted us about 1 cm sized, dark-brownish, bean-like mass which was dropped spontaneously from indurated skin lesion on her abdomen. The mass was identified morphologically as an engorged female Ixodes nipponensis. Nine days earlier, she had an excursion collecting edible sprouts of wild grass. Spontaneous retreat has been unusual in clinical tick bites in Korea. Fourteen cases of tick bite described in the Korean literature were reviewed briefly in relation to Lyme borreliosis.
Szekeres, Sándor; Lügner, Jenny; Fingerle, Volker; Margos, Gabriele; Földvári, Gábor
2017-10-01
The hard tick Ixodes ricinus is the most important vector of tick-transmitted pathogens in Europe, frequently occurring in urban parks and greenbelts utilized for recreational activities. This species is the most common vector of the causative agents of Lyme borreliosis in Europe. Similarly, the species spreads Borrelia miyamotoi, causing a relapsing-fever like illness. A total of 1774 Ixodes ricinus (50 females, 68 males, 840 nymphs and 818 larvae) were collected with flagging between March and September 2014 in a coniferous forest patch in Niederkaina near the town of Bautzen in Saxony, Germany. To measure questing tick density a time-based density estimating method was utilized. From each month, a total of 100 adults and nymphal ticks and all larvae (pools of 10 individuals per tube/month) were selected for the molecular analyses. For simultaneous detection of B. burgdorferi s.l. and B. miyamotoi a duplex real-time PCR targeting the flaB locus was performed. Prevalence of B. burgdorferi s.l. was 9.4% (female: 6%, male: 2.9%, nymph: 12.2%, larva: 0%) and minimum prevalence of B. miyamotoi was 1.2% (female: 0%, male: 4.3%, nymph: 2.8%, larva: 0.1%) in the 714 samples with real-time polymerase chain reaction. A real-time PCR reaction was utilized first to target the histone-like protein gene (hbb) of B. burgdorferi s.l., a hemi-nested outer surface protein (ospA) gene conventional PCR was then performed followed by a restriction enzyme analysis to distinguish B. burgdorferi s.l. genospecies. Seven B. afzelii, one B. burgdorferi s.s., one B. bavariensis and four B. miyamotoi infections were confirmed. Prevalence of Lyme borreliosis spirochetes was significantly higher in nymphs than in adults (p<0.01, Fisher exact test) probably due to the diluting effect of the local roe deer population. Our data highlight the potential risk of human infection with the emerging pathogen B. miyamotoi within the study area. Copyright © 2017 Elsevier GmbH. All rights reserved.
Avian tick paralysis caused by Ixodes brunneus in the southeastern United States
Luttrell, M.P.; Creekmore, L.H.; Mertins, J.W.
1996-01-01
Between 1988 and 1994, 16 definitive and 26 presumptive cases of tick paralysis were diagnosed in 10 species of birds from five southeastern states in the USA. All birds had engorged adult female Ixodes brunneus ticks on the head region and were partially paralyzed or dead. Cases occurred in the winter and early spring months, and most birds were passerines found in private yards or near feeders. All stages of I. brunneus feed exclusively on birds, and this species previously has been associated with avian tick paralysis. Little is known concerning the life cycle of this ixodid tick and its impact on wild bird populations.
[Search for protective antigens in Ixodes persulcatus (ixodidae) salivary gland extracts].
Shtannikov, A V; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Perovskaia, O N; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N
2010-01-01
RT-PCR evaluation of the activity of eight Ixodes persulcatus salivary gland genes shows clear distinctions in their expression depending of the stage of tick feeding. Out of them, only Salp 10 and Salp 15 proteins may be regarded as candidates for protective antigens to develop anti-tick and anti-Borrelia vaccines. Firstly they play an important role in feeding a tick and modifying a host's immune response. Secondly, the increasing expression of the salp 10 and salp 10 genes begins at early tick feeding stages. Thirdly, the activity of these genes increases with the beginning of feeding by tens and hundreds times and keeps at this level until the third tick feeding stage is over.
Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks.
Eisen, Lars
2018-03-01
The blacklegged tick, Ixodes scapularis, is the primary vector to humans in the eastern United States of the deer tick virus lineage of Powassan virus (Powassan virus disease); the protozoan parasite Babesia microti (babesiosis); and multiple bacterial disease agents including Anaplasma phagocytophilum (anaplasmosis), Borrelia burgdorferi and Borrelia mayonii (Lyme disease), Borrelia miyamotoi (relapsing fever-like illness, named Borrelia miyamotoi disease), and Ehrlichia muris eauclairensis (a minor causative agent of ehrlichiosis). With the notable exception of Powassan virus, which can be transmitted within minutes after attachment by an infected tick, there is no doubt that the risk of transmission of other I. scapularis-borne pathogens, including Lyme disease spirochetes, increases with the length of time (number of days) infected ticks are allowed to remain attached. This review summarizes data from experimental transmission studies to reinforce the important disease-prevention message that regular (at least daily) tick checks and prompt tick removal has strong potential to reduce the risk of transmission of I. scapularis-borne bacterial and parasitic pathogens from infected attached ticks. The most likely scenario for human exposure to an I. scapularis-borne pathogen is the bite by a single infected tick. However, recent reviews have failed to make a clear distinction between data based on transmission studies where experimental hosts were fed upon by a single versus multiple infected ticks. A summary of data from experimental studies on transmission of Lyme disease spirochetes (Bo. burgdorferi and Bo. mayonii) by I. scapularis nymphs indicates that the probability of transmission resulting in host infection, at time points from 24 to 72 h after nymphal attachment, is higher when multiple infected ticks feed together as compared to feeding by a single infected tick. In the specific context of risk for human infection, the most relevant experimental studies therefore are those where the probability of pathogen transmission at a given point in time after attachment was determined using a single infected tick. The minimum duration of attachment by single infected I. scapularis nymphs required for transmission to result in host infection is poorly defined for most pathogens, but experimental studies have shown that Powassan virus can be transmitted within 15 min of tick attachment and both A. phagocytophilum and Bo. miyamotoi within the first 24 h of attachment. There is no experimental evidence for transmission of Lyme disease spirochetes by single infected I. scapularis nymphs to result in host infection when ticks are attached for only 24 h (despite exposure of nearly 90 experimental rodent hosts across multiple studies) but the probability of transmission resulting in host infection appears to increase to approximately 10% by 48 h and reach 70% by 72 h for Bo. burgdorferi. Caveats to the results from experimental transmission studies, including specific circumstances (such as re-attachment of previously partially fed infected ticks) that may lead to more rapid transmission are discussed. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Yasyukevich, V. V.; Kazakova, E. V.; Popov, I. O.; Semenov, S. M.
2009-08-01
Possible changes in the area inhabited by the ticks Ixodes ricinus and Ixodes persulcatus, the main transmitters of tick-borne encephalitis and Lyme disease in Russia, caused by temperature changes in 1976-2005 compared to 1946-1975 are discussed. It is shown that these changes could result in some areal expansion of these species. In the European part of Russia, I. ricinus expanded its areal boundaries to the east 100-300 km. I. persulcatus expanded its areal in the Asian part of Russia. Its boundary moved to the north and northeast 100-300 km. Areal expansion both of species has not been observed.
Ticks on Deer and Cattle in the Cattle Fever Tick Permanent Quarantine Zone, 2012
USDA-ARS?s Scientific Manuscript database
Ticks were sampled from hosts in the cattle fever tick permanent quarantine zone along the Texas-Mexico border on five occasions in 2012. Three sample events involved white-tailed deer populations in Zapata and Starr Counties and two were from a cattle herd in Kinney County. Six species of ticks (n ...
Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex.
Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R Jory; Gonzalez, Antonio; Parobek, Christian M; Juliano, Jonathan J; Andreadis, Theodore G; Falco, Richard C; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A; Roe, R Michael; Apperson, Charles S; Knight, Rob; Meshnick, Steven R
2015-09-01
Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Becker, Martin; Felsberger, André; Frenzel, André; Shattuck, Wendy M C; Dyer, Megan; Kügler, Jonas; Zantow, Jonas; Mather, Thomas N; Hust, Michael
2015-05-30
Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Tkachev, Sergey E; Tikunov, Artem Yu; Babkin, Igor V; Livanova, Natalia N; Livanov, Stanislav G; Panov, Victor V; Yakimenko, Valeriy V; Tantsev, Alexey K; Taranenko, Dmitrii E; Tikunova, Nina V
2017-01-01
Kemerovo virus (KEMV), a member of the Reoviridae family, Orbivirus genus, is transmitted by Ixodes ticks and can cause aseptic meningitis and meningoencephalitis. Recently, this virus was observed in certain provinces of European part of Russia, Ural, and Western and Eastern Siberia. However, the occurrence and genetic diversity of KEMV in Western Siberia remain poorly studied. Therefore, the aim of this work was to investigate the prevalence and genetic variability of KEMV in Ixodes ticks from Western Siberia. A total of 1958 Ixodes persulcatus, I. pavlovskyi ticks and their hybrids from Novosibirsk and Omsk provinces, Altai Republic (Russia) and East Kazakhstan province (Kazakhstan) were analyzed for the presence of KEMV and tick-borne encephalitis virus (TBEV) RNA. It was observed that the KEMV distribution area in Western Siberia was wider than originally thought and included Northern and Northeastern Altai in addition to the Omsk and Novosibirsk provinces. For the first time, this virus was found in Kazakhstan. The occurrence of KEMV was statistically lower than TBEV in most locations in Western Siberia. KEMV was found both in I. persulcatus and I. pavlovskyi ticks and in their hybrids. Notably, KEMV variants observed in the 2010s were genetically different from those isolated in the 1960s, which indicated the ongoing process of evolution of the Kemerovo virus group. Moreover, the possibility of reassortment for KEMV was demonstrated for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Scott, John D; Lee, Min-Kuang; Fernando, Keerthi; Durden, Lance A; Jorgensen, Danielle R; Mak, Sunny; Morshed, Muhammad G
2010-06-01
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three-year, bird-tick-pathogen study (2004-2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada-wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf-rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete-infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first-time records for: ticks in the Yukon (north of 60 degrees latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird-derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden-crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir-competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.-infected ticks into Canada. Bird-feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.
An Ehrlichia strain from a llama (Lama glama) and Llama-associated ticks (Ixodes pacificus).
Barlough, J E; Madigan, J E; Turoff, D R; Clover, J R; Shelly, S M; Dumler, J S
1997-01-01
An ehrlichia was identified in the blood of a diseased llama (lama glama). Sequencing of its 16S rRNA gene showed the ehrlichia to be closely related to members of the Ehrlichia phagocytophila genogroup. The agent was also found in a pool of ticks (Ixodes pacificus) collected at the llama site. PMID:9157118
Impacts of an introduced forest pathogen on the risk of Lyme disease in California.
Swei, Andrea; Briggs, Cheryl J; Lane, Robert S; Ostfeld, Richard S
2012-08-01
Global changes such as deforestation, climate change, and invasive species have the potential to greatly alter zoonotic disease systems through impacts on biodiversity. This study examined the impact of the invasive pathogen that causes sudden oak death (SOD) on the ecology of Lyme disease in California. The Lyme disease bacterium, Borrelia burgdorferi, is maintained in the far western United States by a suite of animal reservoirs including the dusky-footed woodrat (Neotoma fuscipes) and deer mouse (Peromyscus maniculatus), and is transmitted by the western black-legged tick (Ixodes pacificus). Other vertebrates, such as the western fence lizard (Sceloporus occidentalis), are important tick hosts but are not reservoirs of the pathogen. Previous work found that higher levels of SOD are correlated with greater abundance of P. maniculatus and S. occidentalis and lower N. fuscipes abundance. Here we model the contribution of these tick hosts to Lyme disease risk and also evaluate the potential impact of SOD on infection prevalence of the tick vector. By empirically parameterizing a static model with field and laboratory data on tick hosts, we predict that SOD reduces an important index of disease risk, nymphal infection prevalence, leading to a reduction in Lyme disease risk in certain coastal woodlands. Direct observational analysis of the impact of SOD on nymphal infection prevalence supports these model results. This study underscores the important direct and indirect impacts of invasive plant pathogens on biodiversity, the transmission cycles of zoonotic diseases, and ultimately human health.
de Carvalho, Isabel Lopes; Milhano, Natacha; Santos, Ana Sofia; Almeida, Victor; Barros, Silvia C; De Sousa, Rita; Núncio, Maria Sofia
2008-08-01
A total of 300 Ixodes ricinus ticks were tested by polymerase chain reaction (PCR) for the presence of Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum. Sequence analysis demonstrated 8 (2.7%) ticks infected with B. lusitaniae, 60 (20%) with Rickettsia spp., and 1 (0.3%) with A. phagocytophilum. Seven (2.3%) ticks were coinfected with B. lusitaniae and Rickettsia spp., 2 (0.6%) with R. monacensis, and 5 (1.7%) with Rickettsia sp. IRS3. The results of this study suggest simultaneous transmission of multiple tick-borne agents on Madeira Island, Portugal.
Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Pfister, Kurt; Silaghi, Cornelia
2014-07-01
In this study, the prevalence of Hepatozoon spp. in red foxes (Vulpes vulpes) and their ticks from Germany, as well as molecular characterizations and phylogenetic relationship to other Hepatozoon spp. were investigated. DNA extracts of 261 spleen samples and 1,953 ticks were examined for the presence of Hepatozoon spp. by a conventional polymerase chain reaction (PCR) targeting the 18S rRNA gene. The ticks included four tick species: Ixodes ricinus, Ixodes canisuga, Ixodes hexagonus and Dermacentor reticulatus. A total of 118/261 foxes (45.2%) and 148/1,953 ticks (7.5%) were Hepatozoon PCR-positive. Amplicons from 36 positive foxes and 41 positive ticks were sequenced. All sequences obtained from foxes and 39/41 from ticks had a 99% similarity to Hepatozoon canis, whereas two ticks' sequences had a 99% identity to Hepatozoon sp. The obtained Hepatozoon sequences in this study were phylogenetically related to other Hepatozoon sequences detected in other countries, which may represent strain variants. The high prevalence of H. canis DNA in red foxes in this study supports the suggested role of those animals in distribution of this parasite. Furthermore, detection of DNA of H. canis in foxes and all examined tick species collected from those foxes allows speculating about previously undescribed potential vectors for H. canis and suggests a potential role of the red fox in its natural endemic cycles.
Oechslin, Corinne P; Heutschi, Daniel; Lenz, Nicole; Tischhauser, Werner; Péter, Olivier; Rais, Olivier; Beuret, Christian M; Leib, Stephen L; Bankoul, Sergei; Ackermann-Gäumann, Rahel
2017-11-09
Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.
USDA-ARS?s Scientific Manuscript database
White-tailed deer are an alternative host for Rhipicephalus (Boophilus) microplus and R. (B.) annulatus, collectively referred to as cattle fever ticks. Dense white-tailed deer populations in south Texas complicate efforts by the National Cattle Fever Tick Eradication Program to keep the U.S. free o...
Tsunoda, T; Tatsuzawa, S
2004-05-01
The questing height (i.e. ambush height) of ticks on a plant plays an important role in host selection. To test the hypothesis that the questing height of ticks in a locality had adapted to the body size of the host in that locality, we examined the questing height of nymphs of the ticks, Haemaphysalis longicornis and H. mageshimaensis, at 7 locations in Japan. Sika deer, Cervus nippon, is the primary host of these ticks and there is considerable geographical variation in the body size of sika deer. Multiple regression analysis revealed that the questing height in the field was influenced by the height of the plants and by the body size of deer at a location. However, the questing height of ticks at some locations may have been constrained by the height of the plants and might not be the same as their intrinsic questing height. When ticks were placed in vertical glass tubes in the laboratory, the questing height of ticks from a locality was correlated with the mean body size of deer at that locality. Therefore, the prominent cue determining the questing height of H. longicornis and H. mageshimaensis seems to be the body size of the host deer.
RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks
Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr
2016-01-01
Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139
Anaplasma phagocytophilum in questing Ixodes ricinus ticks from Romania.
Matei, Ioana Adriana; Kalmár, Zsuzsa; Magdaş, Cristian; Magdaş, Virginia; Toriay, Hortenzia; Dumitrache, Mirabela Oana; Ionică, Angela Monica; D'Amico, Gianluca; Sándor, Attila D; Mărcuţan, Daniel Ioan; Domşa, Cristian; Gherman, Călin Mircea; Mihalca, Andrei Daniel
2015-04-01
Granulocytic anaplasmosis is a common vector-borne disease of humans and animals with natural transmission cycle that involves tick vectors, among which Ixodes ricinus is the most important. The present paper reports the prevalence and geographical distribution of A. phagocytophilum in 10,438 questing Ixodes ricinus ticks collected at 113 locations from 40 counties of Romania. The unfed ticks were examined for the presence of A. phagocytophilum by PCR targeting a portion of ankA gene. The overall prevalence of infection was 3.42%, with local prevalences ranging between 0.29% and 22.45%, with an average prevalence of 5.39% in the infected localities. The infection with A. phagocytophilum was detected in 72 out of 113 localities and in 34 out of 40 counties. The highest prevalence was recorded in females followed by males and nymphs. The results and the distribution model have shown a large distribution of A. phagocytophilum, covering Romania's entire territory. This study is the first large scale survey of the presence of A. phagocytophilum in questing I. ricinus ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.
Potential role of ticks as vectors of bluetongue virus.
Bouwknegt, Chantal; van Rijn, Piet A; Schipper, Jacqueline J M; Hölzel, Dennis; Boonstra, Jan; Nijhof, Ard M; van Rooij, Eugène M A; Jongejan, Frans
2010-10-01
When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four species of ixodid ticks (Ixodes ricinus, Ixodes hexagonus, Dermacentor reticulatus and Rhipicephalus bursa) and one soft tick species, Ornithodoros savignyi, ingested BTV8-containing blood either through capillary feeding or by feeding on artificial membranes. The virus was taken up by the ticks and was found to pass through the gut barrier and spread via the haemolymph into the salivary glands, ovaries and testes, as demonstrated by real-time reverse transcriptase PCR (PCR-test). BTV8 was detected in various tissues of ixodid ticks for up to 21 days post feeding and in Ornithodoros ticks for up to 26 days. It was found after moulting in adult Ixodes hexagonus and was also able to pass through the ovaries into the eggs of an Ornithodoros savignyi tick. This study demonstrates that ticks can become infected with bluetongue virus serotype 8. The transstadial passage in hard ticks and transovarial passage in soft ticks suggest that ticks have potential vectorial capacity for bluetongue virus. Further studies are required to investigate transmission from infected ticks to domestic livestock. This route of transmission could provide an additional clue in the unresolved mystery of the epidemiology of Bluetongue in Europe by considering ticks as a potential overwintering mechanism for bluetongue virus.
Potential role of ticks as vectors of bluetongue virus
Bouwknegt, Chantal; van Rijn, Piet A.; Schipper, Jacqueline J. M.; Hölzel, Dennis; Boonstra, Jan; Nijhof, Ard M.; van Rooij, Eugène M. A.
2010-01-01
When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four species of ixodid ticks (Ixodes ricinus, Ixodes hexagonus, Dermacentor reticulatus and Rhipicephalus bursa) and one soft tick species, Ornithodoros savignyi, ingested BTV8-containing blood either through capillary feeding or by feeding on artificial membranes. The virus was taken up by the ticks and was found to pass through the gut barrier and spread via the haemolymph into the salivary glands, ovaries and testes, as demonstrated by real-time reverse transcriptase PCR (PCR-test). BTV8 was detected in various tissues of ixodid ticks for up to 21 days post feeding and in Ornithodoros ticks for up to 26 days. It was found after moulting in adult Ixodes hexagonus and was also able to pass through the ovaries into the eggs of an Ornithodoros savignyi tick. This study demonstrates that ticks can become infected with bluetongue virus serotype 8. The transstadial passage in hard ticks and transovarial passage in soft ticks suggest that ticks have potential vectorial capacity for bluetongue virus. Further studies are required to investigate transmission from infected ticks to domestic livestock. This route of transmission could provide an additional clue in the unresolved mystery of the epidemiology of Bluetongue in Europe by considering ticks as a potential overwintering mechanism for bluetongue virus. PMID:20358393
Foley, Janet; Ott-Conn, Caitlin; Worth, Joy; Poulsen, Amanda; Clifford, Deana
2014-03-01
Microtus californicus scirpensis is an endangered, isolated subspecies of California vole. It requires water pools and riparian bulrush (Schoenoplectus americanus) and occupies some of the rarest habitat of any North American mammal. The minimally vegetated, extremely arid desert surrounding the pools is essentially uninhabitable for Ixodes species ticks. We describe an enzootic cycle of Borrelia carolinensis in Ixodes minor ticks at a site 3500 km distant from the region in which I. minor is known to occur in Tecopa Host Springs, Inyo County, eastern Mojave Desert, California. Voles were live-trapped, and ticks and blood samples queried by PCR and DNA sequencing for identification and determination of the presence of Borrelia spp. Between 2011-2013, we found 21 Ixodes minor ticks (prevalence 4-8%) on Amargosa voles and Reithrodontomys megalotis. DNA sequencing of 16S rRNA from ticks yielded 99% identity to I. minor. There was 92% identity with I. minor in the calreticulin gene fragment. Three ticks (23.1%), 15 (24%) voles, three (27%) house mice, and one (7%) harvest mice were PCR positive for Borrelia spp. Sequencing of the 5S-23S intergenic spacer region and flagellin gene assigned Amargosa vole Borrelia strains to B. carolinensis. Ixodes minor, first described in 1902 from a single Guatemalan record, reportedly occurs only in the southeast American on small mammals and birds. The source of this tick in the Mojave Desert and time scale for introduction is not known but likely via migratory birds. Borrelia strains in the Amargosa ecosystem most closely resemble B. carolinensis. B. carolinensis occurs in a rodent-I. minor enzootic cycle in the southeast U.S. although its epidemiological significance for people or rodents is unknown. The presence of a tick and Borrelia spp. only known from southeast U.S. in this extremely isolated habitat on the other side of the continent is of serious concern because it suggests that the animals in the ecosystem could be vulnerable to further incursions of pathogens and parasites.
Seroprevalence of Powassan virus in New England deer, 1979-2010.
Nofchissey, Robert A; Deardorff, Eleanor R; Blevins, Tia M; Anishchenko, Michael; Bosco-Lauth, Angela; Berl, Erica; Lubelczyk, Charles; Mutebi, John-Paul; Brault, Aaron C; Ebel, Gregory D; Magnarelli, Louis A
2013-06-01
Powassan virus and its subtype, deer tick virus, are closely related tick-borne flaviviruses that circulate in North America. The incidence of human infection by these agents appears to have increased in recent years. To define exposure patterns among white-tailed deer, potentially useful sentinels that are frequently parasitized by ticks, we screened serum samples collected during 1979-2010 in Connecticut, Maine, and Vermont for neutralizing antibody by using a novel recombinant deer tick virus-West Nile virus chimeric virus. Evidence of exposure was detected in all three states. Overall our results demonstrate that seroprevalence is variable in time and space, suggesting that risk of exposure to Powassan virus is similarly variable.
Seroprevalence of Powassan Virus in New England Deer, 1979–2010
Nofchissey, Robert A.; Deardorff, Eleanor R.; Blevins, Tia M.; Anishchenko, Michael; Bosco-Lauth, Angela; Berl, Erica; Lubelczyk, Charles; Mutebi, John-Paul; Brault, Aaron C.; Ebel, Gregory D.; Magnarelli, Louis A.
2013-01-01
Powassan virus and its subtype, deer tick virus, are closely related tick-borne flaviviruses that circulate in North America. The incidence of human infection by these agents appears to have increased in recent years. To define exposure patterns among white-tailed deer, potentially useful sentinels that are frequently parasitized by ticks, we screened serum samples collected during 1979–2010 in Connecticut, Maine, and Vermont for neutralizing antibody by using a novel recombinant deer tick virus–West Nile virus chimeric virus. Evidence of exposure was detected in all three states. Overall our results demonstrate that seroprevalence is variable in time and space, suggesting that risk of exposure to Powassan virus is similarly variable. PMID:23568288
Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia
2013-03-01
Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected.
USDA-ARS?s Scientific Manuscript database
We evaluated the ability of the plant-derived compound nootkatone to control nymphs of the blacklegged tick, Ixodes scapularis Say, applied to the perimeter of lawns around homes in Lyme disease endemic areas of Connecticut. Three formulations of nootkatone ranging from 0.05 to 0.84% (0.06 to 1.03 g...
Mikryukova, Tamara P; Moskvitina, Nina S; Kononova, Yulia V; Korobitsyn, Igor G; Kartashov, Mikhail Y; Tyuten Kov, Oleg Y; Protopopova, Elena V; Romanenko, Vladimir N; Chausov, Evgeny V; Gashkov, Sergey I; Konovalova, Svetlana N; Moskvitin, Sergey S; Tupota, Natalya L; Sementsova, Alexandra O; Ternovoi, Vladimir A; Loktev, Valery B
2014-03-01
To study the role of wild birds in the transmission of tick borne encephalitis virus (TBEV), we investigated randomly captured wild birds bearing ixodid ticks in a very highly endemic TBE region located in Tomsk city and its suburbs in the south of Western Siberia, Russia. The 779 wild birds representing 60 species were captured carrying a total of 841 ticks, Ixodes pavlovskyi Pom., 1946 (n=531), Ixodes persulcatus P. Sch., 1930 (n=244), and Ixodes plumbeus Leach. 1815 (n=66). The highest average number of ticks per bird in a particular species was found for the fieldfare (Turdus pilaris Linnaeus, 1758) (5.60 ticks/bird) and the tree pipit (Anthus trivialis Linnaeus, 1758) (13.25 ticks/bird). Samples from wild birds and ticks collected in highly endemic periods from 2006 to 2011 were tested for the TBEV markers using monoclonal modified enzyme immunoassay (EIA) and RT-PCR. TBEV RNA and antigen were found in 9.7% and 22.8% samples collected from wild birds, respectively. TBEV markers were also detected in 14.1% I. persulcatus ticks, 5.2% I. pavlovskyi, and 4.2% I. plumbeus ticks collected from wild birds. Two TBEV strains were also isolated on PKE (pig kidney embryo) cells from fieldfare and Blyth's reed warbler (Acrocephalus dumetorum Blyth, 1849). Sequencing of 5'-NCR of TBEV revealed that all TBEV isolates belong to Far Eastern (dominate) and Siberian genotypes. Several phylogenetic subgroups included TBEV sequences novel for the Tomsk region. Our data suggest that wild birds are potential disseminators of TBEV, TBEV-infected ixodid ticks, and possibly other tick-borne infections. Copyright © 2013 Elsevier GmbH. All rights reserved.
Paulsen, Katrine M; Pedersen, Benedikte N; Soleng, Arnulf; Okbaldet, Yohannes B; Pettersson, John H-O; Dudman, Susanne G; Ottesen, Preben; Vik, Inger Sofie Samdal; Vainio, Kirsti; Andreassen, Åshild
2015-09-01
Tick-borne encephalitis (TBE) is the most important viral tick-borne disease in Europe and can cause severe disease in humans. In Norway, human cases have been reported only from the southern coast. The aim of this study was to investigate the prevalence of tick-borne encephalitis virus (TBEV) in questing Ixodes ricinus ticks from the north-western part of Norway. A total of 4509 ticks were collected by flagging in May and June 2014. A subpopulation of 2220 nymphs and 162 adult ticks were analysed by real-time PCR and positive samples were confirmed by pyrosequencing. The estimated prevalence of TBEV was 3.08% among adult ticks from Sekken in Møre og Romsdal County and 0.41% among nymphs from both Hitra and Frøya in Sør-Trøndelag County. This study indicates that TBEV might be more widespread than the distribution of reported human cases suggests. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.
2007-01-01
Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700
Potkonjak, Aleksandar; Kleinerman, Gabriela; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Rojas, Alicia; Petrović, Aleksandra; Ivanović, Ivana; Harrus, Shimon; Baneth, Gad
2016-10-01
Lyme borreliosis is the most common tick-borne infectious disease in Eurasia. Borrelia miyamotoi is the only known relapsing fever Borrelia group spirochete transmitted by Ixodes species. The aim of this study was to investigate the presence of Lyme Borrelia spp. and relapsing fever Borrelia spp. in Ixodes ricinus ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 71 Ixodes ricinus ticks were collected and screened for the presence of Lyme Borrelia spp. group and relapsing fever Borrelia spp. by real-time PCR for the Borrelia flagellin B (flaB) gene followed by DNA sequencing of PCR products. Species identification was verified by PCR of the outer surface protein A (ospA) gene for Lyme Disease Borrelia spp. and by PCR of the glycerophosphodiester phosphodiesterase (glpQ) gene for relapsing fever Borrelia spp. Lyme Borrelia spp. were found in 15/71 (21.13%) of the ticks evaluated and included B. luisitaniae (11.3%), B. afzelii (7%), B. valaisiana (1.4%), and B. garinii (1.4%). Borrelia miyamotoi, from the relapsing fever Borrelia complex, was found, for the first time in Serbia, in one (1.4%) nymph collected from the environment. Co-infections between Borrelia species in ticks were not detected. These results suggest that the dominance of species within B. burgdorferi s.l. complex in I. ricinus ticks may vary over time and in different geographic regions. Further systematic studies of Borrelia species in vectors and reservoir hosts are needed to understand eco-epidemiology of these zoonotic infections and how to prevent human infection in the best way.
Hornok, Sándor; Sugár, László; Fernández de Mera, Isabel G; de la Fuente, José; Horváth, Gábor; Kovács, Tibor; Micsutka, Attila; Gönczi, Enikő; Flaisz, Barbara; Takács, Nóra; Farkas, Róbert; Meli, Marina L; Hofmann-Lehmann, Regina
2018-03-20
Hunting constitutes an important industry in Europe. However, data on the prevalence of vector-borne bacteria in large game animal species are lacking from several countries. Blood or spleen samples (239 and 270, respectively) were taken from red, fallow and roe deer, as well as from water buffaloes, mouflons and wild boars in Hungary, followed by DNA extraction and molecular analyses for Anaplasma phagocytophilum, haemoplasmas and rickettsiae. Based on blood samples, the prevalence rate of A. phagocytophilum infection was significantly higher in red deer (97.9%) than in fallow deer (72.7%) and roe deer (60%), and in all these compared to mouflons (6.3%). In addition, 39.2% of the spleen samples from wild boars were PCR positive for A. phagocytophilum, but none of the buffalos. Based on blood samples, the prevalence rates of both Mycoplasma wenyonii (Mw) and 'Candidatus M. haemobos' (CMh) infections were significantly higher in buffaloes (Mw: 91.2%; CMh: 73.3%) than in red deer (Mw: 64.6%; CMh: 45.8%), and in both of them compared to fallow deer (Mw: 30.3%; CMh: 9.1%) and roe deer (Mw: 20%; CMh: 1.5%). The prevalence of Mw and CMh infection significantly correlated with the body sizes of these hosts. Furthermore, Mw was significantly more prevalent than CMh in buffaloes, red and roe deer. Mycoplasma ovis was detected in mouflons, M. suis in wild boars, R. helvetica in one fallow deer and one mouflon, and an unidentified Rickettsia sp. in a fallow deer. Forest-dwelling game animal species were found to be important carriers of A. phagocytophilum. In contrast, animals grazing grassland (i.e. buffaloes) were less likely to get infected with this Ixodes ricinus-borne pathogen. Water buffaloes, deer species, mouflons and wild boars harbored haemoplasmas that may affect domestic ungulates. Evaluated animals with larger body size had significantly higher prevalence of infection with haemoplasmas compared to smaller deer species. The above host species rarely carried rickettsiae.
Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands.
Jahfari, Setareh; de Vries, Ankje; Rijks, Jolianne M; Van Gucht, Steven; Vennema, Harry; Sprong, Hein; Rockx, Barry
2017-06-01
We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.
Bunnell, J.E.; Price, S.D.; Das, A.; Shields, T.M.; Glass, G.E.
2003-01-01
In the Middle Atlantic region of the U.S.A., the vector of Lyme disease, human granulocytic ehrlichiosis, babesiosis, and other human and veterinary pathogens is the black-legged tick, Ixodes scapularis Say. In 1997 and 1998, 663 adult I. scapularis ticks were collected from 320 transects spanning 66,400 km2 in five states of the Middle Atlantic region. Tick abundance patterns were clustered, with relatively high numbers along the coastal plain of the Chesapeake Bay, decreasing to the west and south. There were significant associations between tick abundance and land cover, distance to water, distance to forest edge, elevation, and soil type.
ERIC Educational Resources Information Center
Peterson, Michael
1989-01-01
Describes one summer camp's plan for dealing with Lyme disease. Describes the disease and the deer tick. Recommends avoiding tick exposure through clothing, frequent examination, showers, and avoiding high grass and brushy areas, and using chemical insect repellents and chemicals to kill ticks in deer mouse nests. (DHP)
Proportion of White-tailed deer using medicated bait sites in Southern Texas
USDA-ARS?s Scientific Manuscript database
Cattle fever ticks, Rhipicephalus (Boophilus) microplus and R. (B.) annulatus, have been found on white-tailed deer (Odocoileus virginianus) complicating eradication efforts of the USDA’s Cattle Fever Tick Eradication Program. Our objective was to assess patterns of deer visitation to medicated bait...
Daniel, M; Danielová, V; Kříž, B; Růžek, D; Fialová, A; Malý, M; Materna, J; Pejčoch, M; Erhart, J
The aim of the three-year study (2011-2013) was to monitor population density of Ixodes ricinus ticks and its infection rate with the tick-borne encephalitis virus in areas with a high incidence of tick-borne encephalitis as reported in the previous decade 2001-2010. Such a comprehensive and long-term study based on existing epidemiolo-gical findings has not previously been conducted in Europe. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the questing activity. In total, 18,721 I. ricinus ticks (1448 females, 1425 males, and 15,848 nymphs) were collected and investigated. The results have shown that the differences in the infection rate of I. ricinus observed between regions are driven by variation in the density of the local I. ricinus populations which is influenced by the characteris-tics of the whole local biocenosis. The overall prevalence estimate of TBE virus in Ixodes ricinus ticks at the altitudes below 600 m a.s.l. was 0.096 % (95% CI 0.055-0.156) for nymphs, and 0.477 % (95% CI 0.272-0.773) for adults. The dynamics of the seasonal variation in I. ricinus populations, depending primarily on the climatic factors, are behind the interyear differences in the infection rate of ticks and, consequently, in the epidemiological situation of tick-borne encephalitis. The nymph to adult ratio was 5.5 on average but showed great interregional variability (from 10.3 in the Ústí nad Labem Region to 1.8 in the Highlands Region). It might be used in the future as one of the indicators of the composition of the local I. ricinus population and of the level of the circulation of tick-borne pathogens in zoonotic sphere and also for use in the health risk assessment in a given area. Despite the permanent expansion of ticks and tick-borne pathogens in higher altitudes the high risk limit for human infection with tick-borne encephalitis is 600 m a.s.l. in the Czech Republic.
Hornok, Sándor; Görföl, Tamás; Estók, Péter; Tu, Vuong Tan; Kontschán, Jenő
2016-06-10
In a recent study on ixodid bat ticks from Eurasia, a high genetic difference was found between Ixodes vespertilionis from Europe and Vietnam. Accordingly, it was proposed that I. vespertilionis is a species complex, with at least one additional, hitherto undescribed species. The aim of the present study was to investigate the morphology of bat ticks from Vietnam and to assess their taxonomic status in comparison with those collected in Europe. Ixodid bat ticks (two females and two nymphs) collected from the pomona leaf-nosed bat (Hipposideros pomona) (Hipposideridae) and intermediate horseshoe bat (Rhinolophus affinis) (Rhinolophidae) in Vietnam showed major morphological differences from European isolates of I. vespertilionis, including the shape of the scutum, the enclosure and shape of porose areas, the presence of a caudo-lateral collar-like ridge ventrally on the basis capituli, polytrich coxae with short setae, and grouped (non-linear) arrangement of anterior pit sensillae in Haller's organ. In this study the female and the nymph of an ixodid bat tick species from Vietnam are described for the first time. The genetic and morphological differences between I. vespertilionis Koch, 1844 and these bat ticks from Vietnam justify the status of the latter as a distinct species, Ixodes collaris Hornok n. sp.
Nelder, Mark P; Russell, Curtis; Lindsay, L Robbin; Dhar, Badal; Patel, Samir N; Johnson, Steven; Moore, Stephen; Kristjanson, Erik; Li, Ye; Ralevski, Filip
2014-01-01
We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario's Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0-9 years old) and older adults (55-74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases.
Nelder, Mark P.; Russell, Curtis; Lindsay, L. Robbin; Dhar, Badal; Patel, Samir N.; Johnson, Steven; Moore, Stephen; Kristjanson, Erik; Li, Ye; Ralevski, Filip
2014-01-01
We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario's Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0–9 years old) and older adults (55–74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases. PMID:25171252
Grigor'eva, L A; Markov, A V
2011-01-01
PCR identification of host DNA in unfed females and males of taiga tick Ixodes persulcatus was performed. Amplification of each sample was done using primers species-specific by 12S rDNA mitochondrial gene. Four species of small mammals (Apodemus uralensis, Clethrionomys glareolus, Microtus arvalis, and Sorex araneus) and two passeriform bird species (Fringilla coelebs and Parus major) were analysed. For one third of tick samples, hosts of previous stages were established using this method. In five cases, feeding on more than one host species was detected.
White-tailed Deer Visitation Rates at Medicated Bait Sites in Southern Texas
USDA-ARS?s Scientific Manuscript database
The cattle fever tick, Rhipicephalus (Boophilus) microplus, has been found on white-tailed deer (Odocoileus virginianus) complicating eradication efforts of the USDA’s Cattle Fever Tick Eradication Program. Our objective was to assess patterns of deer visitation to medicated bait sites used to treat...
Ixodidae ticks in the megapolis of Kyiv, Ukraine
USDA-ARS?s Scientific Manuscript database
The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodes ricinus and Dermacentor reticulatus ticks in Kyiv, the...
Molecular biology of tick Acetylcholinesterases – a minireview
USDA-ARS?s Scientific Manuscript database
Ticks are important hematophagous arthropod ectoparasites and like mosquitoes, are vectors for a wide variety of human and animal pathogens. Ticks have significant world-wide health and economic impacts. In the U.S., major impacts include the ability of the blacklegged tick, Ixodes scapularis, to tr...
Poulsen, Amanda; Conroy, Chris; Foley, Patrick; Ott-Conn, Caitlin; Roy, Austin; Brown, Richard; Foley, Janet
2015-09-01
California voles (Microtus californicus Peale) harbor fleas and ticks, may be infected with vector-borne pathogens, and could themselves suffer from disease and serve as a source of infection for people and other animals. Here we summarize publications, museum archives, and recent records of ticks and fleas from California voles. There have been 18 flea species reported on California voles with geographic locations reported for 13. During recent statewide surveys, we found six flea species, with the highest species richness in Humboldt County. We found three of five previously reported tick species as well as a tick resembling the eastern North American tick Ixodes minor Neumann (which we here designate Ixodes "Mojave morphotype") on isolated Amargosa voles and Owens Valley voles (Microtus californicus vallicola Bailey) in Inyo County in 2012 and 2014. Additional incidental observations of this Mojave morphotype tick were on a western harvest mouse (Reithrodontomys megalotis Baird) at the Mojave site and a montane vole (Microtus montanus Peale) in the Owens Valley, both in March, 2014. We cannot rule out that this tick species has been present in remote areas of California but gone unrecognized, but these data are consistent with recent introduction of this tick, possibly from migrating birds. Changes in the ectoparasite fauna suggest changing ecologies of vectors and vector-borne pathogens that could influence animals and people as well. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tunón, H; Thorsell, W; Mikiver, A; Malander, I
2006-06-01
A toluene extract of southernwood (Artemisia abrotanum) and the essential oil from flowers of carnation (Dianthus caryophyllum ) exerted pronounced a repellent effect both against ticks (nymphs of Ixodes ricinus) and yellow fever mosquitoes (Aedes aegypti). The most potent repellents found were coumarin and thujyl alcohol from A. abrotanum and phenylethanol from D. caryophyllum where coumarin and thujyl alcohol were also detected.
Santos-Silva, Maria Margarida; Almeida, Victor Carlos; Bacellar, Fátima; Dumler, John Stephen
2004-01-01
A total of 278 Ixodes ticks, collected from Madeira Island and Setúbal District, mainland Portugal, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Six (4%) of 142 Ixodes ricinus nymphs collected in Madeira Island and 1 nymph and 1 male (2%) of 93 I. ventalloi collected in Setúbal District tested positive for A. phagocytophilum msp2 genes or rrs. Infection was not detected among 43 I. ricinus on mainland Portugal. All PCR products were confirmed by nucleotide sequencing to be identical or to be most closely related to A. phagocytophilum. To our knowledge, this is the first evidence of A. phagocytophilum in ticks from Setúbal District, mainland Portugal, and the first documentation of Anaplasma infection in I. ventalloi. Moreover, these findings confirm the persistence of A. phagocytophilum in Madeira Island's I. ricinus. PMID:15498168
Santos, Ana Sofia; Santos-Silva, Maria Margarida; Almeida, Victor Carlos; Bacellar, Fátima; Dumler, John Stephen
2004-09-01
A total of 278 Ixodes ticks, collected from Madeira Island and Setubal District, mainland Portugal, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Six (4%) of 142 Ixodes ricinus nymphs collected in Madeira Island and 1 nymph and 1 male (2%) of 93 I. ventalloi collected in Setubal District tested positive for A. phagocytophilum msp2 genes or rrs. Infection was not detected among 43 I. ricinus on mainland Portugal. All PCR products were confirmed by nucleotide sequencing to be identical or to be most closely related to A. phagocytophilum. To our knowledge, this is the first evidence of A. phagocytophilum in ticks from Setubal District, mainland Portugal, and the first documentation of Anaplasma infection in I. ventalloi. Moreover, these findings confirm the persistence of A. phagocytophilum in Madeira Island's I. ricinus.
Tick-borne disease risk in a forest food web.
Ostfeld, Richard S; Levi, Taal; Keesing, Felicia; Oggenfuss, Kelly; Canham, Charles D
2018-05-08
Changes to the community ecology of hosts for zoonotic pathogens, particularly rodents, are likely to influence the emergence and prevalence of zoonotic diseases worldwide. However, the complex interactions between abiotic factors, pathogens, vectors, hosts, and both food resources and predators of hosts are difficult to disentangle. Here we (1) use 19 years of data from six large field plots in southeastern New York to compare the effects of hypothesized drivers of interannual variation in Lyme disease risk, including the abundance of acorns, rodents, and deer, as well as a series of climate variables; and (2) employ landscape epidemiology to explore how variation in predator community structure and forest cover influences spatial variation in the infection prevalence of ticks for the Lyme disease bacterium, Borrelia burgdorferi, and two other important tick-borne pathogens, Anaplasma phagocytophilum and Babesia microti. Acorn-driven increases in the abundance of mice were correlated with a lagged increase in the abundance of questing nymph-stage Ixodes scapularis ticks infected with Lyme disease bacteria. Abundance of white-tailed deer two years prior also correlated with increased density of infected nymphal ticks, although the effect was weak. Density of rodents in the current year was a strong negative predictor of nymph density, apparently because high current abundance of these hosts can remove nymphs from the host-seeking population. Warm, dry spring or winter weather was associated with reduced density of infected nymphs. At the landscape scale, the presence of functionally diverse predator communities or of bobcats, the only obligate carnivore, was associated with reduced infection prevalence of I. scapularis nymphs with all three zoonotic pathogens. In the case of Lyme disease, infection prevalence increased where coyotes were present but smaller predators were displaced or otherwise absent. For all pathogens, infection prevalence was lowest when forest cover within a 1km radius was high. Taken together, our results suggest that a food web perspective including bottom-up and top-down forcing is needed to understand drivers of tick-borne disease risk, a result that may also apply to other rodent-borne zoonoses. Prevention of exposure based on ecological indicators of heightened risk should help protect public health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Repellent effect of sweet basil compounds on Ixodes ricinus ticks.
Del Fabbro, Simone; Nazzi, Francesco
2008-08-01
Diseases transmitted by ticks are causing increasing concern in Europe and all around the world. Repellents are an effective measure for reducing the risk of tick bite; products based on natural compounds represent an interesting alternative to common synthetic repellents. In this study the repellency of sweet basil (Ocimum basilicum L.) was tested against the tick Ixodes ricinus L., by using a laboratory bioassay. A bioassay-assisted fractionation allowed the identification of a compound involved in the biological activity. Eugenol appeared to be as repellent as DEET at two tested doses. Linalool, which was identified in the active fraction too, failed to give any response. Repellency of eugenol was proved also in the presence of human skin odour using a convenient and practical bioassay.
Carroll, M.C.; Ginsberg, H.S.; Hyland, K.E.
1992-01-01
The distribution of nymphal Ixodes dammini Spielman, Clifford, Piesman & Corwin in residential lawns was assessed by flagging on Prudence Island, RI. The number of ticks per sample was five times greater in lawns adjacent to woods than in lawns adjacent to other lawns. Relative tick abundance was negatively correlated with distance from the woods, but the decline was gradual. Spirochete prevalence in ticks did not differ among lawn types or at different distances from the woods. Therefore, barriers that keep people away from the wood edge probably lower the risk of acquiring Lyme disease, but there is still a risk. Even with physical barriers at lawn-wood edges, personal precautions to prevent tick bites should be followed.
Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia.
Potkonjak, Aleksandar; Petrović, Tamaš; Ristanović, Elizabeta; Lalić, Ivica; Vračar, Vuk; Savić, Sara; Turkulov, Vesna; Čanak, Grozdana; Milošević, Vesna; Vidanović, Dejan; Jurišić, Aleksandar; Petrović, Aleksandra; Petrović, Vladimir
2017-12-01
Tick-borne encephalitis (TBE) is a zoonotic flaviviral infection that is a growing public health concern in European countries. The aims of this research were to detect and characterize tick-borne encephalitis virus (TBEV) in Ixodes ricinus ticks at presumed natural foci in Serbia, and to determine seroprevalence of TBEV IgG antibodies in humans and animals. A total of 500 I. ricinus ticks were examined for the presence of TBEV by real-time RT-PCR, and conventional nested PCR and sequencing. To determine TBEV seroprevalence, 267 human sera samples were collected, as were 200 sera samples from different animal species. All sera samples were examined by ELISA for the presence of anti-TBEV antibodies. To exclude cross-reactivity, all sera samples were tested for anti-West Nile virus (WNV) antibodies and all human sera samples were also tested for anti-Usutu virus antibodies by ELISA. Results of this preliminary study indicated TBEV activity in Serbia at two microfoci. Several decades after the previous documentation of TBEV in Serbia, we have demonstrated the presence of TBEV in I. ricinus questing nymphs (prevalence 2% and 6.6% at the two different localities) and anti-TBEV antibodies in humans (seroprevalence 0.37%). Moreover, we show for the first time TBEV seroprevalence in several animal species in Serbia, including dogs (seroprevalence 17.5%), horses (5%), wild boars (12.5%), cattle (2.5%), and roe deer (2.5%). None of the goats tested was positive for anti-TBEV IgG antibodies. TBEV isolate from I. ricinus tick in this study belonged to the Western European subtype. To understand the true public health concern in Serbia, detailed epidemiological, clinical, virological, and acarological research are required. This is important for implementation of effective control measures to reduce the incidence of TBE in Serbia.
[EFFECT OF PYRETHROIDS ON TAIGA TICKS (IXODES PERSULCATUS IXODIDAE)].
Germant, O M; Shashina, N I
2016-01-01
Nonspecific prevention of infections, the agents of which are transmitted by Ixodes ticks, is aimed at stopping the suction of the ticks to humans and is substantially based one the use of acaricides. The most interesting group of compounds to be used to individually protect humans is pyrethroids that cause different nerve conduction disturbances in the ticks, which result in their paralysis and death more significantly rapidly than the compounds from other chemical groups. The effect of 8 pyrethroids was investigated when the taiga ticks were in contact with the tissue treated with the compounds. The relationship of the chemical structure of pyrethroids with their acaricidal activity was analyzed from motor activity values and knockdown time. The test pyreithroids, in order of decreasing acaricidal activity, are imiprothrin cyphenothrin, cyfluthrin, alpha-cyperamethrin, zeta-cyperimethrin fenothrin, flumethrin.
Apperson, Charles S; Engber, Barry; Nicholson, William L; Mead, Daniel G; Engel, Jeffrey; Yabsley, Michael J; Dail, Kathy; Johnson, Joey; Watson, D Wesley
2008-10-01
Cases of Rocky Mountain spotted fever (RMSF) in North Carolina have escalated markedly since 2000. In 2005, we identified a county in the Piedmont region with high case numbers of RMSF. We collected ticks and examined them for bacterial pathogens using molecular methods to determine if a novel tick vector or spotted fever group rickettsiae (SFGR) might be emerging. Amblyomma americanum, the lone star tick, comprised 99.6% of 6,502 specimens collected in suburban landscapes. In contrast, Dermacentor variabilis, the American dog tick, a principal vector of Rickettsia rickettsii, comprised < 1% of the ticks collected. Eleven of 25 lone star tick pools tested were infected with "Rickettsia amblyommii," an informally named SFGR. Sera from patients from the same county who were presumptively diagnosed by local physicians with a tick-borne illness were tested by an indirect immunofluorescence antibody (IFA) assay to confirm clinical diagnoses. Three of six patients classified as probable RMSF cases demonstrated a fourfold or greater rise in IgG class antibody titers between paired acute and convalescent sera to "R. amblyommii" antigens, but not to R. rickettsii antigens. White-tailed deer, Odocoileus virginianus, are preferred hosts of lone star ticks. Blood samples collected from hunter-killed deer from the same county were tested by IFA test for antibodies to Ehrlichia chaffeensis and "R. amblyommii." Twenty-eight (87%) of 32 deer were positive for antibodies to E. chaffeensis, but only 1 (3%) of the deer exhibited antibodies to "R. amblyommii," suggesting that deer are not the source of "R. amblyommii" infection for lone star ticks. We propose that some cases of rickettsiosis reported as RMSF may have been caused by "R. amblyommii" transmitted through the bite of A. americanum.
Low prevalence of Borrelia bavariensis in Ixodes ricinus ticks in southeastern Austria.
Glatz, Martin; Muellegger, Robert R; Hizo-Teufel, Cecilia; Fingerle, Volker
2014-10-01
Borrelia bavariensis was recently described as a distinct genospecies among the B. burgdorferi sensu lato complex. The prevalence of B. bavariensis in Austria, a highly endemic area for tick-transmitted pathogens, is scarcely characterized. To investigate the prevalence of B. bavariensis in Ixodes ricinus ticks we reevaluated the results of a study conducted in 518 ticks from southeastern Austria collected in 2002 and 2003. The presence of B. burgdorferi s.l.-specific DNA in ticks was analyzed by a PCR for the outer surface protein A (ospA) gene. Borrelia species were differentiated by restriction fragment length polymorphism (RFLP) analysis, and samples positive for B. bavariensis were further analyzed by multilocus sequence analysis. Two of 133 (1.5%) B. burgdorferi s.l.-positive I. ricinus ticks were infected with B. bavariensis. Both specimens were coinfected with the OspA serotype 5 of B. garinii. Borrelia bavariensis is present; however, seem to be rare in I. ricinus ticks in southeastern Austria. Copyright © 2014 Elsevier GmbH. All rights reserved.
Kuivanen, Suvi; Smura, Teemu; Rantanen, Kirsi; Kämppi, Leena; Kantonen, Jonas; Kero, Mia; Jääskeläinen, Anu; Jääskeläinen, Anne J; Sane, Jussi; Myllykangas, Liisa; Paetau, Anders; Vapalahti, Olli
2018-05-01
In most locations except for Russia, tick-borne encephalitis is mainly caused by the European virus subtype. In 2015, fatal infections caused by European and Siberian tick-borne encephalitis virus subtypes in the same Ixodes ricinus tick focus in Finland raised concern over further spread of the Siberian subtype among widespread tick species.
Horta, Mauricio C; Pinter, Adriano; Schumaker, Teresinha T S; Labruna, Marcelo B
2006-10-01
An Ixodes loricatus engorged female, infected with Rickettsia bellii, was collected from an opossum (Didelphis aurita) in Mogi das Cruzes, São Paulo State, Brazil. Two consecutive laboratory tick generations (F(1) and F(2)) reared from this single engorged female were evaluated for Rickettsia infection by polymerase chain reaction (PCR) targeting specific Rickettsia genes. Immature ticks fed on naïve Wistar rats (Rattus norvegicus) and adult ticks fed on opossum (D. aurita), both free of ticks and rickettsial infection. PCR performed on individual ticks from the F(1) (20 larvae, 10 nymphs, and 10 adults) and the F(2) (30 larvae, 30 nymphs, and 15 adults) yielded expected bands compatible with Rickettsia. All the PCR products that were sequenced, targeting gltA gene, resulted in sequences identical to each other and 99.7% (349/350) similar to the corresponding sequence of R. bellii in GenBank. The R. bellii infection on ticks from the second laboratory generation (F(2)) was confirmed by other PCR protocols and successful isolation of R. bellii in cell culture. We report for the first time a Rickettsia species infecting I. loricatus, and the first report of R. bellii in the tick genus Ixodes. We conclude that there was an efficient transovarial transmission and transstadial survival of this Rickettsia species in the tick I. loricatus. Our results suggest that R. bellii might be maintained in nature solely by transovarial transmission and transstadial survival in ticks (no amplifier vertebrate host is needed), since there has been no direct or indirect evidence of infection of vertebrate hosts by R. bellii.
Emerging Tick-borne Rickettsia and Ehrlichia at Joint Base Langley-Eustis, Fort Eustis, Virginia.
Miller, Melissa K; Jiang, Ju; Truong, Melissa; Yarina, Tamasin; Evans, Holly; Christensen, Timothy P; Richards, Allen L
2016-01-01
Four species of ticks known to parasitize humans (Amblyomma americanum (lone star tick), Dermacentor variabilis (American dog tick), Amblyomma maculatum (Gulf Coast tick), and Ixodes scapularis (black-legged tick)) were collected at Joint Base Langley-Eustis, Fort Eustis, Virginia during 2009. These ticks were tested individually (adults and nymphs) and in pools of 15 (larvae) for pathogens of public health importance within the genera: Rickettsia, Borrelia, and Ehrlichia, by quantitative real-time polymerase chain reaction (qPCR) assays and, where appropriate, multilocus sequence typing (MLST). Of the 340 A americanum ticks tested, a minimum of 65 (19%), 4 (1%), 4 (1%), and one (<1%) were positive for Rickettsia amblyommii, B lonestari, E ewingii and E chaffeensis, respectively. One of 2 (50%) A maculatum ticks collected was found to be positive for R parkeri by MLST and qPCR analyses. All 33 D variabilis ticks were negative for evidence of rickettsial infections. Likewise, no pathogenic organisms were detected from the single Ixodes scapularis tick collected. Pathogenic rickettsiae and ehrlichiae are likely emerging and cause under-recognized diseases, which threaten people who live, work, train, or otherwise engage in outdoor activities at, or in the vicinity of, Fort Eustis, Virginia.
Thomm, Angela M; Schotthoefer, Anna M; Dupuis, Alan P; Kramer, Laura D; Frost, Holly M; Fritsche, Thomas R; Harrington, Yvette A; Knox, Konstance K; Kehl, Sue C
2018-01-01
Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi , the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown.
Ticks infesting domestic dogs in the UK: a large-scale surveillance programme.
Abdullah, Swaid; Helps, Chris; Tasker, Severine; Newbury, Hannah; Wall, Richard
2016-07-07
Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection. Over a period of 16 weeks (April-July 2015), 1094 veterinary practices were recruited to monitor tick attachment to dogs and provided with a tick collection and submission protocol. Recruitment was encouraged through a national publicity and communication initiative. Participating practices were asked to select five dogs at random each week and undertake a thorough, standardized examination of each dog for ticks. The clinical history and any ticks were then sent to the investigators for identification. A total of 12,000 and 96 dogs were examined and 6555 tick samples from infested dogs were received. Ixodes ricinus (Linnaeus) was identified on 5265 dogs (89 %), Ixodes hexagonus Leach on 577 (9.8 %) and Ixodes canisuga Johnston on 46 (0.8 %). Ten dogs had Dermacentor reticulatus (Fabricius), one had Dermacentor variabilis (Say), three had Haemaphysalis punctata Canesteini & Fanzago and 13 had Rhipicephalus sanguineus Latreille. 640 ticks were too damaged for identification. All the R. sanguineus and the single D. variabilis were on dogs with a recent history of travel outside the UK. The overall prevalence of tick attachment was 30 % (range 28-32 %). The relatively high prevalence recorded is likely to have been inflated by the method of participant recruitment. The data presented provide a comprehensive spatial understanding of tick distribution and species abundance in the UK against which future changes can be compared. Relative prevalence maps show the highest rates in Scotland and south west England providing a valuable guide to tick-bite risk in the UK.
Barros-Battesti, Darci M; Onofrio, Valeria C; Faccini, João L H; Labruna, Marcelo B; Arruda-Santos, Ana D; Giacomin, Flávia G
2007-11-01
Ixodes schulzei Aragão & Fonseca, 1951 is a tick endemic to Brazil, where nine species of Ixodes Latreille, 1796 are currently known to occur. Larvae, nymphs and females of I. schulzei were obtained from a laboratory colony originating from an engorged female collected on a free-living water rat Nectomys squamipes from the Santa Branca municipality, São Paulo State. Only female ticks were obtained from engorged nymphs. Unfed immature and female adult specimens were measured and the descriptions were based on optical and scanning electron microscopy, as were drawings of some features of the larva. Both immature stages present the very long palpi and basis capituli, and the female has large, contiguous porose areas. However, the basis capituli is triangular, with a slight central elevation in the larva and nymph, whereas in the female this area is depressed. The I. schulzei types deposited at the FIOCRUZ (Instituto Oswaldo Cruz) were also examined, as was other material from collections, such as the IBSP (Coleção Acarológica do Instituto Butantan), CNC-FMVZ/USP (Coleção Nacional de Carrapatos da Faculdade de Medicina Veterinária e Zootecnia da USP) and USNTC (United States National Tick Collection). In addition, the relationship between I. schulzei and other immature neotropical species of Ixodes is discussed.
Konnai, Satoru; Nishikado, Hideto; Yamada, Shinji; Imamura, Saiki; Ito, Takuya; Onuma, Misao; Murata, Shiro; Ohashi, Kazuhiko
2011-02-01
Lipocalins have been known for their several biological activities in blood-sucking arthropods. Recently, the identification and characterization of lipocalins from Ixodes ricinus (LIRs) have been reported and functions of lipocalins are well documented. In this study, we have characterized four Ixodes persulcatus lipocalins that were discovered while analyzing I. persulcatus tick salivary gland EST library. We show that the four I. persulcatus lipocalins, here after named LIPERs (lipocalin from I. persulcatus) are 28.8-94.4% identical to LIRs from I. ricinus. Reverse transcriptase-PCR analysis revealed that lipocalin genes were expressed specifically in the salivary glands throughout life cycle stages of the ticks and were up-regulated by blood feeding. The specific expressions were also confirmed by Western blotting analysis. Furthermore, to investigate whether native lipocalins are secreted into the host during tick feeding, the reactivity of anti-serum raised against saliva of adult ticks to recombinant lipocalins was tested by Western blotting. The lipocalins are potentially secreted into the host during tick feeding as revealed by specific reactivity of recombinant lipocalins with mouse antibodies to I. persulcatus tick saliva. Preliminary vaccination of mice with recombinant lipocalins elicited that period to reach engorgement was significantly delayed and the engorgement weight was significantly reduced as compared to the control. Further elucidation of the biological functions of LIPERs are required to fully understand the pathways involved in the modulation of host immune responses. Copyright © 2010 Elsevier Inc. All rights reserved.
Hornok, Sándor; Estrada-Peña, Agustín; Kontschán, Jenő; Plantard, Olivier; Kunz, Bernd; Mihalca, Andrei D; Thabah, Adora; Tomanović, Snežana; Burazerović, Jelena; Takács, Nóra; Görföl, Tamás; Estók, Péter; Tu, Vuong Tan; Szőke, Krisztina; Fernández de Mera, Isabel G; de la Fuente, José; Takahashi, Mamoru; Yamauchi, Takeo; Takano, Ai
2015-09-17
Phylogeographical studies allow precise genetic comparison of specimens, which were collected over large geographical ranges and belong to the same or closely related animal species. These methods have also been used to compare ticks of veterinary-medical importance. However, relevant data are missing in the case of ixodid ticks of bats, despite (1) the vast geographical range of both Ixodes vespertilionis and Ixodes simplex, and (2) the considerable uncertainty in their taxonomy, which is currently unresolvable by morphological clues. In the present study 21 ticks were selected from collections or were freshly removed from bats or cave walls in six European and four Asian countries. The DNA was extracted and PCRs were performed to amplify part of the cytochrome oxidase I (COI), 16S and 12S rDNA genes, followed by sequencing for identification and molecular-phylogenetic comparison. No morphological differences were observed between Ixodes vespertilionis specimens from Spain and from other parts of Europe, but corresponding genotypes had only 94.6 % COI sequence identity. An I. vespertilionis specimen collected in Vietnam was different both morphologically and genetically (i.e. with only 84.1 % COI sequence identity in comparison with I. vespertilionis from Europe). Two ticks (collected in Vietnam and in Japan) formed a monophyletic clade and shared morphological features with I. ariadnae, recently described and hitherto only reported in Europe. In addition, two Asiatic specimens of I. simplex were shown to differ markedly from European genotypes of the same species. Phylogenetic relationships of ticks showed similar clustering patterns with those of their associated bat host species. Although all three ixodid bat tick species evaluated in the present study appear to be widespread in Eurasia, they exhibit pronounced genetic differences. Data of this study also reflect that I. vespertilionis may represent a species complex.
Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.
Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel
2017-02-01
Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.
Molecular survey of hard ticks in endemic areas of tick-borne diseases in China.
Lu, Xin; Lin, Xian-Dan; Wang, Jian-Bo; Qin, Xin-Cheng; Tian, Jun-Hua; Guo, Wen-Ping; Fan, Fei-Neng; Shao, Renfu; Xu, Jianguo; Zhang, Yong-Zhen
2013-06-01
Over the past several years, there was a substantial increase in the number of cases of known and novel tick-borne infections in humans in China. To better understand the ticks associated with these infections, we collected hard ticks from animals or around livestock shelters in 29 localities in 5 provinces (Beijing, Henan, Hubei, Inner Mongolia, and Zhejiang) where cases of tick-borne illness were reported. We collected 2950 hard ticks representing 7 species of 4 genera (Dermacentor sinicus, Haemaphysalis flava, Haemaphysalis longicornis, Ixodes granulatus, Ixodes persulcatus, Rhipicephalus microplus, and Rhipicephalus sanguineus). These ticks were identified to species using morphological characters initially. We then sequenced the mitochondrial small subunit rRNA (12S rRNA) gene, cytochrome oxidase subunit 1 (COI) gene, and the second internal transcribed spacer (ITS2) gene of these ticks, and conducted phylogenetic analyses. Our analyses showed that the molecular and morphological data are consistent in the identification of the 7 tick species. Furthermore, all these 7 tick species from China were genetically closely related to the same species or related species found outside China. Rapid and accurate identification and long-term monitoring of these ticks will be of significance to the prevention and control of tick-borne diseases in China. Copyright © 2013 Elsevier GmbH. All rights reserved.
Zhioua, E.; LeBrun, R.A.; Ginsberg, H.S.; Aeschliman, A.
1995-01-01
The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic to engorged adult, blacklegged ticks, Ixodes scapularis (Say), but not to unfed females, engorged nymphs, or engorged larvae. Nematodes apparently enter the tick through the genital pore, thus precluding infection of immature ticks. The timing of tick mortality, and overall mortality after 17 d, did not differ between infections by S. carpocapsae and S. glaseri. These nematodes typically do not complete their life cycles or produce infective juveniles in I. scapularis. However, both species successfully produced infective juveniles when the tick body was slit before nematode infection. Mortality of engorged I. scapularis females infected by S. carpocapsae was greater than uninfected controls, but did not vary significantly with nematode concentration (50-3,000 infective juveniles per 5-cm-diameter petri dish). The LC50 was 347.8 infective juveniles per petri dish (5 ticks per dish). Hatched egg masses of infected ticks weighed less than those of uninfected controls. Mortality of infected ticks was greatest between 20 and 30?C, and was lower at 15?C.
... Borrelia burgdorferi Tick, deer engorged on the skin Lyme disease - Borrelia burgdorferi organism Tick, deer - adult female Lyme disease ... Accessed January 11, 2018. Steere AC. Lyme disease (Lyme borreliosis) due to Borrelia burgdorferi . In: Bennett JE, Dolin R, Blaser MJ, ...
Kjelland, Vivian; Paulsen, Katrine M; Rollum, Rikke; Jenkins, Andrew; Stuen, Snorre; Soleng, Arnulf; Edgar, Kristin S; Lindstedt, Heidi H; Vaino, Kirsti; Gibory, Moustafa; Andreassen, Åshild K
2018-04-12
The aim of this study was to determine the occurrence of tick-borne pathogens of medical importance in questing ticks collected from five recreationally used islands along the Norwegian coastline. Furthermore, since coinfection may affect the disease severity, this study aimed to determine the extent of coinfection in individual ticks or co-localization of tick-borne pathogens. In all, 4158 questing Ixodes ricinus ticks were analyzed. For detection of tick-borne encephalitis virus (TBEV), nymphs (3690) were analyzed in pools of ten. To detect Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis, 468 nymphs were analyzed individually. A total of five nymph pools was infected with TBEV, giving an overall prevalence of 0.14%. In the individually analyzed ticks, B. burgdorferi s. l. (15.6%), Candidatus N. mikurensis (11%), A. phagocytophilum (1.4%) and B. miyamotoi (0.9%) were detected. Coinfection was found in 3.3% of the ticks, and the only dual infection observed was with B. afzelii and Candidatus N. mikurensis. This association was significantly higher than what would occur by random chance. Copyright © 2018 Elsevier GmbH. All rights reserved.
Aggregation in the tick Ixodes ricinus (Acari: Ixodidae): use and reuse of questing vantage points.
Healy, John A E; Bourke, Patrick
2008-03-01
Ongoing work in oak woods in Killarney National Park in southwestern Ireland is focusing on the factors influencing the fine-scale aggregated distribution of Ixodes ricinus L. (Acari: Ixodidae) on the ground. The extent of reuse of stems of vegetation as questing points by adult ticks was determined by paint-marking stems on which ticks were found, counting and removing these ticks, and subsequently reexamining the same stems for ticks on two further occasions. Overall, an estimated 2,967 stems in 123 separate rush plants (Juncus effusus L.) were examined. Statistical analysis of the data demonstrated a highly significant reoccupancy by ticks of stems previously and recently used. Furthermore, it is shown that the extent of stem reuse by ticks is significantly and positively correlated with the numbers of ticks originally observed on those stems. Although other factors may be involved in generating clumping of ticks, the results are compatible with the proposition that aggregation of I. ricinus on the ground is pheromone-mediated. The findings are discussed in relation to what is known about the powers of lateral movement of I. ricinus on the ground and the possible implications for the performance of tick traps.
USDA-ARS?s Scientific Manuscript database
With the continuing progression of blacklegged ticks and the agents causing Lyme disease from infestations in Maryland southward into Virginia, many citizens living in northern Virginia have asked the Governor for ARS-Patented ‘4-Poster’ Deer Treatment Stations to be deployed as an aid in reducing t...
Bespyatova, L A; Bugmyrin, S V
2015-01-01
Changes in the population density of two hard tick species, Ixodes (Exopalpiger) trianguliceps Birula, 1895 and Ixodes persulcatus Schulze, 1930, were examined in 1998-2001, and in 2003-2004 near Gomselga Village (Kondopoga District, 62° 04' N, 33° 55' E) in central Karelia. Data on the abundance of ixodid ticks and the species composition of their hosts in 4 forest sites at different stages of post-felling regeneration (secondary succession), i. e. 7-14, 12-19, 25-32, and 80-87 after logging were obtained. I. persulcatus dominated, comprising 73 % of the total tick number in samples. Regenera- tion of the forest resulted in fluctuations of the population density of two examined tick species: I. (Exopalpiger) trianguliceps (larvae 2.8-5.3; nymphs 1.5-2.2; adults 0-0.09) and I. persulcatus (larvae 4.3-10.6; nymphs 0.6-4.2).
Infection of Immature Ixodes scapularis (Acari: Ixodidae) by Membrane Feeding
Oliver, Jonathan D.; Lynn, Geoffrey E.; Burkhardt, Nicole Y.; Price, Lisa D.; Nelson, Curtis M.; Kurtti, Timothy J.; Munderloh, Ulrike G.
2016-01-01
Abstract A reduction in the use of animals in infectious disease research is desirable for animal welfare as well as for simplification and standardization of experiments. An artificial silicone-based membrane-feeding system was adapted for complete engorgement of adult and nymphal Ixodes scapularis Say (Acari: Ixodidae), and for infecting nymphs with pathogenic, tick-borne bacteria. Six wild-type and genetically transformed strains of four species of bacteria were inoculated into sterile bovine blood and fed to ticks. Pathogens were consistently detected in replete nymphs by polymerase chain reaction. Adult ticks that ingested bacteria as nymphs were evaluated for transstadial transmission. Borrelia burgdorferi and Ehrlichia muris -like agent showed high rates of transstadial transmission to adult ticks, whereas Anaplasma phagocytophilum and Rickettsia monacensis demonstrated low rates of transstadial transmission/maintenance. Artificial membrane feeding can be used to routinely maintain nymphal and adult I. scapularis , and infect nymphs with tick-borne pathogens. PMID:26721866
Climate change and Ixodes tick-borne diseases of humans
Ostfeld, Richard S.; Brunner, Jesse L.
2015-01-01
The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022
The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern.
Eisen, Rebecca J; Eisen, Lars
2018-04-01
In the United States, the blacklegged tick, Ixodes scapularis, is a vector of seven human pathogens, including those causing Lyme disease, anaplasmosis, babesiosis, Borrelia miyamotoi disease, Powassan virus disease, and ehrlichiosis associated with Ehrlichia muris eauclarensis. In addition to an accelerated rate of discovery of I. scapularis-borne pathogens over the past two decades, the geographic range of the tick, and incidence and range of I. scapularis-borne disease cases, have increased. Despite knowledge of when and where humans are most at risk of exposure to infected ticks, control of I. scapularis-borne diseases remains a challenge. Human vaccines are not available, and we lack solid evidence for other prevention and control methods to reduce human disease. The way forward is discussed. Published by Elsevier Ltd.
[Tick borne encephalitis and enviromental changes].
Zajkowska, Joanna; Malzahn, Elzbieta; Kondrusik, Maciej; Grygorczuk, Sambor; Pancewicz, Sławomir S; Kuśmierczyk, Justyna; Czupryna, Piotr; Hermanowska-Szpakowicz, Teresa
2006-01-01
Currently observed markedly increased incidence of various tick borne diseases in many parts of Europe is due to documented climatic changes as well anthropogenic influence on habitat structure. One of the analyzed factors is tendency to increase of the spring temperatures, especially in the third decade of the April. Such conditions (spring temperatures above 7-10 degrees C) let the nymphs and larvae of Ixodes ricinus to feed simultaneously on rodents. This increases the risk of infection of Ixodes ricinus with TBE virus, so dangerous for humans.
Davies, Saran; Abdullah, Swaid; Helps, Chris; Tasker, Séverine; Newbury, Hannah; Wall, Richard
2017-09-15
In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.
Ginsberg, Howard S.; Rulison, Eric L.; Azevedo, Alexandra; Pang, Genevieve C.; Kuczaj, Isis M.; Tsao, Jean I.; LeBrun, Roger A.
2014-01-01
BackgroundSeveral investigators have reported genetic differences between northern and southern populations of Ixodes scapularis in North America, as well as differences in patterns of disease transmission. Ecological and behavioral correlates of these genetic differences, which might have implications for disease transmission, have not been reported. We compared survival of northern with that of southern genotypes under both northern and southern environmental conditions in laboratory trials.MethodsSubadult I. scapularis from laboratory colonies that originated from adults collected from deer from several sites in the northeastern, north central, and southern U.S. were exposed to controlled conditions in environmental chambers. Northern and southern genotypes were exposed to light:dark and temperature conditions of northern and southern sites with controlled relative humidities, and mortality through time was recorded.ResultsTicks from different geographical locations differed in survival patterns, with larvae from Wisconsin surviving longer than larvae from Massachusetts, South Carolina or Georgia, when held under the same conditions. In another experiment, larvae from Florida survived longer than larvae from Michigan. Therefore, survival patterns of regional genotypes did not follow a simple north–south gradient. The most consistent result was that larvae from all locations generally survived longer under northern conditions than under southern conditions.ConclusionsOur results suggest that conditions in southern North America are less hospitable than in the north to populations of I. scapularis. Southern conditions might have resulted in ecological or behavioral adaptations that contribute to the relative rarity of I. scapularis borne diseases, such as Lyme borreliosis, in the southern compared to the northern United States.
... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia News & Views Find A Physician Donate Physician’s Resources ... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia Anaplasmosis Anaplasmosis Tick species that transmit anaplasmosis: Deer ...
Strnad, Martin; Hönig, Václav; Růžek, Daniel; Grubhoffer, Libor; Rego, Ryan O M
2017-08-01
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferi sensu lato , is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii , despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR. IMPORTANCE Borrelia burgdorferi sensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection. Copyright © 2017 American Society for Microbiology.
Greek Goat Encephalitis Virus Strain Isolated from Ixodes ricinus, Greece
Pavlidou, Vasiliki; Antoniadis, Antonis
2008-01-01
A strain of Greek goat encephaltitis virus was isolated from engorged Ixodes ricinus ticks that had fed on goats in northern Greece. The strain was almost identical to the prototype strain isolated 35 years ago. PMID:18258134
Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia.
Capligina, Valentina; Salmane, Ineta; Keišs, Oskars; Vilks, Karlis; Japina, Kristine; Baumanis, Viesturs; Ranka, Renate
2014-02-01
Migratory birds act as hosts and long-distance vectors for several tick-borne infectious agents. Here, feeding Ixodes ticks were collected from migratory birds during the autumn migration period in Latvia and screened for the presence of epidemiologically important non-viral pathogens. A total of 93 DNA samples of ticks (37 larvae and 56 nymphs) removed from 41 birds (order Passeriformes, 9 species) was tested for Lyme borreliosis spirochaetes, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp. Borrelia burgdorferi DNA was detected in 18% of the tick samples, and a majority of infected ticks were from thrush (Turdus spp.) birds. Among the infected ticks, Borrelia valaisiana was detected in 41% of cases, Borrelia garinii in 35%, and mixed Bo. valaisiana and Bo. garinii infection in 24%. Anaplasma phagocytophilum DNA was detected in 2% of ticks, R. helvetica in 12%, and Babesia spp. pathogens in 4% of ticks. Among these samples, 3 Babesia species were identified: Ba. divergens, Ba. microti, and Ba. venatorum. Coinfection with different pathogens that included mixed infections with different Borrelia genospecies was found in 20% of nymphal and 3% of larval Ixodes ticks. These results suggest that migratory birds may support the circulation and spread of medically significant zoonoses in Europe. Copyright © 2013 Elsevier GmbH. All rights reserved.
Literak, Ivan; Kocianova, Elena; Dusbabek, Frantisek; Martinu, Jana; Podzemny, Petr; Sychra, Oldrich
2007-11-01
In winter months during 2003-2006, wild birds were captured and examined for ticks and chiggers at two sites near Brno, Czech Republic. In total, 1,362 birds, mostly passerines, were examined. The tick Ixodes arboricola Schulze et Schlottke, 1929 was found on 47 (3%) birds of six species. Ixodes ricinus Linnaeus, 1758 was found on 11 (1%) birds of five species. Larvae of chiggers Ascoschoengastia latyshevi (Schluger 1955) were found on 13 (1%) birds of six species. I. arboricola and A. latyshevi associated with hole-nesting birds can appear on birds rather frequently even during winter months. I. ricinus occurs on birds in winter sporadically.
No evidence of Borrelia mayonii in an endemic area for Lyme borreliosis in France.
Boyer, Pierre H; De Martino, Sylvie J; Hansmann, Yves; Zilliox, Laurence; Boulanger, Nathalie; Jaulhac, Benoît
2017-06-05
Borrelia mayonii is currently the latest species belonging to the Borrelia burgdorferi (sensu lato) complex to be discovered. Interestingly it is involved in human pathology causing a high fever. We looked for its presence in post- tick bite febrile patients as well as in Ixodes ricinus ticks in an endemic area of France. After ensuring that our molecular technics correctly detected B. mayonii, 575 patients and 3,122 Ixodes ricinus nymphs were tested. Neither B. mayonii nor another species of the B. burgdorferi (s.l.) complex previously not reported in Europe has been identified. For now, B. mayonii seems to be an epiphenomenon. However, its discovery broadens the etiology of post-Ixodes bite febrile syndromes.
Reducing tick burdens on chicks by treating breeding female grouse with permethrin
USDA-ARS?s Scientific Manuscript database
Ticks are important arthropod vectors of diseases of human, livestock, and wildlife hosts. In the United Kingdom, the sheep tick (Ixodes ricinus) is increasingly recognized as a main limiting factor of red grouse (Lagopus lagopus) populations, a game bird of high economic value. We evaluated the e...
Furuno, Kiwa; Lee, Kyunglee; Itoh, Yukie; Suzuki, Kazuo; Yonemitsu, Kenzo; Kuwata, Ryusei; Shimoda, Hiroshi; Watarai, Masahisa; Maeda, Ken; Takano, Ai
2017-01-01
The genus Borrelia comprises arthropod-borne bacteria, which are infectious agents in vertebrates. They are mainly transmitted by ixodid or argasid ticks. In Hokkaido, Japan, Borrelia spp. were found in deer and Haemaphysalis ticks between 2011 and 2013; however, the study was limited to a particular area. Therefore, in the present study, we conducted large-scale surveillance of ticks and wild animals in the western part of the main island of Japan. We collected 6,407 host-seeking ticks from two regions and 1,598 larvae obtained from 32 engorged female ticks and examined them to elucidate transovarial transmission. In addition, we examined whole blood samples from 190 wild boars and 276 sika deer, as well as sera from 120 wild raccoons. We detected Borrelia spp. in Haemaphysalis flava, Haemaphysalis megaspinosa, Haemaphysalis kitaokai, Haemaphysalis longicornis, and Haemaphysalis formosensis. In addition, we isolated a strain from H. megaspinosa using Barbour-Stoenner-Kelly medium. The minimum infection rate of ticks was less than 5%. Transovarial transmission was observed in H. kitaokai. Phylogenetic analysis of the isolated strain and DNA fragments amplified from ticks identified at least four bacterial genotypes, which corresponded to the tick species detected. Bacteria were detected in 8.4%, 15%, and 0.8% of wild boars, sika deer, and raccoons, respectively. In this study, we found seasonal differences in the prevalence of bacterial genotypes in sika deer during the winter and summer. The tick activity season corresponds to the season with a high prevalence of animals. The present study suggests that a particular bacterial genotype detected in this study are defined by a particular tick species in which they are present.
Cosson, Jean-François; Michelet, Lorraine; Chotte, Julien; Le Naour, Evelyne; Cote, Martine; Devillers, Elodie; Poulle, Marie-Lazarine; Huet, Dominique; Galan, Maxime; Geller, Julia; Moutailler, Sara; Vayssier-Taussat, Muriel
2014-05-20
In France as elsewhere in Europe the most prevalent TBD in humans is Lyme borreliosis, caused by different bacterial species belonging to Borrelia burgdorferi sensu lato complex and transmitted by the most important tick species in France, Ixodes ricinus. However, the diagnosis of Lyme disease is not always confirmed and unexplained syndromes occurring after tick bites have become an important issue. Recently, B. miyamotoi belonging to the relapsing fever group and transmitted by the same Ixodes species has been involved in human disease in Russia, the USA and the Netherlands. In the present study, we investigate the presence of B. miyamotoi along with other Lyme Borreliosis spirochetes, in ticks and possible animal reservoirs collected in France. We analyzed 268 ticks (Ixodes ricinus) and 72 bank voles (Myodes glareolus) collected and trapped in France for the presence of DNA from B. miyamotoi as well as from Lyme spirochetes using q-PCR and specific primers and probes. We then compared the French genotypes with those found in other European countries. We found that 3% of ticks and 5.55% of bank voles were found infected by the same B. miyamotoi genotype, while co-infection with other Lyme spirochetes (B. garinii) was identified in 12% of B. miyamotoi infected ticks. Sequencing showed that ticks and rodents carried the same genotype as those recently characterized in a sick person in the Netherlands. The genotype of B. miyamotoi circulating in ticks and bank voles in France is identical to those already described in ticks from Western Europe and to the genotype isolated from a sick person in The Netherlands. This results suggests that even though no human cases have been reported in France, surveillance has to be improved. Moreover, we showed that ticks could simultaneously carry B. miyamotoi and Lyme disease spirochetes, increasing the problem of co-infection in humans.
Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee
2016-07-01
A total of 79 ticks collected from Sambar deer (Cervus unicolor), Barking deer (Muntiacus muntjak) and Wild boar (Sus scrofa) were examined by PCR for the presence of Rickettsia, Anaplasma, Coxiella, and Francisella bacteria. Of the 79 ticks, 13% tested positive for Rickettsia, 15% tested positive for Anaplasma, 4% tested positive for Coxiella, and 3% tested positive for Francisella. Interestingly, triple infection with Anaplasma, Rickettsia and Francisella was determined in a Dermacentor auratus tick. Moreover, another triple infection with Rickettsia, Anaplasma, and Coxiella was found in a Haemaphysalis lagrangei tick. Double infection of Rickettsia with Coxiella was also detected in another H. lagrangei tick. From the phylogenetic analyses, we found a Rickettsia sp. with a close evolutionary relationship to Rickettsia bellii in the H. lagrangei tick. We also found the first evidence of a Rickettsia sp. that is closely related to Rickettsia tamurae in Rhipicephalus (Boophilus) microplus ticks from Thailand. H. lagrangei and Haemaphysalis obesa ticks collected from Sambar deer tested positive for Anaplasma species form the same clade with Anaplasma bovis. In contrast, other H. lagrangei ticks collected from Sambar deer and D. auratus ticks collected from Wild boar were also reported for the first time to be infected with an Anaplasma species that is closely related to Anaplasma platys. The phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria revealed that Coxiella symbionts from H. lagrangei formed a distinctly different lineage from Coxiella burnetii (a human pathogen). Additionally, Francisella bacteria identified in D. auratus ticks were found to be distantly related to a group of pathogenic Francisella species. The identification of these bacteria in several feeding ticks suggests the risk of various emerging tick-borne diseases and endosymbionts in humans, wildlife, and domestic animals in Thailand. Copyright © 2016 Elsevier GmbH. All rights reserved.
Thomm, Angela M.; Schotthoefer, Anna M.; Dupuis, Alan P.; Kramer, Laura D.; Frost, Holly M.; Fritsche, Thomas R.; Harrington, Yvette A.; Knox, Konstance K.
2018-01-01
ABSTRACT Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi, the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown. PMID:29359181
First record of the tick Ixodes (Pholeoixodes) kaiseri in Turkey.
Orkun, Ömer; Karaer, Zafer
2018-02-01
Nymphs and larvae belonging to Ixodes spp. were collected from a red fox in Turkey. The ticks were identified morphologically and molecularly (16S rDNA PCR and phylogenetic analysis) as I. kaiseri. Sequence and phylogenetic analyses show that our I. kaiseri isolate is very similar to I. kaiseri isolates collected from Germany, Serbia, Romania, and Hungary. Therefore, the existence of I. kaiseri has been demonstrated for the first time in Turkey. More studies relating to the regional distribution and vectorial competence of I. kaiseri are needed.
Hernández-Jarguín, Angélica; Díaz-Sánchez, Sandra; Villar, Margarita; de la Fuente, José
2018-05-05
An innovative metaomics approach integrating metatranscriptomics and metaproteomics was used to characterize bacterial communities in the microbiota of the Lyme borreliosis spirochete vector, Ixodes ricinus (Acari: Ixodidae). Whole internal tissues and salivary glands from unfed larvae and female ticks, respectively were used. Reused I. ricinus RNA-sequencing data for metranscriptomics analysis together with metaproteomics provided a better characterization of tick bacterial microbiota by increasing bacteria identification and support for identified bacteria with putative functional implications. The results showed the presence of symbiotic, commensal, soil, environmental, and pathogenic bacteria in the I. ricinus microbiota, including previously unrecognized commensal and soil microorganisms. The results of the metaomics approach may have implications in the characterization of putative mechanisms by which pathogen infection manipulates tick microbiota to facilitate infection. Metaomics approaches integrating different omics datasets would provide a better description of tick microbiota compositions, and insights into tick interactions with microbiota, pathogens and hosts. Copyright © 2018 Elsevier GmbH. All rights reserved.
Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata.
Borovicková, Barbara; Hypsa, Václav
2005-01-01
Hemocytes of two tick species, Ixodes ricinus and Ornithodoros moubata, were investigated with the aim to determine their ultrastructural characteristics and developmental relationships. Only a limited number of ultrastructural features was shown to be unequivocally homological across all hemocyte types. The two species, representing distant groups of ticks, differ in the composition of their circular cell populations. In I. ricinus, three groups of distinct morphological types of hemocytes could be determined according to well-defined ultrastructural features: a typical non-phagocytic granular cell with electron-dense granula and homogeneous cytoplasm (Gr II), and two different types of phagocytic hemocytes, namely plasmatocytes with a low number of granula and phagocytic granolocytes, designated as Gr I. In contrast, an additional cell type resembling insect spherulocytes was determined in O. moubata. This cell type does not seem to be homologous to any I. ricinus hemocyte and may represent a cell type typical of soft ticks only. Possible ontogenetic lineages of the hemocytes of both tick-species were inferred.
Genomic insights into the Ixodes scapularis tick vector of Lyme disease.
Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A
2016-02-09
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Williams, Simon Hedley; Sameroff, Stephen; Sanchez Leon, Maria; Jain, Komal; Lipkin, W. Ian
2014-01-01
ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases. PMID:25056893
Mitotic activity of the hemocytes in the tick Ixodes ricinus (Acari; Ixodidae).
Kuhn, K H
1996-01-01
The blood cells, or hemocytes, of Ixodes ricinus have been shown to recognize, attack, and phagocytose microorganisms invading the body cavity, or hemocoel, of this tick. Regulated proliferation and differentiation of hemocytes, also referred to as immunocytes, is basic to an effective immune response to invading microorganisms. Therefore, this study dealt with hemopoiesis in I. ricinus, the vector tick of the Lyme disease spirochete Borrelia burgdorferi. Histological evidence for the presence of hemopoietic tissue, a preferential proliferation site of hemocytes, is presented. Mainly the mitotic activity of free-floating hemocytes was examined. By means of microscopical photometry and flow cytometry, all three types of hemocytes in engorging female I. ricinus were found in different stages of the cell cycle. In the engorging tick, up to 40% of the hemocytes counted were in the S phase or the G2/M phase. From this study we conclude that the differentiated hemocyte types do not differentiate from stem cells in the adult tick. Moreover, microorganisms entering the hemocoel of engorging ticks are confronted with high numbers of hemocytes and, therefore, with an effective cellular immune response.
How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks
Richter, Dania; Matuschka, Franz-Rainer; Spielman, Andrew; Mahadevan, L.
2013-01-01
The tick Ixodes ricinus uses its mouthparts to penetrate the skin of its host and to remain attached for about a week, during which time Lyme disease spirochaetes may pass from the tick to the host. To understand how the tick achieves both tasks, penetration and attachment, with the same set of implements, we recorded the insertion events by cinematography, interpreted the mouthparts’ function by scanning electron microscopy and identified their points of articulation by confocal microscopy. Our structural dynamic observations suggest that the process of insertion and attachment occurs via a ratchet-like mechanism with two distinct stages. Initially, the two telescoping chelicerae pierce the skin and, by moving alternately, generate a toehold. Subsequently, a breaststroke-like motion, effected by simultaneous flexure and retraction of both chelicerae, pulls in the barbed hypostome. This combination of a flexible, dynamic mechanical ratchet and a static holdfast thus allows the tick to solve the problem of how to penetrate skin and also remain stuck for long periods of time. PMID:24174106
Pathogen-mediated manipulation of arthropod microbiota to promote infection
Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol
2017-01-01
Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373
Henningsson, Anna J; Hvidsten, Dag; Kristiansen, Bjørn-Erik; Matussek, Andreas; Stuen, Snorre; Jenkins, Andrew
2015-08-01
A TaqMan real-time PCR assay targeting the Anaplasma citrate synthase gene, gltA, was developed and used for detection of Anaplasma phagocytophilum in 765 Ixodes ricinus ticks collected from dogs and cats in northern Norway (n = 669) and Telemark county in southern Norway (n = 96). Among the ticks from northern Norway the prevalence of A. phagocytophilum was 3.0 %, while the prevalence in southern Norway was 2.1 % (p = 0.63). The gltA PCR assay showed a high analytical sensitivity (30 genomic units) and efficiency (98.5 %), and its utility in clinical diagnostics should be evaluated in future studies. This is the first report of A. phagocytophilum occurrence in ticks collected north of the Arctic Circle in Norway. The prevalence is comparable to that found in Telemark county in southern Norway.
Maggi, Ricardo G; Reichelt, Sara; Toliver, Marcée; Engber, Barry
2010-12-01
Ixodes affinis and I. scapularis are tick species that are widely distributed in the coastal plain region of North Carolina. Both tick species are considered enzootic vectors for spirochetal bacteria of the genus Borrelia and specifically for B. burgdorferi s.s., the pathogen most often attributed as the cause of Lyme disease in the USA. Laboratory testing of individual I. affinis and I. scapularis ticks for the presence of Borrelia DNA was accomplished by PCR, targeting 2 regions of the 16S-23S intergenic spacer. In I. affinis, Borrelia DNA was detected in 63.2% of 155 individual ticks. B. burgdorferi s.s. and B. bissettii were identified by DNA sequencing in 33.5% and 27.9% I. affinis, respectively. Statistical differences were found for sex distribution of Borrelia DNA between I. affinis females (76.8%) and I. affinis males (55.6%) where B. burgdorferi s.s. was more prevalent in females (44.6%) than in males (27.3%). In I. scapularis, 298 individually tested ticks yielded no Borrelia PCR-positive results. This study found a higher incidence of Borrelia spp. in I. affinis collected in coastal North Carolina as compared to previous reports for this tick species in other Southern states, highlighting the potential importance of I. affinis in the maintenance of the enzootic transmission cycle of B. burgdorferi s.l. in North Carolina. The lack of Borrelia DNA in I. scapularis highlights the need for additional studies to better define the transmission cycle for B. burgdorferi s.s. in the southeastern USA and specifically in the state of North Carolina. Copyright © 2010 Elsevier GmbH. All rights reserved.
Jaenson, Thomas G T; Värv, Kairi; Fröjdman, Isabella; Jääskeläinen, Anu; Rundgren, Kaj; Versteirt, Veerle; Estrada-Peña, Agustín; Medlock, Jolyon M; Golovljova, Irina
2016-07-01
The tick species Ixodes ricinus and I. persulcatus are of exceptional medical importance in the western and eastern parts, respectively, of the Palaearctic region. In Russia and Finland the range of I. persulcatus has recently increased. In Finland the first records of I. persulcatus are from 2004. The apparent expansion of its range in Finland prompted us to investigate if I. persulcatus also occurs in Sweden. Dog owners and hunters in the coastal areas of northern Sweden provided information about localities where ticks could be present. In May-August 2015 we used the cloth-dragging method in 36 localities potentially harbouring ticks in the Bothnian Bay area, province Norrbotten (NB) of northern Sweden. Further to the south in the provinces Västerbotten (VB) and Uppland (UP) eight localities were similarly investigated. Ixodes persulcatus was detected in 9 of 36 field localities in the Bothnian Bay area. Nymphs, adult males and adult females (n = 46 ticks) of I. persulcatus were present mainly in Alnus incana - Sorbus aucuparia - Picea abies - Pinus sylvestris vegetation communities on islands in the Bothnian Bay. Some of these I. persulcatus populations seem to be the most northerly populations so far recorded of this species. Dog owners asserted that their dogs became tick-infested on these islands for the first time 7-8 years ago. Moose (Alces alces), hares (Lepus timidus), domestic dogs (Canis lupus familiaris) and ground-feeding birds are the most likely carriers dispersing I. persulcatus in this area. All ticks (n = 124) from the more southern provinces of VB and UP were identified as I. ricinus. The geographical range of the taiga tick has recently expanded into northern Sweden. Increased information about prophylactic, anti-tick measures should be directed to people living in or visiting the coastal areas and islands of the Baltic Bay.
Hahn, Micah; Jarnevich, Catherine S.; Monaghan, Andrew J.; Eisen, Rebecca J.
2016-01-01
In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi ) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has changed modestly while, in contrast, the I. scapularis range has expanded substantially, which likely contributes to the concurrent expansion in the distribution of human Lyme disease cases in the Northeastern, North-Central and Mid-Atlantic states. Identifying counties that contain suitable habitat for these ticks that have not yet reported established vector populations can aid in targeting limited vector surveillance resources to areas where tick invasion and potential human risk are likely to occur. We used county-level vector distribution information and ensemble modeling to map the potential distribution of I. scapularis and I. pacificus in the contiguous United States as a function of climate, elevation, and forest cover. Results show that I. pacificus is currently present within much of the range classified by our model as suitable for establishment. In contrast, environmental conditions are suitable for I. scapularis to continue expanding its range into northwestern Minnesota, central and northern Michigan, within the Ohio River Valley, and inland from the southeastern and Gulf coasts. Overall, our ensemble models show suitable habitat for I. scapularis in 441 eastern counties and for I. pacificus in 11 western counties where surveillance records have not yet supported classification of the counties as established.
Kartashov, Mikhail Yu; Glushkova, Ludmila I; Mikryukova, Tamara P; Korabelnikov, Igor V; Egorova, Yulia I; Tupota, Natalia L; Protopopova, Elena V; Konovalova, Svetlana N; Ternovoi, Vladimir A; Loktev, Valery B
2017-06-01
The number of tick-borne infections in the northern European regions of Russia has increased considerably in the last years. In the present study, 676 unfed adult Ixodes persulcatus ticks were collected in the Komi Republic from 2011 to 2013 to study tick-borne rickettsioses. Rickettsia spp. DNA was detected by PCR in 51 (7.6%) ticks. The nucleotide sequence analysis of gltA fragments (765bp) from 51 ticks indicated that 60.8% and 39.2% of the ticks were infected with Rickettsia helvetica and Candidatus R. tarasevichiae, respectively. The gltA fragments showed 100% identity with those of Candidatus R. tarasevichiae previously discovered in Siberia and China, whereas R. helvetica showed 99.9% sequence identity with European isolates. The ompB had 8 nucleotide substitutions, 6 of which resulted in amino acid substitutions. In the sca9 gene, 3 nucleotide substitutions were detected, and only one resulted in amino acid substitution. The smpA, ompW, and β-lactamase genes of R. helvetica also showed a high level of sequence identity. Copyright © 2017 Elsevier GmbH. All rights reserved.
Osipova, T N; Grigoryeva, L A; Samoylova, E P; Shapar, A O; Bychkova, E M
2017-01-01
The article deals with influence of meteorolical factors on the activity of the taiga tick Ixodes persulvatus Sch. in St. Petersburg and its environs. The results of correlation analysis of meteorological data (21 index) and data ticks collected in 1980-2012 allowed determining linear dependence between 11 meteorological indices an average amount of ticks. Factor analysis reduced dimentionality down to 3 indices: sum of temperatures higher than +5.0 °C, sum of precipitation higher than 5 mm per year, and Selyaninov hydrothermal coefficient. It was demonstrated that, at the background of the general tendency for the decrease of the average number of active ticks in the studied territories, correlation between the amount of ticks and meteorological indices can significantly vary as in the correlation density, so in the character and in dependence of microclimatic features of the collecting site. When variability of the mean abundance of ticks during years of investigation is low, the methods of collecting can significantly affect the results of the statistical analysis. This fact must be taken in consideration during prognosis of both dates of the beginning of epidemiological season and its intensity.
On the core bacterial flora of Ixodes persulcatus (Taiga tick).
Sui, Shuo; Yang, Yu; Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun
2017-01-01
Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups-wild, reared for a single generation or R1, and reared for eight generations or R8 -we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics.
On the core bacterial flora of Ixodes persulcatus (Taiga tick)
Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun
2017-01-01
Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups–wild, reared for a single generation or R1, and reared for eight generations or R8 –we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics. PMID:28692666
Billeter, Sarah A; Osikowicz, Lynn M; Burns, Joseph E; Konde, Lora; Gonzales, Ben J; Hu, Renjie; Kosoy, Michael Y
2018-01-01
: Ticks (Acari: Ixodidae) were collected from 44 desert bighorn sheep ( Ovis canadensis) and 10 mule deer ( Odocoileus hemionus) in southern California, US during health inspections in 2015-16. Specimens were identified and screened by PCR analysis to determine the presence and prevalence of Bartonella, Borrelia, and Rickettsia species in ticks associated with these wild ruminants. None of the 60 Dermacentor hunteri and 15 Dermacentor albipictus ticks tested yielded positive PCR results. Additional tick specimens should be collected and tested to determine the prevalence of these confirmed or suspected tickborne pathogens within ruminant populations.
Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G
2017-10-01
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.
Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis.
Kurtti, Timothy J; Felsheim, Roderick F; Burkhardt, Nicole Y; Oliver, Jonathan D; Heu, Chan C; Munderloh, Ulrike G
2015-03-01
We obtained a rickettsial isolate from the ovaries of the blacklegged tick, Ixodes scapularis. The isolate (ISO7(T)) was grown in the Ixodes ricinus embryonic cell line IRE11. We characterized the isolate by transmission electron microscopy and gene sequencing. Phylogenetic analysis of 11 housekeeping genes demonstrated that the isolate fulfils the criteria to be classified as a representative of a novel rickettsial species closely related to 'Rickettsia monacensis'. These rickettsiae form a clade separate from other species of rickettsiae. Gene sequences indicated that several genes important in rickettsial motility, invasiveness and temperature adaptation were mutated (e.g. sca2, rickA, hsp22, pldA and htrA). We propose the name Rickettsia buchneri sp. nov. for this bacterium that infects the ovaries of the tick I. scapularis to acknowledge the pioneering contributions of Professor Paul Buchner (1886-1978) to research on bacterial symbionts. The type strain of R. buchneri sp. nov. is strain ISO-7(T) ( = DSM 29016(T) = ATCC VR-1814(T)). © 2015 IUMS.
Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M
2015-09-01
Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Kallini, Joseph R; Khachemoune, Amor
2017-03-01
Purpose: To describe a man with an adherent tick mimicking a melanoma, summarize the salient features of this condition, and review other cases of ticks mistaken for dermatoses. Background: Ticks are obligatory ectoparasites. Disease-causing ticks belong to two families: Ixodidae (hard ticks) and Argasidae (soft ticks). Ticks thrive by consuming blood from animal hosts, and the transfer of infected blood from one host to the next is the method by which ticks spread disease. Materials and methods: The authors describe a man who presented to their dermatology clinic in New York with an unusual black pigmented lesion on the right zygomatic region of his face. He was worried about how rapidly the lesion had developed and the tingling of the skin surrounding it. Since the patient had a history of nonmelanoma skin cancer, he was concerned that the lesion was a melanoma. An excisional biopsy of the lesion revealed a non- Ixodes tick with a surrounding tick-bite reaction. Results: Ticks cause cutaneous manifestations through physical trauma and their salivary contents. A number of reports describe a similar phenomenon of a persistent tick being mistaken for a nodule or tumor. Management includes complete removal of a tick, either mechanically or surgically, along with the appropriate work-up for tick-borne diseases in the relevant geographic location. The decision to test for systemic disease depends on the clinical presentation of the patient and geographic location of the tick bite. Conclusion: A patient presented to the authors' dermatology clinic with a pigmented lesion suspicious for a melanoma, but the lesion was actually an adherent non- Ixodes tick. This case illustrates the importance of keeping insects and arthropods in the differential diagnosis of a sudden- and recent-onset pigmented skin lesion.
Mitra, S S; Buckley, P A; Buckley, F G; Ginsberg, H S
2010-11-01
Acquisition of ticks by bird hosts is a central process in the transmission cycles of many tick-borne zoonoses, but tick recruitment by birds has received little direct study. We documented acquisition of Ixodes scapularis Say on birds at Fire Island, NY, by removing ticks from mist-netted birds, and recording the number of ticks on birds recaptured within 4 d of release. Eight bird species acquired at least 0.8 ticks bird(-1) day(-1) during the seasonal peak for at least one age class of I. scapularis. Gray Catbirds, Eastern Towhees, Common Yellowthroats, and Northern Waterthrushes collectively accounted for 83% of all tick acquisitions; and six individuals apportioned among Black-billed Cuckoo, Gray Catbird, Eastern Towhee, and Common Yellowthroat were simultaneously infested with both larvae and nymphs. Bird species with the highest acquisition rates were generally ground foragers, whereas birds that did not acquire ticks in our samples generally foraged above the ground. Tick acquisition by birds did not differ between deciduous and coniferous forests. Among the 15 bird species with the highest recruitment rates, acquisition of nymphs was not correlated with acquisition of larvae. Tick acquisition rates by individual bird species were not correlated with the reservoir competence of those species for Lyme borreliae. However, birds with high tick acquisition rates can contribute large numbers of infected ticks, and thus help maintain the enzootic cycle, even if their levels of reservoir competence are relatively low.
The prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in SW Poland.
Kiewra, Dorota; Zaleśny, Grzegorz; Czułowska, Aleksandra
2014-01-01
Ticks constitute important vectors of human and animal pathogens. Besides the Lyme borreliosis and tick-borne encephalitis, other pathogens such as Babesia spp., Rickettsia spp., and Anaplasma phagocytophilum, are of increasing public health interest. In Poland, as in other European countries, Ixodes ricinus, the most prevalent tick species responsible for the majority of tick bites in humans, is the main vector of A. phagocytophilum. The aim of the study was to estimate the infection level of I. ricinus with A. phagocytophilum in selected districts, not previously surveyed for the presence of this agent. Sampling of questing ticks was performed in 12 forested sites, located in four districts (Legnica, Milicz, Lubań, and Oława) in SW Poland. Altogether, 792 ticks (151 females, 101 males, and 540 nymphs) representing I. ricinus were checked for the presence of A. phagocytophilum. The average infection level was 4.3%, with higher rate reported for adult ticks. The highest percentage of infected adults was observed in Milicz (17.4%) and the lowest in Oława (6.8%). The abundance of questing I. ricinus in all examined sites as well as the infection with A. phagocytophilum indicate for the first time the risk for HGA transmission in SW Poland.
Chae, Jeong-Byoung; Kang, Jun-Gu; Kim, Heung-Chul; Chong, Sung-Tae; Lee, In-Yong; Shin, Nam-Shik; Chae, Joon-Seok
2017-04-01
Tick is one of the most important arthropods in the transmission of vector-borne diseases. In this study, we investigated the abundance and species of ticks associated with swine and their habitats to assess the risk of spread of tick-borne diseases in host species, such as wild boars. Ticks were collected from 24 grazing or traditionally reared domestic pig farms and 8 habitats of wild boars in 8 provinces and 1 city in the Republic of Korea, by using the dragging and flagging methods. Ticks were also collected directly from 49 wild boars by using fine forceps. A total of 9,846 hard ticks were collected, including 4,977 Haemaphysalis longicornis , 4,313 Haemaphysalis flava , 508 Ixodes nipponensis , 1 Ixodes turdus , and 47 Amblyomma testudinarium . A total of 240 hard ticks were collected from 49 wild boars, including 109 H. flava , 84 H. longicornis , and 47 A. testudinarium . A total of 578 hard ticks were collected from areas around domestic pig farms. Only 2 hard tick species, 546 H. longicornis and 32 H. flava , were collected from these areas. A total of 9,028 hard ticks were collected from wild boars of 8 habitats, including 4,347 H. longicornis , 4,172 H. flava , 508 I. nipponensis , and 1 I. turdus . A. testudinarium was collected only from wild boars, and I. nipponensis and I. turdus were collected only from the habitats of wild boars.
Reye, Anna L; Stegniy, Valentina; Mishaeva, Nina P; Velhin, Sviataslau; Hübschen, Judith M; Ignatyev, George; Muller, Claude P
2013-01-01
Worldwide, ticks are important vectors of human and animal pathogens. Besides Lyme Borreliosis, a variety of other bacterial and protozoal tick-borne infections are of medical interest in Europe. In this study, 553 questing and feeding Ixodes ricinus (n = 327) and Dermacentor reticulatus ticks (n = 226) were analysed by PCR for Borrelia, Rickettsia, Anaplasma, Coxiella, Francisella and Babesia species. Overall, the pathogen prevalence in ticks was 30.6% for I. ricinus and 45.6% for D. reticulatus. The majority of infections were caused by members of the spotted-fever group rickettsiae (24.4%), 9.4% of ticks were positive for Borrelia burgdorferi sensu lato, with Borrelia afzelii being the most frequently detected species (40.4%). Pathogens with low prevalence rates in ticks were Anaplasma phagocytophilum (2.2%), Coxiella burnetii (0.9%), Francisella tularensis subspecies (0.7%), Bartonella henselae (0.7%), Babesia microti (0.5%) and Babesia venatorum (0.4%). On a regional level, hotspots of pathogens were identified for A. phagocytophilum (12.5-17.2%), F. tularensis ssp. (5.5%) and C. burnetii (9.1%), suggesting established zoonotic cycles of these pathogens at least at these sites. Our survey revealed a high burden of tick-borne pathogens in questing and feeding I. ricinus and D. reticulatus ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. Identified hotspots of infected ticks should be included in future surveillance studies, especially when F. tularensis ssp. and C. burnetii are involved.
Tuininga, Amy R; Miller, Jessica L; Morath, Shannon U; Daniels, Thomas J; Falco, Richard C; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C
2009-05-01
Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment.
Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa, 1959-61*
Hoogstraal, Harry; Kaiser, Makram N.; Traylor, Melvin A.; Guindy, Ezzat; Gaber, Sobhy
1963-01-01
The need for imaginative thinking and research in the epidemiology of diseases transmitted by arthropods is made manifest by new views of the longevity and host ranges of arthropod-borne viruses, as well as by other biological and medical phenomena. Among these is the intercontinental transport of ticks by migrating birds. During the fall migration periods of 1959, 1960 and 1961, 32 086 birds (comprising 72 forms) were examined for ticks in Egypt while en route from Asia and eastern Europe to tropical Africa. Of these, 40 forms, represented by 31 434 birds, were tick-infested. The bird hosts, numbering 1040 (3.31% of the tick-infested bird forms examined), bore 1761 ticks, or 1.69 ticks per host. Common ticks taken were Hyalomma m. marginatum, Haemaphysalis punctata, and Ixodes ricinus. Ixodes frontalis and Hyalomma aegyptium were less common and Haemaphysalis sulcata, H. otophila, and H. pavlovskyi were rare. The common tick species are known to be reservoirs and vectors of pathogens causing a number of human and animal diseases in Europe and Asia. Several of the bird hosts have also been incriminated as reservoirs in their summer ranges. Over 20 strains of pathogenic viruses were isolated from these birds and their ticks in Egypt in the 1961 fall migration period. The most difficult problems in investigations such as this in many parts of the world are taxonomic ones: the correct identification of bird hosts, of immature stages of ticks and of viruses. PMID:13961632
Pesquera, Cristina; Portillo, Aránzazu; Palomar, Ana M; Oteo, José A
2015-01-24
Ixodid ticks play an important role in the transmission and ecology of infectious diseases. Information about the circulation of tick-borne bacteria in ticks is lacking in Ecuador. Our aims were to investigate the tick species that parasitize Andean tapirs and cattle, and those present in the vegetation from the buffer zone of the Antisana Ecological Reserve and Cayambe-Coca National Park (Ecuador), and to investigate the presence of tick-borne bacteria. Tick species were identified based on morphologic and genetic criteria. Detection of tick-borne bacteria belonging to Rickettsia, Anaplasma, Ehrlichia and Borrelia genera was performed by PCRs. Our ticks included 91 Amblyomma multipunctum, 4 Amblyomma spp., 60 Rhipicephalus microplus, 5 Ixodes spp. and 1 Ixodes boliviensis. A potential Candidatus Rickettsia species closest to Rickettsia monacensis and Rickettsia tamurae (designated Rickettsia sp. 12G1) was detected in 3 R. microplus (3/57, 5.3%). In addition, Anaplasma spp., assigned at least to Anaplasma phagocytophilum (or closely related genotypes) and Anaplasma marginale, were found in 2 A. multipunctum (2/87, 2.3%) and 13 R. microplus (13/57, 22.8%). This is the first description of Rickettsia sp. in ticks from Ecuador, and the analyses of sequences suggest the presence of a potential novel Rickettsia species. Ecuadorian ticks from Andear tapirs, cattle and vegetation belonging to Amblyomma and Rhipicephalus genera were infected with Anaplasmataceae. Ehrlichia spp. and Borrelia burgdorferi sensu lato were not found in any ticks.
Hajduskova, Eva; Literak, Ivan; Papousek, Ivo; Costa, Francisco B; Novakova, Marketa; Labruna, Marcelo B; Zdrazilova-Dubska, Lenka
2016-04-01
A novel rickettsial sequence in the citrate synthase gltA gene indicating a novel Rickettsia species has been detected in 7 out of 4524 Ixodes ricinus ticks examined within several surveys performed in the Czech Republic from 2005 to 2009. This new Candidatus Rickettsia sp. sequence has been found in 2 nymphs feeding on wild birds (Luscinia megarhynchos and Erithacus rubecula), in a male tick from vegetation, and 4 ticks feeding on a dog (3 males, 1 female tick). Portions of the ompA, ompB, sca4, and htrA genes were not amplifiable in these samples. A maximum likelihood tree of rickettsiae based on comparisons of partial amino acid sequences of citrate synthase and nucleotide sequences of 16S rDNA genes and phylogenetic analysis revealed a basal position of the novel species in the proximity of R. bellii and R. canadensis. The novel species has been named 'Candidatus Rickettsia mendelii' after the founder of genetics, Gregor Mendel. Copyright © 2016 Elsevier GmbH. All rights reserved.
Saito, Y; Konnai, S; Yamada, S; Imamura, S; Nishikado, H; Ito, T; Onuma, M; Ohashi, K
2009-08-01
Ixodes persulcatus is the primary vector for human tick-borne diseases in Japan. A cDNA library was constructed from whole body homogenates of fed nymphs of I. persulcatus. From this library, one cDNA encoding defensin-like antimicrobial peptide was identified. The amino-acid sequence showed high similarity to those of the defensins of other ticks and arthropods. I. persulcatus defensin mRNA transcripts were detected at all life cycle stages of fed ticks and found to be predominantly expressed in the midguts of adult female ticks, but not in the salivary glands, a finding corroborated by Western blotting analysis. To investigate the function of I. persulcatus defensin, we examined its antibacterial activity by evaluation of growth of several bacterial strains in the presence of the synthetic peptide. The defensin from I. persulcatus markedly inhibited the growth of Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis and Corynebacterium renale, but not Gram-negative bacteria except Escherichia coli O157. In conclusion, these results suggest that I. persulcatus defensin may be playing a significant role in the defence against microbes from bloodmeals.
Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.
Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D
2012-09-28
Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.
USDA-ARS?s Scientific Manuscript database
Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic anim...
Røed, Knut H.; Kvie, Kjersti S.; Hasle, Gunnar; Gilbert, Lucy; Leinaas, Hans Petter
2016-01-01
Dispersal and gene flow are important mechanisms affecting the dynamics of vectors and their pathogens. Here, patterns of genetic diversity were analyzed in many North European populations of the tick, Ixodes ricinus. Population sites were selected within and between areas separated by geographical barriers in order to evaluate the importance of tick transportation by birds in producing genetic connectivity across open sea and mountain ranges. The phylogenetic analyses of the mitochondrial control region and the cytochrome b gene revealed two distinct clades with supported sub-clades, with three genetic lineages: GB and WNo associated with Great Britain and western Norway respectively, and Eu with a wider distribution across continental Europe in agreement with much lower efficiency of tick dispersal by birds than by large mammals. The results suggest different ancestry of I. ricinus colonizing Britain and the rest of northern Europe, possibly from different glacial refuges, while ticks from western Norway and continental Europe share a more recent common ancestry. Demographic history modeling suggests a period of strong increase in tick abundance coincident with progression of the European Neolithic culture, long after their post-glacial colonization of NW Europe. PMID:27907193
Fabbro, Simone Del; Nazzi, Francesco
2013-01-01
Tick-borne zoonoses are considered as emerging diseases. Tick repellents represent an effective tool for reducing the risk of tick bite and pathogens transmission. Previous work demonstrated the repellent activity of the phenylpropanoid eugenol against Ixodes ricinus; here we investigate the relationship between molecular structure and repellency in a group of substances related to that compound. We report the biological activity of 18 compounds varying for the presence/number of several moieties, including hydroxyl and methoxy groups and carbon side-chain. Each compound was tested at different doses with a bioassay designed to measure repellency against individual tick nymphs. Both vapor pressure and chemical features of the tested compounds appeared to be related to repellency. In particular, the hydroxyl and methoxy groups as well as the side-chain on the benzene ring seem to play a role. These results are discussed in light of available data on chemical perception in ticks. In the course of the study new repellent compounds were identified; the biological activity of some of them (at least as effective as the “gold standard” repellent DEET) appears to be very promising from a practical point of view. PMID:23805329
NASA Astrophysics Data System (ADS)
Valdés, James J.; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T.; Růžek, Daniel; Nuttall, Patricia A.
2016-09-01
Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.
Acarine ectoparasites of Panti Forest Reserve in Johore, Malaysia
Mariana, A; Mohd, Kulaimi B; Halimaton, I; Suhaili, ZA; Shahrul-Anuar, MS; Nor, Zalipah M; Ho, TM
2011-01-01
Objective To identify the presence of acarine ectoparasites and determine whether there is any potential public health risk in Panti Forest Reserve, Johore, Malaysia. Methods Trapping of animals and avifauna was conducted simultaneously along 5 expedition trails using 150 wire traps, 10 harp traps and 30 mist nets for 6 consecutive nights. A total of 140 animals consisting of 7 species of birds, 19 species of bats, 6 species of rodents and 1 species of tree-shrew as well as 8 myriapods were examined. Results Infestation rates of ticks, mesostigmatid mites and chiggers on animals examined were 24.3%, 28.6% and 27.9%, respectively. Infestation on bats was low (1.5%) and none occurred on birds. Majority of ticks extracted were at immature stages (78.9%). Genera of ticks on animals were Amblyomma, Dermacentor, Haemaphysalis and Ixodes. Ixodes granulatus was the only species of ticks identified from the animals. Examination of ticks under vegetation revealed 54% adults leading to identification of 3 species of ticks. A total of 7 species of mesostigmatid mites were found. 6 species were on rodent, Maxomys surifer and another one species, Laelaps nuttalli was found only on Leopoldamys sabanus. Laelaps sanguisugus was the only mesostigmatid found infesting tree-shrews. Seven genera of chiggers were identified. From this, 5 genera were on rodents, 4 genera on tree-shrews and 1 genus on a bat. Conclusions A total of 16 genera, 2 sub-genus and 14 species of acarine ectoparasites were found in this area. Findings of the survey demonstrate the presence of three spesies of acarine ectoparasites which have potential health risk i.e. Ixodes granulatus, Laelaps nuttalli and Leptotrombidium deliense. PMID:23569714
Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki
2014-01-01
Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n=70) and nymphal (n=36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America.
Abdel-Ghaffar, Fathy; Al-Quraishy, Saleh; Mehlhorn, Heinz
2015-08-01
The present study had the aim to test the repellent potential of the compound icaridin = Saltidin® against the tick species Ixodes ricinus and Ixodes persulcatus using different formulations of the compound. Tests were done on backs of impregnated human hands, on impregnated linen cloth and versus impregnated dog hair. It was found that 1. Ixodes persulcatus-the common Eastern European, Russian Ixodes species is significantly sensitive to icaridin = Saltidin® as I. ricinus protecting for the test period of 5 h. This is an important finding, since I. persulcatus is the vector of agents of the severe Eastern meningoencephalitis; 2. that this repellent compound acts similarly on both I. ricinus and I. persulcatus, when sprayed either on naked skin or on cloths; 3. that there are only slight differences in duration of the repellency when using different formulations containing icaridin = Saltidin®; 4. that icaridin = Saltidin® sprayed on dog hair has identical repellent effects like those seen on human skin and cloths; thus, this compound can also be used to protect animals such as dogs, cats, horses; and 5. that the icaridin = Saltidin® did not induce a bad sensation on skin, nor bad smells; furthermore, it was not sticky and did not leave residuals neither on clothes nor on dog's hair.
Anaplasma phagocytophilum Infection in Ixodes ricinus, Bavaria, Germany
Gilles, Jérémie; Höhle, Michael; Fingerle, Volker; Just, Frank Thomas; Pfister, Kurt
2008-01-01
Anaplasma phagocytophilum DNA was detected by real-time PCR, which targeted the msp2 gene, in 2.9% of questing Ixodes ricinus ticks (adults and nymphs; n = 2,862), collected systematically from selected locations in Bavaria, Germany, in 2006. Prevalence was significantly higher in urban public parks in Munich than in natural forests. PMID:18507918
Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan.
Uchida, Leo; Hayasaka, Daisuke; Ngwe Tun, Mya Myat; Morita, Kouichi; Muramatsu, Yasukazu; Hagiwara, Katsuro
2018-04-19
Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.
Diseases are often carried by ticks, including Rocky Mountain Spotted Fever, Colorado Tick Fever, Lyme disease, and tularemia. Less common or less frequent diseases include typhus, Q-fever, relapsing fever, viral encephalitis, hemorrhagic fever, ...
2014-01-01
Background Ixodes ricinus is a major vector for a range of microbial pathogens and the most prevalent and widely distributed tick species on the European continent, occurring in both natural and urban habitats. Nevertheless, little is known about the relative density of ticks in these two ecologically distinct habitats and the diversity of tick-borne pathogens that they carry. Methods We compared densities of questing I. ricinus nymphs and adults in urban and natural habitats in Central and Northeastern Poland, assessed the prevalence and rate of co-infection with A. phagocytophilum, Rickettsia, Ehrlichia and ‘Ca. Neoehrlichia spp.’ in ticks, and compared the diversity of tick-borne pathogens using molecular assays (PCR). Results Of the 1325 adults and nymphs, 6.2% were infected with at least one pathogen, with 4.4%, 1.7% and less than 0.5% being positive for the DNA of Rickettsia spp., A. phagocytophilum, Ehrlichia spp. and Ca. N. mikurensis, respectively. Although tick abundance was higher in natural habitats, the prevalence of the majority of pathogens was higher in urban forested areas. Conclusion We conclude that: (i) zoonotic genetic variants of A. phagocytophilum are widely distributed in the Polish tick population, (ii) although the diversity of tick borne pathogens was higher in natural habitats, zoonotic species/strains were detected only in urban forests, (iii) and we provide the first description of Ca. N. mikurensis infections in ticks in Poland. PMID:24661311
Costero, A; Grayson, M A
1996-11-01
Transmission experiments were performed with Ixodes scapularis ticks from an uninfected laboratory colony. Immature and adult ticks were exposed to Powassan (POW) viremic hamsters and rabbits, respectively. Oral infection rates for engorged larvae, nymphs and females fed on POW-infected hosts were 10%, 40%, and 57%, respectively. Transstadial transmission rates for nymphs exposed to POW virus as larvae, adults exposed as larvae, and adults exposed as nymphs, were 9.5%, 10%, and 54%, respectively. Evidence of transovarial transmission occurred when two uninfected hamsters, exposed to F2 larvae and nymphs originally exposed to POW virus in the F1 nymphal stage, seroconverted to POW virus with hemagglutination inhibition titers of 80 and 5,120, respectively; the transovarial transmission rate was 16.6%. All developmental stages were able to transmit virus orally to uninfected hosts regardless of when the ticks were originally exposed to the virus. These results suggest that I. scapularis is a competent vector of POW virus under experimental conditions.
Chmielewska-Badora, Jolanta; Cisak, Ewa; Zwoliński, Jacek; Dutkiewicz, Jacek
2003-01-01
During the period 2001-2002, 1098 Ixodes ricinus ticks were collected at forest sampling sites and the degree of their infection with Borrelia burgdorferi spirochetes was determined by means of polimerase chain reaction (PCR). The presence of Borrelia burgdorferi genetic material was noted in 69 cases (6.3%). It was confirmed that the frequency of infection of adult forms of ticks (males and females) was nearly twice as high as nymphs. The highest degree of infection was observed in females--9.5%. The degree of infection among males and nymphs was smaller--5.9% and 4.4% respectively in individual provinces. The percentage of infected females ranged from 7.9% in the Zamość Province to 13.6% in the Włodawa Province. In males, the percentage of infected ticks remained within the range from 3.1% in the Lublin Province to 13.3% in the Lubartów Province.
Genomic insights into the Ixodes scapularis tick vector of Lyme disease
Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.
2016-01-01
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261
Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.
Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R
2017-03-01
Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (<24 hours of tick attachment) were characterized by a predominance of macrophages and dendritic cells, elevated mRNA levels of macrophage chemoattractants (CCL2, CCL3, CCL4) and neutrophil chemoattractants (CXCL1, CXCL8), of the pro-inflammatory cytokine, IL-1β, and the anti-inflammatory cytokine, IL-5. In contrast, the numbers of lymphocytes and mRNA levels of lymphocyte cell markers (CD4, CD8, CD19), lymphocyte chemoattractants (CXCL9, CXCL10, CXCL11, CXCL13, CCL1, CCL22), dendritic cell chemoattractants (CCL20), and other pro- (IL-6, IL-12p40, IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-4, IL-10, TGF-β) did not differ from normal skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gassner, Fedor; Verbaarschot, Patrick; Smallegange, Renate C; Spitzen, Jeroen; Van Wieren, Sipke E; Takken, Willem
2008-12-01
The effect of introduced large herbivores on the abundance of Ixodes ricinus ticks and their Borrelia infections was studied in a natural woodland in The Netherlands. Oak and pine plots, either ungrazed or grazed by cattle, were selected. Ticks were collected weekly by blanket dragging. Borrelia infections were determined by PCR and restriction fragment length polymorphism. Rodent densities were estimated using mark-release-recapture methods. On occasion, the cattle were inspected for tick infestations. Meteorological data were recorded for each habitat. Significantly more ticks were collected in the ungrazed woodland than in the grazed woodland. The ungrazed oak habitat had higher tick densities than the pine habitat, while in the grazed habitats, tick densities were similar. Borrelia infection rates ranged from zero in larvae to 26% in nymphs to 33% in adult ticks, and B. afzelii, B. burgdorferi sensu stricto, B. garinii, and B. valaisiana were the species involved. Coinfections were found in five ticks. There was no effect of the presence of cattle on Borrelia infections in the ticks. In the ungrazed area, Borrelia infections in nymphs were significantly higher in the oak habitat than in the pine habitat. More mice were captured in the ungrazed area, and these had a significantly higher tick burden than mice from the grazed area. Tick burden on cattle was low. The results suggest that grazing has a negative effect on small rodents as well as on ticks but not on Borrelia infections. Implications of these results for management of woodland reserves and risk of Lyme disease are discussed.
Gassner, Fedor; Verbaarschot, Patrick; Smallegange, Renate C.; Spitzen, Jeroen; Van Wieren, Sipke E.; Takken, Willem
2008-01-01
The effect of introduced large herbivores on the abundance of Ixodes ricinus ticks and their Borrelia infections was studied in a natural woodland in The Netherlands. Oak and pine plots, either ungrazed or grazed by cattle, were selected. Ticks were collected weekly by blanket dragging. Borrelia infections were determined by PCR and restriction fragment length polymorphism. Rodent densities were estimated using mark-release-recapture methods. On occasion, the cattle were inspected for tick infestations. Meteorological data were recorded for each habitat. Significantly more ticks were collected in the ungrazed woodland than in the grazed woodland. The ungrazed oak habitat had higher tick densities than the pine habitat, while in the grazed habitats, tick densities were similar. Borrelia infection rates ranged from zero in larvae to 26% in nymphs to 33% in adult ticks, and B. afzelii, B. burgdorferi sensu stricto, B. garinii, and B. valaisiana were the species involved. Coinfections were found in five ticks. There was no effect of the presence of cattle on Borrelia infections in the ticks. In the ungrazed area, Borrelia infections in nymphs were significantly higher in the oak habitat than in the pine habitat. More mice were captured in the ungrazed area, and these had a significantly higher tick burden than mice from the grazed area. Tick burden on cattle was low. The results suggest that grazing has a negative effect on small rodents as well as on ticks but not on Borrelia infections. Implications of these results for management of woodland reserves and risk of Lyme disease are discussed. PMID:18836006
Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle
2012-01-01
In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688
Daniel, M; Rudenko, N; Golovchenko, M; Danielová, V; Fialová, A; Kříž, B; Malý, M
Three years long research study (2011-2013) on population density of Ixodes ricinus and the infection rate of the pathogens that they transmit was conducted in four topographically distant areas in the Czech Republic. In the previous decade (2001-2010) thirteen loci with increased incidence of tick borne encephalitis cases were defined, suggesting the permanent interaction of human population with ticks and indicating the landmarks for study of the presence of other tick borne pathogens. The work program included the identification of existing spectrum of spirochetes from Borrelia burgdorferi sensu lato complex and the conditions of their occurrence and distribution. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the tick questing activity. Collected adult ticks (1369 males and 1404 females) were individually screened for B. burgdorferi s. l. spirochets. Spirochetes from B. burgdorferi s.l. complex were detected in all 13 studies sites in all altitudes from 280 to 1030 meters a. s. l. The total rate of infection was determined as 11.4% (males 10.4%, females 12.4%) with range limits from 1.4% (Ústí nad Labem in 2011) to 19.7% (South Bohemian Region, 2012).Genospecies were detected in various proportions and in different combinations: Borrelia afzelii, B. garinii, B. burgdorferi s. s., B. bavariensis, B. bissettii, B. valaisiana, B. spielmanii and B. lusitaniae. The three-year observation justifies the assumption that the regional differences in infectivity of I. ricinus are based on the character of the local biocenosis of the respective region. The dynamics of its seasonal changes, conditioned by climatic factors, determines the annual differences. Three of the medically most important Borrelia species formed a core group among all detected genospecies. B. afzelii was a dominated one (115 detections), followed by B. garinii (100) and by B. burgdorferi s.s. (19). Other genospecies were detected sporadically. However, the detection of B. bissettii should be emphasized due to the recently proven pathogenic effects of this genospecies and yet little-known sporadic expansion in the Czech Republic. The medical importance and distribution of other sporadically occurred genospecies is also discussed.Key words: Ixodes ricinus - Borrelia afzelii - B. garinii - B. burgdorferi s. s. - B. bavariensis - B. valaisiana - B. spielmanii - B. lusitaniae - B. bissettii - distribution - altitude - season - medical importance.
Dumpis, U; Crook, D; Oksi, J
1999-04-01
Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.
Shtannikov, A V; Perovskaia, O N; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Sergeeva, E E; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N
2009-01-01
By using the guanidine-isothiocyanate test, the authors isolated a summary RNA preparation from Ixodes persulcatus salivary gland extracts. Activity products of the genes responsible for the expression of some salivary proteins were first identified using the RT-PCR. It has been shown that, firstly, I. persulcatus synthesizes at least 3 transcripts homologous to the respective salivary components of the related species I. scapularis, the translation product of which is likely to be immunodominant antigens; secondly, the number of each of these transcripts, as in I. scapularis, depends on the stage of tick feeding. The changes in the expression of each transcript are specific: monotonously increasing changes in Salp 17 and cyclic ones in Salp 16, and synthesis, only when the ticks are fully ingested, in Salp 25.
Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.
Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute
2016-07-01
The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed. Copyright © 2016 Elsevier GmbH. All rights reserved.
Soleng, A; Edgar, K S; Paulsen, K M; Pedersen, B N; Okbaldet, Y B; Skjetne, I E B; Gurung, D; Vikse, R; Andreassen, Å K
2018-01-01
This study investigated the geographical distribution of Ixodes ricinus and prevalence of the tick-borne encephalitis virus (TBEV) in northern Norway. Flagging for questing I. ricinus ticks was performed in areas ranging from Vikna in Nord-Trøndelag County, located 190km south of the Arctic Circle (66.3°N), to Steigen in Nordland County, located 155km north of the Arctic Circle. We found that ticks were abundant in both Vikna (64.5°N) and Brønnøy (65.1°N). Only a few ticks were found at locations ∼66°N, and no ticks were found at several locations up to 67.5°N. Real-time PCR (RT-PCR) analyses of the collected ticks (nymphs and adults) for the presence of TBEV revealed a low prevalence (0.1%) of TBEV among the nymphs collected in Vikna, while a prevalence of 0% to 3% was found among nymphs collected at five locations in Brønnøy. Adult ticks collected in Vikna and Brønnøy had higher rates of TBEV infection (8.6% and 0%-9.0%, respectively) than the nymphs. No evidence of TBEV was found in the few ticks collected further north of Brønnøy. This is the first report of TBEV being detected at locations up to 65.1°N. It remains to be verified whether viable populations of I. ricinus exist at locations north of 66°N. Future studies are warranted to increase our knowledge concerning tick distribution, tick abundance, and tick-borne pathogens in northern Norway. Copyright © 2017 Elsevier GmbH. All rights reserved.
Yun, Seok-Min; Lee, Ye-Ji; Choi, WooYoung; Kim, Heung-Chul; Chong, Sung-Tae; Chang, Kyu-Sik; Coburn, Jordan M; Klein, Terry A; Lee, Won-Ja
2016-07-01
Ticks play an important role in transmission of arboviruses responsible for emerging infectious diseases, and have a significant impact on human, veterinary, and wildlife health. In the Republic of Korea (ROK), little is known about information regarding the presence of tick-borne viruses and their vectors. A total of 21,158 ticks belonging to 3 genera and 6 species collected at 6 provinces and 4 metropolitan areas in the ROK from March to October 2014 were assayed for selected tick-borne pathogens. Haemaphysalis longicornis (n=17,570) was the most numerously collected, followed by Haemaphysalis flava (n=3317), Ixodes nipponensis (n=249), Amblyomma testudinarium (n=11), Haemaphysalis phasiana (n=8), and Ixodes turdus (n=3). Ticks were pooled (adults 1-5, nymphs 1-30, and larvae 1-50) and tested by one-step reverse transcription polymerase chain reaction (RT-PCR) or nested RT-PCR for the detection of severe fever with thrombocytopenia virus (SFTSV), tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), and Langat virus (LGTV). The overall maximum likelihood estimation (MLE) [estimated numbers of viral RNA positive ticks/1000 ticks] for SFTSV and TBEV was 0.95 and 0.43, respectively, while, all pools were negative for POWV, OHFV, and LGTV. The purpose of this study was to determine the prevalence of SFTSV, TBEV, POWV, OHFV, and LGTV in ixodid ticks collected from vegetation in the ROK to aid our understanding of the epidemiology of tick-borne viral diseases. Results from this study emphasize the need for continuous tick-based arbovirus surveillance to monitor the emergence of tick-borne diseases in the ROK. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Klaus, Christine; Gethmann, Jörn; Hoffmann, Bernd; Ziegler, Ute; Heller, Martin; Beer, Martin
2016-07-01
The importance of ticks and tick-borne pathogens for human and animal health has been increasing over the past decades. For their transportation and dissemination, birds may play a more important role than wingless hosts. In this study, tick infestation of birds in Germany was examined. Eight hundred ninety-two captured birds were infested with ticks and belonged to 48 different species, of which blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were most strongly infested. Ground feeders were more strongly infested than non-ground feeders, sedentary birds more strongly than migratory birds, and short-distance migratory birds more strongly than long-distance migratory birds. Mean tick infestation per bird ranged between 2 (long-distance migratory bird) and 4.7 (sedentary bird), in some single cases up to 55 ticks per bird were found. With the exception of three nymphs of Haemaphysalis spp., all ticks belonged to Ixodes spp., the most frequently detected tick species was Ixodes ricinus. Birds were mostly infested by nymphs (65.1 %), followed by larvae (32.96 %). Additionally, ticks collected from birds were examined for several pathogens: Tick-borne encephalitis virus (TBEV) and Sindbisvirus with real-time RT-PCR, Flaviviruses, Simbuviruses and Lyssaviruses with broad-range standard RT-PCR-assays, and Borrelia spp. with a Pan-Borrelia real-time PCR. Interestingly, no viral pathogens could be detected, but Borrelia spp. positive ticks were collected from 76 birds. Borrelia (B.) garinii, B. valaisiaina, B. burgdorferi s.s. and B. afzelii were determined. The screening of ticks and birds for viral pathogens with broad range PCR-assays was tested and the use as an "early warning system" is discussed.
Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland.
Lommano, Elena; Dvořák, Charles; Vallotton, Laurent; Jenni, Lukas; Gern, Lise
2014-10-01
From 2007 to 2010, 4558 migrating and breeding birds of 71 species were caught and examined for ticks in Switzerland. A total of 1205 specimens were collected; all were Ixodes ricinus ticks except one Ixodes frontalis female, which was found on a common chaffinch (Fringilla coelebs) for the first time in Switzerland. Each tick was analysed individually for the presence of Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum and tick-borne encephalitis virus (TBEV). Altogether, 11.4% of birds (22 species) were infested by ticks and 39.8% of them (15 species) were carrying infected ticks. Bird species belonging to the genus Turdus were the most frequently infested with ticks and they were also carrying the most frequently infected ticks. Each tick-borne pathogen for which we tested was identified within the sample of bird-feeding ticks: Borrelia spp. (19.5%) and Rickettsia helvetica (10.5%) were predominantly detected whereas A. phagocytophilum (2%), Rickettsia monacensis (0.4%) and TBEV (0.2%) were only sporadically detected. Among Borrelia infections, B. garinii and B. valaisiana were largely predominant followed by B. afzelii, B. bavariensis, B. miyamotoi and B. burgdorferi ss. Interestingly, Candidatus Neoehrlichia mikurensis was identified in a few ticks (3.3%), mainly from chaffinches. Our study emphasizes the role of birds in the natural cycle of tick-borne pathogens that are of human medical and veterinary relevance in Europe. According to infection detected in larvae feeding on birds we implicate the common blackbird (Turdus merula) and the tree pipit (Anthus trivialis) as reservoir hosts for Borrelia spp., Rickettsia spp. and A. phagocytophilum. Copyright © 2014 Elsevier GmbH. All rights reserved.
Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission.
Hermance, Meghan E; Santos, Rodrigo I; Kelly, Brent C; Valbuena, Gustavo; Thangamani, Saravanan
2016-01-01
Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.
2012-01-01
Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528
Tsuji, Masayoshi; Qiang, Wei; Nakao, Minoru; Hirata, Haruyuki; Ishihara, Chiaki
2012-01-01
The species Babesia microti, commonly found in rodents, demonstrates a high degree of genetic diversity. Three lineages, U.S., Kobe, and Hobetsu, are known to have zoonotic potential, but their tick vector(s) in Japan remains to be elucidated. We conducted a field investigation at Nemuro on Hokkaido Island and at Sumoto on Awaji Island, where up to two of the three lineages occur with similar frequencies in reservoirs. By flagging vegetation at these spots and surrounding areas, 4,010 ticks, comprising six species, were collected. A nested PCR that detects the 18S rRNA gene of Babesia species revealed that Ixodes ovatus and I. persulcatus alone were positive. Lineage-specific PCR for rRNA-positive samples demonstrated that I. ovatus and I. persulcatus carried, respectively, the Hobetsu and U.S. parasites. No Kobe-specific DNA was detected. Infected I. ovatus ticks were found at multiple sites, including Nemuro and Sumoto, with minimum infection rates (MIR) of ∼12.3%. However, all I. persulcatus ticks collected within the same regions, a total of 535, were negative for the Hobetsu lineage, indicating that I. ovatus, but not I. persulcatus, was the vector for the lineage. At Nemuro, U.S. lineage was detected in 2 of 139 adult I. persulcatus ticks (MIR, 1.4%), for the first time, while 48 of I. ovatus ticks were negative for that lineage. Laboratory experiments confirmed the transmission of Hobetsu and U.S. parasites to hamsters via I. ovatus and I. persulcatus, respectively. Differences in vector capacity shown by MIRs at Nemuro, where the two species were equally likely to acquire either lineage of parasite, may explain the difference in distribution of Hobetsu throughout Japan and U.S. taxa in Nemuro. These findings are of importance in the assessment of the regional risk for babesiosis in humans. PMID:22389378
Tuininga, Amy R.; Miller, Jessica L.; Morath, Shannon U.; Daniels, Thomas J.; Falco, Richard C.; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C.
2009-01-01
Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment. PMID:19496427
USDA-ARS?s Scientific Manuscript database
Cattle fever ticks (CFT), vectors of bovine babesiosis and anaplasmosis, were eradicated from the United States by 1943, but are frequently reintroduced from neighboring border states of Mexico via stray cattle and wildlife hosts including white-tailed deer (Odocoileus virginianus) (WTD) and nilgai ...
Lyme disease: a selective medium for isolation of the suspected etiological agent, a spirochete.
Johnson, S E; Klein, G C; Schmid, G P; Bowen, G S; Feeley, J C; Schulze, T
1984-01-01
A simple procedure with a new selective culture medium for the isolation of the suspected etiological agent of Lyme disease from ticks is described. Live ticks (Ixodes dammini) were ground with a mortar and pestle, and the suspensions were inoculated into a selective and nonselective medium. The selective medium, which contained kanamycin and 5-fluorouracil, yielded positive spirochete cultures from 100% of the pooled ticks and from 79% of the single tick specimens. The isolation rate for the nonselective medium was 0% from the tick pools and 58% from the single tick specimens. PMID:6361065
Forecasting next season's Ixodes ricinus nymphal density: the example of southern Germany 2018.
Brugger, Katharina; Walter, Melanie; Chitimia-Dobler, Lidia; Dobler, Gerhard; Rubel, Franz
2018-05-30
The castor bean tick, Ixodes ricinus (L.) (Ixodida: Ixodidae), is the principal vector of pathogens causing tick-borne encephalitis or Lyme borreliosis in Europe. It is therefore of general interest to make an estimate of the density of I. ricinus for the whole year at the beginning of the tick season. There are two necessary conditions for making a successful prediction: a long homogeneous time series of observed tick density and a clear biological relationship between environmental predictors and tick density. A 9-year time series covering the period 2009-2017 of nymphal I. ricinus flagged at monthly intervals in southern Germany has been used. With the hypothesis that I. ricinus density is triggered by the fructification of the European beech 2 years before, the mean annual temperature of the previous year, and the current mean winter temperature (December-February), a forecast of the annual nymphal tick density has been made. Therefore, a Poisson regression model was generated resulting in an explained variance of 93.4% and an error of [Formula: see text] ticks per [Formula: see text] (annual [Formula: see text] collected ticks/[Formula: see text]). An independent verification of the forecast for the year 2017 resulted in 187 predicted versus 180 observed nymphs per [Formula: see text]. For the year 2018 a relatively high number of 443 questing I. ricinus nymphs per [Formula: see text] is forecasted, i.e., a "good" tick year.
Genchi, Marco; Prati, Paola; Vicari, Nadia; Manfredini, Andrea; Sacchi, Luciano; Clementi, Emanuela; Bandi, Claudio; Epis, Sara; Fabbi, Massimo
2015-01-01
Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view.
Yang, Xiuli; Smith, Alexis A; Williams, Mark S; Pal, Utpal
2014-05-02
Ixodes scapularis ticks transmit a wide array of human and animal pathogens including Borrelia burgdorferi; however, how tick immune components influence the persistence of invading pathogens remains unknown. As originally demonstrated in Caenorhabditis elegans and later in Anopheles gambiae, we show here that an acellular gut barrier, resulting from the tyrosine cross-linking of the extracellular matrix, also exists in I. scapularis ticks. This dityrosine network (DTN) is dependent upon a dual oxidase (Duox), which is a member of the NADPH oxidase family. The Ixodes genome encodes for a single Duox and at least 16 potential peroxidase proteins, one of which, annotated as ISCW017368, together with Duox has been found to be indispensible for DTN formation. This barrier influences pathogen survival in the gut, as an impaired DTN in Doux knockdown or in specific peroxidase knockdown ticks, results in reduced levels of B. burgdorferi persistence within ticks. Absence of a complete DTN formation in knockdown ticks leads to the activation of specific tick innate immune pathway genes that potentially resulted in the reduction of spirochete levels. Together, these results highlighted the evolution of the DTN in a diverse set of arthropod vectors, including ticks, and its role in protecting invading pathogens like B. burgdorferi. Further understanding of the molecular basis of tick innate immune responses, vector-pathogen interaction, and their contributions in microbial persistence may help the development of new targets for disrupting the pathogen life cycle.
Lindgren, E; Tälleklint, L; Polfeldt, T
2000-01-01
We examined whether a reported northward expansion of the geographic distribution limit of the disease-transmitting tick Ixodes ricinus and an increased tick density between the early 1980s and mid-1990s in Sweden was related to climatic changes. The annual number of days with minimum temperatures above vital bioclimatic thresholds for the tick's life-cycle dynamics were related to tick density in both the early 1980s and the mid-1990s in 20 districts in central and northern Sweden. The winters were markedly milder in all of the study areas in the 1990s as compared to the 1980s. Our results indicate that the reported northern shift in the distribution limit of ticks is related to fewer days during the winter seasons with low minimum temperatures, i.e., below -12 degrees C. At high latitudes, low winter temperatures had the clearest impact on tick distribution. Further south, a combination of mild winters (fewer days with minimum temperatures below -7 degrees C) and extended spring and autumn seasons (more days with minimum temperatures from 5 to 8 degrees C) was related to increases in tick density. We conclude that the relatively mild climate of the 1990s in Sweden is probably one of the primary reasons for the observed increase of density and geographic range of I. ricinus ticks. Images Figure 1 Figure 2 Figure 3 PMID:10656851
Doggett, J. Stone; Kohlhepp, Sue; Gresbrink, Robert; Metz, Paul; Gleaves, Curt; Gilbert, David
2008-01-01
The incidence of Lyme disease in Oregon is calculated from cases reported to the Oregon State Health Division. We reviewed the exposure history of reported cases of Lyme disease and performed field surveys for infected Ixodes pacificus ticks. The incidence of Lyme disease correlated with the distribution of infected I. pacificus ticks. PMID:18448697
... Lyme disease organism, Borrelia burgdorferi Deer ticks Ticks Lyme disease - Borrelia burgdorferi organism Tick imbedded in the skin Antibodies ... Saunders; 2013:745-747. Steere AC. Lyme disease (Lyme borreliosis) due to Borrelia burgdorferi . In: Bennett JE, Dolin R, Blaser MJ, ...
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K J; Jordan, R A; Schulze, T L; Griffith, K S; Mead, P S
2016-08-01
White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. © 2015 Blackwell Verlag GmbH.
Will Culling White-Tailed Deer Prevent Lyme Disease?
Kugeler, K. J.; Jordan, R. A.; Schulze, T. L.; Griffith, K. S.; Mead, P. S.
2015-01-01
Summary White-tailed deer play an important role in the ecology of Lyme disease. In the United States, where the incidence and geographic range of Lyme disease continue to increase, reduction of white-tailed deer populations has been proposed as a means of preventing human illness. The effectiveness of this politically sensitive prevention method is poorly understood. We summarize and evaluate available evidence regarding the effect of deer reduction on vector tick abundance and human disease incidence. Elimination of deer from islands and other isolated settings can have a substantial impact on the reproduction of blacklegged ticks, while reduction short of complete elimination has yielded mixed results. To date, most studies have been conducted in ecologic situations that are not representative to the vast majority of areas with high human Lyme disease risk. Robust evidence linking deer control to reduced human Lyme disease risk is lacking. Currently, there is insufficient evidence to recommend deer population reduction as a Lyme disease prevention measure, except in specific ecologic circumstances. PMID:26684932
Assessment of Polymicrobial Infections in Ticks in New York State
Tokarz, Rafal; Jain, Komal; Bennett, Ashlee; Briese, Thomas
2010-01-01
Abstract Ixodes scapularis ticks are clinically important hematophagous vectors. A single tick bite can lead to a polymicrobial infection. We determined the prevalence of polymicrobial infection with Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti, Borrelia miyamotoi, and Powassan virus in 286 adult ticks from the two counties in New York State where Lyme disease is endemic, utilizing a MassTag multiplex polymerase chain reaction assay. Seventy-one percent of the ticks harbored at least one organism; 30% had a polymicrobial infection. Infections with three microbes were detected in 5% of the ticks. One tick was infected with four organisms. Our results show that coinfection is a frequent occurrence in ticks in the two counties surveyed. PMID:19725770
Regional Disease Vector Ecology Profile: The Middle East
1999-10-01
meningoencephalitis, or diphasic milk disease. Human disease of the Far Eastern subtype is usually clinically more severe in the acute phase and...bites of infected ticks or by crushing infected ticks on abraded skin. Infection can also be acquired from the consumption of raw milk or...unpasteurized milk products, usually from goats. Natural infections have been recorded in 16 species of ixodid ticks. Ixodes ricinus is the primary vector
NASA Astrophysics Data System (ADS)
Lah, Ernieenor Faraliana Che; Yaakop, Salmah; Ahamad, Mariana; George, Ernna; Nor, Shukor Md
2014-09-01
Identification of a local species of tick, Ixodes granulatus from the family Ixodidae is essential because it has potential to be vector for spotted fever group (SFG) rickettsia and tick thypus. The aim of this study is to portray the relationships among several populations of I. granulatus collected from different species of animal hosts and localities in Peninsular Malaysia. Polymerase Chain Reaction was conducted by amplifying mitochondrial DNA marker, namely cytochrome oxidase subunit I (COI) sequences from 15 individual ticks that attached to five different hosts caught from three different localities. Confirmation of the species identity was accomplished using BLAST program. Neighbor-joining (NJ) and Maximum Parsimony (MP) tree based on COI sequences were constructed by using PAUP 4.0b10 to identify the relationship among species. The result of this study showed a high genetic heterogeneity between I. granulatus and other species of the same genus (7.2-23.7%). Furthermore, a low intraspecific variation was observed among the species of I. granulatus collected from different localities (0-3.7%). This study produced the first establishment of molecular marker for clarifying genetic species variation and diversity of local I. granulatus tick which contribute to the control of tick-borne infections.
Eisen, Lars; Rose, Dominic; Prose, Robert; Breuner, Nicole E; Dolan, Marc C; Thompson, Karen; Connally, Neeta
2017-10-01
Summer-weight clothing articles impregnated with permethrin are available as a personal protective measure against human-biting ticks in the United States. However, very few studies have addressed the impact of contact with summer-weight permethrin-treated textiles on tick vigor and behavior. Our aim was to generate new knowledge of how permethrin-treated textiles impact nymphal Ixodes scapularis ticks, the primary vectors in the eastern United States of the causative agents of Lyme disease, human anaplasmosis, and human babesiosis. We developed a series of bioassays designed to: (i) clarify whether permethrin-treated textiles impact ticks through non-contact spatial repellency or contact irritancy; (ii) evaluate the ability of ticks to remain in contact with vertically oriented permethrin-treated textiles, mimicking contact with treated clothing on arms or legs; and (iii) determine the impact of timed exposure to permethrin-treated textiles on the ability of ticks to move and orient toward a human finger stimulus, thus demonstrating normal behavior. Our results indicate that permethrin-treated textiles provide minimal non-contact spatial repellency but strong contact irritancy against ticks, manifesting as a "hot-foot" effect and resulting in ticks actively dislodging from contact with vertically oriented treated textile. Preliminary data suggest that the contact irritancy hot-foot response may be weaker for field-collected nymphs as compared with laboratory-reared nymphs placed upon permethrin-treated textile. We also demonstrate that contact with permethrin-treated textiles negatively impacts the vigor and behavior of nymphal ticks for >24h, with outcomes ranging from complete lack of movement to impaired movement and unwillingness of ticks displaying normal movement to ascend onto a human finger. The protective effect of summer-weight permethrin-treated clothing against tick bites merits further study. Published by Elsevier GmbH.
A Preliminary Investigation on Ticks (Acari: Ixodidae) Infesting Birds in Kızılırmak Delta, Turkey.
Keskin, Adem; Erciyas-Yavuz, Kiraz
2016-01-01
Ticks are mandatory blood-feeding ectoparasites of mammals, birds, reptiles, and even amphibians. Turkey has a rich bird fauna and is located on the main migration route for many birds. However, information on ticks infesting birds is very limited. In the present study, we aimed to determine ticks infesting birds in Kızılırmak Delta, Turkey. In 2014 autumn bird migration season, a total of 7,452 birds belonging to 79 species, 52 genera, 35 families, and 14 orders were examined for tick infestation. In total, 287 (234 larvae, 47 nymphs, 6♀) ticks were collected from 54 passerine birds (prevalence = 0.72%) belonging to 12 species. Ticks were identified as Amblyomma sp., Dermacentor marginatus (Sulzer), Haemaphysalis concinna Koch, Haemaphysalis punctata Canestrini and Fanzago, Hyalomma sp., Ixodes frontalis (Panzer), and Ixodes ricinus (L). The most common tick species were I. frontalis (223 larvae, 23 nymphs, 6♀) followed by I. ricinus (3 larvae, 12 nymphs) and H. concinna (4 larvae, 6 nymphs). Based on our results, it can be said that Erithacus rubecula (L.) is the main host of immature I. frontalis, whereas Turdus merula L. is the most important carrier of immature stages of some ticks in Kızılırmak Delta, Turkey. To the best of our knowledge, most of the tick-host associations found in this study have never been documented in the literature. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stańczak, Joanna
2006-10-01
Ixodes ricinus, the most commonly observed tick species in Poland, is known vector of microorganisms pathogenic for humans as TBE virus, Borrelia burgdorferi s.1., Anaplasma phagocytophilum and Babesia sp. in this country. Our study aimed to find out whether this tick can also transmit also rickettsiae of the spotted fever group (SFG). DNA extracts from 560 ticks (28 females, 34 males, and 488 nymphs) collected in different wooded areas in northern Poland were examined by PCR for the detection of Rickettsia sp., using a primer set RpCS.877p and RpCS.1258n designated to amplify a 381-bp fragment of gltA gene. A total of 2.9% ticks was found to be positive. The percentage of infected females and males was comparable (10.5% and 11.8%, respectively) and 6.6-7.6 times higher than in nymphs (1.6%). Sequences of four PCR-derived DNA fragments (acc. no. DQ672603) demonstrated 99% similarity with the sequence of Rickettsia helvetica deposited in GenBank. The results obtained suggest the possible role of I. ricinus as a source of a microorganism, which recently has been identified as an agent of human rickettsioses in Europe.
Ixodes ricinus parasitism of birds increases at higher winter temperatures.
Furness, Robert W; Furness, Euan N
2018-06-01
Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993-1994 to 2016-2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long-term average in most years in the last two decades, and this is likely to increase risk of tick-borne disease. © 2018 The Society for Vector Ecology.
Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia.
Klubal, Radek; Kopecky, Jan; Nesvorna, Marta; Sparagano, Olivier A E; Thomayerova, Jana; Hubert, Jan
2016-01-01
Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1-7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71% of cloned sequences), followed by Diplorickettsia (13%), Spiroplasma (3%), Rickettsia (3%), Pasteurella (3%), Morganella (3%), Pseudomonas (2%), Bacillus (1%), Methylobacterium (1%) and Phyllobacterium (1%). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20% of the 142 samples), Rickettsia (12%), Spiroplasma (5%), Diplorickettsia (5%) and Anaplasma (2%). In total, 68% of I. ricinus samples (97/142) contained detectable bacteria and 13% contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.
Multi-criteria Decision Analysis to Model Ixodes ricinus Habitat Suitability.
Rousseau, Raphaël; McGrath, Guy; McMahon, Barry J; Vanwambeke, Sophie O
2017-09-01
Tick-borne diseases present a major threat to both human and livestock health throughout Europe. The risk of infection is directly related to the presence of its vector. Thereby it is important to know their distribution, which is strongly associated with environmental factors: the presence and availability of a suitable habitat, of a suitable climate and of hosts. The present study models the habitat suitability for Ixodes ricinus in Ireland, where data on tick distribution are scarce. Tick habitat suitability was estimated at a coarse scale (10 km) with a multi-criteria decision analysis (MCDA) method according to four different scenarios (depending on the variables used and on the weights granted to each of them). The western part of Ireland and the Wicklow mountains in the East were estimated to be the most suitable areas for I. ricinus in the island. There was a good level of agreement between results from the MCDA and recorded tick presence. The different scenarios did not affect the spatial outputs substantially. The current study suggests that tick habitat suitability can be mapped accurately at a coarse scale in a data-scarce context using knowledge-based methods. It can serve as a guideline for future countrywide sampling that would help to determine local risk of tick presence and refining knowledge on tick habitat suitability in Ireland.
Dobson, Andrew D M; Taylor, Jennifer L; Randolph, Sarah E
2011-06-01
The seasonal risk to humans of picking up Ixodes ricinus ticks in different habitats at 3 recreational sites in the UK was assessed. A comprehensive range of vegetation types was sampled at 3-weekly intervals for 2 years, using standard blanket-dragging complemented by woollen leggings and square 'heel flags'. Ticks were found in all vegetation types sampled, including short grass close to car parks, but highest densities were consistently found in plots with trees present. Blankets picked up the greatest number of ticks, but heel flags provided important complementary counts of the immature stages in bracken plots; they showed clearly that the decline in tick numbers on blankets in early summer was due to the seasonal growth of vegetation that lifted the blanket clear of the typical questing height, but in reality ticks remained abundant through the summer. Leggings picked up only 11% of the total nymphs and 22% of total adults counted, but this still represented a significant hazard to humans. These results should prompt a greater awareness of the fine-scale distribution of this species in relation to human activities that determines the most likely zones of contact between humans and ticks. Risk communication may then be designed accordingly. Copyright © 2011 Elsevier GmbH. All rights reserved.
Yabsley, Michael J; Nims, Todd N; Savage, Mason Y; Durden, Lance A
2009-10-01
Ticks were collected from 38 black bears (Ursus americanus floridanus) from northwestern Florida (n = 18) from 2003 to 2005 and southern Georgia (n = 20) in 2006. Five species (Amblyomma americanum, A. maculatum, Dermacentor variabilis, Ixodes scapularis, and I. affinis) were collected from Florida bears, and 4 species (A. americanum, A. maculatum, D. variabilis, I. scapularis) were collected from bears in Georgia. Ixodes scapularis was the most frequently collected tick, followed by D. variabilis, A. americanum, A. maculatum, and I. affinis. The collection of I. affinis from a Florida bear represents a new host record. A subset of ticks was screened for pathogens and putative symbionts by polymerase chain reaction (PCR). The zoonotic tick-borne pathogens Ehrlichia chaffeensis and Rickettsia parkeri were detected in 1 of 23 (4.3%) A. americanum and 1 of 12 (8.3%) A. maculatum, respectively. The putative zoonotic pathogen "Rickettsia amblyommii" was detected in 4 (17.4%) A. americanum and 1 (8.3%) A. maculatum. Other putative symbiotic rickettsiae detected included R. bellii and R. montanensis in D. variabilis, a Rickettsia cooleyi-like sp. and Rickettsia sp. Is-1 in I. scapularis, and Rickettsia TR39-like sp. in I. scapularis and A. americanum. All ticks were PCR-negative for Anaplasma phagocytophilum, Panola Mountain Ehrlichia sp., E. ewingii, Francisella tularensis, and Borrelia spp.
Misonne, M C; Van Impe, G; Hoet, P P
1998-11-01
Borrelia burgdorferi sensu lato (s.l.), the etiological agent of Lyme disease, is transmitted by the bite of Ixodes ricinus. Four hundred eighty-nine ticks, collected in four locations of a region of southern Belgium where Lyme disease is endemic, were examined for the presence of the spirochete. In a PCR test with primers that recognize a chromosomal gene of all strains, 23% of the ticks were found to be infected. The species B. burgdorferi s.l. comprises at least three pathogenic genomospecies, B. burgdorferi sensu stricto (s.s.), Borrelia garinii, and Borrelia afzelii, which could be distinguished in PCR tests with species-specific primers that correspond to distinct plasmid sequences. B. garinii was most prevalent (53% of infected ticks), followed by B. burgdorferi s.s. (38%) and B. afzelii (9%). Of the infected ticks, 40% were infected with a single species, 40% were infected with two species, and 5% were infected with all three species. For 15% of the ticks, the infecting species could not be identified. No difference in rates of prevalence was observed among the four locations, which had similar ground covers, even though they belonged to distinct biogeographic regions. A greater heterogeneity of spirochetal DNA in ticks than in cultured reference DNA was suggested by a comparison of the results of PCRs with two different sets of species-specific primer sequences.
Korotkov, Yu; Kozlova, T; Kozlovskaya, L
2015-06-01
Ixodes ricinus (Acari: Ixodidae) L. transmit a wide variety of pathogens to vertebrates including viruses, bacteria and protozoa. Understanding of the epidemiology of tick-borne infections requires basic knowledge of the regional and local factors influencing tick population dynamics. The present study describes the results of monitoring of a questing I. ricinus population, conducted over 35 years (1977-2011) in the eastern, poorly studied part of its range (Russia, Tula region). We have found that the multiannual average abundance of ticks is small and varies depending on the biotope and degree of urban transformation. Tick abundance for the first 14 years of observations (1977-1990) was at the lower limit of the sensitivity of our methods throughout the study area (0.1-0.9 specimens per 1-km transect). In the following 21 years (1991-2011), a manifold increase in abundance was observed, which reached 18.1 ± 1.8 individuals per 1-km transect in moist floodplain terraces, and 4.8 ± 0.9 in xerophylic hill woods. Long-term growth of tick abundance occurred in spite of a relatively constant abundance of small mammals and only minor fluctuations in the abundance of large wild animals. Climate and anthropogenic changes appear to be the main contributors to increased abundance of the tick. © 2015 The Royal Entomological Society.
Battaly, G R; Fish, D
1993-07-01
Abundance of birds and their tick parasites were estimated in a residential community located in Westchester County, NY, where Lyme disease is endemic. In total, 36 bird species (416 captures) were collected, of which 25 species (69%) were parasitized by ticks. Ixodes dammini Spielman, Clifford, Piesman & Corwin composed 96.4% of the 1,067 ticks found on birds. The bird species most heavily parasitized was house wren, Troglodytes aedon Vieillot (11.1 Ixodes dammini per bird). Relative density estimates of birds, using fixed circle radius counts, revealed dominance by the American robin, Turdus migratorius L. (29.3%), followed by the common grackle, Quiscalus quiscula (L.) (9.3%). Bird density estimates were combined with tick abundance data to calculate an importance value for each bird species as a host for immature I. dammini. The American robin was most important, accounting for 72.7% of all larval I dammini found on birds, followed by the common grackle (8.2%) and the house wren (5.9%). Both the American robin and house wren are reservoir competent for the Lyme disease spirochete Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner and therefore may contribute to the risk of Lyme disease for humans. During August when larvae were most prevalent, 39% of the American robins and 70% of the common grackles were observed on lawns. These species are probable contributors to nymphal I. dammini populations found on lawns.
Tang, Kun; Zuo, Shuang-yan; Li, Ying; Zheng, Yuan-chun; Huo, Qiu-bo; Yu, Ji-hong; Zhang, Yuan; Ni, Xue-bing; Yao, Nan-nan; Tan, Hong-zhuan
2012-05-01
To monitor the co-infection status of Borrelia burgdorferi sensu lato (B.b.s.l) and spotted fever group Rickettsia (SFGR) in tourist areas of Heilongjiang province. Polymerase chain reaction (PCR) was used to detect the 5S-23S rRNA intergenic spacer of B.b.s.l and ompA of SFGR in ticks, dynamically collected from tourist areas of Heilongjiang province in 2010. Amplification products from positive ticks were sequenced, and phylogenetic analysis was conducted by Mega 5.0 software package. 849 ticks were collected from two tourist points, with the dominant ticks in Tiger Mountain and Jingpo Lake were Ixodes persulcatus and Haemaphysalis concinna. Regarding the Ixodes persulcatus from Tiger Mountain, the infection rates of B.b.s.l and SFGR were 26.15% and 10.05%. The infection rate of SFGR was 13.33% in Haemaphysalis concinna and the B.b.s.l was undiscovered in the same ticks from Jingpo Lake. However, the co-infection could only be detected in Ixodes persulcatus of both tourist areas. Surveillance data showed that the major ticks were more likely to be appeared in July at Tiger Mountain and in June at Jingpo Lake. Data from the sequence analysis on B.b.s.l showed that the B.b.s.l in tourist areas could be classified into three different genotypes, other than B. garinii and B. afzelii. We first detected B. valaisiana-like group genotype in northeast of China. Results from the sequence analysis of SFGR positive products showed that the two DNA sequences of newly detected agents were completely the same as Rickettsia sp. HL-93 which was detected in Hulin and Rickettsia sp. H820 found in northeast, China. The co-infection of B.b.s.l and SFGR was detected in ticks from the tourist areas of Heilongjiang province, and data from the sequencing of specific fragment showed that various kinds of genotypes existed in this area. However; the rates of co-infections-different according to environment, time and population that contributed to the kinds of and the index of ticks existed in the surveys points, also the infection rate of the ticks was studied.
Ticks (Ixodidae) on migrating birds in Egypt, spring and fall 1962*
Hoogstraal, Harry; Traylor, Melvin A.; Gaber, Sobhy; Malakatis, George; Guindy, Ezzat; Helmy, Ibrahim
1964-01-01
Over a number of years studies have been carried out in Egypt on the transport by migrating birds of ticks that may transmit pathogens of man and animals. In continuation of these investigations 11 036 birds migrating southwards through Egypt were examined for ticks during the fall of 1962. The 881 infested birds (comprising 24 species and sub-species represented by 10 612 individuals) yielded 1442 ticks. Tick-host relationships were similar to those of previous years except that in 1962 the prevalence of infestation was almost invariably much higher than the averages for 1959-61. Five species of birds were added to the previous list of 40 infested forms. Previously unrecorded tick species taken during 1962 were Ixodes redikorzevi (a species from Asia very occasionally found in rodent burrows in Egypt), the rare Haemaphysalis inermis, and Hyalomma a. anatolicum, H. anatolicum excavatum and H. dromedarii, which may have been carried from Asia or have attached themselves to the birds at the time of netting. During the spring of 1962, altogether 1774 birds migrating northwards through Egypt were also examined. The 56 tick-infested birds (comprising 13 species represented by 867 individuals) yielded 186 ticks. As in previous years, Hyalomma marginatum rufipes was the chief species (89.25%) parasitizing spring migrants. A single specimen of Amblyomma variegatum was taken on Anthus cervinus and 19 specimens of Ixodes?sp. nov. were collected from Sylvia c. communis and Motacilla a. alba. PMID:14163959
2014-01-01
Background A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks. Methods Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced. Results Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood. Conclusions Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination. PMID:25011617
Gleim, Elizabeth R.; Conner, L. Mike; Berghaus, Roy D.; Levin, Michael L.; Zemtsova, Galina E.; Yabsley, Michael J.
2014-01-01
Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease. PMID:25375797
Gleim, Elizabeth R; Conner, L Mike; Berghaus, Roy D; Levin, Michael L; Zemtsova, Galina E; Yabsley, Michael J
2014-01-01
Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease.
Tokarevich, Nikolay K.; Tronin, Andrey A.; Blinova, Olga V.; Buzinov, Roman V.; Boltenkov, Vitaliy P.; Yurasova, Elena D.; Nurse, Jo
2011-01-01
Background The increase in tick-borne encephalitis (TBE) incidence is observed in recent decades in a number of subarctic countries. The reasons of it are widely discussed in scientific publications. The objective of this study was to understand if the climate change in Arkhangelsk Oblast (AO) situated in the north of European subarctic zone of Russia has real impact on the northward expansion of Ixodid ticks and stipulates the increase in TBE incidence. Methods This study analyzes: TBE incidence in AO and throughout Russia, the results of Ixodid ticks collecting in a number of sites in AO, and TBE virus prevalence in those ticks, the data on tick bite incidence in AO, and meteorological data on AO mean annual air temperatures and precipitations. Results It is established that in recent years TBE incidence in AO tended to increase contrary to its apparent decrease nationwide. In last 10 years, there was nearly 50-fold rise in TBE incidence in AO when compared with 1980–1989. Probably, the increase both in mean annual air temperatures and temperatures during tick active season resulted in the northward expansion of Ixodes Persulcatus, main TBE virus vector. The Ixodid ticks expansion is confirmed both by the results of ticks flagging from the surface vegetation and by the tick bite incidence in the population of AO locations earlier free from ticks. Our mathematical (correlation and regression) analysis of available data revealed a distinct correlation between TBE incidence and the growth of mean annual air temperatures in AO in 1990–2009. Conclusion Not ruling out other factors, we conclude that climate change contributed much to the TBE incidence increase in AO. PMID:22028678
Tick-borne pathogens in ticks collected from birds in Taiwan.
Kuo, Chi-Chien; Lin, Yi-Fu; Yao, Cheng-Te; Shih, Han-Chun; Chung, Lo-Hsuan; Liao, Hsien-Chun; Hsu, Yu-Cheng; Wang, Hsi-Chieh
2017-11-25
A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds in Taiwan and Southeast Asia. Moreover, some newly recorded ticks and tick-borne pathogens were found only on migratory birds, demonstrating the necessity of further surveillance on these highly mobile species.
Human Babesiosis, Maine, USA, 1995–2011
Smith, Robert P.; Borelli, Timothy J.; Missaghi, Bayan; York, Brian J.; Kessler, Robert A.; Lubelczyk, Charles B.; Lacombe, Eleanor H.; Hayes, Catherine M.; Coulter, Michael S.; Rand, Peter W.
2014-01-01
We observed an increase in the ratio of pathogenic Babesia microti to B. odocoilei in adult Ixodes scapularis ticks in Maine. Risk for babesiosis was associated with adult tick abundance, Borrelia burgdorferi infection prevalence, and Lyme disease incidence. Our findings may help track risk and increase the focus on blood supply screening. PMID:25272145
Ginsberg, H.S.; Zhioua, E.
1996-01-01
The distribution and survival of Ixodes scapularis and Amblyomma americanum were studied in deciduous and coniferous wooded habitats and in open habitats on Fire Island, New York, USA. The survival of nymphal I. scapularis in field enclosures was greater in forests than in open habitats, suggesting that greater survival contributes to the higher tick population in the woods. The nymphs of each species were more common in deciduous thickets (predominantly Aronia arbutifolia and Vaccinium corynbosum) than in coniferous woods (mostly Pinus rigida) in most but not all years. Larval I. scapularis were more common in coniferous sites in 1994, while the same ticks, as nymphs, were more common in deciduous sites in 1995. The survival of the nymphs was not consistently greater in either the deciduous or coniferous woods. Therefore, factors other than nymphal survival (e.g. larval overwintering survival and tick movement on hosts) probably influenced the relative nymph abundance in different forest types. Overall, the survival of A. americanum was far higher than that of I. scapularis.
Bagheri, Ghazaleh; Lehner, Jeremy D; Zhong, Jianmin
2017-10-01
Ixodes pacificus is a host of many bacteria including Rickettsia species phylotypes G021 and G022. As part of the overall goal of understanding interactions of phylotypes with their tick host, this study focused on molecular detection of rickettsiae in ovarian and midgut tissue of I. pacificus by fluorescent in situ hybridization (FISH), PCR, and ultrastructural analysis. Of three embedding media (Technovit 8100, Unicryl, and paraffin) tested for generating thin sections, tissues embedded in paraffin resulted in the visualization of bacteria with low autofluorescence in FISH. Digoxigenin-labeled probes were used in FISH to intensify bacterial hybridization signals using Tyramide Signal Amplification reaction. Using this technique, rickettsiae were detected in the cytoplasm of oocytes of I. pacificus. The presence of rickettsiae in the ovary and midgut was further confirmed by PCR and transmission electron microscopic analysis. Overall, the methods in this study can be used to identify locations of tick-borne bacteria in tick tissues and understand transmission routes of bacterial species in ticks. Copyright © 2017 Elsevier GmbH. All rights reserved.
El-Seedi, Hesham R; Khalil, Nasr S; Azeem, Muhammad; Taher, Eman A; Göransson, Ulf; Pålsson, Katinka; Borg-Karlson, Anna-Karin
2012-09-01
In our search for effective tick repellents from plant origin, we investigated the effect of essential oils of four medicinal and culinary plants belonging to the family Lamiaceae on nymphs of the tick Ixodes ricinus (L.). The essential oils of the dry leaves of Rosmarinus officinalis (Rosemary) (L.), Mentha spicata (Spearmint) (L.), Origanum majorana (Majoram) (L.), and Ocimum basilicum (Basil) (L.) were isolated by steam distillation and 15 microg/cm2 concentration of oils was tested against ticks in a laboratory bioassay. The oils of R. officinalis, M. spicata, and O. majorana showed strong repellency against the ticks 100, 93.2, and 84.3%, respectively, whereas O. basilicum only showed 64.5% repellency. When tested in the field, the oils of R. officinalis and M. spicata showed 68.3 and 59.4% repellency at a concentration of 6.5 microg/cm2 on the test cloths. The oils were analyzed by gas chromatography mass spectrometry and the major compounds from the most repellent oils were 1,8-cineole, camphor, linalool, 4-terpineol, borneol, and carvone.
Genchi, Marco; Prati, Paola; Vicari, Nadia; Manfredini, Andrea; Sacchi, Luciano; Clementi, Emanuela; Bandi, Claudio; Epis, Sara; Fabbi, Massimo
2015-01-01
Background Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. Objective The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. Results Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. Conclusions These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view. PMID:26244842
Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks.
Feaster, John E; Scialdone, Mark A; Todd, Robin G; Gonzalez, Yamaira I; Foster, Joseph P; Hallahan, David L
2009-07-01
The essential oil of catmint, Nepeta cataria L., contains nepetalactones, that, on hydrogenation, yield the corresponding dihydronepetalactone (DHN) diastereomers. The DHN diastereomer (4R,4aR,7S,7aS)-4,7-dimethylhexahydrocyclopenta[c]pyran-1(3H)-one, DHN 1) was evaluated as mosquito repellent, as was the mixture of diastereomers {mostly (4S,4aR,7S,7aR)-4,7-dimethylhexahydrocyclopenta[c]pyran-1(3H)-one, DHN 2} present after hydrogenation of catmint oil itself. The repellency of these materials to Aedes aegypti L. and Anopheles albimanus Wiedemann mosquitoes was tested in vitro and found to be comparable to that obtained with the well-known insect repellent active ingredient N,N-diethyl-3-methylbenzamide (DEET). DHN 1 and DHN 2 also repelled the stable fly, Stomoxys calcitrans L., in this study. DHN 1, DHN 2, and p-menthane-3,8-diol (PMD), another natural monoterpenoid repellent, gave comparable levels of repellency against An. albimanus and S. calcitrans. Laboratory testing of DHN 1 and DHN 2 using human subjects with An. albimanus mosquitoes was carried out. Both DHN 1 and DHN 2 at 10% (wt:vol) conferred complete protection from bites for significant periods of time (3.5 and 5 h, respectively), with DHN2 conferring protection statistically equivalent to DEET. The DHN 1 and DHN 2 diastereomers were also efficaceous against black-legged tick (Ixodes scapularis Say) nymphs.
Beaufays, Jérôme; Adam, Benoît; Decrem, Yves; Prévôt, Pierre-Paul; Santini, Sébastien; Brasseur, Robert; Brossard, Michel; Lins, Laurence
2008-01-01
Background During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. Methodology/Principal Findings Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivary glands of the Ixodes ricinus hard tick. A computational in-depth structural analysis confirmed that LIRs belong to the lipocalin family. These proteins were called LIR for “Lipocalin from I. ricinus” and numbered from 1 to 14 (LIR1 to LIR14). According to their percentage identity/similarity, LIR proteins may be assigned to 6 distinct phylogenetic groups. The mature proteins have calculated pM and pI varying from 21.8 kDa to 37.2 kDa and from 4.45 to 9.57 respectively. In a western blot analysis, all recombinant LIRs appeared as a series of thin bands at 50–70 kDa, suggesting extensive glycosylation, which was experimentally confirmed by treatment with N-glycosidase F. In addition, the in vivo expression analysis of LIRs in I. ricinus, examined by RT-PCR, showed homogeneous expression profiles for certain phylogenetic groups and relatively heterogeneous profiles for other groups. Finally, we demonstrated that LIR6 codes for a protein that specifically binds leukotriene B4. Conclusions/Significance This work confirms that, regarding their biochemical properties, expression profile, and sequence signature, lipocalins in Ixodes hard tick genus, and more specifically in the Ixodes ricinus species, are segregated into distinct phylogenetic groups suggesting potential distinct function. This was particularly demonstrated by the ability of LIR6 to scavenge leukotriene B4. The other LIRs did not bind any of the ligands tested, such as 5-hydroxytryptamine, ADP, norepinephrine, platelet activating factor, prostaglandins D2 and E2, and finally leukotrienes B4 and C4. PMID:19096708
Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission
Hermance, Meghan E.; Santos, Rodrigo I.; Kelly, Brent C.; Valbuena, Gustavo; Thangamani, Saravanan
2016-01-01
Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host’s skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation. PMID:27203436
Pérez, David; Kneubühler, Yvan; Rais, Olivier; Gern, Lise
2012-08-01
We compared Ixodes ricinus questing density, the infestation of rodents by immature stages, and the diversity of Borrelia burgdorferi sensu lato (sl) in questing ticks and ticks collected from rodents in two Lyme borreliosis (LB)-endemic areas in Switzerland (Portes-Rouges [PR] and Staatswald [SW]) from 2003 to 2005. There were variations in the seasonal pattern of questing tick densities among years. Questing nymphs were globally more abundant at PR than at SW, but the proportion of rodents infested by immature ticks was similar (59.4% and 61%, respectively). Questing tick activity lasted from February to November with a strong decline in June. The seasonal pattern of ticks infesting rodents was different. Ticks infested rodents without decline in summer, suggesting that the risk of being bitten by ticks remains high during the summer. Rodents from SW showed the highest infestation levels (10±21.6 for larvae and 0.54±1.65 for nymphs). The proportion of rodents infested simultaneously by larvae and nymphs (co-feeding ticks) was higher at SW (28%) than at PR (11%). Apodemus flavicollis was the species the most frequently infested by co-feeding ticks, and Myodes glareolus was the most infective rodent species as measured by xenodiagnosis. At PR, the prevalence of B. burgdorferi sl in questing ticks was higher (17.8% for nymphs and 32.4% for adults) than at SW (10.4% for nymphs and 24.8% for adults), with B. afzelii as the dominant species, but B. garinii, B. burgdorferi sensu stricto, and B. valaisiana were also detected. Rodents transmitted only B. afzelii (at PR and at SW) and B. bavariensis (at SW) to ticks, and no mixed infection by additional genospecies was observed in co-feeding ticks. This implies that co-feeding transmission does not contribute to genospecies diversity. However, persistent infections in rodents and co-feeding transmission contribute to the perpetuation of B. afzelii in nature.
Jacquet, Maxime; Margos, Gabriele; Fingerle, Volker; Voordouw, Maarten J
2016-12-16
Transmission from the vertebrate host to the arthropod vector is a critical step in the life-cycle of any vector-borne pathogen. How the probability of host-to-vector transmission changes over the duration of the infection is an important predictor of pathogen fitness. The Lyme disease pathogen Borrelia afzelii is transmitted by Ixodes ricinus ticks and establishes a chronic infection inside rodent reservoir hosts. The present study compares the temporal pattern of host-to-tick transmission between two strains of B. afzelii. Laboratory mice were experimentally infected via tick bite with one of two strains of B. afzelii: A3 and A10. Mice were repeatedly infested with pathogen-free larval Ixodes ricinus ticks over a period of 4 months. Engorged larval ticks moulted into nymphal ticks that were tested for infection with B. afzelii using qPCR. The proportion of infected nymphs was used to characterize the pattern of host-to-tick transmission over time. Both strains of B. afzelii followed a similar pattern of host-to-tick transmission. Transmission decreased from the acute to the chronic phase of the infection by 16.1 and 29.3% for strains A3 and A10, respectively. Comparison between strains found no evidence of a trade-off in transmission between the acute and chronic phase of infection. Strain A10 had higher lifetime fitness and established a consistently higher spirochete load in nymphal ticks than strain A3. Quantifying the relationship between host-to-vector transmission and the age of infection in the host is critical for estimating the lifetime fitness of vector-borne pathogens.
Benelli, Giovanni; Romano, Donato; Rocchigiani, Guido; Caselli, Alice; Mancianti, Francesca; Canale, Angelo; Stefanini, Cesare
2018-02-01
Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide. Lateralization contributes to biological fitness in many animals, conferring important functional advantages, therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. In this research, we evaluated if Ixodes ricinus (L.) (Ixodiidae) ticks have a preference in using the right or the left foreleg to climb on a host. We developed a mechatronic device moving a tuft of fox skin with fur as host-mimicking combination of cues. This engineered approach allows to display a realistic combination of both visual and olfactory host-borne stimuli, which is prolonged over the time and standardized for each replicate. In the first experiment, the mechatronic apparatus delivered host-borne cues frontally, to evaluate the leg preference during questing as response to a symmetrical stimulus. In the second experiment, host-borne cues were provided laterally, in an equal proportion to the left and to the right of the tick, to investigate if the host direction affected the questing behavior. In both experiments, the large majority of the tested ticks showed individual-level left-biased questing acts, if compared to the ticks showing right-biased ones. Furthermore, population-level left-biased questing responses were observed post-exposure to host-mimicking cues provided frontally or laterally to the tick. Overall, this is the first report on behavioral asymmetries in ticks of medical and veterinary importance. Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellents on tick questing in highly reproducible standardized conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Kolb, Philipp; Wallich, Reinhard; Nassal, Michael
2015-01-01
Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137
A Molecular Survey of Tick-Borne Pathogens from Ticks Collected in Central Queensland, Australia.
Chalada, Melissa Judith; Stenos, John; Vincent, Gemma; Barker, Dayana; Bradbury, Richard Stewart
2018-03-01
Central Queensland (CQ) is a large and isolated, low population density, remote tropical region of Australia with a varied environment. The region has a diverse fauna and several species of ticks that feed upon that fauna. This study examined 518 individual ticks: 177 Rhipicephalus sanguineus (brown dog tick), 123 Haemaphysalis bancrofti (wallaby tick), 102 Rhipicephalus australis (Australian cattle tick), 47 Amblyomma triguttatum (ornate kangaroo tick), 57 Ixodes holocyclus (paralysis tick), 9 Bothriocroton tachyglossi (CQ short-beaked echidna tick), and 3 Ornithodoros capensis (seabird soft tick). Tick midguts were pooled by common host or environment and screened for four genera of tick-borne zoonoses by PCR and sequencing. The study examined a total of 157 midgut pools of which 3 contained DNA of Coxiella burnetii, 13 Rickettsia gravesii, 1 Rickettsia felis, and 4 other Rickettsia spp. No Borrelia spp. or Babesia spp. DNA were recovered.
L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Deriabin, P G; Gitel'man, A K; Botikov, A G; Aristova, V A
2014-01-01
The complete genomes of the three tick-borne flaviviruses (genus Flavivirus, fam. Bunyaviridae) were sequenced: Povassan virus (POWV, strain LEIV-3070Prm, isolated from Haemophysalis logicornis in Primorsky Krai, Russia in 1977), Alma-Arasan virus (AAV, strain LEIV-1380Kaz, isolated from Ixodes persulcatus ticks in Kazakhstan in 1977) and Malyshevo virus (isolated from a pool of Aedes vexans nipponii mosquitoes, in the Khabarovsk Krai, Russia in 1978). It is shown that AAV and Malyshevo virus are the strains of Tick-borne encephalitis virus (TBEV) and belong to Sibirian and Far-Eastern genotypes, respectively (GenBank ID: AAV KJ744033; strain Malyshevo KJ744034). Phylogenetically AAV is closest related (94,6% nt and 98,3% aa identity) to TBEV strains, isolated in Sibiria (Vasilchenko, Aino, Chita-653, Irkutsk-12). Malyshevo virus is closest related (96,4% nt and 98,3% nt identity) to strains of TBEV, isolated in Far Eastern part of Russia (1230, Spassk-72, Primorye-89). POWV LEIV-3070Prm has 99.7% identity with the prototype strain POWV LB, isolated in Canada and 99.5% of isolates with Far-Eastern strains of POWV (Spassk-9 and Nadezdinsk-1991).
Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)
Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.
2014-01-01
Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.
The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review.
Lupi, Eleonora; Hatz, Christoph; Schlagenhauf, Patricia
2013-01-01
Travellers are confronted with a variety of vector-borne threats. Is one type of repellent effective against all biting vectors? The aim of this review is to examine the literature, up to December 31st, 2012, regarding repellent efficacy. We searched PubMed for relevant papers. Repellents of interest were DEET, Icaridin as well as other piperidine-derived products (SS220), Insect Repellent (IR) 3535 (ethyl-butylacetyl-amino-propionat, EBAAP) and plant-derived products, including Citriodora (para-menthane-3,8-diol). As vectors, we considered the mosquito species Anopheles, Aedes and Culex as well as the tick species Ixodes. We selected only studies evaluating the protective efficacy of repellents on human skin. We reviewed a total of 102 publications. Repellents were evaluated regarding complete protection time or as percentage efficacy [%] in a time interval. We found no standardized study for tick bite prevention. Regarding Aedes, DEET at concentration of 20% or more, showed the best efficacy providing up to 10 h protection. Citriodora repellency against this mosquito genus was lower compared to the other products. Also between subspecies a difference could be observed: Ae. aegypti proved more difficult to repel than Ae. Albopictus. Fewer studies have been conducted on mosquito species Anopheles and Culex. The repellency profile against Anopheles species was similar for the four principal repellents of interest, providing on average 4-10 h of protection. Culex mosquitoes are easier to repel and all four repellents provided good protection. Few studies have been conducted on the tick species Ixodes. According to our results, the longest protection against Ixodes scapularis was provided by repellents containing IR3535, while DEET and commercial products containing Icaridin or PMD showed a better response than IR3535 against Ixodes ricinus. Many plant-based repellents provide only short duration protection. Adding vanillin 5% to plant-based repellents and to DEET repellents increased the protection by about 2 h. Copyright © 2013 Elsevier Ltd. All rights reserved.
Obsomer, Valerie; Wirtgen, Marc; Linden, Annick; Claerebout, Edwin; Heyman, Paul; Heylen, Dieter; Madder, Maxime; Maris, Jo; Lebrun, Maude; Tack, Wesley; Lempereur, Laetitia; Hance, Thierry; Van Impe, Georges
2013-06-22
The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.
Vaccines and Animal Models for Arboviral Encephalitides
2003-01-01
equine encephalitis Rodents Aedes, Culex mosquitoes and other species Central and South America, southern Florida IND Western equine encephalitis Birds...former Soviet Union Licensed Louping ill Birds Britain Murray Valley encephalitis Birds Culex mosquitoes Australia, New Guinea None Powassan Rodents ...Birds Culex mosquitoes North and South America None Tick-borne encephalitis Rodents Ixodes, Dermacentor, Haemaphysalis ticks Europe, Russia, former
Spatial and Temporal Distribution of Lyme Disease Infected Ticks in the Texas-Mexico Border Region
USDA-ARS?s Scientific Manuscript database
Lyme disease (LD) is the most prevalent arthropod-borne infection in the United States, with 33,097 cases of LD reported to the Centers for Disease Control and Prevention (CDC) in 2011. The disease is transmitted to a mammalian host by Ixodes ticks infected with Borrelia burgdorferi. Efforts to unde...
Swei, A; Meentemeyer, R; Briggs, C J
2011-01-01
The abiotic and biotic factors that govern the spatial distribution of Lyme disease vectors are poorly understood. This study addressed the influence of abiotic and biotic environmental variables on Ixodes pacificus Cooley & Kohls (Acari:Ixodidae) nymphs, because it is the primary vector of Borrelia burgdorferi Johnson, Schmidt, Hyde, Steigerwaldt & Brenner in the far-western United States. Three metrics of Lyme disease risk were evaluated: the density of nymphs, the density of infected nymphs, and the nymphal infection prevalence. This study sampled randomly located plots in oak (Quercus spp.) woodland habitat in Sonoma County, CA. Each plot was drag-sampled for nymphal ticks and tested for B. burgdorferi infection. Path analysis was used to evaluate the direct and indirect relationship between topographic, forest structure and microclimatic variables on ticks. Significant negative correlations were found between maximum temperature in the dry season and the density of infected ticks in 2006 and tick density in 2007, but we did not find a significant relationship with nymphal infection prevalence in either year. Tick density and infected tick density had an indirect, positive correlation with elevation, mediated through temperature. This study found that in certain years but not others, temperature maxima in the dry season may constrain the density and density of infected I. pacificus nymphs. In other years, biotic or stochastic factors may play a more important role in determining tick density.
Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José
2015-01-01
Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. PMID:25815810
Prose, Robert; Breuner, Nicole E; Johnson, Tammi L; Eisen, Rebecca J; Eisen, Lars
2018-05-24
Clothing treated with the pyrethroid permethrin is available in the United States as consumer products to prevent tick bites. We used tick bioassays to quantify contact irritancy and toxicity of permethrin-treated clothing for three important tick vectors of human pathogens: the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae); the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae); and the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae). We first demonstrated that field-collected I. scapularis nymphs from Minnesota were as susceptible as laboratory-reared nymphs to a permethrin-treated textile. Field ticks examined in bioassays on the same day they were collected displayed contact irritancy by actively dislodging from a vertically oriented permethrin-treated textile, and a forced 1-min exposure resulted in all ticks being unable to move normally, thus posing no more than minimal risk of biting, 1 h after contact with the treated textile. Moreover, we documented lack of normal movement for laboratory-reared I. scapularis nymphs by 1 h after contact for 1 min with a wide range of permethrin-treated clothing, including garments made from cotton, synthetic materials, and blends. A comparison of the impact of a permethrin-treated textile across tick species and life stages revealed the strongest effect on I. scapularis nymphs (0% with normal movement 1 h after a 1-min exposure), followed by A. americanum nymphs (14.0%), I. scapularis females (38.0%), D. variabilis females (82.0%), and A. americanum females (98.0%). Loss of normal movement for all ticks 1 h after contact with the permethrin-treated textile required exposures of 1 min for I. scapularis nymphs, 2 min for A. americanum nymphs, and 5 min for female I. scapularis, D. variabilis, and A. americanum ticks. We conclude that use of permethrin-treated clothing shows promise to prevent bites by medically important ticks. Further research needs are discussed.
Bridging of cryptic Borrelia cycles in European songbirds.
Heylen, Dieter; Krawczyk, Aleksandra; Lopes de Carvalho, Isabel; Núncio, Maria Sofia; Sprong, Hein; Norte, Ana Cláudia
2017-05-01
The principal European vector for Borrelia burgdorferi s.l., the causative agents of Lyme disease, is the host-generalist tick Ixodes ricinus. Almost all terrestrial host-specialist ticks have been supposed not to contribute to the terrestrial Borrelia transmission cycles. Through an experiment with blackbirds, we show successful transmission by the widespread I. frontalis, an abundant bird-specialized tick that infests a broad range of songbirds. In the first phase of the experiment, we obtained Borrelia-infected I. frontalis (infection rate: 19%) and I. ricinus (17%) nymphs by exposing larvae to wild blackbirds that carried several genospecies (Borrelia turdi, B. valaisiana, B. burgdorferi s.s.). In the second phase, pathogen-free blackbirds were exposed to these infected nymphs. Both tick species were able to infect the birds, as indicated by the analysis of xenodiagnostic I. ricinus larvae which provided evidence for both co-feeding and systemic transmission (infection rates: 10%-60%). Ixodes frontalis was shown to transmit B. turdi spirochetes, while I. ricinus transmitted both B. turdi and B. valaisiana. Neither species transmitted B. burgdorferi s.s. European enzootic cycles of Borrelia between songbirds and their ornithophilic ticks do exist, with I. ricinus potentially acting as a bridging vector towards mammals, including man. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ripoche, Marion; Lindsay, Leslie Robbin; Ludwig, Antoinette; Ogden, Nicholas H; Thivierge, Karine; Leighton, Patrick A
2018-03-27
Since its detection in Canada in the early 1990s, Ixodes scapularis , the primary tick vector of Lyme disease in eastern North America, has continued to expand northward. Estimates of the tick's broad-scale distribution are useful for tracking the extent of the Lyme disease risk zone; however, tick distribution may vary widely within this zone. Here, we investigated I. scapularis nymph distribution at three spatial scales across the Lyme disease emergence zone in southern Quebec, Canada. We collected ticks and compared the nymph densities among different woodlands and different plots and transects within the same woodland. Hot spot analysis highlighted significant nymph clustering at each spatial scale. In regression models, nymph abundance was associated with litter depth, humidity, and elevation, which contribute to a suitable habitat for ticks, but also with the distance from the trail and the type of trail, which could be linked to host distribution and human disturbance. Accounting for this heterogeneous nymph distribution at a fine spatial scale could help improve Lyme disease management strategies but also help people to understand the risk variation around them and to adopt appropriate behaviors, such as staying on the trail in infested parks to limit their exposure to the vector and associated pathogens.
Magnarelli, L A; Stafford, K C; Mather, T N; Yeh, M T; Horn, K D; Dumler, J S
1995-01-01
Ixodid ticks were collected from Connecticut, Massachusetts, Missouri, Pennsylvania, Rhode Island, and British Columbia (Canada) during 1991 to 1994 to determine the prevalence of infection with hemocytic (blood cell), rickettsia-like organisms. Hemolymph obtained from these ticks was analyzed by direct and indirect fluorescent antibody (FA) staining methods with dog, horse, or human sera containing antibodies to Ehrlichia canis, Ehrlichia equi, or Rickettsia rickettsii. Of the 693 nymphal and adult Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Ixodes pacificus ticks tested with dog anti-E. canis antiserum, 209 (32.5%) contained hemocytic bacteria. The prevalence of infected ticks varied greatly with species and locale. In parallel tests of duplicate hemolymph preparations from adult I. scapularis ticks, the hemocytic organisms reacted positively with E. canis and/or E. equi antisera, including sera from persons who had granulocytic ehrlichiosis. In separate PCR analyses, DNA of the agent of human granulocytic ehrlichiosis was detected in 59 (50.0%) of 118 adult and in 1 of 2 nymphal I. scapularis ticks tested from Connecticut. There was no evidence of Ehrlichia chaffeensis DNA in these ticks. In indirect FA tests of hemolymph for spotted fever group rickettsiae, the overall prevalence of infection was less than 4%. Specificity tests of antigens and antisera used in these studies revealed no cross-reactivity between E. canis and E. equi or between any of the ehrlichial reagents and those of R. rickettsii. The geographic distribution of hemocytic microorganisms with shared antigens to Ehrlichia species or spotted fever group rickettsiae is widespread. PMID:8567911
Mariconti, Mara; Epis, Sara; Gaibani, Paolo; Dalla Valle, Claudia; Sassera, Davide; Tomao, Paola; Fabbi, Massimo; Castelli, Francesco; Marone, Piero; Sambri, Vittorio; Bazzocchi, Chiara; Bandi, Claudio
2012-11-01
Midichloria mitochondrii is an intracellular bacterium found in the hard tick Ixodes ricinus. In this arthropod, M. mitochondrii is observed in the oocytes and in other cells of the ovary, where the symbiont is present in the cell cytoplasm and inside the mitochondria. No studies have so far investigated whether M. mitochondrii is present in the salivary glands of the tick and whether it is transmitted to vertebrates during the tick blood meal. To address the above issues, we developed a recombinant antigen of M. mitochondrii (to screen human sera) and antibodies against this antigen (for the staining of the symbiont). Using these reagents we show that (i) M. mitochondrii is present in the salivary glands of I. ricinus and that (ii) seropositivity against M. mitochondrii is highly prevalent in humans parasitized by I. ricinus (58%), while it is very low in healthy individuals (1·2%). These results provide evidence that M. mitochondrii is released with the tick saliva and raise the possibility that M. mitochondrii is infectious to vertebrates. Besides this, our study indicates that M. mitochondrii should be regarded as a package of antigens inoculated into the human host during the tick bite. This implies that the immunology of the response toward the saliva of I. ricinus is to be reconsidered on the basis of potential effects of M. mitochondrii and poses the basis for the development of novel markers for investigating the exposure of humans and animals to this tick species.
Scott, John D.; Anderson, John F.; Durden, Lance A.; Smith, Morgan L.; Manord, Jodi M.; Clark, Kerry L.
2016-01-01
Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771
Scott, John D; Anderson, John F; Durden, Lance A; Smith, Morgan L; Manord, Jodi M; Clark, Kerry L
2016-01-01
Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region.
Tick infestation and prophylaxis of dogs in northeastern Germany: a prospective study.
Beck, Stephanie; Schreiber, Cécile; Schein, Eberhard; Krücken, Jürgen; Baldermann, Claudia; Pachnicke, Stefan; von Samson-Himmelstjerna, Georg; Kohn, Barbara
2014-04-01
Ticks transmit various important pathogens to humans and animals, and dogs are frequently exposed to tick infestation. The objective of this study was to examine tick infestation and the characteristics of tick prophylaxis of dogs in the Berlin/Brandenburg area. A total of 441 dogs (392 owners) was examined from March 2010 to April 2011. The dog owners participated in the study for a period of 1-13 months (10.33±2.85; median 11.00). The prevalences of a total of 1728 ticks collected from 251 (57%) of these dogs were: 46.0% Ixodes ricinus, 45.1% Dermacentor reticulatus, 8.8% Ixodes hexagonus, and 0.1% Rhipicephalus sanguineus. The ticks were 75.2% adult females and 24.4% adult males, and 0.4% were nymphs. The average prevalence of apparent infestation of tick-positive dogs was 0.78 ticks/month (median 0.38). Tick infestation was highest in October (5.9±5.8 ticks/dog) and lowest in December (1±0 tick/dog). The highest frequency of infestation was observed during May (117 dogs). The number of ticks found on dogs by owners on a single day varied from one to 70 (median 1). The scutal index indicated that more than 60% of I. ricinus and more than 40% of D. reticulatus had been removed after they had fed for more than 2 days. The heads, necks, chests, and limbs of the dogs were the most common attachment sites. Data for tick prophylaxis with substances licensed for dogs by the Medicinal Products Act (MPA) were available for 124 dogs; a total of 1195 ticks was obtained from these dogs. About two-thirds of the ticks were collected from dogs that were treated incorrectly (n=96) or were not treated (n=60). One third of the ticks were collected from dogs (n=96) that had been treated correctly. Dog-specific characteristics such as length of coat (p=0.011) and body size (p=0.040) played significant roles in tick infestation. Copyright © 2014 Elsevier GmbH. All rights reserved.
Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding
Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert
2016-01-01
Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies. PMID:26751078
Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis)
Berger, Kathryn A.; Ginsberg, Howard S.; Dugas, Katherine D.; Hamel, Lutz H.; Mather, Thomas N.
2014-01-01
Background: Lyme borreliosis (LB) is the most commonly reported vector-borne disease in north temperate regions worldwide, affecting an estimated 300,000 people annually in the United States alone. The incidence of LB is correlated with human exposure to its vector, the blacklegged tick (Ixodes scapularis). To date, attempts to model tick encounter risk based on environmental parameters have been equivocal. Previous studies have not considered (1) the differences between relative humidity (RH) in leaf litter and at weather stations, (2) the RH threshold that affects nymphal blacklegged tick survival, and (3) the time required below the threshold to induce mortality. We clarify the association between environmental moisture and tick survival by presenting a significant relationship between the total number of tick adverse moisture events (TAMEs - calculated as microclimatic periods below a RH threshold) and tick abundance each year.Methods: We used a 14-year continuous statewide tick surveillance database and corresponding weather data from Rhode Island (RI), USA, to assess the effects of TAMEs on nymphal populations of I. scapularis. These TAMEs were defined as extended periods of time (>8 h below 82% RH in leaf litter). We fit a sigmoid curve comparing weather station data to those collected by loggers placed in tick habitats to estimate RH experienced by nymphal ticks, and compiled the number of historical TAMEs during the 14-year record.Results: The total number of TAMEs in June of each year was negatively related to total seasonal nymphal tick densities, suggesting that sub-threshold humidity episodes >8 h in duration naturally lowered nymphal blacklegged tick abundance. Furthermore, TAMEs were positively related to the ratio of tick abundance early in the season when compared to late season, suggesting that lower than average tick abundance for a given year resulted from tick mortality and not from other factors.Conclusions: Our results clarify the mechanism by which environmental moisture affects blacklegged tick populations, and offers the possibility to more accurately predict tick abundance and human LB incidence. We describe a method to forecast LB risk in endemic regions and identify the predictive role of microclimatic moisture conditions on tick encounter risk.
USDA-ARS?s Scientific Manuscript database
While white-tailed deer are not reservoir hosts for the Lyme disease agent, Borrelia burgdorferi, they are the keystone host animal on which adult female blacklegged ticks engorge on blood that is essential to production of tick eggs and completion of the life cycle. This session explores current re...
USDA-ARS?s Scientific Manuscript database
Cattle fever tick, Rhipicephalus annulatus (CFT), is a hard tick native to the Mediterranean region that is invasive in the southwestern USA. The tick is known to develop on cattle and white tailed deer, and it transmits two lethal diseases, piroplasmosis and babesiosis. Extensive use of acaricides...
Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdés, James J; Villar, Margarita; de la Fuente, José
2017-01-01
The obligate intracellular pathogen, Anaplasma phagocytophilum , is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Williams, Scott C; Ward, Jeffrey S
2010-12-01
Japanese barberry (Berberis thunbergii de Candolle) is a thorny, perennial, exotic, invasive shrub that is well established throughout much of the eastern United States. It can form dense thickets that limit native herbaceous and woody regeneration, alter soil structure and function, and harbor increased blacklegged tick (Ixodes scapularis Say) populations. This study examined a potential causal mechanism for the link between Japanese barberry and blacklegged ticks to determine if eliminating Japanese barberry could reduce tick abundance and associated prevalence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Japanese barberry was controlled at five study areas throughout Connecticut; adult ticks were sampled over three years. Each area had three habitat plots: areas where barberry was controlled, areas where barberry remained intact, and areas where barberry was minimal or absent. Sampled ticks were retained and tested for B. burgdorferi presence. At two study areas, temperature and relative humidity data loggers were deployed in each of the three habitat plots over two growing seasons. Intact barberry stands had 280 ± 51 B. burgdorferi-infected adult ticks/ha, which was significantly higher than for controlled (121 ± 17/ha) and no barberry (30 ± 10/ha) areas. Microclimatic conditions where Japanese barberry was controlled were similar to areas without barberry. Japanese barberry infestations are favorable habitat for ticks, as they provide a buffered microclimate that limits desiccation-induced tick mortality. Control of Japanese barberry reduced the number of ticks infected with B. burgdorferi by nearly 60% by reverting microclimatic conditions to those more typical of native northeastern forests. © 2010 Entomological Society of America
Korenberg, Edward I; Kovalevskii, Yurii V; Gorelova, Natalya B; Nefedova, Valentina V
2015-04-01
Long-term studies on natural foci of ixodid tick-borne borrelioses (ITBB) have been performed in Chusovskoi district of Perm region, the Middle Urals, where the vectors of these infections are represented by two ixodid tick species: the taiga tick Ixodes persulcatus and many times less abundant vole tick I. trianguliceps. Over 10 years, more than 6000 half-engorged ticks were collected from small forest mammals using the standard procedure, and 1027 I. persulcatus and 1142 I. trianguliceps ticks, individually or in pools, were used to inoculate BSK-2 medium. As a result, 199 Borrelia isolates were obtained. Among them, 177 isolates were identified, and the rrf(5S)-rrl(23S) intergenic spacer sequence was determined in 57 isolates. The prevalence of Borrelia infection in I. persulcatus larvae and nymphs averaged 31.0 and 53.3%, while that in I. trianguliceps larvae, nymphs, and adult ticks was five to ten times lower: 2.6, 10.2, and 8.1%, respectively. Each of the two tick species was found to carry both ITBB agents circulating in the Middle Ural foci (Borrelia garinii and B. afzelii), but the set of genogroups and genovariants of these spirochetes in I. trianguliceps proved to be far less diverse. According to the available data, this tick, compared to I. persulcatus, is generally less susceptible to Borrelia infection (especially by B. afzelii). Taking into account of its relatively low abundance, it appears that I. trianguliceps cannot seriously influence the course of epizootic process in ITBB foci of the study region, whereas highly abundant I. persulcatus with the high level of Borrelia infection is obviously a key component of these parasitic systems. A similar situation may well be typical for the entire geographic range shared by the two tick species. Copyright © 2015. Published by Elsevier GmbH.
Shchuchinova, L D; Kozlova, I V; Zlobin, V I
2015-04-01
The Altai Republic is a highly endemic area as far as tick-borne encephalitis (TBE) is concerned. The aim of the research was to study the effect of altitude on the risk of tick-borne encephalitis infection in the Altai Republic. The paper analyzes the following data: the study of ixodid ticks collected from the vegetation in 116 sites at the 200-2383m elevation above sea level in 2012-2014, TBE virus prevalence of these vectors, tick-bite incidence rate, and TBE incidence rate of the population. Species identification of 4503 specimens has shown that the most common species are Dermacentor nuttalli (45.3%), Ixodes persulcatus (33.1%), Dermacentor silvarum (9.4%), Dermacentor reticulatus (8.9%), and Haemaphysalis concinna (5.0%). A total of 2997 adult ixodid ticks were studied for the presence of the TBE virus; 2163 samples were examined by ELISA, while 834 specimens were tested by PCR. The TBE virus prevalence of Dermacentor spp. ticks in both reactions was significantly higher than of Ixodes persulcatus ticks (p<0.001). The work shows that the altitude is an important factor in the development of the epidemiological situation of tick-borne encephalitis: the higher the elevation of the area above sea level, the smaller the range of vectors. There is also a change of a leading species: in middle altitude (800-1700m above sea level) the virus is transmitted by ticks of D. nuttalli along with I. persulcatus, and in high mountains (above 1700m above sea level) D. nuttalli becomes an absolute dominant species. However, these species of ticks are less effective vectors than I. persulcatus. With the increase of altitude the tick-bite incidence rate decreases (r=-0.78, p<0.05), and TBE incidence also reduces (r=-0.67, p<0.05). Copyright © 2015 Elsevier GmbH. All rights reserved.
Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus
Boyer, Pierre H.; Boulanger, Nathalie; Nebbak, Amira; Collin, Elodie; Jaulhac, Benoit; Almeras, Lionel
2017-01-01
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS. PMID:28950023
Halos, Lénaïg; Bord, Séverine; Cotté, Violaine; Gasqui, Patrick; Abrial, David; Barnouin, Jacques; Boulouis, Henri-Jean; Vayssier-Taussat, Muriel; Vourc'h, Gwenaël
2010-01-01
Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks. PMID:20453131
Ticks and rickettsiae from wildlife in Belize, Central America.
Lopes, Marcos G; May Junior, Joares; Foster, Rebecca J; Harmsen, Bart J; Sanchez, Emma; Martins, Thiago F; Quigley, Howard; Marcili, Arlei; Labruna, Marcelo B
2016-02-02
The agents of spotted fevers in Latin America are Rickettsia rickettsii, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and R. massiliae. In Continental Central America, R. rickettsii remains the only known pathogenic tick-borne rickettsia. In the present study, ticks were collected from wild mammals in natural areas of Belize. Besides providing new data of ticks from Belize, we investigated rickettsial infection in some of these ticks. Our results provide ticks harboring rickettsial agents for the first time in Central America. Between 2010 and 2015, wild mammals were lived-trapped in the tropical broadleaf moist forests of central and southern Belize. Ticks were collected from the animals and identified to species by morphological and molecular analysis (DNA sequence of the tick mitochondrial 16S RNA gene). Some of the ticks were tested for rickettsial infection by molecular methods (DNA sequences of the rickettsial gltA and ompA genes). A total of 84 ticks were collected from 8 individual hosts, as follows: Amblyomma pacae from 3 Cuniculus paca; Amblyomma ovale and Amblyomma coelebs from a Nasua narica; A. ovale from an Eira Barbara; A. ovale, Amblyomma cf. oblongoguttatum, and Ixodes affinis from a Puma concolor; and A. ovale, A. coelebs, A. cf. oblongoguttatum, and I. affinis from two Panthera onca. Three rickettsial agents were detected: Rickettsia amblyommii in A. pacae, Rickettsia sp. strain Atlantic rainforest in A. ovale, and Rickettsia sp. endosymbiont in Ixodes affinis. The present study provides unprecedented records of ticks harboring rickettsial agents in the New World. An emerging rickettsial pathogen of South America, Rickettsia sp. strain Atlantic rainforest, is reported for the first time in Central America. Besides expanding the distribution of 3 rickettsial agents in Central America, our results highlight the possible occurrence of Rickettsia sp. strain Atlantic rainforest-caused spotted fever human cases in Belize, since its possible vector, A. ovale, is recognized as one of the most important human-biting ticks in the Neotropical region.
Scott, John D.; Foley, Janet E.; Clark, Kerry L.; Anderson, John F.; Durden, Lance A.; Manord, Jodi M.; Smith, Morgan L.
2016-01-01
We document an established population of blacklegged ticks, Ixodes scapularis, on Corkscrew Island, Kenora District, Ontario, Canada. Primers of the outer surface protein A (OspA) gene, the flagellin (fla) gene, and the flagellin B (flaB) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato (s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis, were infected with B. burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and adult I. scapularis ticks, primers for the flagellin (fla) and flagellin B (flaB) genes reveal the presence of B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of this very high infection prevalence, this population of I. scapularis has likely been established for decades. Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a serious public health risk. PMID:27877080
Scott, John D; Foley, Janet E; Clark, Kerry L; Anderson, John F; Durden, Lance A; Manord, Jodi M; Smith, Morgan L
2016-01-01
We document an established population of blacklegged ticks, Ixodes scapularis , on Corkscrew Island, Kenora District, Ontario, Canada. Primers of the outer surface protein A ( OspA ) gene, the flagellin ( fla ) gene, and the flagellin B ( flaB ) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato (s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis , were infected with B. burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and adult I. scapularis ticks, primers for the flagellin ( fla ) and flagellin B ( flaB ) genes reveal the presence of B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of this very high infection prevalence, this population of I. scapularis has likely been established for decades. Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a serious public health risk.
Detection of the agents of human ehrlichioses in ixodid ticks from California.
Kramer, V L; Randolph, M P; Hui, L T; Irwin, W E; Gutierrez, A G; Vugia, D J
1999-01-01
A study was conducted in northern California to estimate the prevalence and distribution in ixodid ticks of the rickettsial agents of human monocytic (HME) and human granulocytic (HGE) ehrlichioses. More than 650 ixodid ticks were collected from 17 sites in six California counties over a 15-month period. Ehrlichia chaffeensis, the causative agent of HME, was detected by a nested polymerase chain reaction (PCR) in Ixodes pacificus (minimum infection rate [MIR] = 13.3%) and Dermacentor variabilis (infection rate=20.0%) from a municipal park in Santa Cruz County. The HGE agent was detected by nested PCR in I. pacificus adults from a heavily used recreational area in Alameda County (MIR = 4.7%) and a semirural community in Sonoma County (MIR = 6.7%). Evidence of infection with Ehrlichia spp. was not detected in D. occidentalis adults or I. pacificus nymphs. This study represents the first detection of E. chaffeensis in California ticks and the first report of infection in Ixodes spp. The competency of I. pacificus to be coinfected with and to transmit multiple disease agents, including those of human ehrlichioses and Lyme disease, has yet to be determined.
NASA Astrophysics Data System (ADS)
Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek
2016-04-01
The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.
Al'khovskiĭ, S V; L'vov, D K; Shchelkanov, M Iu; Shchetinin, A M; Krasnoslobodtsev, K G; Deriabin, P G; Samokhvalov, E I; Botikov, A G; Zakarian, V A
2013-01-01
Two bunyaviruses, Bhanja (BHAV, LEIV-Az1818) isolated from the Ixodes ticks Rhipecephalus bursa (Canestrini and Fanzago, 1878) in Azerbaijan (1973) and Razdan (RAZV; strain LEIV-Arm2741) isolated from the Dermacentor marginatus (Sulzer, 1776) ticks in Armenia (1972), were de novo sequenced (on the Illumina platform). The amino acid identity between these viruses proteins were 95.8% (RdRp, L-segment), 90.3% (GnGc, M-segment), and 92.5% (N, S-segment). Thus, RAZV was classified to BHAV group. GnGc protein identity of RAZV withEuropean BHAV strains is more than 90%. With the African Forécariah virus (FORV) RAZV has 85% identity. BHAV LEIV-Az1818 is most closely related to the Indian strain BHAV IG690 (99%), while showing 90% identity with the European BHAV isolates. The genome structure of BHAV and RAZV is typical of the tick-transmitted phleboviruses. Based onthe result of the molecular-genetic and phylogenetic analysis RAZV has been classified as belonging to BHAVgroup in the genus Phlebovirus (Bunyaviridae).
Janecek, Elisabeth; Streichan, Sabine; Strube, Christina
2012-10-18
Rickettsioses are caused by pathogenic species of the genus Rickettsia and play an important role as emerging diseases. The bacteria are transmitted to mammal hosts including humans by arthropod vectors. Since detection, especially in tick vectors, is usually based on PCR with genus-specific primers to include different occurring Rickettsia species, subsequent species identification is mainly achieved by Sanger sequencing. In the present study a real-time pyrosequencing approach was established with the objective to differentiate between species occurring in German Ixodes ticks, which are R. helvetica, R. monacensis, R. massiliae, and R. felis. Tick material from a quantitative real-time PCR (qPCR) based study on Rickettsia-infections in I. ricinus allowed direct comparison of both sequencing techniques, Sanger and real-time pyrosequencing. A sequence stretch of rickettsial citrate synthase (gltA) gene was identified to contain divergent single nucleotide polymorphism (SNP) sites suitable for Rickettsia species differentiation. Positive control plasmids inserting the respective target sequence of each Rickettsia species of interest were constructed for initial establishment of the real-time pyrosequencing approach using Qiagen's PSQ 96MA Pyrosequencing System operating in a 96-well format. The approach included an initial amplification reaction followed by the actual pyrosequencing, which is traceable by pyrograms in real-time. Afterwards, real-time pyrosequencing was applied to 263 Ixodes tick samples already detected Rickettsia-positive in previous qPCR experiments. Establishment of real-time pyrosequencing using positive control plasmids resulted in accurate detection of all SNPs in all included Rickettsia species. The method was then applied to 263 Rickettsia-positive Ixodes ricinus samples, of which 153 (58.2%) could be identified for their species (151 R. helvetica and 2 R. monacensis) by previous custom Sanger sequencing. Real-time pyrosequencing identified all Sanger-determined ticks as well as 35 previously undifferentiated ticks resulting in a total number of 188 (71.5%) identified samples. Pyrosequencing sensitivity was found to be strongly dependent on gltA copy numbers in the reaction setup. Whereas less than 101 copies in the initial amplification reaction resulted in identification of 15.1% of the samples only, the percentage increased to 54.2% at 101-102 copies, to 95.6% at >102-103 copies and reached 100% samples identified for their Rickettsia species if more than 103 copies were present in the template. The established real-time pyrosequencing approach represents a reliable method for detection and differentiation of Rickettsia spp. present in I. ricinus diagnostic material and prevalence studies. Furthermore, the method proved to be faster, more cost-effective as well as more sensitive than custom Sanger sequencing with simultaneous high specificity.
Prevention of tick-borne diseases.
Piesman, Joseph; Eisen, Lars
2008-01-01
Tick-borne diseases are on the rise. Lyme borreliosis is prevalent throughout the Northern Hemisphere, and the same Ixodes tick species transmitting the etiologic agents of this disease also serve as vectors of pathogens causing human babesiosis, human granulocytic anaplasmosis, and tick-borne encephalitis. Recently, several novel agents of rickettsial diseases have been described. Despite an explosion of knowledge in the fields of tick biology, genetics, molecular biology, and immunology, transitional research leading to widely applied public health measures to combat tick-borne diseases has not been successful. Except for the vaccine against tick-borne encephalitis virus, and a brief campaign to reduce this disease in the former Soviet Union through widespread application of DDT, success stories in the fight against tick-borne diseases are lacking. Both new approaches to tick and pathogen control and novel ways of translating research findings into practical control measures are needed to prevent tick-borne diseases in the twenty-first century.
Human perceptions before and after a 50% reduction in an urban deer herd's density
David W. Henderson; Robert J. Warren; David H. Newman; J. Michael Bowker; Jennifer S. Cromwell; Jeffrey J. Jackson
2000-01-01
Overabundant white-tailed deer (Odocoileus virginianus) populations in urban and suburban areas can be controversial because of potential damage to landscape vegetation, deer-vehicle collisions, and fear over transmission of tick-borne diseases. Herd reduction is often proposed to solve these problems; however, the ability of human residents to...
Cramaro, Wibke J; Hunewald, Oliver E; Bell-Sakyi, Lesley; Muller, Claude P
2017-02-08
Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick's North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95-100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line. We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions.
Eisen, Rebecca J.; Eisen, Lars; Beard, Charles B.
2016-01-01
The blacklegged tick, Ixodes scapularis Say, is the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi, as well as causative agents of anaplasmosis and babesiosis. Its close relative in the far western United States, the western blacklegged tick Ixodes pacificus Cooley and Kohls, is the primary vector to humans in that region of the Lyme disease and anaplasmosis agents. Since 1991, when standardized surveillance and reporting began, Lyme disease case counts have increased steadily in number and in geographical distribution in the eastern United States. Similar trends have been observed for anaplasmosis and babesiosis. To better understand the changing landscape of risk of human exposure to disease agents transmitted by I. scapularis and I. pacificus, and to document changes in their recorded distribution over the past two decades, we updated the distribution of these species from a map published in 1998. The presence of I. scapularis has now been documented from 1,420 (45.7%) of the 3,110 continental United States counties, as compared with 111 (3.6%) counties for I. pacificus. Combined, these vectors of B. burgdorferi and other disease agents now have been identified in a total of 1,531 (49.2%) counties spread across 43 states. This marks a 44.7% increase in the number of counties that have recorded the presence of these ticks since the previous map was presented in 1998, when 1,058 counties in 41 states reported the ticks to be present. Notably, the number of counties in which I. scapularis is considered established (six or more individuals or one or more life stages identified in a single year) has more than doubled since the previous national distribution map was published nearly two decades ago. The majority of county status changes occurred in the North-Central and Northeastern states, whereas the distribution in the South remained fairly stable. Two previously distinct foci for I. scapularis in the Northeast and North-Central states appear to be merging in the Ohio River Valley to form a single contiguous focus. Here we document a shifting landscape of risk for human exposure to medically important ticks and point to areas of re-emergence where enhanced vector surveillance and control may be warranted. PMID:26783367
Margos, Gabriele; Lane, Robert S; Fedorova, Natalia; Koloczek, Johannes; Piesman, Joseph; Hojgaard, Andrias; Sing, Andreas; Fingerle, Volker
2016-03-01
Two species of the genus Borrelia , Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov., were first described by Postic and co-workers on the basis of genetic analyses of several loci. Multilocus sequence analysis of eight housekeeping loci confirmed that these two Borrelia genomospecies are distinct members of the Borrelia burgdorferi sensu lato complex. B. bissettiae sp. nov. was initially described in transmission cycles involving Neotoma fuscipes wood rats and Ixodes pacificus ticks in California, and Neotoma mexicana and Ixodes spinipalpis in Colorado. The preferred host of B. californiensis sp. nov. appears to be the California kangaroo rat, Dipodomys californicus ; Ixodes jellisoni , I. spinipalipis and I. pacificus ticks are naturally infected with it. Thus, the ecological associations of the two genomospecies and their genetic distance from all other known Borrelia genomospecies species justify their description as separate genomospecies: B. bissettiae sp. nov. (type strain DN127 T = DSM 17990 T = CIP 109136 T ) and B. californiensis (type strain CA446 T = DSM 17989 T = ATCC BAA-2689 T ).
Pérez, David; Kneubühler, Yvan; Rais, Olivier; Jouda, Fatima; Gern, Lise
2011-09-01
In Europe, the Lyme borreliosis (LB) agents like Borrelia burgdorferi sensu stricto (ss), B. afzelii, and B. garinii are maintained in nature by enzoonotic transmission cycles between vertebrate hosts and Ixodes ricinus ticks. The outer surface protein C is a highly antigenic protein expressed by spirochaetes during transmission from ticks to mammals as well as during dissemination in the vertebrate hosts. Previous studies based on analysis of ospC gene sequences have led to the classification of ospC genotypes into ospC groups. The aim of this study was to analyse and compare ospC group distribution among isolates of the rodent-associated genospecies, B. afzelii, at 3 levels (questing ticks, ticks feeding on rodents, and xenodiagnostic ticks). Isolates were obtained during a study carried out in 2 LB endemic areas located on the Swiss Plateau [Portes-Rouges (PR) and Staatswald (SW)], where rodents were differently infested by co-feeding ticks (Pérez et al., unpublished data). Overall, we identified 10 different ospC groups with different distributions among isolates from questing ticks, ticks that detached from rodents, and xenodiagnostic ticks at the 2 sites. We observed a higher ospC diversity among isolates from ticks that fed on rodents at SW, and mixed infections with 2 ospC groups were also more frequent among isolates from ticks that fed on rodents at SW (n=18) than at PR (n=1). At both sites, B. afzelii isolates obtained from larvae that were feeding on the rodents simultaneously with nymphs displayed a higher diversity of ospC groups (mean number of ospC groups: 2.25 for PR and 1.75 for SW) than isolates from larvae feeding without nymphs (mean number of ospC groups: 1.17 for PR and 1 for SW). We suggest that co-feeding transmission of Borrelia, previously described in laboratory models, contributes in nature in promoting and maintaining ospC diversity within local tick populations. Copyright © 2011 Elsevier GmbH. All rights reserved.
Igolkina, Y; Bondarenko, E; Rar, V; Epikhina, T; Vysochina, N; Pukhovskaya, N; Tikunov, A; Ivanov, L; Golovljova, I; Ivanov, М; Tikunova, N
2016-10-01
Rickettsia spp. are intracellular Gram-negative bacteria transmitted by arthropods. Two potentially pathogenic rickettsiae, Candidatus Rickettsia tarasevichiae and Rickettsia helvetica, have been found in unfed adult Ixodes persulcatus ticks. The aim of this study was to assess the prevalence and genetic variability of Rickettsia spp. in I. persulcatus ticks collected from different locations in the Russian Far East. In total, 604 adult I. persulcatus ticks collected from four sites in the Khabarovsk Territory (continental area) and one site in Sakhalin Island were examined for the presence of Rickettsia spp. by real-time PCR. Nested PCR with species-specific primers and sequencing were used for genotyping of revealed rickettsiae. The overall prevalence of Rickettsia spp. in ticks collected in different sites varied from 67.9 to 90.7%. However, the proportion of different Rickettsia species observed in ticks from Sakhalin Island significantly differed from that in ticks from the Khabarovsk Territory. In Sakhalin Island, R. helvetica prevailed in examined ticks, while Candidatus R. tarasevichiae was predominant in the Khabarovsk Territory. For gltA and ompB gene fragments, the sequences obtained for Candidatus R. tarasevichiae from all studied sites were identical to each other and to the known sequences of this species. According to sequence analysis of gltA, оmpB and sca4 genes, R. helvetica isolates from Sakhalin Island and the Khabarovsk Territory were identical to each other, but they differed from R. helvetica from other regions and from those found in other tick species. For the first time, DNA of pathogenic Rickettsia heilongjiangensis was detected in I. persulcatus ticks in two sites from the Khabarovsk Territory. The gltA, ompA and оmpB gene sequences of R. heilongjiangensis were identical to or had solitary mismatches with the corresponding sequences of R. heilongjiangensis found in other tick species. Copyright © 2016 Elsevier GmbH. All rights reserved.
Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks.
Raulf, Marie-Kristin; Jordan, Daniela; Fingerle, Volker; Strube, Christina
2018-01-01
In recent years, awareness of coinfections has increased as synergistic or antagonistic effects on interacting bacteria have been observed. To date, several reports on coinfections of ticks with Rickettsia and Borrelia spp. are available. However, associations are rarely described and studies are based on rather low sample sizes. In the present study, coinfections of Ixodes ricinus with these pathogens were investigated by determining their association in a meta-analysis. A total of 5079 tick samples examined for Rickettsia and Borrelia spp. via probe-based quantitative real-time PCR in previous prevalence studies or as submitted diagnostic material were included. In Borrelia-positive ticks, genospecies were determined by Reverse Line Blot. Determination of bacterial loads resulted in an increase between developmental tick stages with highest mean bacterial loads in female ticks (7.96×10 4 in Borrelia single-infected, 4.87×10 5 in Rickettsia single-infected and 3.22×10 5 in Borrelia-Rickettsia coinfected females). The determined Borrelia-Rickettsia tick coinfection rate was 12.3% (626/5079) with a significant difference to the expected coinfection rate of 9.0% (457/5079). A significant slight association as well as correlation between Borrelia and Rickettsia were determined. In addition, a significant interrelation of the bacterial load in coinfected ticks was shown. At the level of Borrelia genospecies, significant weak associations with Rickettsia spp. were detected for B. afzelii, B. garinii/bavariensis, B. valaisiana and B. lusitaniae. The positive association provides evidence for interactions between Borrelia and Rickettsia spp. in the tick vector, presumably resulting in higher bacterial replication rates in the tick vector and possibly the reservoir host. However, coinfection may impact the vector negatively as indicated by an absent increase in coinfection rates from nymphs to adults. Future studies are needed to investigate the underlying mechanisms of the positive association in ticks and possible associations in the vertebrate host as well as the potential influence of environmental factors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sormunen, Jani J; Klemola, Tero; Vesterinen, Eero J; Vuorinen, Ilppo; Hytönen, Jukka; Hänninen, Jari; Ruohomäki, Kai; Sääksjärvi, Ilari E; Tonteri, Elina; Penttinen, Ritva
2016-02-01
Studies have revealed that Ixodes ricinus (Acari: Ixodidae) have become more abundant and their geographical distribution extended northwards in some Nordic countries during the past few decades. However, ecological data of tick populations in Finland are sparse. In the current study, I. ricinus abundance, seasonal questing activity, and their Borrelia spp. and tick-borne encephalitis virus (TBEV) prevalence were evaluated in a Lyme borreliosis endemic area in Southwest Finland, Seili Island, where a previous study mapping tick densities was conducted 12 years earlier. A total of 1940 ticks were collected from five different biotopes by cloth dragging during May-September 2012. The overall tick density observed was 5.2 ticks/100m(2) for nymphs and adults. Seasonal questing activity of ticks differed between biotopes and life stages: bimodal occurrences were observed especially for nymphal and adult ticks in forested biotopes, while larvae in pastures exhibited mostly unimodal occurrence. Prevalence of Borrelia and TBEV in ticks was evaluated using conventional and real-time PCR. All samples were negative for TBEV. Borrelia prevalence was 25.0% for adults (n=44) and the minimum infection rate (MIR) 5.6% for pooled nymph samples (191 samples, 1-14 individuals per sample; 30/191 positive). No Borrelia were detected in pooled larval samples (63 samples, 1-139 individuals per sample). Five species of Borrelia were identified from the samples: B. afzelii, B. burgdorferi s.s., B. garinii, B. valaisiana and B. miyamotoi. In Finland, B. valaisiana and B. miyamotoi have previously been reported from the Åland Islands but not from the mainland or inner archipelago. The results of the present study suggest an increase in I. ricinus abundance on the island. Copyright © 2015 Elsevier GmbH. All rights reserved.
Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.
Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert
2015-04-01
Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted. Copyright © 2015 Elsevier GmbH. All rights reserved.
Gehringer, Heike; Schacht, Erik; Maylaender, Nicole; Zeman, Ella; Kaysser, Philipp; Oehme, Rainer; Pluta, Silvia; Splettstoesser, Wolf D
2013-02-01
The zoonotic disease tularaemia is caused by the bacterial pathogen Francisella tularensis. Although the causative agent is known for 100 years, knowledge of its enzootic cycles is still rudimentary. Apart from tabanids and mosquitoes, hard ticks have been described as important vectors and potential reservoirs for F. tularensis. Available data on the incidence of human tularaemia indicate an increase in cases in the federal state of Baden-Wuerttemberg. To determine whether ticks are involved in the reported increase in F. tularensis infections in humans and wildlife in this south-western part of Germany, 916 Ixodes ricinus and 211 adult Dermacentor marginatus and D. reticulatus ticks were collected in two different locations. Screening for the presence of F. tularensis was performed by real-time PCR of the 16S rRNA gene. Of the 95 pools of I. ricinus ticks (representing 916 individual ticks), 8 tick pools (8.4%) were positive in this PCR. 30-bp deletion PCR confirmed that the F. tularensis subspecies holarctica was present. FtM24 VNTR analysis revealed that they belong to the emerging Franco-Iberian subclone group of F. tularensis holarctica. Of the 211 ticks of the genus Dermacentor, 35 randomly chosen DNAs were subjected to 16S rRNA gene screening PCR; 20 of these (57%) gave positive signals. For cluster analysis, the lpnA gene region of all Francisella-positive I. ricinus pools and 6 Dermacentor ticks with a positive reaction in the screening PCR was amplified and sequenced. In the resulting neighbour-joining tree, all Francisella-positive I. ricinus samples clustered with sequences of F. tularensis, whilst all Dermacentor tick samples clustered with FLE (Francisella-like endosymbiont) sequences. This study shows that I. ricinus ticks may serve as vectors and/or reservoirs of F. tularensis in Germany and supports the hypothesis that the state of Baden-Wuerttemberg represents an emerging endemic focus of tularaemia. Copyright © 2012 Elsevier GmbH. All rights reserved.
Girard, Yvette A; Travinsky, Bridgit; Schotthoefer, Anna; Fedorova, Natalia; Eisen, Rebecca J; Eisen, Lars; Barbour, Alan G; Lane, Robert S
2009-11-01
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.
Kiewra, Dorota; Stefańska-Krzaczek, Ewa; Szymanowski, Mariusz; Szczepańska, Anna
2017-03-01
This paper presents the distribution of questing Ixodes ricinus ticks in suburban forest intensively visited by people. The local-scale observations conducted during a 4-year study at 99 plots (of 100m 2 each) located throughout the entire area of a riparian urban forest, showed a high variation in the density of ticks from year to year. Although I. ricinus is generally permanent in the study area, spatial distribution of sample plots harbouring I. ricinus is variable, i.e. mainly random for adults and larvae, and random or clustered for nymphs. Among the most common plant species in the herb layer, there were not any species which had a statistically significant and constant impact on the occurrence of any of the development stages of I. ricinus. Also relations between the density of tick development stages and vegetation variables, including cover of the herb layer, total species number, species number of the herb layer, and percentage coverage of particular species, as well as ecological indices for light, soil moisture, reaction, and nutrients, did not show any constant and predictable pattern in subsequent years of the study. Only tree and shrub layers were found as variables positively affecting the density of ticks. Although small, suburban forests can be considered as tick-borne risk areas, it is impossible to determine in details areas of tick-borne risk. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lo, N; Beninati, T; Sassera, D; Bouman, E A P; Santagati, S; Gern, L; Sambri, V; Masuzawa, T; Gray, J S; Jaenson, T G T; Bouattour, A; Kenny, M J; Guner, E S; Kharitonenkov, I G; Bitam, I; Bandi, C
2006-07-01
The tick Ixodes ricinus is responsible for the transmission of a number of bacterial, protozoan and viral diseases to humans and animals in Europe and Northern Africa. Female I. ricinus from England, Switzerland and Italy have been found to harbour an intracellular alpha-proteobacterium, designated IricES1, within the cells of the ovary. IricES1 is the only prokaryote known to exist within the mitochondria of any animal or multicellular organism. To further examine the distribution, prevalence and mode of transmission of IricES1, we performed polymerase chain reaction screening of I. ricinus adults from 12 countries across its geographic distribution, including tick colonies that have been maintained in the laboratory for varying periods of time. IricES1 was detected in 100% of field-collected female ticks from all countries examined (n = 128), while 44% of males were found to be infected (n = 108). Those males that are infected appear to harbour fewer bacteria than females. Sequencing of fragments of the 16S rRNA and gyrB genes revealed very low nucleotide diversity among various populations of IricES1. Transmission of IricES1 from engorged adult females to eggs was found to be 100% (n = 31). In tick colonies that had been maintained in the laboratory for several years, a relatively low prevalence was found in females (32%; n = 25). To our knowledge, IricES1 is the most widespread and highly prevalent of any tick-associated symbiont.
Hamer, Sarah A; Tsao, Jean I; Walker, Edward D; Hickling, Graham J
2010-08-01
Lyme disease risk is increasing in the United States due in part to the spread of blacklegged ticks Ixodes scapularis, the principal vector of the spirochetal pathogen Borrelia burgdorferi. A 5-year study was undertaken to investigate hypothesized coinvasion of I. scapularis and B. burgdorferi in Lower Michigan. We tracked the spatial and temporal dynamics of the tick and spirochete using mammal, bird, and vegetation drag sampling at eight field sites along coastal and inland transects originating in a zone of recent I. scapularis establishment. We document northward invasion of these ticks along Michigan's west coast during the study period; this pattern was most evident in ticks removed from rodents. B. burgdorferi infection prevalences in I. scapularis sampled from vegetation in the invasion zone were 9.3% and 36.6% in nymphs and adults, respectively, with the majority of infection (95.1%) found at the most endemic site. There was no evidence of I. scapularis invasion along the inland transect; however, low-prevalence B. burgdorferi infection was detected in other tick species and in wildlife at inland sites, and at northern coastal sites in years before the arrival of I. scapularis. These infections suggest that cryptic B. burgdorferi transmission by other vector-competent tick species is occurring in the absence of I. scapularis. Other Borrelia spirochetes, including those that group with B. miyamotoi and B. andersonii, were present at a low prevalence within invading ticks and local wildlife. Reports of Lyme disease have increased significantly in the invasion zone in recent years. This rapid blacklegged tick invasion--measurable within 5 years--in combination with cryptic pathogen maintenance suggests a complex ecology of Lyme disease emergence in which wildlife sentinels can provide an early warning of disease emergence.
Natural foci of Borrelia lusitaniae in a mountain region of Central Europe.
Tarageľová, Veronika Rusňáková; Mahríková, Lenka; Selyemová, Diana; Václav, Radovan; Derdáková, Markéta
2016-03-01
Lyme borreliosis is the most prevalent tick-borne disease in Europe. It is caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex and transmitted to humans by ticks of the genus Ixodes. Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana are the most common genospecies in Central Europe. In contrast, Borrelia lusitaniae predominates in Mediterranean countries such as Portugal, Morocco, and Tunisia. In Slovakia, its prevalence is low and restricted to only a few sites. The aim of our research was to study the expansion of ticks into higher altitudes in the ecosystem of the Malá Fatra mountains (north Slovakia) and their infection with B. burgdorferi s.l. pathogens. Questing ticks were collected by flagging in seven years (2004, 2006-2011) at three different altitudes: low (630-660 m above sea level (ASL)), intermediate (720-750 m ASL), and high (1040-1070 m ASL). Tick abundance was highest at the lowest altitude and lowest at the highest altitude. The average infection prevalence of B. burgdorferi s.l. in nymphs and adults was 16.8% and 36.2%, respectively. The number of infected ticks decreased from 38.5% at the lowest altitude to 4.4% at the highest altitude. B. lusitaniae was the most frequently found genospecies (>60% of the ticks found positive for B. burgdorferi s.l.) in all sites in all the studied years with the exception of 2008 when B. afzelii predominated (62%). Our study confirms the spread of Ixodes ricinus ticks to higher altitudes in Slovakia. The discovery that our mountain study sites were a natural foci of B. lusitaniae was unexpected because this genospecies is usually associated with lizards and xerothermic habitats. Copyright © 2015 Elsevier GmbH. All rights reserved.
Sojka, Daniel; Franta, Zdeněk; Horn, Martin; Hajdušek, Ondřej; Caffrey, Conor R; Mareš, Michael; Kopáček, Petr
2008-01-01
Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases. PMID:18348719
Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli.
Kolb, Philipp; Vorreiter, Jolanta; Habicht, Jüri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael
2015-01-01
Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of (1)H-(15)N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in (13)C/(15)N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.
Flor-Weiler, Lina B; Behle, Robert W; Stafford, Kirby C
2011-03-01
Toxicity of nootkatone was determined in laboratory assays against unfed nymphs of Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus Latreille. We determined the 50% lethal concentration (LC50) and 90% lethal concentration (LC90) of nootkatone by recording tick mortality 24 h after exposure in treated glass vials. Nymphs were susceptible to nootkatone with LC50 values of 0.352, 0.233, 0.169, and 0.197 microg/cm2, and LC90 values of 1.001, 0.644, 0.549, and 0.485 microg/cm2 for A. americanum, D. variabilis, I. scapularis, and R. sanguineus, respectively. The LC50 value for R. sanquineus was not significantly different from D. variabilis or I. scapularis. Other LC50 comparisons were significantly different. The LC90 for A. americanum was higher when compared with the three other tick species, which were not significantly different. Because nootkatone is volatile, we measured the amount of nootkatone recovered from duplicate-treated vials before tick exposure and from vials after tick exposure. Nootkatone recovered from vials before exposure ranged from 82 to 112% of the expected amounts. The nootkatone recovered after the 24-h exposure period ranged from 89% from vials coated with higher concentrations of nootkatone, down to 29% from vials coated with low nootkatone concentrations. Determination of the nootkatone residue after vial coating demonstrated loss of the active compound while verifying the levels of tick exposure. Toxicity of low concentrations of nootkatone to the active questing stage of ticks reported in this study provides a reference point for future formulation research to exploit nootkatone as a safe and environment-friendly tick control.
Geographical and seasonal correlation of multiple sclerosis to sporadic schizophrenia
Fritzsche, Markus
2002-01-01
Background Clusters by season and locality reveal a striking epidemiological overlap between sporadic schizophrenia and multiple sclerosis (MS). As the birth excesses of those individuals who later in life develop schizophrenia mirror the seasonal distribution of Ixodid ticks, a meta analysis has been performed between all neuropsychiatric birth excesses including MS and the epidemiology of spirochaetal infectious diseases. Results The prevalence of MS and schizophrenic birth excesses entirely spares the tropical belt where human treponematoses are endemic, whereas in more temperate climates infection rates of Borrelia garinii in ticks collected from seabirds match the global geographic distribution of MS. If the seasonal fluctuations of Lyme borreliosis in Europe are taken into account, the birth excesses of MS and those of schizophrenia are nine months apart, reflecting the activity of Ixodes ricinus at the time of embryonic implantation and birth. In America, this nine months' shift between MS and schizophrenic births is also reflected by the periodicity of Borrelia burgdorferi transmitting Ixodes pacificus ticks along the West Coast and the periodicity of Ixodes scapularis along the East Coast. With respect to Ixodid tick activity, amongst the neuropsychiatric birth excesses only amyotrophic lateral sclerosis (ALS) shows a similar seasonal trend. Conclusion It cannot be excluded at present that maternal infection by Borrelia burgdorferi poses a risk to the unborn. The seasonal and geographical overlap between schizophrenia, MS and neuroborreliosis rather emphasises a causal relation that derives from exposure to a flagellar virulence factor at conception and delivery. It is hoped that the pathogenic correlation of spirochaetal virulence to temperature and heat shock proteins (HSP) might encourage a new direction of research in molecular epidemiology. PMID:12537588
Maiwald, M.; Oehme, R.; March, O.; Petney, T. N.; Kimmig, P.; Naser, K.; Zappe, H. A.; Hassler, D.; von Knebel Doeberitz, M.
1998-01-01
The risk of Borrelia burgdorferi infection and the value of antibiotic prophylaxis after tick bite are controversial. In this study, performed in two areas of southwestern Germany, ticks were collected from 730 patients and examined by the polymerase chain reaction (PCR) for B. burgdorferi. To assess whether transmission of B. burgdorferi occurred, the patients were clinically and serologically examined after tick removal and during follow-up examinations. Data from all tick bites gave a total transmission rate of 2.6% (19 patients). Eighty-four ticks (11.3%) were PCR positive. Transmission occurred to 16 (26.7%) of 60 patients who were initially seronegative and could be followed up after the bite of an infected tick. These results indicate that the transmission rate from infected ticks in Europe is higher than previously assumed. Examination of ticks and antibiotic prophylaxis in the case of positivity appears to be indicated. PMID:9747761
Determinants of Infectivity of Pathogens in Vector Ticks
1990-11-15
nature. Y’e compared the development of the Lyme disease spirochete, Borrelia burgdorferi, in subadult rabbit-feeding Ixodes dentatus with that in mouse...the abundance of these vector ticks may effectively be reduced. The spirochetal agent of Lyme disease, Borrelia buradorferi, disseminated from the...11 III. Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burQdorferi through the gut and salivary tissues
Integration of ecologically-based approaches to re-eradicate cattle fever ticks from the U.S.
USDA-ARS?s Scientific Manuscript database
Here we summarize highlights of research conducted as part of a NIFA-AFRI funded grant. Cattle fever ticks, Rhipicephalus (Boophilus) microplus and R. (B.) annulatus, have been found on white-tailed deer (Odocoileus virginianus) complicating eradication efforts of the USDA’s Cattle Fever Tick Eradic...
2013-01-01
Background The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. Methods In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Results Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. Conclusion This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems. PMID:23800283
Merogonic stages of Theileria cervi in mule deer (Odocoileus hemionus).
Wood, Jason; Johnson, Eileen M; Allen, Kelly E; Campbell, Gregory A; Rezabek, Grant; Bradway, Daniel S; Pittman, Louis L; Little, Susan E; Panciera, Roger J
2013-09-01
In February 2012, 12 farmed mule deer (Odocoileus hemionus) were moved from a facility in southwestern Oklahoma to a facility in southeastern Oklahoma that housed 100 farmed white-tailed deer (Odocoileus virginianus). Between the third and fifth weeks, 9 of the 12 mule deer had died, 4 of which were submitted for necropsy. The deer were heavily infested with Amblyomma americanum (lone star ticks). Hematologic data from 1 deer revealed severe anemia, leukocytosis, and intraerythrocytic hemoparasites consistent with Theileria spp. Microscopically, the liver, lymph nodes, and spleen contained multifocally distributed, enlarged monocytic cells whose cytoplasm was replaced by developing meronts in various stages of merogony. It appears that, upon arrival, the Theileria cervi-naïve mule deer became infested with large numbers of Theileria-infected lone star ticks leading to massive exposure of the mule deer to sporozoites of the protozoan, resulting in an acute hemolytic crisis and fatalities. The merogonic stages of T. cervi are also described. The lack of earlier reports of merogony may be due to the fact that only a single, short-lived, merogonic cycle follows exposure to sporozoites and thus merogonic stages are demonstrable for only a short period. Polymerase chain reaction testing of paraffin-embedded tissue yielded a 507-bp amplicon sequence that was 100% identical with the sequence of T. cervi previously reported from white-tailed deer in Oklahoma and from elk in Wisconsin and Indiana.
Gilbert, Lucy; Medlock, Jolyon; Hansford, Kayleigh; Thompson, Des BA; Biek, Roman
2017-01-01
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438912
Millins, Caroline; Gilbert, Lucy; Medlock, Jolyon; Hansford, Kayleigh; Thompson, Des Ba; Biek, Roman
2017-06-05
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.
Tick-borne infectious diseases in Australia.
Graves, Stephen R; Stenos, John
2017-04-17
Tick bites in Australia can lead to a variety of illnesses in patients. These include infection, allergies, paralysis, autoimmune disease, post-infection fatigue and Australian multisystem disorder. Rickettsial (Rickettsia spp.) infections (Queensland tick typhus, Flinders Island spotted fever and Australian spotted fever) and Q fever (Coxiella burnetii) are the only systemic bacterial infections that are known to be transmitted by tick bites in Australia. Three species of local ticks transmit bacterial infection following a tick bite: the paralysis tick (Ixodes holocyclus) is endemic on the east coast of Australia and causes Queensland tick typhus due to R. australis and Q fever due to C. burnetii; the ornate kangaroo tick (Amblyomma triguttatum) occurs throughout much of northern, central and western Australia and causes Q fever; and the southern reptile tick (Bothriocroton hydrosauri) is found mainly in south-eastern Australia and causes Flinders Island spotted fever due to R. honei. Much about Australian ticks and the medical outcomes following tick bites remains unknown. Further research is required to increase understanding of these areas.
Schwarz, Alexandra; Tenzer, Stefan; Hackenberg, Michael; Erhart, Jan; Gerhold-Ay, Aslihan; Mazur, Johanna; Kuharev, Jörg; Ribeiro, José M. C.; Kotsyfakis, Michail
2014-01-01
Although pathogens are usually transmitted within the first 24–48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the tick's biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases. PMID:25048707
Gassner, Fedor; van Vliet, Arnold J H; Burgers, Saskia L G E; Jacobs, Frans; Verbaarschot, Patrick; Hovius, Emiel K E; Mulder, Sara; Verhulst, Niels O; van Overbeek, Leo S; Takken, Willem
2011-05-01
In a countrywide investigation of the ecological factors that contribute to Lyme borreliosis risk, a longitudinal study on population dynamics of the sheep tick Ixodes ricinus and their infections with Borrelia burgdorferi sensu lato (s.l.) was undertaken at 24 sites in The Netherlands from July 2006 to December 2007. Study sites were mature forests, dune vegetations, or new forests on land reclaimed from the sea. Ticks were sampled monthly and nymphal ticks were investigated for the presence of Borrelia spp. I. ricinus was the only tick species found. Ticks were found in all sites, but with significant spatial and temporal variations in density between sites. Peak densities were found in July and August, with lowest tick numbers collected in December and January. In some sites, questing activities of I. ricinus nymphs and adults were observed in the winter months. Mean monthly Borrelia infections in nymphs varied from 0% to 29.0% (range: 0%-60%), and several sites had significantly higher mean nymphal Borrelia infections than others. Four genospecies of Borrelia burgdorferi s.l. were found, with B. afzelii being dominant at most sites. Borrelia infection rates in nymphal ticks collected in July, September, and November 2006 were significantly higher (23.7%, p<0.01) than those in the corresponding months of 2007 (9.9%). The diversity in Borrelia genospecies between sites was significantly different (p<0.001). Habitat structure (tree cover) was an effective discriminant parameter in the determination of Borrelia infection risk, as measured by the proportion of nymphal ticks infected with B. burgdorferi s.l. Thickness of the litter layer and moss cover were positively related to nymphal and adult tick densities. The study shows that Borrelia-infected ticks are present in many forest and dune areas in The Netherlands and suggests that in such biotopes, which are used for a wide variety of recreational activities, the infection risk is high.
Balashov, Iu S; Grigor'eva, L A; Leonovich, S A
2009-01-01
A method of visual estimation of the biological age of living hungry tick females by visible changes in the depth of marginal groove and the structure of the alloscutum cuticle during natural ageing is developed. In recently activated individuals, the body is convex and the marginal groove is exposed, demonstrating distinctly visible cuticular microfolds (Figs 1-4). In attenuated ticks, the body is flattened and marginal fold overlays the marginal groove, concealing cuticular microfolds (Figs 5-8).
... can carry harmful germs that cause diseases like Rocky Mountain spotted fever and Lyme disease . The deer tick is tiny, ... disease) red dots on the ankles and wrists (Rocky Mountain spotted fever) flu -like symptoms such as fever , headache , fatigue, ...
Chisu, Valentina; Leulmi, Hamza; Masala, Giovanna; Piredda, Mariano; Foxi, Cipriano; Parola, Philippe
2017-03-01
Tick-borne diseases represent a large proportion of infectious diseases that have become a world health concern. The presence of Rickettsia spp. was evaluated by standard PCR and sequencing in 123 ticks collected from several mammals and vegetation in Sardinia, Italy. This study provides the first evidence of the presence of Rickettsia hoogstralii in Haemaphysalis punctata and Haemaphysalis sulcata ticks from mouflon and Rickettsia helvetica in Ixodes festai ticks from hedgehog. In addition, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii were detected in Rhipicephalus sanguineus, Dermacentor marginatus and Hyalomma marginatum marginatum ticks from foxes, swine, wild boars, and mouflon. The data presented here increase our knowledge of tick-borne diseases in Sardinia and provide a useful contribution toward understanding their epidemiology. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sulfate turpentine: a resource of tick repellent compounds.
Schubert, Fredrik; Pålsson, Katinka; Santangelo, Ellen; Borg-Karlson, Anna-Karin
2017-07-01
Compounds with tick (Ixodes ricinus) repellent properties were isolated from sulfate turpentine consisting of Norway spruce (80%) and Scots pine (20%) from southern Sweden. The turpentine was divided into two fractions by distillation under reduced pressure resulting in one monoterpene hydrocarbon fraction and a residual containing higher boiling terpenoids. The monoterpene fraction was further oxidized with SeO 2 to obtain oxygenated monoterpenes with potential tick repellent properties. The oxidized fraction and the high boiling distillation residual were each separated by medium pressure liquid chromatography. The fractions were tested for tick repellency and the compounds in those with highest tick repellency were identified by GC-MS. The fractions with highest repellency contained, mainly (-)-borneol, and mixtures of (+)- and (-)-1-terpineol and terpinen-4-ol. The enantiomers of borneol showed similar tick repellent properties.
Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005-2010.
Hamer, Sarah A; Goldberg, Tony L; Kitron, Uriel D; Brawn, Jeffrey D; Anderson, Tavis K; Loss, Scott R; Walker, Edward D; Hamer, Gabriel L
2012-10-01
Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005-2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure.
Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005–2010
Goldberg, Tony L.; Kitron, Uriel D.; Brawn, Jeffrey D.; Anderson, Tavis K.; Loss, Scott R.; Walker, Edward D.; Hamer, Gabriel L.
2012-01-01
Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005–2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure. PMID:23017244
Romashchenko, A V; Shnaĭder, E P; Petrovskiĭ, D V; Moshkin, M P
2013-01-01
According to -the automatic tracing of the movement of ticks in a Petri dish, motivational variability of the spontaneous activity and behavioral response of the taiga tick to olfactory stimuli was analyzed. In the studied sample, two groups of ticks that differ in the movement trajectory in the absence of stimulus were isolated, including ticks that mainly moved on the edge of the dish at maximum accessible height (group 1) and ticks that mainly moved at the bottom and wall of the dish (group 2). It was registered that ticks of group 1 (as opposed to ticks of group 2) demonstrated a pronounced behavioral response to olfactory stimuli (human synthetic pheromones and ammonia) and negative geotaxis. It was established that belonging to these groups depended On the time of day when the testing was performed and did not depend on the physiological age and infectious status.
Goldstein, Valérie; Boulanger, Nathalie; Schwartz, Dominique; George, Jean-Claude; Ertlen, Damien; Zilliox, Laurence; Schaeffer, Mickaël; Jaulhac, Benoît
2018-05-01
In Europe, the hard tick Ixodes ricinus (Acari: Ixodidae) is the main vector of Lyme borreliosis spirochetes (Borrelia burgdorferi sensu lato group). A field study was conducted to evaluate the abundance of Ixodes nymphs in the French region of Alsace, where Lyme borreliosis is endemic, and to determine whether environmental factors such as soil moisture and composition may be associated with nymph abundance. In the ten sites studied, ticks were collected by drag sampling from March to October in 2013 and 2014. Temperature, relative humidity, saturation deficit, soil pH, humus composition and type of vegetation were recorded at each site. The abundance of I. ricinus was highly variable from one site to another. Inter-annual variations were also observed, since the nymph abundance were higher in 2013 than in 2014. This study shows that humus type can be indicative of nymph abundance. Three types of humus were observed: (1) moder, (2) mull, and (3) mull-moder humus. One of them, moder humus, which is characterized by a thick layer of fragmented leaves, was found in multivariate analyses to be strongly associated with the nymph abundance. This study demonstrates that factors such as saturation deficit do not suffice to explain the differences in nymph abundance among sites. The composition of the soil and especially the type of humus should also be taken into consideration when assessing acarological risk. Copyright © 2018 Elsevier GmbH. All rights reserved.
Experimental evidence against transmission of Hepatozoon canis by Ixodes ricinus.
Giannelli, Alessio; Ramos, Rafael Antonio Nascimento; Dantas-Torres, Filipe; Mencke, Norbert; Baneth, Gad; Otranto, Domenico
2013-09-01
Hepatozoon canis is among the most widespread tick-borne protozoa infecting domestic and wild carnivores. Its distribution is related to the occurrence of its major vector, the brown dog tick Rhipicephalus sanguineus. However, the role of Ixodes ricinus as a vector of H. canis has been hypothesized. In the present study, the development of H. canis was investigated in I. ricinus and R. sanguineus nymphs collected from a naturally infested dog. All I. ricinus ticks examined (n=133) were negative by cytological examination at days 20, 30, and 90 post collection, although H. canis DNA was detected in one nymph at day 20 and in 2 nymphs at day 30 post collection. On the other hand, H. canis sporogony was documented by cytology, and H. canis DNA was detected by PCR in R. sanguineus at day 30 post collection. These results indicate that H. canis sporogony does not occur in I. ricinus, but in R. sanguineus, suggesting that I. ricinus does not act as a vector of H. canis. Copyright © 2013 Elsevier GmbH. All rights reserved.
A Novel Rickettsia Species Detected in Vole Ticks (Ixodes angustus) from Western Canada
Anstead, Clare A.
2013-01-01
The genomic DNA of ixodid ticks from western Canada was tested by PCR for the presence of Rickettsia. No rickettsiae were detected in Ixodes sculptus, whereas 18% of the I. angustus and 42% of the Dermacentor andersoni organisms examined were PCR positive for Rickettsia. The rickettsiae from each tick species were characterized genetically using multiple genes. Rickettsiae within the D. andersoni organisms had sequences at four genes that matched those of R. peacockii. In contrast, the Rickettsia present within the larvae, nymphs, and adults of I. angustus had novel DNA sequences at four of the genes characterized compared to the sequences available from GenBank for all recognized species of Rickettsia and all other putative species within the genus. Phylogenetic analyses of the sequence data revealed that the rickettsiae in I. angustus do not belong to the spotted fever, transitional, or typhus groups of rickettsiae but are most closely related to “Candidatus Rickettsia kingi” and belong to a clade that also includes R. canadensis, “Candidatus Rickettsia tarasevichiae,” and “Candidatus Rickettsia monteiroi.” PMID:24077705
Courtney, Joshua W.; Dryden, Richard L.; Montgomery, Jill; Schneider, Bradley S.; Smith, Gary; Massung, Robert F.
2003-01-01
Ixodes scapularis ticks were collected in 2000 and 2001 from two areas in Pennsylvania and tested for the presence of Anaplasma phagocytophilum and Borrelia burgdorferi by PCR and DNA sequencing. Of the ticks collected from northwestern and southeastern Pennsylvania, 162 of 263 (61.6%) and 25 of 191 (13.1%), respectively, were found to be positive for B. burgdorferi. DNA sequencing showed >99% identity with B. burgdorferi strains B31 and JD1. PCR testing for A. phagocytophilum revealed that 5 of 263 (1.9%) from northwestern Pennsylvania and 76 of 191 (39.8%) from southeastern Pennsylvania were positive. DNA sequencing revealed two genotypes of A. phagocytophilum, the human granulocytic ehrlichiosis (HGE) agent and a variant (AP-Variant 1) that has not been associated with human infection. Although only the HGE agent was present in northwestern Pennsylvania, both genotypes were found in southeastern Pennsylvania. These data add to a growing body of evidence showing that AP-Variant 1 is the predominant agent in areas where both genotypes coexist. PMID:12682147
Life cycle of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in the North-West of Russia.
Grigoryeva, L A; Stanyukovich, M K
2016-07-01
The life cycle of Ixodes persulcatus lasts 3 years in the conditions of the Leningrad province (North-West Russia), the development of each phase taking a year. The normal age of the taiga tick is 3 years. The calendar age of larvae and nymphs reaches 11-12 months under favorable abiotic and biotic factors, while the calendar age of adults does not exceed 11 months. At the preimaginal phases of development the ticks that breed in August can feed before or after winter. However, their metamorphosis begins and reaches completion within the same timeframes (from late June to early August) and lasts for about 30-50 (60) days. The survival rate of hungry and engorged larvae and nymphs after wintering is quite high (88.6-100 %). We explain the low activity of larvae and nymphs in late summer and autumn by incomplete development. Morphogenetic diapause of engorged larvae and nymphs interrupts digestion but not metamorphosis which starts only in late June and July after the complete absorption of blood from the gut cavity.
Lindsay, Leslie Robbin; Ludwig, Antoinette; Ogden, Nicholas H.; Thivierge, Karine; Leighton, Patrick A.
2018-01-01
Since its detection in Canada in the early 1990s, Ixodes scapularis, the primary tick vector of Lyme disease in eastern North America, has continued to expand northward. Estimates of the tick’s broad-scale distribution are useful for tracking the extent of the Lyme disease risk zone; however, tick distribution may vary widely within this zone. Here, we investigated I. scapularis nymph distribution at three spatial scales across the Lyme disease emergence zone in southern Quebec, Canada. We collected ticks and compared the nymph densities among different woodlands and different plots and transects within the same woodland. Hot spot analysis highlighted significant nymph clustering at each spatial scale. In regression models, nymph abundance was associated with litter depth, humidity, and elevation, which contribute to a suitable habitat for ticks, but also with the distance from the trail and the type of trail, which could be linked to host distribution and human disturbance. Accounting for this heterogeneous nymph distribution at a fine spatial scale could help improve Lyme disease management strategies but also help people to understand the risk variation around them and to adopt appropriate behaviors, such as staying on the trail in infested parks to limit their exposure to the vector and associated pathogens. PMID:29584627
Boyard, C; Barnouin, J; Gasqui, P; Vourc'h, G
2007-07-01
Although Ixodes ricinus ticks are mainly associated with woodland, they are also present in open habitat such as pastures. The distribution of nymphal I. ricinus was monitored by drag sampling the vegetation in May-June 2003 on 61 grazed permanent pastures for cattle located in central France. After selecting explanatory variables from among a set of 155, tick abundance was modelled on the perimeter of the pasture using a negative binomial model that took into account data overdispersion. An abundant tree layer at the perimeter of the pasture associated with a high humidity before sampling greatly enhanced the average number of captured I. ricinus nymphs. The presence of apple or cherry trees around the pasture perimeter, the presence of trees or bushes at the pasture edge, woodland around the pasture and a high number of I. ricinus nymphs in the nearest woodland to the pasture were also favourable to nymph abundance in the pasture. The study highlighted that woodland vegetation associated with humidity and the presence of attractive foraging areas for tick hosts around the pasture played a key role in the abundance of I. ricinus. Finally, the results raised the question of whether and how transfer of ticks between woodland and grazed pastures occurs.
Zolnik, Christine P; Falco, Richard C; Kolokotronis, Sergios-Orestis; Daniels, Thomas J
2015-01-01
Pathogen prevalence within blacklegged ticks (Ixodes scapularis Say, 1821) tends to vary across sites and geographic regions, but the underlying causes of this variation are not well understood. Efforts to understand the ecology of Lyme disease have led to the proposition that sites with higher host diversity will result in lower disease risk due to an increase in the abundance of inefficient reservoir species relative to the abundance of species that are highly competent reservoirs. Although the Lyme disease transmission cycle is often cited as a model for this "dilution effect hypothesis", little empirical evidence exists to support that claim. Here we tested the dilution effect hypothesis for two pathogens transmitted by the blacklegged tick along an urban-to-rural gradient in the northeastern United States using landscape fragmentation as a proxy for host biodiversity. Percent impervious surface and habitat fragment size around each site were determined to assess the effect of landscape fragmentation on nymphal blacklegged tick infection with Borrelia burgdorferi and Anaplasma phagocytophilum. Our results do not support the dilution effect hypothesis for either pathogen and are in agreement with the few studies to date that have tested this idea using either a landscape proxy or direct measures of host biodiversity.
Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).
Josek, Tanya; Allan, Brian F; Alleyne, Marianne
2018-05-04
The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.
Bakhvalova, Valentina N; Chicherina, Galina S; Potapova, Olga F; Panov, Victor V; Glupov, Victor V; Potapov, Mikhail A; Seligman, Stephen J; Morozova, Olga V
2016-08-01
The persistence of tick-borne encephalitis virus (TBEV) in nature is maintained by numerous species of reservoir hosts, multiple transmissions between vertebrates and invertebrates, and the virus adaptation to its hosts. Our Aim: was to compare TBEV isolates from ticks and small wild mammals to estimate their roles in the circulation of the viral subtypes. TBEV isolates from two species of ixodid ticks, four species of rodents, and one species of shrews in the Novosibirsk region, South-Western Siberia, Russia, were analyzed using bioassay, hemagglutination, hemagglutination inhibition, neutralization tests, ELISA, reverse transcription with real-time PCR, and phylogenetic analysis. TBEV RNA and/or protein E were found in 70.9% ± 3.0% of mammals and in 3.8% ± 0.4% of ticks. The TBEV infection rate, main subtypes, and neurovirulence were similar between ixodid tick species. However, the proportions of the virus that were pathogenic for laboratory mice and of the Far-Eastern (FE) subtype, as well as the viral loads with the Siberian and the European subtypes for the TBEV in Ixodes pavlovskyi Pomerantsev, 1946 were higher than in Ixodes persulcatus (P. Schulze, 1930). Percentages of infected Myodes rutilus, Sicista betulina, and Sorex araneus exceeded those of Apodemus agrarius and Myodes rufocanus. Larvae and nymphs of ticks were found mainly on rodents, especially on Myodes rufocanus and S. betulina. The proportion of TBEV-mixed infections with different subtypes in the infected ticks (55.9% ± 6.5%) was higher than in small mammals (36.1% ± 4.0%) (p < 0.01). Molecular typing revealed mono- or mixed infection with three main subtypes of TBEV in ticks and small mammals. The Siberian subtype was more common in ixodid ticks, and the FE subtype was more common in small mammals (p < 0.001). TBEV isolates of the European subtype were rare. TBEV infection among different species of small mammals did not correlate with their infestation rate with ticks in the Novosibirsk region, Russia.
Eisen, Lars; Breuner, Nicole E; Hojgaard, Andrias; Hoxmeier, J Charles; Pilgard, Mark A; Replogle, Adam J; Biggerstaff, Brad J; Dolan, Marc C
2017-01-01
Borrelia mayonii, a recently recognized species within the Borrelia burgdorferi sensu lato complex, has been detected in host-seeking Ixodes scapularis Say ticks and found to be associated with Lyme disease in the Upper Midwest. This spirochete has, to date, not been documented from the Northeast, but we previously demonstrated that I. scapularis ticks originating from Connecticut are capable of serving as a vector of B. mayonii In this follow-up study, we compared the vector efficiency for B. mayonii (strain MN14-1420) of I. scapularis ticks originating from Minnesota in the Upper Midwest and Connecticut in the Northeast. CD-1 outbred white mice previously infected with B. mayonii via tick bite were exposed to simultaneous feeding by Minnesota and Connecticut larvae contained within separate feeding capsules. We found no difference in the ability of Minnesota and Connecticut larvae to acquire B. mayonii from infected mice and pass spirochetes to the nymphal stage (overall nymphal infection rates of 11.6 and 13.3%, respectively). Moreover, the efficiency of transmission of B. mayonii by single infected nymphs was similar for the Minnesota and Connecticut ticks (33 and 44%, respectively). We conclude that the examined I. scapularis ticks from the Upper Midwest and Northeast did not differ in their efficiency as vectors for B. mayonii. Published by Oxford University Press on behalf of Entomological Society of America 2016 This work is written by US Government employees and is in the public domain in the US.
2012-01-01
concern (Gratz 1999). Lyme disease, caused by the spirocheteBorrelia burgdorferi, is themost commonly reported vector-borne disease in the United States...and the incidence of Lyme disease continues to in- crease. In the past 5 yr, an average of 20,000 cases have been reported annually, whereas the...number of reported Lyme disease cases reached an all-time high of35,000 in 2008 (CDC 2010). The blacklegged tick, Ixodes scapularis Say, the principal
Schulze, Terry L; Jordan, Robert A; Hung, Robert W; Puelle, Rose S; Markowski, Daniel; Chomsky, Martin S
2003-07-01
Using polymerase chain reaction, we analyzed 529 Ixodes scapularis Say adults collected from 16 of New Jersey's 21 counties for the presence of Borrelia burgdorferi, the etiological agent of Lyme disease. Overall, 261 (49.3%) were positive. B. burgdorferi was detected in ticks obtained from each county and from 53 of the 58 (93.1%) municipalities surveyed. The observed statewide prevalence in New Jersey is similar to those reported from other northeastern and mid-Atlantic states.
Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards.
Richter, Dania; Matuschka, Franz-Rainer
2006-07-01
To determine whether the Lyme disease spirochete Borrelia lusitaniae is associated with lizards, we compared the prevalence and genospecies of spirochetes present in rodent- and lizard-associated ticks at a site where this spirochete frequently infects questing ticks. Whereas questing nymphal Ixodes ricinus ticks were infected mainly by Borrelia afzelii, one-half of the infected adult ticks harbored B. lusitaniae at our study site. Lyme disease spirochetes were more prevalent in sand lizards (Lacerta agilis) and common wall lizards (Podarcis muralis) than in small rodents. Although subadult ticks feeding on rodents acquired mainly B. afzelii, subadult ticks feeding on lizards became infected by B. lusitaniae. Genetic analysis confirmed that the spirochetes isolated from ticks feeding on lizards are members of the B. lusitaniae genospecies and resemble type strain PotiB2. At our central European study site, lizards, which were previously considered zooprophylactic for the agent of Lyme disease, appear to perpetuate B. lusitaniae.
Perpetuation of the Lyme Disease Spirochete Borrelia lusitaniae by Lizards
Richter, Dania; Matuschka, Franz-Rainer
2006-01-01
To determine whether the Lyme disease spirochete Borrelia lusitaniae is associated with lizards, we compared the prevalence and genospecies of spirochetes present in rodent- and lizard-associated ticks at a site where this spirochete frequently infects questing ticks. Whereas questing nymphal Ixodes ricinus ticks were infected mainly by Borrelia afzelii, one-half of the infected adult ticks harbored B. lusitaniae at our study site. Lyme disease spirochetes were more prevalent in sand lizards (Lacerta agilis) and common wall lizards (Podarcis muralis) than in small rodents. Although subadult ticks feeding on rodents acquired mainly B. afzelii, subadult ticks feeding on lizards became infected by B. lusitaniae. Genetic analysis confirmed that the spirochetes isolated from ticks feeding on lizards are members of the B. lusitaniae genospecies and resemble type strain PotiB2. At our central European study site, lizards, which were previously considered zooprophylactic for the agent of Lyme disease, appear to perpetuate B. lusitaniae. PMID:16820453
Piesman, Joseph; Hojgaard, Andrias
2012-06-01
Clinical studies have demonstrated that prophylactic antibiotic treatment of tick bites by Ixodes scapularis in Lyme disease hyperendemic regions in the northeastern United States can be effective in preventing infection with Borrelia burgdorferi sensu stricto, the Lyme disease spirochete. A large clinical trial in Westchester County, NY (USA), demonstrated that treatment of tick bite with 200mg of oral doxycycline was 87% effective in preventing Lyme disease in tick-bite victims (Nadelman, R.B., Nowakowski, J., Fish, D., Falco, R.C., Freeman, K., McKenna, D., Welch, P., Marcus, R., Agúero-Rosenfeld, M.E., Dennis, D.T., Wormser, G.P., 2001. Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. N. Engl. J. Med. 345, 79-84.). Although this excellent clinical trial provided much needed information, the authors enrolled subjects if the tick bite occurred within 3 days of their clinical visit, but did not analyze the data based on the exact time between tick removal and delivery of prophylaxis. An animal model allows for controlled experiments designed to determine the point in time after tick bite when delivery of oral antibiotics would be too late to prevent infection with B. burgdorferi. Accordingly, we developed a tick-bite prophylaxis model in mice that gave a level of prophylactic protection similar to what had been observed in clinical trials and then varied the time post tick bite of antibiotic delivery. We found that two treatments of doxycycline delivered by oral gavage to mice on the day of removal of a single potentially infectious nymphal I. scapularis protected 74% of test mice compared to controls. When treatment was delayed until 24 h after tick removal, only 47% of mice were protected; prophylactic treatment was totally ineffective when delivered ≥2 days after tick removal. Although the dynamics of antibiotic treatment in mice may differ from humans, and translation of animal studies to patient management must be approached with caution, we believe our results emphasize the point that antibiotic prophylactic treatment of tick bite to prevent Lyme disease is more likely to be efficacious if delivered promptly after potentially infectious ticks are removed from patients. There is only a very narrow window for prophylactic treatment to be effective post tick removal. Published by Elsevier GmbH.
2014-01-01
Background Climate change can affect the activity and distribution of species, including pathogens and parasites. The densities and distribution range of the sheep tick (Ixodes ricinus) and it’s transmitted pathogens appears to be increasing. Thus, a better understanding of questing tick densities in relation to climate and weather conditions is urgently needed. The aim of this study was to test predictions regarding the temporal pattern of questing tick densities at two different elevations in Norway. We predict that questing tick densities will decrease with increasing elevations and increase with increasing temperatures, but predict that humidity levels will rarely affect ticks in this northern, coastal climate with high humidity. Methods We described the temporal pattern of questing tick densities at ~100 and ~400 m a.s.l. along twelve transects in the coastal region of Norway. We used the cloth lure method at 14-day intervals during the snow-free season to count ticks in two consecutive years in 20 m2 plots. We linked the temporal pattern of questing tick densities to local measurements of the prevailing weather. Results The questing tick densities were much higher and the season was longer at ~100 compared to at ~400 m a.s.l. There was a prominent spring peak in both years and a smaller autumn peak in one year at ~100 m a.s.l.; but no marked peak at ~400 m a.s.l. Tick densities correlated positively with temperature, from low densities <5°C, then increasing and levelling off >15-17°C. We found no evidence for reduced questing densities during the driest conditions measured. Conclusions Tick questing densities differed even locally linked to elevation (on the same hillside, a few kilometers apart). The tick densities were strongly hampered by low temperatures that limited the duration of the questing seasons, whereas the humidity appeared not to be a limiting factor under the humid conditions at our study site. We expect rising global temperatures to increase tick densities and lead to a transition from a short questing season with low densities in the current cold and sub-optimal tick habitats, to longer questing seasons with overall higher densities and a marked spring peak. PMID:24725997
Morganti, Giulia; Gavaudan, Stefano; Canonico, Cristina; Ravagnan, Silvia; Olivieri, Emanuela; Diaferia, Manuela; Marenzoni, Maria Luisa; Antognoni, Maria Teresa; Capelli, Gioia; Silaghi, Cornelia; Veronesi, Fabrizia
2017-11-01
Dogs are a common feeding hosts for Ixodes ricinus and may act as reservoir hosts for zoonotic tick-borne pathogens (TBPs) and as carriers of infected ticks into human settings. The aim of this work was to evaluate the presence of several selected TBPs of significant public health concern by molecular methods in I. ricinus recovered from dogs living in urban and suburban settings in central Italy. A total of 212 I. ricinus specimens were collected from the coat of domestic dogs. DNA was extracted from each specimen individually and tested for Rickettsia spp., Borrelia burgdorferi sensu lato, Babesia spp., and Anaplasma phagocytophilum, using real-time and conventional PCR protocols, followed by sequencing. Sixty-one ticks (28.8%) tested positive for TBPs; 57 samples were infected by one pathogen, while four showed coinfections. Rickettsia spp. was detected in 39 specimens (18.4%), of which 32 were identified as Rickettsia monacensis and seven as Rickettsia helvetica. Twenty-two samples (10.4%) tested positive for A. phagocytophilum; Borrelia lusitaniae and Borrelia afzelii were detected in two specimens and one specimen, respectively. One tick (0.5%) was found to be positive for Babesia venatorum (EU1). Our findings reveal the significant exposure of dogs to TBPs of public health concern and provide data on the role of dogs in the circulation of I. ricinus-borne pathogens in central Italy.
Relapsing Fevers: Neglected Tick-Borne Diseases
Talagrand-Reboul, Emilie; Boyer, Pierre H.; Bergström, Sven; Vial, Laurence; Boulanger, Nathalie
2018-01-01
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi. PMID:29670860
Loftis, Amanda D; Kelly, Patrick J; Paddock, Christopher D; Blount, Keith; Johnson, Jason W; Gleim, Elizabeth R; Yabsley, Michael J; Levin, Michael L; Beati, Lorenza
2016-05-01
Panola Mountain Ehrlichia (PME) has been suggested as an emerging pathogen of humans and dogs. Domestic goats and white-tailed deer (Odocoileus virginianus) are also susceptible and likely serve as reservoirs. Experimentally, both the lone star tick (Amblyomma americanum (L.)) and the Gulf Coast tick (Amblyomma maculatum Koch) can transmit PME among deer and goats. In the current study, we detected PME in adult wild-caught A. maculatum from the United States and Amblyomma variegatum (F.) from the Caribbean and Africa. This significantly expands the range, potential tick vectors, and risk for exposure to PME. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sormunen, Jani; Kulha, Niko; Klemola, Tero
2017-04-01
Ticks (Acari: Ixodidae) and tick-borne diseases constitute a growing welfare problem in northern Europe and Russia. Surveys conducted in Russia, Sweden and Norway have revealed a northwards shift in distribution and an increase in tick abundance over the past few decades. In southwestern Finland, surveys have revealed a similar increase in tick abundance, as well as the presence of novel tick-borne pathogens. As avoiding risk areas and removing attached ticks as quickly as possible are the best available methods for preventing tick-borne diseases, accessible and up-to-date data on tick occurrence is essential. However, consistently tracking the nationwide distribution of ticks is impossible using traditional collection methods. Therefore, GIS-based predictive modelling for tick occurrence is required. In May 2015, a national tick collection campaign was launched by the University of Turku tick project, with the objective of mapping the current geographical distribution of the two tick species responsible for tick-borne infections in Finland, Ixodes ricinus and Ixodes persulcatus. During the collection campaign, citizens were asked to send any ticks they found to the University of Turku by letter, along with information on the collection locality. The campaign ended in September 2015 and was a great success, with nearly 7000 letters delivered to the University. These letters contained more than 20 000 individual ticks from all around Finland. The geographic data from the letters was converted into coordinate points after the campaign was concluded. Data from the national tick collection campaign revealed not only a northwards shift in the distribution of I. ricinus, but also novel foci for I. persulcatus in Finland. Strikingly, while they were otherwise found throughout Finland, I. persulcatus were absent from the south-southwestern coast, where I. ricinus is nevertheless abundant. The exact cause for this phenomenon is unclear, as I. persulcatus are found further south in nearby Estonia and Russia. Using the location and tick species data from the collection campaign, as well as nationwide data sets regarding several different environmental factors (e.g. temperature sum, soil type), we seek to identify potential environmental causes for the realized geographical distributions of these two tick species in Finland. Particularly, we seek to identify factors limiting tick occurrence in certain areas, especially I. persulcatus occurrence in southern Finland. The ultimate goal is to determine whether quantifiable environmental factors linked to tick occurrence can be found, and, if found, use them to apply GIS models to map and predict changes in tick distribution in Finland. In the poster presented here, we showcase the methodology used in assessing effects of different environmental factors on tick occurrence, and present preliminary results from GIS analysis of coordinate, tick species and environmental data.
Subbotin, A V; Poponnikova, T V; Zinchuk, S F
2003-01-01
Twenty two children with mixed-infection of tick-borne encephalitis (TBE) and ixodic tick borreliosis (ITB) were studied. Blood hydrocortisone level was changed in 94.5% of the cases. The most significant activation of hydrocortisone secretion in combination with the most pronounced and prolonged general brain manifestations, was detected in infants. Blood hydrocortisone level correlated with clinical symptoms of combined TBE and ITB infections. Along with higher hydrocortisone level, down-regulation of production of antibodies both to B. burgdorferi and to TBE virus was specific for all children studied.
Grabowski, Jeffrey M; Tsetsarkin, Konstantin A; Long, Dan; Scott, Dana P; Rosenke, Rebecca; Schwan, Tom G; Mlera, Luwanika; Offerdahl, Danielle K; Pletnev, Alexander G; Bloom, Marshall E
2017-08-22
Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission. IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.
Tests on ticks from wild birds collected in the eastern United States for rickettsiae and viruses
Clifford, C.M.; Sonenshine, D.E.; Atwood, E.L.; Robbins, C.S.; Hughes, L.E.
1969-01-01
Results of tests for rickettsiae and viruses on 4,266 ticks taken from more than 10,000 birds, comprising 150 species, in the eastern United States indicated the presence of two agents: Rickettsia rickettsii and an agent of the typhus group. Infection with R. rickettsii was indicated in 24 pools of Haemaphysalis leporispalustris, five pools of Ixodes dentatus, one pool of Ixodes brunneus, and two pools that contained both I. dentatus and H. leporispalustris. The pools positive for R. rickettsii were from a variety of locations in the eastern U. S. The typhus-group agent was demonstrated only once, in a single pool of H. leporispalustris taken at Kent Point, Maryland. A strain of R. rickettsii was isolated from a pool of 21 larval H. leporispalustris collected at Ocean City, Maryland. This agent possessed several characteristics of other strains of low virulence isolated previously in this region by various authors.
Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C
2018-05-21
The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.
Geurden, Thomas; Borowski, Stasia; Wozniakiewicz, Magda; King, Vickie; Fourie, Josephus; Liebenberg, Julian
2017-06-29
Ticks are increasingly reported on cats worldwide, with Ixodes ricinus being a relevant species across Europe and in near by areas of North Africa and the Middle East. Yet there are few acaracidal products with proven efficacy approved for use in cats. The objective of this study was to compare the efficacy of a new spot-on formulation containing selamectin and sarolaner with a topical application of fluralaner (Bravecto®) against Ixodes ricinus ticks on cats. To that end, twenty-four (24) cats were randomly allocated to one of three treatment groups. The cats in the control group remained untreated. Cats in group 2 were treated with selamectin/sarolaner (Stronghold®Plus; Zoetis) at the minimum recommended dose of 1.0 mg/kg sarolaner and 6.0 mg/kg selamectin on Days 0, 30 and 60. The cats in group 3 received a fluralaner treatment (Bravecto®spot-on solution for cats, MSD) at the minimum recommended dose of 40.0 mg/kg on Day 0. Cats were infested with 50 (± 4) viable, adult, unfed I. ricinus ticks on Days 26, 54, 82 and 89 and ticks were removed for counting 48 h (± 2 h) later. Three monthly treatments with selamectin/sarolaner provided high and consistent efficacy against I. ricinus for the entire duration of the study period. In contrast, the efficacy of fluralaner declined in the second month after treatment and was below the efficacy threshold of 90% on Days 56, 84 and 91. The percentage efficacy against I. ricinus was numerically higher in the selemectin/sarolaner treated group than in the fluralaner-treated group on Days 56, 84 and 91. Furthermore, greasiness and spiking of the hair, as well as white deposits were frequently observed in the fluralaner-treated cats. The results of the present study confirm the high and consistent efficacy of a new spot-on combination product containing selamectin and sarolaner against I. ricinus in cats, and indicate a decline in fluralaner efficacy during the 91 day period after treatment.
Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France
Perthame, Emeline; Sertour, Natacha; Garnier, Martine; Godard, Vincent
2017-01-01
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis. PMID:28846709
Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France.
Marchant, Axelle; Le Coupanec, Alain; Joly, Claire; Perthame, Emeline; Sertour, Natacha; Garnier, Martine; Godard, Vincent; Ferquel, Elisabeth; Choumet, Valerie
2017-01-01
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis.
Khasnatinov, Maxim A.; Ustanikova, Katarina; Frolova, Tatiana V.; Pogodina, Vanda V.; Bochkova, Nadezshda G.; Levina, Ludmila S.; Slovak, Mirko; Kazimirova, Maria; Labuda, Milan; Klempa, Boris; Eleckova, Elena; Gould, Ernest A.; Gritsun, Tamara S.
2009-01-01
Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE. PMID:19802385
Blazejak, Katrin; Raulf, Marie-Kristin; Janecek, Elisabeth; Jordan, Daniela; Fingerle, Volker; Strube, Christina
2018-05-18
Lyme borreliosis caused by spirochetes of the Borrelia burgdorferi (sensu lato) complex is still the most common tick-borne disease in Europe, posing a considerable threat to public health. The predominant vector in Europe is the widespread hard tick Ixodes ricinus, which also transmits the relapsing fever spirochete B. miyamotoi as well as pathogenic Rickettsiales (Anaplasma phagocytophilum, Rickettsia spp.). To assess the public health risk, a long-term monitoring of tick infection rates with the named pathogens is indispensable. The present study is the first German 10-year follow-up monitoring of tick infections with Borrelia spp. and co-infections with Rickettsiales. Furthermore, a specific Reverse Line Blot (RLB) protocol for detection of B. miyamotoi and simultaneous differentiation of B. burgdorferi (s.l.) geno-species was established. Overall, 24.0% (505/2100) of ticks collected in the city of Hanover were infected with Borrelia. In detail, 35.4% (203/573) of adult ticks [38.5% females (111/288) and 32.3% males (92/285)] and 19.8% nymphs (302/1527) were infected, representing consistent infection rates over the 10-year monitoring period. Geno-species differentiation using RLB determined B. miyamotoi in 8.9% (45/505) of positive ticks. Furthermore, a significant decrease in B. afzelii and B. spielmanii infection rates from 2010 to 2015 was observed. Co-infections with Rickettsia spp. and A. phagocytophilum increased between 2010 and 2015 (7.3 vs 10.9% and 0.3 vs 1.1%, respectively). Long-term monitoring is an essential part of public health risk assessment to capture data on pathogen occurrence over time. Such data will reveal shifts in pathogen geno-species distribution and help to answer the question whether or not climate change influences tick-borne pathogens.
Estrada-Peña, Agustín; Carreón, Diana; Almazán, Consuelo; de la Fuente, José
2014-01-01
Cattle ticks are distributed worldwide and affect animal health and livestock production. White tailed deer (WTD) sustain and spread cattle tick populations. The aim of this study was to model the efficacy of anti-tick vaccination of WTD to control tick infestations in the absence of cattle vaccination in a territory where both host species coexist and sustain cattle tick populations. Agent-based models that included land cover/landscape properties (patch size, distances to patches) and climatic conditions were built in a GIS environment to simulate WTD vaccine effectiveness under conditions where unvaccinated cattle shared the landscape. Published and validated information on tick life cycle was used to build models describing tick mortality and developmental rates. Data from simulations were applied to a large territory in northeastern Mexico where cattle ticks are endemic and WTD and cattle share substantial portions of the habitat. WTD movements were simulated together with tick population dynamics considering the actual landscape and climatic features. The size of the vegetation patches and the distance between patches were critical for the successful control of tick infestations after WTD vaccination. The presence of well-connected, large vegetation patches proved essential for tick control, since the tick could persist in areas of highly fragmented habitat. The continued application of one yearly vaccination on days 1-70 for three years reduced tick abundance/animal/patch by a factor of 40 and 60 for R. annulatus and R. microplus, respectively when compared to non-vaccinated controls. The study showed that vaccination of WTD alone during three consecutive years could result in the reduction of cattle tick populations in northeastern Mexico. Furthermore, the results of the simulations suggested the possibility of using vaccines to prevent the spread and thus the re-introduction of cattle ticks into tick-free areas.
Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania.
Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Rubel, Franz; Waldenström, Jonas; Dobler, Gerhard; Chițimia-Dobler, Lidia
2017-08-01
Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.
Nefedova, V V; Korenberg, E I; Kovalevskiĭ, Iu V; Gorelova, N B; Vorob'eva, N N
2008-01-01
The PCR and sequence analysis revealed DNA Ehrlichia muris, Anaplasma phagocytophilum, and Rickettsia spp. in the I. persulcatus ticks and blood samples from a patients with acute febrile illness occurring after a tick bite, registered in the seasonal peak of the tick activity of one of the highly endemic areas of Russia (Perm region). These data confirmed the validity a diagnosis of HME and HGA, which were made earlier on the basis of the clinical-serologic survey. In 10.0% of the tested taiga ticks were detected DNA of two and more agents in various combinations i.e. E. muris and Rickettsia spp, A. phagocytophilum and Rickettsia spp., and E. muris, A. phagocytophilum and Rickettsia spp. DNA of a R. helvetica was detected in I. persulcatus tick and blood tick-bitten patient with febrile episodes. Probably that R. helvetica can be etiological agent in some part of cases with the serologically unconfirmed diagnoses of acute feverish diseases developing after tick bite.
Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens
Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.
2010-01-01
Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313
Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus.
Rangel, Carolina K; Parizi, Luís F; Sabadin, Gabriela A; Costa, Evenilton P; Romeiro, Nelilma C; Isezaki, Masayoshi; Githaka, Naftaly W; Seixas, Adriana; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko; da Silva Vaz, Itabajara
2017-03-01
Cystatins are cysteine peptidase inhibitors that in ticks mediate processes such as blood feeding and digestion. The ixodid tick Ixodes persulcatus is endemic to the Eurasia, where it is the principal vector of Lyme borreliosis. To date, no I. persulcatus cystatin has been characterized. In the present work, we describe three novel cystatins from I. persulcatus, named JpIpcys2a, JpIpcys2b and JpIpcys2c. In addition, the potential of tick cystatins as cross-protective antigens was evaluated by vaccination of hamsters using BrBmcys2c, a cystatin from Rhipicephalus microplus, against I. persulcatus infestation. Sequence analysis showed that motifs that are characteristic of cystatins type 2 are fully conserved in JpIpcys2b, while mutations are present in both JpIpcys2a and JpIpcys2c. Protein-protein docking simulations further revealed that JpIpcys2a, JpIpcys2b and JpIpcys2c showed conserved binding sites to human cathepsins L, all of them covering the active site cleft. Cystatin transcripts were detected in different I. persulcatus tissues and instars, showing their ubiquitous expression during I. persulcatus development. Serological analysis showed that although hamsters immunized with BrBmcys2c developed a humoral immune response, this response was not adequate to protect against a heterologous challenge with I. persulcatus adult ticks. The lack of cross-protection provided by BrBmcys2c immunization is perhaps linked to the fact that cystatins cluster into multigene protein families that are expressed differentially and exhibit functional redundancy. How to target such small proteins that are secreted in low quantities remains a challenge in the development of suitable anti-tick vaccine antigens. Copyright © 2017 Elsevier GmbH. All rights reserved.
DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks.
Hornok, Sándor; Szőke, Krisztina; Kováts, Dávid; Estók, Péter; Görföl, Tamás; Boldogh, Sándor A; Takács, Nóra; Kontschán, Jenő; Földvári, Gábor; Barti, Levente; Corduneanu, Alexandra; Sándor, Attila D
2016-01-01
In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation.
DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks
Hornok, Sándor; Szőke, Krisztina; Kováts, Dávid; Estók, Péter; Görföl, Tamás; Boldogh, Sándor A.; Takács, Nóra; Kontschán, Jenő; Földvári, Gábor; Barti, Levente; Corduneanu, Alexandra; Sándor, Attila D.
2016-01-01
In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation. PMID:27930692
Hamšíková, Zuzana; Coipan, Claudia; Mahríková, Lenka; Minichová, Lenka; Sprong, Hein; Kazimírová, Mária
2017-05-01
Borrelia miyamotoi causes relapsing fever in humans. The occurrence of this spirochete has been reported in Ixodes ricinus and wildlife, but there are still gaps in the knowledge of its eco-epidemiology and public health impact. In the current study, questing I. ricinus (nymphs and adults) and skin biopsies from rodents captured in Slovakia were screened for the presence of B. miyamotoi and Borrelia burgdorferi s.l. DNA. The prevalence of B. miyamotoi and B. burgdorferi s.l. in questing ticks was 1.7 and 16.9%, respectively. B. miyamotoi was detected in Apodemus flavicollis (9.3%) and Myodes glareolus (4.4%). In contrast, B. burgdorferi s.l. was identified in 11.9% of rodents, with the highest prevalence in Microtus arvalis (68.4%) and a lower prevalence in Apodemus spp. (8.4%) and M. glareolus (12.4%). Borrelia afzelii was the prevailing genospecies infecting questing I. ricinus (37.9%) and rodents (72.2%). Co-infections of B. miyamotoi and B. burgdorferi s.l. were found in 24.1 and 9.3% of the questing ticks and rodents, respectively, whereas the proportion of ticks and rodents co-infected with B. miyamotoi and B. afzelii was 6.9 and 7.0%, respectively. The results suggest that B. miyamotoi and B. afzelii share amplifying hosts. The sequences of the B. miyamotoi glpQ gene fragment from our study showed a high degree of identity with sequences of the gene amplified from ticks and human patients in Europe. The results seem to suggest that humans in Slovakia are at risk of contracting tick-borne relapsing fever, and in some cases together with Lyme borreliosis.
Hornok, S; Flaisz, B; Takács, N; Kontschán, J; Csörgő, T; Csipak, Á; Jaksa, B R; Kováts, D
2016-02-24
Birds play an important role in short- and long-distance transportation of ticks and tick-borne pathogens. The aim of the present study was to provide comprehensive information on the species and genetic diversity of ixodid ticks transported by migratory and non-migratory bird species in Central Europe, and to evaluate relevant data in a geographical, as well as in an ecological context. During a three year period (2012-2014), altogether 3339 ixodid ticks were collected from 1167 passerine birds (representatives of 47 species) at ringing stations in Hungary. These ticks were identified, and the tick-infestations of bird species were compared according to various traits. In addition, PCR and sequencing of part of the cytochrome oxidase subunit-I (COI) and 16S rDNA genes were performed from representatives of five tick species. The most abundant tick species found were Ixodes ricinus and Haemaphysalis concinna (with 2296 and 989 immature stages, respectively). In addition, 48 I. frontalis (all stages), three Hyalomma rufipes nymphs, one I. lividus and two I. festai females were collected. The majority of I. ricinus and I. frontalis specimens occurred on ground-feeding bird species, as contrasted to Ha. concinna. Hy. rufipes showed the highest degree of sequence identity to an Ethiopian hybrid of the same tick species. Based on both COI and 16S rDNA gene analyses, two genetic lineages of I. frontalis were recognized (with only 91.4 % identity in their partial COI gene). These were highly similar to South-Western European isolates of the same tick species. Phylogenetic analysis of Ha. concinna specimens collected from birds in Hungary also revealed two genetic lineages, one of which showed high (≥99 %) degree of 16S rDNA sequence identity to conspecific East Asian isolates. Two genetic lineages of I. frontalis and Ha. concinna are transported by birds in Central Europe, which reflect a high degree of sequence identity to South-Western European and East Asian isolates of the same tick species, respectively. In addition, I. festai was collected for the first time in Hungary. These findings highlight the importance of western and eastern migratory connections by birds (in addition to the southern direction), which are also relevant to the epidemiology of tick-borne diseases.
Pettersson, John H-O; Golovljova, Irina; Vene, Sirkka; Jaenson, Thomas G T
2014-03-11
In northern Europe, the tick-borne encephalitis virus (TBEV) of the European subtype is usually transmitted to humans by the common tick Ixodes ricinus. The aims of the present study are (i) to obtain up-to-date information on the TBEV prevalence in host-seeking I. ricinus in southern and central Sweden; (ii) to compile and review all relevant published records on the prevalence of TBEV in ticks in northern Europe; and (iii) to analyse and try to explain how the TBE virus can be maintained in natural foci despite an apparently low TBEV infection prevalence in the vector population. To estimate the mean minimum infection rate (MIR) of TBEV in I. ricinus in northern Europe (i.e. Denmark, Norway, Sweden and Finland) we reviewed all published TBEV prevalence data for host-seeking I. ricinus collected during 1958-2011. Moreover, we collected 2,074 nymphs and 906 adults of I. ricinus from 29 localities in Sweden during 2008. These ticks were screened for TBEV by RT-PCR. The MIR for TBEV in nymphal and adult I. ricinus was 0.28% for northern Europe and 0.23% for southern Sweden. The infection prevalence of TBEV was significantly lower in nymphs (0.10%) than in adult ticks (0.55%). At a well-known TBEV-endemic locality, Torö island south-east of Stockholm, the TBEV prevalence (MIR) was 0.51% in nymphs and 4.48% in adults of I. ricinus. If the ratio of nymphs to adult ticks in the TBEV-analysed sample differs from that in the I. ricinus population in the field, the MIR obtained will not necessarily reflect the TBEV prevalence in the field. The relatively low TBEV prevalence in the potential vector population recorded in most studies may partly be due to: (i) inclusion of uninfected ticks from the 'uninfected areas' surrounding the TBEV endemic foci; (ii) inclusion of an unrepresentative, too large proportion of immature ticks, compared to adult ticks, in the analysed tick pools; and (iii) shortcomings in the laboratory techniques used to detect the virus that may be present in a very low concentration or undetectable state in ticks which have not recently fed.
Schötta, Anna-Margarita; Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold
2017-07-01
Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia , Rickettsiae , Anaplasma / Ehrlichia (including " Candidatus Neoehrlichia"), Babesia , and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis , Borrelia lusitaniae , and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. " Candidatus Neoehrlichia mikurensis," Babesia spp. ( B. venatorum , B. divergens , B. microti ), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and " Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. Copyright © 2017 American Society for Microbiology.
Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold
2017-01-01
ABSTRACT Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia, Rickettsiae, Anaplasma/Ehrlichia (including “Candidatus Neoehrlichia”), Babesia, and Coxiella. The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis, Borrelia lusitaniae, and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. “Candidatus Neoehrlichia mikurensis,” Babesia spp. (B. venatorum, B. divergens, B. microti), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and “Candidatus Neoehrlichia mikurensis” showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. PMID:28455331
Popov, Vsevolod L; Korenberg, Edward I; Nefedova, Valentina V; Han, Violet C; Wen, Julie W; Kovalevskii, Yurii V; Gorelova, Natalia B; Walker, David H
2007-01-01
Ehrlichiae are small gram-negative obligately intracellular bacteria that multiply within vacuoles of their host cells and are associated for a part of their life cycle with ticks, which serve as vectors for vertebrate hosts. Two morphologically and physiologically different ehrlichial cell types, reticulate cells (RC) and dense-cored cells (DC), are observed during experimental infection of cell cultures, mice, and ticks. Dense-cored cells and reticulate cells in vertebrate cell lines alternate in a developmental cycle. We observed ultrastructure of RC and DC of Ehrlichia muris in morulae in salivary gland cells and coinfection with Borrelia burgdorferi sensu lato (sl), "Candidatus Rickettsia tarasevichiae," and a flavivirus (presumably, tick-borne encephalitis virus [TBEV]) of Ixodes persulcatusticks collected in the Cis-Ural region of Russia. Polymerase chain reaction revealed 326 (81.5%) of 400 ticks carrying at least one infectious agent, and 41.5% (166 ticks) were coinfected with two to four agents. Ehrlichiae and rickettsiae were identified by sequencing of 359 bp of the 16S rRNA gene of E. muris and of 440 bp of the 16S rRNA gene and 385 bp of the gltA gene of "R. tarasevichiae." Different organs of the same tick harbored different microorganisms: TBEV in salivary gland and borreliae in midgut; E. muris in salivary gland; and "R. tarasevichiae" in midgut epithelium. Salivary gland cells contained both RC and DC, a finding that confirmed the developmental cycle in naturally infected ticks. Dense-cored cells in tick salivary glands were denser and of more irregular shape than DC in cell cultures. Ehrlichia-infected salivary gland cells had lysed cytoplasm, suggesting pathogenicity of E. muris for the tick host at the cellular level, as well as potential transmission during feeding. Rickettsiae in the midgut epithelial cells multiplied to significant numbers without altering the host cell ultrastructure. This is the first demonstration of E. muris, "R. tarasevichiae," and the ehrlichial developmental cycle in naturally infected I. persulcatus sticks.
2008-02-14
worldwide, only a few are vaccine -preventable (e.g., tick-borne encephalitis, yellow fever, Japanese encephalitis, and plague). For this reason...western Germany underscore the considerable risk of acquiring Lyme borreliosis in Central Europe. Since no licensed vaccine exists for Lyme borreliosis...Acknowledgements We thank Marco Isack, Sabine Barz, Thorsten Lange, Bernd Bocklet and Dirk Hiller for their assistance with fieldwork. TibMolBiol
Rickettsia vini n. sp. (Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae).
Novakova, Marketa; Costa, Francisco B; Krause, Frantisek; Literak, Ivan; Labruna, Marcelo B
2016-08-26
Recently, a new rickettsia named 'Candidatus Rickettsia vini' belonging to the spotted fever group has been molecularly detected in Ixodes arboricola ticks in Spain, the Czech Republic, Slovakia and Turkey, with prevalence reaching up to 100 %. The aim of this study was to isolate this rickettsia in pure culture, and to describe it as a new Rickettsia species. A total of 148 ornitophilic nidicolous ticks Ixodes arboricola were collected in a forest near Breclav (Czech Republic) and examined for rickettsiae. Shell vial technique was applied to isolate rickettsiae in Vero cells. Rickettsial isolation was confirmed by optical microscopy and sequencing of partial sequences of the rickettsial genes gltA, ompA, ompB, and htrA. Laboratory guinea pigs and chickens were used for experimental infestations and infections. Animal blood sera were tested by immunofluorescence assay employing crude antigens of various rickettsiae. Rickettsia vini n. sp. was successfully isolated from three males of I. arboricola. Phylogenetic analysis of fragments of 1092, 590, 800, and 497 nucleotides of the gltA, ompA, ompB, and htrA genes, respectively, showed closest proximity of R. vini n. sp. to Rickettsia japonica and Rickettsia heilongjiangensis belonging to the spotted fever group. Experimental infection of guinea pigs and chickens with R. vini led to various levels of cross-reactions of R. vini-homologous antibodies with Rickettsia rickettsii, Rickettsia parkeri, 'Candidatus Rickettsia amblyommii', Rickettsia rhipicephali, Rickettsia bellii, and Rickettsia felis. Laboratory infestations by R. vini-infected I. arboricola larvae on chickens led to no seroconversion to R. vini n. sp., nor cross-reactions with R. rickettsii, R. parkeri, 'Ca. R. amblyommii', R. rhipicephali, R. bellii or R. felis. Our results suggest that R. vini n. sp. is possibly a tick endosymbiont, not pathogenic for guinea pigs and chickens. Regarding specific phenotypic characters and significant differences of DNA sequences in comparison to the most closely related species (R. japonica and R. heilongjiangensis), we propose to classify the isolate as a new species, Rickettsia vini.
Wodecka, Beata; Michalik, Jerzy; Lane, Robert S; Nowak-Chmura, Magdalena; Wierzbicka, Anna
2016-07-01
European badgers and raccoon dogs and their associated ticks and lice were assayed for the presence of Lyme borreliosis and relapsing fever-group spirochete DNA in western Poland. Analyses of blood, ear-biopsy and liver samples revealed that 25% of 28 raccoon dogs and 12% of 34 badgers were PCR positive for borreliae. Borrelia garinii was the dominant species in raccoon dogs (62.5%), followed by B. afzelii (25%) and B. valaisiana (12.5%). PCR-positive badgers were infected only with B. afzelii. A total of 351 attached ticks was recovered from 23 (82%) of the raccoon dogs and 13 (38%) of the badgers. Using a nested PCR targeting the ITS2 fragments of Ixodes DNA, four Ixodes species were identified: I. ricinus, I. canisuga, I. hexagonus, and one provisionally named I. cf. kaiseri. Ixodes canisuga and I. ricinus prevailed on both host species. The highest infection prevalence was detected in I. ricinus, followed by I. canisuga and I. cf. kaiseri. Borrelia garinii and B. afzelii accounted for 61.6% and 30.1% of the infections detected in all PCR-positive ticks, respectively. Four other Borrelia species (B. burgdorferi sensu stricto, B. valaisiana, B. lusitaniae and B. miyamotoi) were detected only in I. ricinus from raccoon dogs. Moreover, Borrelia DNA, mostly B. garinii, was detected in 57 (81.4%) of 70 Trichodectes melis lice derived from 12 badgers. The detection of B. afzelii in one-half of PCR-positive biopsies reconfirms previous associations of this species with mammalian hosts, whereas the high prevalence of B. garinii in feeding lice and I. ricinus ticks (including larvae) demonstrates that both carnivores serve as hosts for B. garinii. The lack of B. garinii DNA in the tissues of badgers versus its prevalence in raccoon-dog biopsies, however, incriminates only the latter carnivore as a potential reservoir host. Copyright © 2016 Elsevier GmbH. All rights reserved.
Tissue Distribution of the Ehrlichia muris-Like Agent in a Tick Vector
Lynn, Geoffrey E.; Oliver, Jonathan D.; Nelson, Curtis M.; Felsheim, Roderick F.; Kurtti, Timothy J.; Munderloh, Ulrike G.
2015-01-01
Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands. PMID:25781930
Habitat Suitability Model for the Distribution of Ixodes scapularis (Acari: Ixodidae) in Minnesota
Johnson, T. L.; Bjork, J. K. H.; Neitzel, D. F.; Dorr, F. M.; Schiffman, E. K.; Eisen, R. J.
2016-01-01
Ixodes scapularis Say, the black-legged tick, is the primary vector in the eastern United States of several pathogens causing human diseases including Lyme disease, anaplasmosis, and babesiosis. Over the past two decades, I. scapularis-borne diseases have increased in incidence as well as geographic distribution. Lyme disease exists in two major foci in the United States, one encompassing northeastern states and the other in the Upper Midwest. Minnesota represents a state with an appreciable increase in counties reporting I. scapularis-borne illnesses, suggesting geographic expansion of vector populations in recent years. Recent tick distribution records support this assumption. Here, we used those records to create a fine resolution, subcounty-level distribution model for I. scapularis using variable response curves in addition to tests of variable importance. The model identified 19% of Minnesota as potentially suitable for establishment of the tick and indicated with high accuracy (AUC = 0.863) that the distribution is driven by land cover type, summer precipitation, maximum summer temperatures, and annual temperature variation. We provide updated records of established populations near the northwestern species range limit and present a model that increases our understanding of the potential distribution of I. scapularis in Minnesota. PMID:27026161
USDA-ARS?s Scientific Manuscript database
Nilgai antelope, Boselaphus tragocamelus, and white-tailed deer (WTD), Odocoileus virginianus, are hosts of the cattle fever ticks, Rhipicephalus (Boophilus) microplus, and R. (B.) annulatus in south Texas. Daily activity patterns were studied to develop optimum timing for field treatment methods fo...
Kocan, Katherine M; Manzano-Roman, Raúl; de la Fuente, José
2007-05-01
RNA interference (RNAi) has become the most powerful experimental tool for the study of gene function in ticks. Subolesin, initially called 4D8, was found to be protective against tick infestations when used as a vaccine and was shown to be highly conserved among ixodid tick species at the nucleotide and protein levels. RNAi caused systemic silencing of subolesin and demonstrated that this protein is involved in regulation of tick feeding, reproduction, and development. Recently, these results were extended to the one-host tick Rhipicephalus (Boophilus) microplus in which injection of dsRNA into replete females resulted in transovarial silencing of subolesin expression in eggs and larvae. Herein, we report transovarial silencing of subolesin by RNAi in the three-host ticks, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. Silencing of subolesin expression by RNAi in these tick species also affected subolesin expression in eggs and larvae. Transovarial RNAi appears to be a common mechanism in ixodid ticks and provides a simple method for the rapid characterization of tick genes involved in oviposition, embryogenesis, and larval development.
2010-01-01
Cricetidae and Hominidae ( Homo sapiens Linnaeus, 1758) (Mammalia) (Hoffmann, 1969). Note. The tick from Valle de Bravo, Estado de México, was...distribution El género Ixodes (Acari: Ixodidae) en México: claves de identifi cación para adultos, diagnosis, huéspedes y distribución Carmen Guzmán...Incorporación de Profesores de Carrera en Facultades y Escuelas para el Fortalecimiento de la Investigación (PROFIP). Tila María Pérez, Curator of CNAC
Borde, Johannes P; Zange, Sabine; Antwerpen, Markus H; Georgi, Enrico; von Buttlar, Heiner; Kern, Winfried V; Rieg, Siegbert
2017-08-01
Tularemia is a rare zoonotic disease in Germany. Francisella tularensis has been isolated previously from ticks in southern Germany underscoring the importance of ticks (Ixodes ricinus) in tularemia transmission, but there have been only few reports from this region with single cases or small case series of tick-borne transmissions of tularemia. We report five cases of non-game animal associated tularemia diagnosed from 2010 to 2016 in southwestern Germany - Baden-Wuerttemberg. Our case series and molecular typing (MLVA) results add published clinical experience to this underdiagnosed disease and consolidate previous findings regarding tick-borne transmission of tularemia and phylogenetic diversity in Germany. Copyright © 2017 Elsevier GmbH. All rights reserved.
Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.
Durand, Jonas; Herrmann, Coralie; Genné, Dolores; Sarr, Anouk; Gern, Lise; Voordouw, Maarten J
2017-02-01
Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others. Copyright © 2017 American Society for Microbiology.
Forest fragmentation and Lyme disease
Lyme disease is the most commonly reported vectorborne disease in the United States. It is associated with human exposure to infected Ixodes ticks which exist even in degraded forest and herbaceous habitat. We provide an overview of the epidemiology, ecology and landscape charact...
Does high biodiversity reduce the risk of Lyme disease invasion?
Bouchard, Catherine; Beauchamp, Guy; Leighton, Patrick A; Lindsay, Robbin; Bélanger, Denise; Ogden, Nick H
2013-07-01
It has been suggested that increasing biodiversity, specifically host diversity, reduces pathogen and parasite transmission amongst wildlife (causing a "dilution effect"), whereby transmission amongst efficient reservoir hosts, (e.g. Peromyscus spp. mice for the agent of Lyme disease Borrelia burgdorferi) is reduced by the presence of other less efficient host species. If so, then increasing biodiversity should inhibit pathogen and parasite invasion. We investigated this hypothesis by studying invasion of B. burgdorferi and its tick vector Ixodes scapularis in 71 field sites in southeastern Canada. Indices of trapped rodent host diversity, and of biodiversity of the wider community, were investigated as variables explaining the numbers of I. scapularis collected and B. burgdorferi infection in these ticks. A wide range of alternative environmental explanatory variables were also considered. The observation of low I. scapularis abundance and low B. burgdorferi infection prevalence in sites where I. scapularis were detected was consistent with early-stage invasion of the vector. There were significant associations between the abundance of ticks and season, year of study and ambient temperature. Abundance of host-seeking larvae was significantly associated with deer density, and abundance of host-seeking larvae and nymphs were positively associated with litter layer depth. Larval host infestations were lower where the relative proportion of non-Peromyscus spp. was high. Infestations of hosts with nymphs were lower when host species richness was higher, but overall nymphal abundance increased with species richness because Peromyscus spp. mouse abundance and host species richness were positively correlated. Nymphal infestations of hosts were lower where tree species richness was higher. B. burgdorferi infection prevalence in ticks varied significantly with an index of rates of migratory bird-borne vector and pathogen invasion. I. scapularis abundance and B. burgdorferi prevalence varied with explanatory variables in patterns consistent with the known biology of these species in general, and in the study region in particular. The evidence for a negative effect of host biodiversity on I. scapularis invasion was mixed. However, some evidence suggests that community biodiversity beyond just host diversity may have direct or indirect inhibitory effects on parasite invasion that warrant further study.
Ticks (Acari: Ixodida) on wild carnivores in Brazil.
Labruna, Marcelo B; Jorge, Rodrigo S P; Sana, Dênis A; Jácomo, Anah Tereza A; Kashivakura, Cyntia K; Furtado, Mariana M; Ferro, Claudia; Perez, Samuel A; Silveira, Leandro; Santos, Tarcísio S; Marques, Samuel R; Morato, Ronaldo G; Nava, Alessandra; Adania, Cristina H; Teixeira, Rodrigo H F; Gomes, Albério A B; Conforti, Valéria A; Azevedo, Fernando C C; Prada, Cristiana S; Silva, Jean C R; Batista, Adriana F; Marvulo, Maria Fernanda V; Morato, Rose L G; Alho, Cleber J R; Pinter, Adriano; Ferreira, Patrícia M; Ferreira, Fernado; Barros-Battesti, Darci M
2005-01-01
The present study reports field data of ticks infesting wild carnivores captured from July 1998 to September 2004 in Brazil. Additional data were obtained from one tick collection and from previous published data of ticks on carnivores in Brazil. During field work, a total of 3437 ticks were collected from 89 Cerdocyon thous (crab-eating fox), 58 Chrysocyon brachyurus (maned wolf), 30 Puma concolor (puma), 26 Panthera onca (jaguar), 12 Procyon cancrivorus (crab-eating raccoon), 4 Speothos venaticus (bush dog), 6 Pseudalopex vetulus (hoary fox), 6 Nasua nasua (coati), 6 Leopardus pardalis (ocelot), 2 Leopardus tigrinus (oncilla), 1 Leopardus wiedii (margay), 1 Herpailurus yagouaroundi (jaguarundi), 1 Oncifelis colocolo (pampas cat), 1 Eira barbara (tayara), 1 Galictis vittata (grison), 1 Lontra longicaudis (neotropical otter), and 1 Potus flavus (kinkajou). Data obtained from the Acari Collection IBSP included a total of 381 tick specimens collected on 13 C. thous, 8 C. brachyurus, 3 P. concolor, 10 P. onca, 3 P. cancrivorus, 4 N. nasua, 1 L. pardalis, 1 L. wiedii, 4 H. yagouaroundi, 1 Galictis cuja (lesser grison), and 1 L. longicaudis. The only tick-infested carnivore species previously reported in Brazil, for which we do not present any field data are Pseudalopex gymnocercus (pampas fox), Conepatus chinga (Molina's hog-nosed skunk), and Conepatus semistriatus (striped hog-nosed skunk). We report the first tick records in Brazil on two Felidae species (O. colocolo, H. yagouaroundi), two Canidae species (P. vetulus, S. venaticus), one Procyonidae species (P. flavus) and one Mustelidae (E. barbara). Tick infestation remains unreported for 5 of the 26 Carnivora species native in Brazil: Oncifelis geoffroyi (Geoffroy's cat), Atelocynus microtis (short-eared dog), Pteronura brasiliensis (giant otter), Mustela africana (Amazon weasel), and Bassaricyon gabbii (olingo). Our field data comprise 16 tick species represented by the genera Amblyomma (12 species), Ixodes (1 species), Dermacentor (1 species), Rhipicephalus (1 species), and Boophilus (1 species). Additional 5 tick species (3 Amblyomma species and 1 species from each of the genera Ixodes and Ornithodoros) were reported in the literature. The most common ticks on Carnivora hosts were Amblyomma ovale (found on 14 host species), Amblyomma cajennense (10 species), Amblyomma aureolatum (10 species), Amblyomma tigrinum (7 species), Amblyomma parvum (7 species), and Boophilus microplus (7 species).
A virulent babesia bovis strain failed to infect white-tailed deer (Odocoileus virginianus)
USDA-ARS?s Scientific Manuscript database
Wildlife are an important component in the vector-host-pathogen triangle of livestock diseases, as they maintain biological vectors that transmit pathogens and can serve as reservoirs for such infectious pathogens. Babesia bovis is a tick-borne pathogen, vectored by cattle fever ticks, Rhipicephalus...
Markowski, D.; Hyland, K.E.; Ginsberg, H.S.
1997-01-01
Larval blacklegged ticks, Ixodes scapularis, were collected from white-footed mice, Peromyscus leucopus, on Prudence Island (where Microtus pennsylavanicus were not captured) and from meadow voles, M. pennsylvanicus, on Patience Island (where P. leucopus was absent) in Narragansett Bay, Rhode Island from June to October 1992. Ixodes scapularis larvae were also collected by flagging in the vicinity of host captures. On both islands, the relative density of larvae changed from July to September in samples from hosts, but not in flagging samples. Consequently, different sampling techniques can give different assessments of tick populations. Larvae were highly aggregated on both of the host species throughout the sampling period. As the mean relative density of larvae increased in the environment (based on flagging samples), larvae on the hosts became more dense and more crowded. Increased densities of larvae in the environment were not correlated with increased patchiness in the distribution of larvae among host animals on either island. Changes in the spatial distribution of larval I. scapularis on each host species had similar trends as larval densities and distributions within the environment. These results suggest that M. pennsylvanicus can serve as an alternative host for immature I. scapularis in a P. leucopus-free environment and have similar distributional characteristics.
Shibata, Shin-ichiro; Kawahara, Makoto; Rikihisa, Yasuko; Fujita, Hiromi; Watanabe, Yuriko; Suto, Chiharu; Ito, Tadahiko
2000-01-01
Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris, respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis, the Anan strain, and E. canis, respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup. PMID:10747103
Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases?
Benelli, Giovanni; Pavela, Roman; Canale, Angelo; Mehlhorn, Heinz
2016-07-01
Arthropods are dangerous vectors of agents of deadly diseases, which may hit as epidemics or pandemics in the increasing world population of humans and animals. Among them, ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide. Thus, the effective and eco-friendly control of tick vectors in a constantly changing environment is a crucial challenge. A number of novel routes have been attempted to prevent and control tick-borne diseases, including the development of (i) vaccines against viruses vectored by ticks; (ii) pheromone-based control tools, with special reference to the "lure and kill" techniques; (iii) biological control programmes relying on ticks' natural enemies and pathogens; and (iv) the integrated pest management practices aimed at reducing tick interactions with livestock. However, the extensive employment of acaricides and tick repellents still remains the two most effective and ready-to-use strategies. Unfortunately, the first one is limited by the rapid development of resistance in ticks, as well as by serious environmental concerns. On the other hand, the exploitation of plants as sources of effective tick repellents is often promising. Here, we reviewed current knowledge concerning the effectiveness of plant extracts as acaricides or repellents against tick vectors of public health importance, with special reference to Ixodes ricinus, Ixodes persulcatus, Amblyomma cajennense, Haemaphysalis bispinosa, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma marginatum rufipes, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus pulchellus, Rhipicephalus sanguineus and Rhipicephalus turanicus. Eighty-three plant species from 35 botanical families were selected. The most frequent botanical families exploited as sources of acaricides and repellents against ticks were Asteraceae (15 % of the selected studies), Fabaceae (9 %), Lamiaceae (10 %), Meliaceae (5 %), Solanaceae (6 %) and Verbenaceae (5 %). Regression equation analyses showed that the literature grew by approximately 20 % per year (period: 2005-2015). Lastly, in the final section, insights for future research are discussed. We focused on some caveats for future data collection and analysis. Current critical points mainly deal with (a) not uniform methods used, which prevent proper comparison of the results; (b) inaccurate tested concentrations, frequently 100 % concentration corresponded to the gross extract, where the exact amounts of extracted substances are unknown; and (c) not homogeneous size of tested tick instars and species. Overall, the knowledge summarized in this review may be helpful for comparative screening among extensive numbers of plant-borne preparations, in order to develop newer and safer tick control tools.
Laboratory Cultivation and Maintenance of Borrelia miyamotoi.
Stone, Brandee L; Brissette, Catherine A
2016-08-12
Borrelia miyamotoi is a relapsing fever tick-borne pathogen found in Ixodes spp. (hard) ticks. In vitro culturing has proven difficult despite initial reports of cultures maintained in Barbour-Stoenner-Kelly-II (BSK-II) medium. The ability to culture in vitro opens many avenues for investigating the genetics and physiology of bacterial species. This unit describes methods for the maintenance and cultivation of B. miyamotoi in liquid medium. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Ixodid ticks in the megapolis of Kyiv, Ukraine.
Rogovskyy, Artem S; Nebogatkin, Igor V; Scoles, Glen A
2017-01-01
The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodes ricinus and Dermacentor reticulatus ticks in Kyiv, the largest and most densely populated megapolis of Ukraine. Ticks were collected at various recreational areas by flagging during May, the month that showed the highest tick abundance in the past. Sex distribution among I. ricinus ticks was relatively equal, whereas females were collected in higher numbers for D. reticulatus. As opposed to western and central Europe where nymphal ticks had been more abundant, the nymph:adult ratio for I. ricinus was reversed. Also, this report documents detection of Rhipicephalus sanguineus sensu lato (s.l.) in Kyiv region, well outside of its historically documented distribution area. Previously thought to be restricted to the southern Ukraine, a single male specimen of R. sanguineus s.l. was collected just outside the city limits. Data on tick diversity over the past 30 years, however, indicates that this finding may only be incidental. Published by Elsevier GmbH.
Biernat, Beata; Stańczak, Joanna; Michalik, Jerzy; Sikora, Bożena; Wierzbicka, Anna
2016-02-01
Ixodes ricinus is the most prevalent and widely distributed tick species in European countries and plays a principal role in transmission of a wide range of microbial pathogens. It is also a main vector and reservoir of Rickettsia spp. of the spotted fever group with the infection level ranging in Poland from 1.3% to 11.4%. Nevertheless, little research has been conducted so far to identify reservoir hosts for these pathogens. A survey was undertaken to investigate the presence of Rickettsia spp. in wild small rodents and detached I. ricinus. Rodents, Apodemus flavicollis mice and Myodes glareolus voles were captured in typically sylvatic habitats of west-central Poland. Blood samples and collected ticks were analyzed by conventional, semi-nested and nested PCRs. Rickettsial species were determined by sequence analysis of obtained fragments of gltA and 16S rRNA genes. A total of 2339 immature I. ricinus (mostly larvae) were collected from 158 animals. Proportion of hosts carrying ticks was 84%, being higher for A. flavicollis than for M. glareolus. Rickettsia helvetica, the only species identified, was detected in 8% of 12 nymphs and in at least 10.7% (MIR) of 804 larvae investigated. Prevalence of infected ticks on both rodent species was comparable (10.8 vs. 9%). None of blood samples tested was positive for Rickettsia spp. The results showed that in sylvatic habitats the level of infestation with larval I. ricinus was higher in A. flavicollis mice in comparison with M. glareolus voles. They show that R. helvetica frequently occurred in ticks feeding on rodents. Positive immature ticks were collected from non-rickettsiemic hosts what might suggest a vertical route of their infection (transovarial and/or transstadial) or a very short-lasting rickettsiemia in rodents. A natural vertebrate reservoir host for R. helvetica remains to be determined. Copyright © 2015 Elsevier GmbH. All rights reserved.
Di Venere, Monica; Fumagalli, Marco; Cafiso, Alessandra; De Marco, Leone; Epis, Sara; Plantard, Olivier; Bardoni, Anna; Salvini, Roberta; Viglio, Simona; Bazzocchi, Chiara; Iadarola, Paolo; Sassera, Davide
2015-01-01
Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of salivary glands (SG) of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii.
Baker, Christine F; Hunter, James S; McCall, John W; Young, David R; Hair, Jakie A; Everett, William R; Yoon, Stephen S; Irwin, Jennifer P; Young, Stephanie L; Cramer, Luiz G; Pollmeier, Matthias G; Prullage, Joseph B
2011-07-15
Five laboratory studies were conducted to confirm that a single topical dose of the novel combination of fipronil, amitraz and (S)-methoprene, CERTIFECT™ (Merial Limited, GA, USA), is efficacious for the rapid control of pre-existing infestations and the prevention of new infestations with Ixodes scapularis, Dermacentor variabilis, Amblyomma americanum and Amblyomma maculatum for at least 28 days on dogs. In each study, 8 male and 8 female purpose-bred, laboratory beagles were randomly assigned to one of two study groups (treated and untreated). Starting on the day before treatment, each dog was infested weekly with about 30 or 50 ticks, depending on the study. Treatment with the novel combination rapidly eliminated pre-existing infestations and controlled weekly re-infestations for at least 28 days. Pre-existing infestations with all four tick species were rapidly and effectively reduced, with post-treatment therapeutic efficacies ranging from 91.7 to 99.5% within 18-48 h post treatment. Amblyomma maculatum numbers were significantly (p<0.05) reduced on treated dogs from the first tick counts as early as 6h post-treatment. All subsequent infestations with each of the 4 tick species were quickly disrupted, with prophylactic efficacies greater than 90% within 18-48 h post-infestation for at least a full month. Because the combination of fipronil, amitraz and (S)-methoprene quickly starts disrupting and killing ixodid ticks within hours of treatment, with similar high levels of efficacy maintained for at least 28 days in these and other studies, the authors conclude that a single topical treatment with CERTIFECT may prevent the transmission of most infectious agents carried by ixodid ticks for at least one month. Copyright © 2011 Elsevier B.V. All rights reserved.
Jore, Solveig; Viljugrein, Hildegunn; Hofshagen, Merete; Brun-Hansen, Hege; Kristoffersen, Anja B; Nygård, Karin; Brun, Edgar; Ottesen, Preben; Sævik, Bente K; Ytrehus, Bjørnar
2011-05-19
There is increasing evidence for a latitudinal and altitudinal shift in the distribution range of Ixodes ricinus. The reported incidence of tick-borne disease in humans is on the rise in many European countries and has raised political concern and attracted media attention. It is disputed which factors are responsible for these trends, though many ascribe shifts in distribution range to climate changes. Any possible climate effect would be most easily noticeable close to the tick's geographical distribution limits. In Norway- being the northern limit of this species in Europe- no documentation of changes in range has been published. The objectives of this study were to describe the distribution of I. ricinus in Norway and to evaluate if any range shifts have occurred relative to historical descriptions. Multiple data sources - such as tick-sighting reports from veterinarians, hunters, and the general public - and surveillance of human and animal tick-borne diseases were compared to describe the present distribution of I. ricinus in Norway. Correlation between data sources and visual comparison of maps revealed spatial consistency. In order to identify the main spatial pattern of tick abundance, a principal component analysis (PCA) was used to obtain a weighted mean of four data sources. The weighted mean explained 67% of the variation of the data sources covering Norway's 430 municipalities and was used to depict the present distribution of I. ricinus. To evaluate if any geographical range shift has occurred in recent decades, the present distribution was compared to historical data from 1943 and 1983. Tick-borne disease and/or observations of I. ricinus was reported in municipalities up to an altitude of 583 metres above sea level (MASL) and is now present in coastal municipalities north to approximately 69°N. I. ricinus is currently found further north and at higher altitudes than described in historical records. The approach used in this study, a multi-source analysis, proved useful to assess alterations in tick distribution.
Minichová, Lenka; Hamšíková, Zuzana; Mahríková, Lenka; Slovák, Mirko; Kocianová, Elena; Kazimírová, Mária; Škultéty, Ľudovít; Štefanidesová, Katarína; Špitalská, Eva
2017-03-24
Natural foci of tick-borne spotted fever group (SFG) rickettsiae of public health concern have been found in Slovakia, but the role of rodents in their circulation is unclear. Ticks (Ixodes ricinus, Ixodes trianguliceps, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis concinna and Haemaphysalis inermis) and tissues of rodents (Apodemus flavicollis, Apodemus sylvaticus, Myodes glareolus, Microtus arvalis, Microtus subterraneus and Micromys minutus) were examined for the presence of SFG rickettsiae and Coxiella burnetii by molecular methods. Suburban, natural and rural habitats were monitored to acquire information on the role of ticks and rodents in the agents' maintenance in various habitat types of Slovakia. The overall prevalence of rickettsial infection in questing I. ricinus and D. marginatus was 6.6% and 21.4%, respectively. Rickettsia helvetica, R. monacensis and non-identified rickettsial species were detected in I. ricinus, whereas R. slovaca and R. raoultii were identified in D. marginatus. Rickettsia spp.-infected I. ricinus occurred during the whole tick questing period. Rickettsia helvetica dominated (80.5%) followed by R. monacensis (6.5%). The species were present in all studied habitats. Rickettsia slovaca (66.7%) and R. raoultii (33.3%) were identified in D. marginatus from the rural habitat. Apodemus flavicollis was the most infested rodent species with I. ricinus, but My. glareolus carried the highest proportion of Rickettsia-positive I. ricinus larvae. Only 0.5% of rodents (A. flavicollis) and 5.2% of engorged I. ricinus removed from My. glareolus, A. flavicollis and M. arvalis were R. helvetica- and R. monacensis-positive. Coxiella burnetii was not detected in any of the tested samples. We hypothesize that rodents could play a role as carriers of infected ticks and contribute to the maintenance of rickettsial pathogens in natural foci. Long-term presence of SFG Rickettsia spp. was confirmed in questing ticks from different habitat types of Slovakia. The results suggest a human risk for infection with the pathogenic R. helvetica, R. monacensis, R. slovaca and R. raoultii.
Bosco-Lauth, Angela M.; Panella, Nicholas A.; Root, J. Jeffrey; Gidlewski, Tom; Lash, R. Ryan; Harmon, Jessica R.; Burkhalter, Kristen L.; Godsey, Marvin S.; Savage, Harry M.; Nicholson, William L.; Komar, Nicholas; Brault, Aaron C.
2015-01-01
Heartland virus (HRTV; Bunyaviridae: Phlebovirus) has recently emerged as a causative agent of human disease characterized by thrombocytopenia and leukopenia in the United States. The lone star tick (Amblyomma americanum L.) has been implicated as a vector. To identify candidate vertebrate amplification hosts associated with enzootic maintenance of the virus, sera and ticks were sampled from 160 mammals (8 species) and 139 birds (26 species) captured near 2 human case residences in Andrew and Nodaway Counties in northwest Missouri. HRTV-specific neutralizing antibodies were identified in northern raccoons (42.6%), horses (17.4%), white-tailed deer (14.3%), dogs (7.7%), and Virginia opossums (3.8%), but not in birds. Virus isolation attempts from sera and ticks failed to detect HRTV. The high antibody prevalence coupled with local abundance of white-tailed deer and raccoons identifies these species as candidate amplification hosts. PMID:25870419
Tsukada, Hideharu; Nakamura, Yoshio; Kamio, Tsugihiko; Inokuma, Hisashi; Hanafusa, Yasuko; Matsuda, Naoko; Maruyama, Tetsuya; Ohba, Takahiro; Nagata, Koji
2014-02-01
Haemaphysalis longicornis (Acari: Ixodidae) is one of the most common and important arthropod disease vectors in Japan, carrying Japanese spotted fever and bovine theileriosis. The recent expansion of sika deer (Cervus nippon, Artiodactyla: Cervidae) populations, the most common wild host of H. longicornis, has also caused concern about increasing the risk of vector-borne diseases in Japan. We used generalized linear mixed model analysis to determine the relative contribution of deer density and other biological and abiotic factors on the abundance of H. longicornis ticks questing at each developmental stage. A total of 6223 H. longicornis adults, nymphs, and larvae were collected from 70 sites in three regions of central Japan. The abundance of questing adult and nymphal ticks was associated with deer density and other biotic and abiotic factors. However, the abundance of questing larvae showed no association with deer density but did show an association with other biotic and abiotic factors. These findings show that a high density of deer along with other biotic and abiotic factors is associated with increased risk of vector-borne diseases through amplified local abundance of questing nymphal and adult H. longicornis. Further, questing larvae abundance is likely regulated by environmental conditions and is likely correlated with survival potential or the distribution of other host species.
Molecular detection of tick-borne bacteria and protozoa in cervids and wild boars from Portugal.
Pereira, André; Parreira, Ricardo; Nunes, Mónica; Casadinho, Afonso; Vieira, Maria Luísa; Campino, Lenea; Maia, Carla
2016-05-10
Wildlife can act as reservoir of different tick-borne pathogens, such as bacteria, parasites and viruses. The aim of the present study was to assess the presence of tick-borne bacteria and protozoa with veterinary and zoonotic importance in cervids and wild boars from the Centre and South of Portugal. One hundred and forty one blood samples from free-ranging ungulates including 73 red deer (Cervus elaphus), 65 wild boars (Sus scrofa) and three fallow deer (Dama dama) were tested for the presence of Anaplasma marginale/A. ovis, A. phagocytophilum, Anaplasma/Ehrlichia spp., Babesia/Theileria spp., Borrelia burgdorferi (sensu lato) (s.l.), and Rickettsia spp. DNA by PCR. Anaplasma spp. DNA was detected in 33 (43.4 %) cervids (31 red deer and two fallow deer) and in two (3.1 %) wild boars while Theileria spp. were found in 34 (44.7 %) cervids (32 red deer and two fallow deer) and in three (4.6 %) wild boar blood samples. Sequence analysis of msp4 sequences identified A. marginale, A. ovis, while the analysis of rDNA sequence data disclosed the presence of A. platys and A. phagocytophilum and T. capreoli and Theileria sp. OT3. Anaplasma spp./Theileria spp. mixed infections were found in 17 cervids (22.4 %) and in two wild boars (3.1 %). All samples were negative for Babesia sp., B. burgdorferi (s.l.), Ehrlichia sp. or Rickettsia sp. This is the first detection of Anaplasma marginale, A. ovis, A. phagocytophilum, A. platys, Theileria capreoli and Theileria sp. OT3 in cervids and wild boars from Portugal. Further studies concerning the potential pathogenicity of the different species of Anaplasma and Theileria infecting wild ungulates, the identification of their vector range, and their putative infectivity to domestic livestock and humans should be undertaken.
Flagging versus dragging as sampling methods for nymphal Ixodes scapularis (Acari: Ixodidae)
Rulison, Eric L.; Kuczaj, Isis; Pang, Genevieve; Hickling, Graham J.; Tsao, Jean I.; Ginsberg, Howard S.
2013-01-01
The nymphal stage of the blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is responsible for most transmission of Borrelia burgdorferi, the etiologic agent of Lyme disease, to humans in North America. From 2010 to fall of 2012, we compared two commonly used techniques, flagging and dragging, as sampling methods for nymphal I. scapularis at three sites, each with multiple sampling arrays (grids), in the eastern and central United States. Flagging and dragging collected comparable numbers of nymphs, with no consistent differences between methods. Dragging collected more nymphs than flagging in some samples, but these differences were not consistent among sites or sampling years. The ratio of nymphs collected by flagging vs dragging was not significantly related to shrub density, so habitat type did not have a strong effect on the relative efficacy of these methods. Therefore, although dragging collected more ticks in a few cases, the numbers collected by each method were so variable that neither technique had a clear advantage for sampling nymphal I. scapularis.
Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary.
Szekeres, Sándor; Docters van Leeuwen, Arieke; Rigó, Krisztina; Jablonszky, Mónika; Majoros, Gábor; Sprong, Hein; Földvári, Gábor
2016-02-01
Tick-borne rickettsioses belong to the important emerging infectious diseases worldwide. We investigated the potential human exposure to rickettsiae by determining their presence in questing ticks collected in an urban park of Budapest and a popular hunting and recreational forest area in southern Hungary. Differences were found in the infectious risk between the two habitats. Rickettsia monacensis and Rickettsia helvetica were identified with sequencing in questing Ixodes ricinus, the only ticks species collected in the city park. Female I. ricinus had a particularly high prevalence of R. helvetica (45%). Tick community was more diverse in the rural habitat with Dermacentor reticulatus ticks having especially high percentage (58%) of Rickettsia raoultii infection. We conclude that despite the distinct eco-epidemiological traits, the risk (hazard and exposure) of acquiring human pathogenic rickettsial infections in both the urban and the rural study sites exists.
Chapter 4. Recent epidemiology of tick-borne encephalitis an effect of climate change?
Korenberg, E I
2009-01-01
Consideration is given to the opinion of some specialists that the rise in tick-borne encephalitis (TBE) morbidity at the turn of the century has been accounted for by new features of TBE epidemiology as well as by global climate change. It is shown that neither the reputed current expansion of the ranges of main TBE vectors, the taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks, nor the significant rise of their abundance and TBE virus prevalence in them are confirmed by any objective data. The concept of recent tick expansion to large cities and human TBE infection in newly formed urban foci disagrees with the facts repeatedly described during the past four decades. There is no reliable information on the expansion of TBE nosological range. The influence of newly formed anthropurgic foci and of changes in the contribution of city dwellers to the general morbidity structure on the current epidemiological situation is estimated. As in the case of any other zoonosis with natural focality, the level of epidemiological manifestation of TBE foci is determined by two main parameters: the intensity of virus circulation in the foci (i.e., their loimopotential) and the frequency of human contact with them. Attention is paid to the character of interaction between these two factors, which accounted for a major outbreak of TBE morbidity at the end of the twentieth century, followed by a long-term decrease in its level.
Estrada-Peña, A
1998-11-01
Geostatistics (cokriging) was used to model the cross-correlated information between satellite-derived vegetation and climate variables and the distribution of the tick Ixodes scapularis (Say) in the Nearctic. Output was used to map the habitat suitability for I. scapularis on a continental scale. A data base of the localities where I. scapularis was collected in the United States and Canada was developed from a total of 346 published and geocoded records. This data base was cross-correlated with satellite pictures from the advanced very high resolution radiometer sensor obtained from 1984 to 1994 on the Nearctic at 10-d intervals, with a resolution of 8 km per pixel. Eight climate and vegetation variables were tabulated from this imagery. A cokriging system was generated to exploit satellite-derived data and to estimate the distribution of I. scapularis. Results obtained using 2 vegetation (standard NDVI) and 4 temperature variables closely agreed with actual records of the tick, with a sensitivity of 0.97 and a specificity of 0.89, with 6 and 4% of false-positive and false-negative sites, respectively. Such statistical analysis can be used to guide field work toward the correct interpretation of the distribution limits of I. scapularis and can also be used to make predictions about the impact of global change on tick range.
Davidson, W R; Crow, C B
1983-10-01
In July 1981, investigations on parasites, diseases, and herd health status were conducted on sympatric populations of sika deer (Cervus nippon) and white-tailed deer (Odocoileus virginianus) from Blackwater National Wildlife Refuge (Maryland) and Chincoteague National Wildlife Refuge (Virginia) on the Delmarva Peninsula. Five adult deer of each species were collected from each location and subjected to thorough necropsy examinations and laboratory tests. White-tailed deer at both locations harbored protozoan, helminth, and arthropod parasites typically associated with this species throughout the southeastern United States. In contrast, sika deer at both locations harbored only light burdens of ticks, chiggers, and sarcocysts. Serologic tests for antibodies to seven infectious disease agents revealed evidence of exposure to bovine virus diarrhea (BVD) virus, infectious bovine rhinotracheitis virus, and parainfluenza3 virus in white-tailed deer, but only BVD virus in sika deer. At both locations the general health status of sika deer was superior to that of white-tailed deer.
Tick Infestation of the Eyelid and Removal With Forceps and Punch Biopsy.
Park, Jongyeop; Suh, Eoksoo
2016-11-01
Ocular tick infestation can occur in any age group or sex with exposure in an endemic setting. All parts of the ocular tissue have been reported to be susceptible to tick infestation. The authors present a rare patient with tick infestation of eyelid.An 88-year-old woman was referred for a yellowish lesion of the right upper eyelid. She had a history of sting 2 days before presentation, and developed eyelid swelling with mucopurulent discharge the next day. Slit lamp examination showed blepharitis and revealed that the lesion was the body of a hard tick, firmly attached to eyelid. First, blunt forceps were used for removal of the tick under a surgical microscope. However, attempted removal resulted in the disembodiement of the parasite and retention of the mouthparts in the skin. The retained tick parts were excised en bloc by skin punch biopsy. The tick was identified as Ixodes nipponensis. Subsequent treatment was given for blepharitis and skin lesion.This case introduces a rare patient with tick infestation of eyelid, and the proper management. Less than 20 documented patients with tick infestation of eyelid have been reported worldwide, and this is the first patient from South Korea in ophthalmological society.
Schwantes, Ulrich; Dautel, Hans; Jung, Gerd
2008-01-01
Background Ticks of the species Ixodes ricinus are the main vectors of Lyme Borreliosis and Tick-borne Encephalitis – two rapidly emerging diseases in Europe. Repellents provide a practical means of protection against tick bites and can therefore minimize the transmission of tick-borne diseases. We developed and tested seven different dodecanoic acid (DDA)-formulations for their efficacy in repelling host-seeking nymphs of I. ricinus by laboratory screening. The ultimately selected formulation was then used for comparative investigations of commercially available tick repellents in humans. Methods Laboratory screening tests were performed using the Moving-object (MO) bioassay. All test formulations contained 10% of the naturally occurring active substance DDA and differed only in terms of the quantitative and qualitative composition of inactive ingredients and fragrances. The test procedure used in the human bioassays is a modification of an assay described by the U.S. Environmental Protection Agency and recommended for regulatory affairs. Repellency was computed using the equation: R = 100 - NR/N × 100, where NR is the number of non-repelled ticks, and N is the respective number of control ticks. All investigations were conducted in a controlled laboratory environment offering standardized test conditions. Results All test formulations strongly repelled nymphs of I. ricinus (100-81% protection) as shown by the MO-bioassay. The majority of ticks dropped off the treated surface of the heated rotating drum that served as the attractant (1 mg/cm2 repellent applied). The 10% DDA-based formulation, that produced the best results in laboratory screening, was as effective as the coconut oil-based reference product. The mean protection time of both preparations was generally similar and averaged 8 hours. Repellency investigations in humans showed that the most effective 10% DDA-based formulation (~1.67 mg/cm2 applied) strongly avoided the attachment of I. ricinus nymphs and adults for at least 6 hours. The test repellent always provided protection (83-63%) against I. ricinus nymphs equivalent to the natural coconut oil based reference product and a better protection (88-75%) against adult ticks than the synthetic Icaridin-containing reference repellent. Conclusion We found that the 10% DDA-based formulation (ContraZeck®) is an easily applied and very effective natural repellent against I. ricinus ticks. By reducing the human-vector contact the product minimises the risk of transmission of tick-borne diseases in humans. PMID:18397516
Balashov, Iu S; Grigor'eva, L A
2010-01-01
The method of estimation of the biological age in non-feeding tick females by the level of adipose inclusions in the cells of the midgut and fat body is developed. In order to estimate the fat reserves in non-feeding females, alive ticks were dissected and fragments of their internal were vitally stained with the pregnant solution of sudan III in 70 % ethanol. Three age-specific groups were established: I, young females whose intestines and fat body were filled with fat inclusions; II, mature females whose fat reserves were partially expended; III, old females having isolated fat inclusions in their midgut and fat body.
Uukuniemi virus, Czech Republic.
Papa, Anna; Zelená, Hana; Papadopoulou, Elpida; Mrázek, Jakub
2018-04-20
Following the identification of severe fever with thrombocytopenia syndrome and Heartland viruses, the interest on tick-borne phleboviruses has increased rapidly. Uukuniemi virus has been proposed as a model for tick-borne phleboviruses. However, the number of available sequences is limited. In the current study we performed whole-genome sequencing on two Uukuniemi viral strains isolated in 2000 and 2004 from Ixodes ricinus ticks in the Czech Republic. Both strains cluster together with Potepli63 strain isolated in the country in 1963. Although the Czech strains were isolated many years apart, a high identity was seen at the nucleotide and amino acid levels, suggesting that UUKV has a relatively stable genome. Copyright © 2018 Elsevier GmbH. All rights reserved.
Borrelia miyamotoi: a widespread tick-borne relapsing fever spirochete.
Wagemakers, Alex; Staarink, Pieter J; Sprong, Hein; Hovius, Joppe W R
2015-06-01
Borrelia miyamotoi is a relapsing fever spirochete that has only recently been identified as a human pathogen. Borrelia miyamotoi is genetically and ecologically distinct from Borrelia burgdorferi sensu lato, while both are present in Ixodes ticks. Over 50 patients with an acute febrile illness have been described with a B. miyamotoi infection, and two infected immunocompromised patients developed a meningoencephalitis. Seroprevalence studies indicate exposure in the general population and in specific risk groups, such as patients initially suspected of having human granulocytic anaplasmosis. Here, we review the available literature on B. miyamotoi, describing its presence in ticks, reservoir hosts, and humans, and discussing its potential impact on public health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lieske, David J; Lloyd, Vett K
2018-03-01
Ixodes scapularis, a known vector of Borrelia burgdorferi sensu stricto (Bbss), is undergoing range expansion in many parts of Canada. The province of New Brunswick, which borders jurisdictions with established populations of I. scapularis, constitutes a range expansion zone for this species. To better understand the current and potential future distribution of this tick under climate change projections, this study applied occupancy modelling to distributional records of adult ticks that successfully overwintered, obtained through passive surveillance. This study indicates that I. scapularis occurs throughout the southern-most portion of the province, in close proximity to coastlines and major waterways. Milder winter conditions, as indicated by the number of degree days <0 °C, was determined to be a strong predictor of tick occurrence, as was, to a lesser degree, rising levels of annual precipitation, leading to a final model with a predictive accuracy of 0.845 (range: 0.828-0.893). Both RCP 4.5 and RCP 8.5 climate projections predict that a significant proportion of the province (roughly a quarter to a third) will be highly suitable for I. scapularis by the 2080s. Comparison with cases of canine infection show good spatial agreement with baseline model predictions, but the presence of canine Borrelia infections beyond the climate envelope, defined by the highest probabilities of tick occurrence, suggest the presence of Bbss-carrying ticks distributed by long-range dispersal events. This research demonstrates that predictive statistical modelling of multi-year surveillance information is an efficient way to identify areas where I. scapularis is most likely to occur, and can be used to guide subsequent active sampling efforts in order to better understand fine scale species distributional patterns. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Peterson, A. Townsend; Samy, Abdallah M.
2017-01-01
Background Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. Method We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. Result The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions. PMID:29206879
Nicolson, G P; McGrath, Alh; Webster, R A; Li, J; Kaye, S; Malik, R; Beijerink, N J
2016-08-01
The purpose of this study was to determine through measurement of cardiac biomarkers whether there was cardiac involvement in dogs infested with Ixodes holocyclus. Dogs with tick paralysis and no-mild (group 1; n = 44) or moderate-severe respiratory compromise (group 2; n = 36) and a control group of dogs (n = 31) were enrolled. Plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP), serum cardiac troponin I (cTnI) and serum creatinine concentrations were determined. For most of the affected dogs SpO2 was determined. SpO2 readings did not differ between groups 1 and 2. Three animals in group 2 had an SpO2 reading <90%. NT-proBNP concentrations were lower in both groups 1 and 2 compared with the control group. There was no difference in cTnI concentrations among groups, although they were elevated in four dogs, including the three dogs in group 2 with SpO2 readings <90%. Creatinine concentrations were within the reference interval for all dogs, but did differ among the groups, with control dogs having the highest values, followed by group 1 and then group 2. This study did not detect significant cardiac involvement in dogs with tick paralysis induced by I. holocyclus. Evidence for reduced preload in dogs with tick paralysis was provided by lower NT-proBNP concentrations compared with control dogs. Severe hypoxaemia may not be a significant component of the clinical picture in many of the dogs presenting with tick paralysis. Dogs with severe hypoxaemia may have loss of cardiomyocyte integrity, reflected by elevated cTnI concentrations. © 2016 Australian Veterinary Association.
Alkishe, Abdelghafar A; Peterson, A Townsend; Samy, Abdallah M
2017-01-01
Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions.
Pfäffle, M; Petney, T; Elgas, M; Skuballa, J; Taraschewski, H
2009-04-01
Although there is an increasing understanding of the role of parasites in their host dynamics, accurate, quantitative estimates of parasite caused morbidity in wild animals are rare. Here, we examine the possible impact of 2 tick species (Ixodes ricinus, I. hexagonus) on the condition of the European hedgehog (Erinaceus europaeus). For this, we tested for correlations between blood parameters of 36 adult hedgehogs from an experimental population enclosed in a natural habitat and their tick infestation over a period of 8 months (March-October 2007). We found correlations between the tick infestation and the concentration of red blood cells, haemoglobin, haematocrit, MCH, MCHC, thrombocytes, lymphocytes and neutrophils. These results indicate that ticks can induce anaemia in the hedgehog. The peripheral blood characteristics and the erythrocyte indices characterize this anaemia as haemorrhagic and regenerative. During the course of our study the hedgehogs of our population showed below normal mortality but morbidity was found to be high resulting from the blood loss caused by the feeding activity of the ticks.
Borrelia lusitaniae and Green Lizards (Lacerta viridis), Karst Region, Slovakia
Majláth, Igor; Derdáková, Marketa; Víchová, Bronislava; Peťko, Branislav
2006-01-01
In Europe, spirochetes within the Borrelia burgdorferi sensu lato complex are transmitted by Ixodes ricinus ticks. Specific associations are described between reservoir hosts and individual genospecies. We focused on green lizard (Lacerta viridis) as a host for ticks and potential host for borreliae. In 2004 and 2005, a total of 146 green lizards infested by ticks were captured, and 469 I. ricinus ticks were removed. Borrelial infection was detected in 16.6% of ticks from lizards. Of 102 skin biopsy specimens collected from lizards, 18.6% tested positive. The most frequently detected genospecies was B. lusitaniae (77.9%–94.7%). More than 19% of questing I. ricinus collected in areas where lizards were sampled tested positive for borreliae. B. garinii was the dominant species, and B. lusitaniae represented 11.1%. The presence of B. lusitaniae in skin biopsy specimens and in ticks that had fed on green lizards implicates this species in the transmission cycle of B. lusitaniae. PMID:17326941
Feria-Arroyo, Teresa P; Castro-Arellano, Ivan; Gordillo-Perez, Guadalupe; Cavazos, Ana L; Vargas-Sandoval, Margarita; Grover, Abha; Torres, Javier; Medina, Raul F; de León, Adalberto A Pérez; Esteve-Gassent, Maria D
2014-04-25
Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region. The area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables. Of the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050. The Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region.
Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.
Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael
2017-09-06
The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
Lyme borreliosis spirochetes in questing ticks from mainland Portugal.
Baptista, Susana; Quaresma, Ana; Aires, Tânia; Kurtenbach, Klaus; Santos-Reis, Margarida; Nicholson, Matthew; Collares-Pereira, Margarida
2004-04-01
In Portugal, Ixodes ricinus ticks have been shown to contain DNA of several spirochetes belonging to the Borrelia burgdorferi sensu lato complex, with major differences in the genetic diversity between ecozones. Some isolates have been obtained since 1999, confirming the circulation of pathogenic strains in these ticks. Ixodes ricinus is considered to be a widespread species, however, in Portugal it is found only in a few habitats. Here we present preliminary results from a nationwide survey of questing I. ricinus (n = 4,001) and other Ixodidae (n = 1,534) in Portugal, initiated in 2001. The sampling points (so far 41) were selected using a Geographic Information System, according to the type of vegetation, accessibility and prevalence of human cases. The spatial and temporal of tick abundance and the infection of B. burgdorferi sensu lato in ticks were determined in selected areas. Ticks were examined for the presence of B. burgdorferi sensu lato by culturing (719 out of 4,001 I. ricinus), and direct PCR amplification of the 5S-23S intergenic spacer region (1,870 out of 5,535) followed by RFLP analysis, the reverse line blot assay and nucleotide sequencing of PCR amplicons. The most abundant tick genus was Rhipicephalus (53%), followed by Dermacentor (34%), I. ricinus and Hyalomma (7%, each). The Mafra and Grândola sites, where a more intensive study was carried out, were excellent habitats for I. ricinus. However, a clear difference of the prevalence of Borrelia infection and the genetic diversity of circulating spirochetes was observed in these two sites. Genotyping of all I. ricinus isolates revealed 5 B. garinii, 8 B. lusitaniae and 1 B. valaisiana strains, which were obtained for the first time in these regions along with a considerable percentage of tick-derived PCR amplicons. Two hard-tick species other than I. ricinus in Grândola were also B. lusitaniae positive, thus seeming to take part in the transmission cycle of Borrelia. The seasonal dynamics of I. ricinus in Mafra was bimodal, more pronounced in nymphs than in adults. The present findings indicate that B. burgdorferi sensu lato agents are differentially maintained in nature in local tick populations in different geographic areas across Portugal and that the risk of acquiring Lyme borreliosis in certain areas of Portugal is higher than previously assumed.
Biernat, Beata; Karbowiak, Grzegorz; Stańczak, Joanna; Masny, Aleksander; Werszko, Joanna
2016-01-01
Tick borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is the causative agent of tick-borne encephalitis (TBE), a potentially fatal neurological infection. The disease is endemic in a large region in Eurasia, where is transmitted mainly by hard ticks: Ixodes ricinus and I. persulcatus. It is known that also Dermacentor reticulatus is involved in a circulation of TBEV, but the knowledge of its importance in the TBE epidemiology is still insufficient. The Białowieża Primeval Forest is located in eastern Poland and it is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tick-borne encephalitis virus (TBEV) in Dermacentor reticulatus ticks collected from European bison (Bison bonasus bonasus), an important host of hard ticks in the Białowieża Primeval Forest. In the years 2008-2009, a total of 114 adult D. reticulatus ticks were collected from 7 European bison and examined individually for the presence of TBEV RNA using nested RT-PCR assay. Positive results were noted in 18.42% of ticks. This is the first record of TBEV infection in ticks collected from European bison.
USDA-ARS?s Scientific Manuscript database
The lone star tick, Amblyomma americanum (L.), widely distributed across eastern, southeastern, and midwestern regions of the United States and south into Mexico, is an obligate blood feeder that attaches to three hosts during the larval, nymphal, and adult stages. White-tailed deer and wild turkey ...
Mehlhorn, Heinz; Schmahl, Günter; Schmidt, Jürgen
2005-03-01
About 70 plant extracts were tested for their ability to repel the attacks of blood-sucking arthropods. It was found that a CO2 extract of the seeds of the Mediterranean plant Vitex agnus castus (monk's pepper) can be used as a spray to keep away especially Ixodes ricinus and Rhipicephalus sanguineus ticks from animals and humans for at least 6 h. In addition mosquitoes, biting flies and fleas are also repelled for about 6 h.
Cheng, Cheng; Fu, Weiming; Ju, Wendong; Yang, Liwei; Xu, Ning; Wang, Yan-Mei; Li, Hui; Wang, Yan-Lu; Hu, Man-Xia; Wen, Jing; Jiao, Dan; Geng, Cong; Sun, Yi
2016-07-01
In order to investigate the diversity of spotted fever group (SFG) Rickettsia infection in hard ticks, ticks were harvested from the forest areas in Suifenhe city, along the Chinese-Russian border and conventional PCR was carried out using universal SFG Rickettsia primers targeting gltA and ompA genes to screen for their infection with SFG Rickettsia organisms. Results showed that of the 215 ticks belonging to Ixodes persulcatus, Haemaphysalis concinna and Haemaphysalis japonica Warburton, 1908 species, 138 (64.2%) were positive for SFG Rickettsia. Three species of SFG Rickettsia were detected, Rickettsia raoultii, Rickettsia heilongjiangensis and Candidatus Rickettsia tarasevichiae. No co-infection with different species of SFG Rickettsia was found in any individual tick among the three tick species. We detected more than one SFG Rickettsia species in ticks from each of the three tick species with an overlapping distribution and potentially similar transmission cycles of SFG Rickettsia in the areas surveyed. Consequently, different pathogenic rickettsial species may be involved in human cases of rickettsiosis after a bite of the three above-mentioned tick species in that area Rickettsia. Copyright © 2016. Published by Elsevier GmbH.
The application of lambda-cyhalothrin in tick control.
Jurisic, Aleksandar D; Petrovic, Aleksandra P; Rajkovic, Dragana V; Nicin, Slobodan Dj
2010-09-01
In recent years, in urban areas of Novi Sad, unique ecological conditions, specific floristic and faunistic composition and poor habits of citizens in sense of public health, facilitate the development and maintenance of ticks. Regarding the importance of ticks as vectors of severe human and animal diseases, complex and detailed studies are conducted with an aim to find the most efficient methods for tick control. Two tick species, Ixodes ricinus and Dermacentor marginatus, were identified during a 3-year period on the territory of Municipality of Novi Sad. During 2006, the efficacy of the pyrethroid lambda-cyhalothrin in tick control varied from 60.7 to 100%. The highest efficacy recorded in 2007 was 92.3%. The efficacy of lambda-cyhalothrin in 2008 varied from 39.1 to 100%. Lambda-cyhalothrin showed high efficacy in tick control at localities which were improved before the application (mowed, litter removed, abundance control and euthanasia of abandoned cats and dogs). The results of this research indicate that lambda-cyhalothrin has a toxic effect on ticks and could be used as efficient acaricide for tick control, although its efficacy depends on formulation, terrain features and methods of application.
Feeding of ticks on animals for transmission and xenodiagnosis in Lyme disease research.
Embers, Monica E; Grasperge, Britton J; Jacobs, Mary B; Philipp, Mario T
2013-08-31
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.
Powassan virus: vernal spread during 1965.
McLean, D M; Smith, P A; Livingstone, S E; Wilson, W E; Wilson, A G
1966-03-12
Powassan virus was isolated from seven pools of Ixodes cookei ticks removed from groundhogs (Marmota monax) collected near North Bay, Ontario, between May and August 1965, including five pools obtained during spring. Tick pools, each comprising one to nine ticks, contained 2.0 to 5.5 log(10) TCD(50) of virus upon titration in monolayer cultures of primary swine kidney cells. Powassan virus neutralizing antibody prevalence in sera of the current season's groundhogs increased steadily from zero during May to 25% during August but remained relatively unchanged (42% to 58%) in the previous season's groundhogs, thereby confirming that active infection had occurred particularly amongst juvenile groundhogs mainly during spring 1965. Isolation of one strain of Silverwater virus from Haemaphysalis leporis-palustris ticks and detection of neutralizing antibody in three of nine snowshoe hares (Lepus americanus) confirmed the active spread of this agent during 1965.
Biernat, Beata; Karbowiak, Grzegorz
2014-01-01
Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is an arthropod-borne virus, an etiologic agent of tick-borne encephalitis (TBE), an infection involving the central nervous system. The disease is endemic in a large region in Eurasia where it is transmitted mainly by Ixodes ricinus in Europe and I. persulcatus ticks in Asia. This is the most important tick-transmitted arbovirus of human pathogenicity in Europe. The Białowieza Primeval Forest is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tickborne encephalitis virus (TBEV) in European bison, the important hosts of ticks in the Białowieza Primeval Forest. In the years 2005-2009, 95 blood samples were collected from European bison and examined for the presence of TBEV using nRT-PCR method. No positive results were obtained. For better understanding of TBEV vertebrate reservoir hosts in Poland, further investigations are needed.
Hornok, Sándor; Meli, Marina L; Gönczi, Enikő; Halász, Edina; Takács, Nóra; Farkas, Róbert; Hofmann-Lehmann, Regina
2014-10-01
The aim of the present study was to compare different urban biotopes for the occurrence of ixodid tick species, for the population density of Ixodes ricinus and for the prevalence rates of two emerging, zoonotic pathogens. Altogether 2455 ticks were collected from the vegetation on 30 places (forests, parks, cemeteries) of Budapest, Hungary. I. ricinus and Haemaphysalis concinna were collected in all three biotope types, but Dermacentor reticulatus only in parks and forests, and D. marginatus only in a forest. Highest population density of I. ricinus was observed in neglected parts of cemeteries. In females of this tick species the prevalence rates of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. were significantly lower in cemeteries, than in parks or forests. In conclusion, risks associated with the presence of ticks and tick-borne pathogens may be high in a city, but this depends on biotope types, due to habitat-related differences in the vegetation, as well as in the availability of tick hosts and pathogen reservoirs. Copyright © 2014 Elsevier GmbH. All rights reserved.
Randolph, S E; Craine, N G
1995-11-01
Models of tick-borne diseases must take account of the particular biological features of ticks that contrast with those of insect vectors. A general framework is proposed that identifies the parameters of the transmission dynamics of tick-borne diseases to allow a quantitative assessment of the relative contributions of different host species and alternative transmission routes to the basic reproductive number, Ro, of such diseases. Taking the particular case of the transmission of the Lyme borreliosis spirochaete, Borrelia burgdorferi, by Ixodes ticks in Europe, and using the best, albeit still inadequate, estimates of the parameter values and a set of empirical data from Thetford Forest, England, we show that squirrels and the transovarial transmission route make quantitatively very significant contributions to Ro. This approach highlights the urgent need for more robust estimates of certain crucial parameter values, particularly the coefficients of transmission between ticks and vertebrates, before we can progress to full models that incorporate seasonality and heterogeneity among host populations for the natural dynamics of transmission of borreliosis and other tick-borne diseases.
Keesing, Felicia; McHenry, Diana J.; Hersh, Michelle; Tibbetts, Michael; Brunner, Jesse L.; Killilea, Mary; LoGiudice, Kathleen; Schmidt, Kenneth A.; Ostfeld, Richard S.
2014-01-01
Anaplasmosis is an emerging infectious disease caused by infection with the bacterium Anaplasma phagocytophilum. In the eastern United States, A. phagocytophilum is transmitted to hosts through the bite of the blacklegged tick, Ixodes scapularis. We determined the realized reservoir competence of 14 species of common vertebrate hosts for ticks by establishing the probability that each species transmits two important strains of A. phagocytophilum (A. phagocytophilum human-active, which causes human cases, and A. phagocytophilum variant 1, which does not) to feeding larval ticks. We also sampled questing nymphal ticks from ∼150 sites in a single county over 2 years and sampled over 6 years at one location. White-footed mice (Peromyscus leucopus) and Eastern chipmunks (Tamias striatus) were the most competent reservoirs for infection with the A. phagocytophilum human-active strain. Across the county, prevalence in ticks for both strains together was 8.3%; ticks were more than two times as likely to be infected with A. phagocytophilum human-active as A. phagocytophilum variant 1. PMID:24865688